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Abstract

Using ε-bias spaces over F2, we show that the Remote Point Problem (RPP), introduced by
Alon et al [APY09], has an NC2 algorithm (achieving the same parameters as [APY09]). We
study a generalization of the Remote Point Problem to groups: we replace Fn

2 by Gn for an
arbitrary fixed group G. When G is Abelian we give an NC2 algorithm for RPP, again using
ε-bias spaces. For nonabelian G, we give a deterministic polynomial-time algorithm for RPP.
We also show the connection to construction of expanding generator sets for the group Gn. All
our algorithms for the RPP achieve essentially the same parameters as [APY09].

1 Introduction

Valiant, in his celebrated work [V77] regarding circuit lower bounds for computing linear transfor-
mations A : Fn −→ Fm for a field F, initiated the study of rigid matrices. If explicit rigid matrices
of certain parameters can be constructed it would result in superlinear lower bounds for logarithmic
depth linear circuits over F. This problem and the construction of such rigid matrices has remained
elusive for over three decades.

Alon, Panigrahy and Yekhanin [APY09] recently proposed a problem that appears to be of inter-
mediate difficulty. Given a subspace L of Fn2 by its basis and a number r ∈ [n] as input, the problem
is to compute in deterministic polynomial time a point v ∈ Fn2 such that ∆(u, v) ≥ r for all u ∈ L,
where ∆(u, v) is the Hamming distance. They call this the Remote Point Problem. The point v is
said to be r-far from the subspace L.

Alon et al [APY09] give a nice polynomial time-bounded (in n) algorithm for computing a v ∈ Fn2
that is c log n-far from a given subspace L of dimension n/2 and c is a fixed constant. For L such
that dim(L) = k < n/2 they give a polynomial-time algorithm for computing a point v ∈ Fn2 that
is cn log k

k -far from L.
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Results of this paper

In [AS09] we recently investigated the problem of proving circuit lower bounds in the presence of
help functions. Specifically, one of the problems we consider is proving lower bounds for constant-
depth Boolean circuits which can take a given set of (arbitrary) help functions {h1, h2, · · · , hm}
at the input level, where hi : {0, 1}n −→ {0, 1} for each i. Proving explicit lower bounds for this
model would allow us to separate EXP from the polynomial-time many-one closure of nonuniform
AC0. We show that it suffices to find a polynomial-time solution to the Remote Point Problem
for parameters k = 2(log logn)c

and r = n

2(log log n)d
for all constants c and d. Unfortunately, the

parameters of the Alon et al algorithm are inadequate for our application.

However, motivated by this connection, in the present paper we give a more detailed study of the
Remote Point Problem as an algorithmic question. We briefly summarize our results in the present
paper.

1. The first question we address is whether we can give a deterministic parallel (i.e. NC) algorithm
for the problem — Alon et al’s algorithm is inherently sequential as it is based on the method of
conditional probabilities and pessimistic estimators.

It turns out an element of an ε-bias space for suitably chosen ε is a solution to the Remote Point
Problem which gives us an NC algorithm quite easily.

2. Since the RPP for Fn2 can be solved using small bias spaces, it naturally leads us to address
the problem in a more general group-theoretic setting.

In the generalization we study we will replace F2 with an arbitrary fixed finite group G such that
|G| ≥ 2. Hence we will have the n-fold product group Gn instead of the vector space Fn2 .

Given elements x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) of Gn, let ∆(x, y) = |{i | xi 6= yi}|. I.e.
∆(x, y) is the Hamming distance between x and y. Furthermore, for S ⊆ Gn, let ∆(x, S) denote
miny∈S ∆(x, y).

We now define the Remote Point Problem (RPP) over a finite group G. The input is a subgroup
H of Gn, where H is given by a generating set, and a number r ∈ [n]. The problem is to compute
in deterministic polynomial (in n) time an element x ∈ Gn such that ∆(x,H) > r. The results we
show in this general setting are the following.

(a) The Remote Point Problem over any Abelian group G has an NC2 algorithm for r = O(n log k
k )

and k ≤ n/2, where k = log|G| |H|.

(b) Over an arbitrary group G the Remote point problem has a polynomial-time algorithm for
r = O(n log k

k ) and k ≤ n/2, where k = log|G| |H|.

The parallel algorithm stated in part(a) above is based on ε-bias space constructions for finite
Abelian groups described in Azar et al [AMN98]. The sequential algorithm stated in part(b) above
is a group-theoretic generalization of the Alon et al algorithm for Fn2 [APY09].
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2 Preliminaries

Fix a finite group G such that |G| ≥ 2. Given any x ∈ Gn, let wt(x) denote the number of
coordinates i such that xi 6= 1, where 1 is the identity of the group G. By B(r), we will refer
to the set of x ∈ Gn such that wt(x) ≤ r. Given a subset S of Gn, B(S, r) will denote the set
S ·B(r) = {sx | s ∈ S, x ∈ B(r)}. Clearly, for any S ⊆ Gn and any x ∈ Gn, x ∈ B(S, r) if and only
if ∆(x, S) ≤ r. We say that x is r-close to S if x ∈ B(S, r) and r-far from S if x /∈ B(S, r).

The Remote Point Problem (RPP) over G is defined to be the following algorithmic problem:

INPUT: A subgroup H of Gn (given by its generators) and an r ∈ N.

OUTPUT: An x ∈ Gn such that x /∈ B(H, r).

Clearly, there are inputs to the above problem where no solution can be found. But the input
instances of the kind that we will study will clearly have a solution (in fact, a random point of Gn
will be a solution with high probability).

Given a subgroup H of Gn, denote by δ(H) the quantity log|G| |H|. We will call δ(H) the dimension
of H in Gn.

We say that the RPP over G has a (k(n), r(n))-algorithm if there is an efficient algorithm that
solves the Remote Point Problem when given as input a subgroup H of Gn of dimension at most
k(n) and an r that is bounded by r(n). (Here, ‘efficient’ can correspond to polynomial time or
some smaller complexity class.)

A simple counting argument shows that there is a valid solution to the RPP over G on inputs
(H, r) where δ(H) + r ≤ n(1 − H(r/n)

log |G| − ε), for any fixed ε > 0 (where H(·) denotes the binary
entropy function). However, the best known deterministic solution to the RPP – from [APY09] –
is a polynomial time (k, cn log k

k )-algorithm which works over Fn2 (i.e, the group G involved is the
additive group of the field F2).

2.1 Some Group-Theoretic Algorithms

We introduce basic definitions and review some group-theoretic algorithms. Let Sym(Ω) denote
the group of all permutations on a finite set Ω of size m. In this section we use G,H etc. to denote
permutation groups on Ω, which are simply subgroups of Sym(Ω).

Let G be a subgroup of Sym(Ω). For a subset ∆ ⊆ Ω denote by G{∆} the point-wise stabilizer of
∆. I.e G{∆} is the subgroup consisting of exactly those elements of G that fix each element of ∆.

Theorem 1 (Schreier-Sims). [Lu93]

1. If a subgroup G of Sym(Ω) is given by a generating set as input along with the subset ∆ there
is a polynomial-time (sequential) algorithm for computing a generator set for G{∆}.
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2. If a subgroup G of Sym(Ω) is given by a generating set as input, then there is a polynomial
time algorithm for computing |G|.

3. Given as input a permutation σ ∈ Sym(Ω) and a generator set for a subgroup G of Sym(Ω),
we can test in deterministic polynomial time if σ is an element of G.

We are also interested in a special case of this problem which we now define. A subset Γ ⊆ Ω is
an orbit of G if Γ = {σ(i) | σ ∈ G} for some i ∈ Ω. Any subgroup G of Sym(Ω) partitions Ω into
orbits (called G-orbits).

For a constant b > 0, a subgroup G of Sym(Ω) is defined to be a b-bounded permutation group if
every G-orbit is of size at most b.

In [MC87], McKenzie and Cook studied the parallel complexity of Abelian permutation group prob-
lems. Specifically, they gave an NC3 algorithm for testing membership in an Abelian permutation
group given by a generator set and for computing the order of an Abelian permutation group. When
restricted to b-bounded Abelian permutation groups, the algorithms of [MC87] for these problems
are actually NC2 algorithms. We formally state their result and derive a consequence.

Theorem 2 ([MC87]). There is an NC2 algorithm for membership testing in a b-bounded Abelian
permutation group G given by a generator set.

We now consider problems over Gn, for a fixed finite group G. We know from basic group theory
that every group G is a permutation group acting on itself. I.e. every G can be seen as a subgroup
of Sym(G), where G acts on itself by left (or right) multiplication. Therefore, Gn can be easily seen
as a permutation group on the set Ω = G × [n] and hence, Gn can be considered a subgroup of
Sym(Ω). Furthermore, notice that each subset G × {i} is an orbit of this group Gn. Hence, Gn is
a b-bounded permutation group contained in Sym(Ω), where b = |G|. Finally, if G is an Abelian
group, then so is this subgroup of Sym(Ω). We have the following lemma as an easy consequence
of Theorem 2.

Lemma 3. Let G be Abelian. There is an NC2 algorithm that takes as input a generator set for
some subgroup H of Gn and an x ∈ Gn, and accepts iff x ∈ H.

Given any y = (y1, y2, . . . , yi) ∈ Gi with 1 ≤ i ≤ n and any S ⊆ Gn, let Sy denote the set
{x ∈ S | xj = yj for 1 ≤ j ≤ i}.

Lemma 4. Let G be any fixed finite group. There is a polynomial time algorithm that takes as
input a subgroup H of Gn, where H is given by generators, and a y ∈ Gi with 1 ≤ i ≤ n, and
computes |Hy|.

Proof. Let K = {(x1, x2, . . . , xn) ∈ H | x1 = x2 = · · · = xi = 1}, where 1 denotes the identity
element of G. Clearly, K is a subgroup of H. The set Hy, if nonempty, is simply a coset of K and
thus, we have |Hy| = |K|. To check if Hy is nonempty, we consider the map πi : Gn → Gi that
projects its input onto its first i coordinates; note that Hy is nonempty iff the subgroup πi(H)
contains y, which can be checked in polynomial time by point (3) of Theorem 1 (here, we are
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identifying Gn with a subgroup of Sym(G × [n]) as above). If y /∈ πi(H), the algorithm outputs
0. Otherwise, we have |Hy| = |K| and it suffices to compute |K|. But K is simply the point-wise
stabilizer of the set G × [i] in H, and hence |K| can be computed in polynomial time by points (1)
and (2) of Theorem 1.

3 Expanding Cayley Graphs and the Remote Point Problem

Fix a group G such that |G| ≥ 2, and consider an instance of the RPP over G. The main idea that
we develop in this section is that if we have a (symmetric) expanding generator set S for the group
Gn with appropriate expansion parameters then for a subgroup H of Gn such that δ(H) ≤ k some
element of S will be r-far from H, for suitable k and r.

We review some definitions related to expander graphs (e.g. see the survey of Hoory, Linial, and
Wigderson [HLW06]). An undirected multigraph G = (V,E) is an (n, d, α)-graph for n, d ∈ N and
α > 0 if |V | = n, the degree of each vertex is d, and the second largest value λ(G) from among the
absolute values of eigenvalues of A(G) – the adjacency matrix of the graph G – is bounded by αd.

A random walk of length t ∈ N on an (n, d, α)-graph G = (V,E) is the output of the following
random process: a vertex v0 ∈ V of picked uniformly at random, and for 0 ≤ i < t, if vi has been
picked, then vi+1 is obtained by selecting a neighbour vi+1 uniformly at random (i.e a random edge
out of vi is picked, and vi+1 is chosen to be the other endpoint of the edge); the output of the
process is (v0, v1, . . . , vt). We now state an important result regarding random walks on expanders
(see [HLW06, Theorem 3.6] for details).

Lemma 5. Let G = (V,E) be an (n, d, α)-graph and B ⊆ V with |B| ≤ βn. Then, the probability
that a random walk (v0, v1, . . . , vt) is entirely contained inside B (i.e, vi ∈ B for each i) is bounded
by (β + α)t.

Let H be a group and S a symmetric multiset of elements from H. I.e. there is a bijection of
multisets ϕ : S → S such that ϕ(s) = s−1 for each s ∈ S. We define the Cayley graph C(H, S) to
be the (multi)graph G with vertex set H and edges of the form (x, xs) for each x ∈ H and each
s ∈ S; since S is symmetric, we consider C(H, S) to be an undirected graph by identifying the
edges (x, xs) and (xs, (xs)ϕ(s)), for each x and s.

We now show a lemma that will help relate generators of expanding Cayley graphs on Gn and the
RPP over G. In what follows, let S be a symmetric multiset of elements from Gn; let G denote the
Cayley graph C(Gn, S); and let N,D denote |G|n and |S| (counted with repetitions) respectively.

Lemma 6. Assume S as above is such that G is an (N,D,α)-graph, where α ≤ 1
nd , for some fixed

d > 0. Then, given any subgroup H of Gn such that δ(H) ≤ 2n/3, we have |S∩H||S| ≤
1

nd/2 for large
enough n (where the elements of S ∩H are counted with repetitions).

Proof. Let S′ = S∩H and let η = |S′|/|S|. We want an upper bound on η. Consider a random walk
(x0, x1, . . . , xt) of length t on the graph G (the exact value of t will be fixed later). Let B denote
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the following event: there is a y ∈ Gn such that all the vertices x0, x1, . . . , xt are all contained in
the coset yH of H. Let p denote the probability that B occurs.

We will first lower bound p. At each step of the random walk, a random si ∈ S is chosen and xi+1

is set to xisi. If these si all happen to belong to S′, then the cosets xiH and xi+1H are the same
for all i and hence, the event B does occur. Hence, p ≥ ηt.

We now upper bound p. Fix any coset yH of the subgroup H. Since the dimension of H in Gn is
bounded by 2n/3, we have |yH| = |H| ≤ |G|2n/3 ≤ 2−n/3|Gn|. That is, the coset yH is a very small
subset of Gn. Applying Lemma 5, we see that the probability that the random walk (x0, x1, . . . , xt)
is completely contained inside this coset is bounded by (2−n/3 + n−d)t ≤ 2t

ndt , for large enough n.
As the total number of cosets of H is bounded by |G|n, an application of the union bound tells us
that p is upper bounded by |G|n 2t

ndt ≤
|G|n+t

ndt . Setting t = 2n
d log|G| n−2 we see that p is at most 1

ndt/2 .

Putting the upper and lower bounds together, we see that ηt ≤ 1
ndt/2 and hence, η ≤ 1

nd/2 . This
completes the proof.

We follow the structure of the algorithm for the RPP over F2 in [APY09]. We first describe their
(n/2, c log n)-algorithm for the RPP, followed by our own algorithm. We then describe how they
extend this algorithm to a (k, cn log k

k )-algorithm for any k ≤ n/2; the same procedure works for our
algorithm also.

The (n/2, c log n)-algorithm proceeds as follows. On an input instance consisting of a subgroup V
(which is a subspace of Fn2 ) of dimension at most n/2 and an r ≤ c log n,

1. The algorithm first computes a collection of m = nO(c) subspaces V1, V2, . . . , Vm, each of
dimension at most 2n/3 such that B(V, c log n) ⊆

⋃m
i=1 Vi.

2. The algorithm then finds an x ∈ Fn2 such that x /∈
⋃
i Vi. (This is done using a method similar

to the method of pessimistic estimators introduced by Raghavan [Rag88].)

Our algorithm will proceed exactly as the above algorithm in the first step. The second step of
our algorithm will be different (assuming that the group G is Abelian). We first state Step 1 of the
algorithm of [APY09] in greater generality:

Lemma 7. Let G be any fixed finite group with |G| ≥ 2. For any constant c > 0 and large enough
n, the following holds. Given any subgroup H of Gn such that δ(H) ≤ n

2 , there is a collection
of m ≤ n10c subgroups H1,H2, . . . ,Hm such that B(H, c log n) ⊆

⋃m
i=1Hi, and δ(Hi) ≤ 2n/3 for

each i. Moreover, there is a logspace algorithm that, when given as input H as a set of generators,
produces generators for the subgroups H1,H2, . . . ,Hm.

Proof. The proof follows exactly as in [APY09]. We reproduce it here for completeness and to
analyze the complexity of the procedure.

Let 1 denote the identity element of G. For each S ⊆ [n], let Gn(S) denote the subgroup of Gn
consisting of those x such that xi = 1 for each i /∈ S. Note that δ(Gn(S)) = |S|. Also note that
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for each S ⊆ [n], the group Gn(S) is a normal subgroup; in particular, this implies that the set
K · Gn(S) is a subgroup of Gn whenever K is a subgroup of Gn.

Partition the set [n] into ` ≤ 10c log n sets of size at most d n
10c logne each – we will call these sets

S1, S2, . . . , S`. For each A ⊆ [`] of size dc log ne, let KA denote the subgroup Gn(
⋃
i∈A Si). Note

that the number of such subgroups is at most 2` ≤ n10c. Also, for each A as above, δ(KA) =
|
⋃
i∈A Si| ≤

(
n

10c logn + 1
)

(c log n+ 1) < n
9 , for large enough n.

Consider any x ∈ B(c log n) (i.e, an element x of Gn s.t wt(x) ≤ c log n). We know that x ∈ Gn(S)
for some S of size at most c log n. Hence, it can be seen that x ∈ Gn(

⋃
i∈A Si) for some A of size

dc log ne; this shows that B(c log n) ⊆
⋃
AKA. Therefore, we see that B(H, c log n) = HB(c log n) ⊆⋃

AHKA.

For each A ⊆ [`] of size dc log ne, let HA denote the subgroup HKA (note that this is indeed a
subgroup, since KA is a normal subgroup). Moreover, the cardinality of this subgroup is bounded by
|H| · |KA| ≤ |G|n/2|G|n/9 < |G|2n/3; hence, δ(HA) ≤ 2n/3. Thus, the collection of subgroups {HA}A
satisfies all the properties mentioned in the statement of the lemma. That a set of generators for
this subgroup can be computed in deterministic logspace – for some suitable choice of S1, S2, . . . , S`
– is a routine check from the definition of the subgroups {KA}A. This completes the proof of the
lemma.

Using Lemma 7, we are able to efficiently “cover” B(H, c log n) for any small subgroup H of Gn by
a union of small subgroups. Therefore, to find a point that is c log n-far from H, it suffices to find
a point x ∈ Gn not contained in any of the covering subgroups. To do this, we note that if S is a
multiset containing elements from Gn such that C(Gn, S) is a Cayley graph with good expansion,
then S must contain such an element. This is formally stated below.

Lemma 8. For any constant c > 0 and large enough n ∈ N, the following holds. Let S be any
multiset of elements of Gn such that λ(C(Gn, S)) < 1

n20c . Then, for m ≤ n10c and any collection
H1,H2, . . . ,Hm of subgroups such that δ(Hi) ≤ 2n/3 for each i, there is some s ∈ S such that
s /∈

⋃
iHi.

Proof. The proof follows easily from Lemma 6. Given any i ∈ [m], we know, from Lemma 6, that
|S ∩ Hi| < |S|

n−10c (where the elements of the multisets are counted with repetitions). Hence,
|S ∩

⋃
iHi| ≤

∑
i |S ∩ Hi| <

m|S|
n−10c ≤ |S|. Therefore, there must be some s ∈ S such that

s /∈
⋃
iHi.

Therefore, to find a point x that is c log n-far from the subspace H, it suffices to construct an S
such that C(Gn, S) is a sufficiently good expander, find the covering subgroups Hi (i ∈ [m[), and
then to find an s ∈ S that does not lie in any of the Hi. We follow the above approach to give
an efficient parallel algorithm for the RPP in the case that G is an Abelian group. For arbitrary
groups, we show that the method of [APY09] yields a polynomial time algorithm.
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4 Remote Point Problem for Abelian Groups

Fix an Abelian group G. Recall that a character χ of Gn is a homomorphism from Gn to C∗1, the
multiplicative subgroup of the complex numbers of absolute value 1. For ε > 0, a distribution µ
over Gn is said to be ε-biased if, given any non-trivial character χ of Gn,∣∣∣∣ E

x∼µ
[χ(x)]

∣∣∣∣ ≤ ε
A multiset S consisting of elements from Gn is said to be an ε-biased space in Gn if the uniform
distribution over S is an ε-biased distribution.

It can be checked that a multiset consisting of (nε )O(1) independent, uniformly random elements
from Gn form an ε-biased space with high probability. Explicit ε-biased spaces were constructed
for the group Fn2 by Naor and Naor in [NN93]; further constructions were given by Alon et al. in
[AGHP92]. Explicit constructions of ε-biased spaces in Znd were given by Azar et al. in [AMN98].
We observe that this last construction yields a construction for all Abelian groups Gn, when G is
of constant size. We first state the result of [AMN98] in a form that we will find suitable.

Theorem 9. For any fixed d, there is an NC2 algorithm that does the following. On input n and
ε > 0 (both in unary), the algorithm produces a symmetric multiset S ⊆ Znd of size O((nε )2) such
that S is an ε-biased space in Znd .

Proof. It is easy to see that the ε-biased space construction in [AMN98] can be implemented in
deterministic logspace (and hence in NC2). If the space S obtained is not symmetric, we can
consider the multiset that is the disjoint union of S and S−1, which is also easily seen to be
ε-biased.

Remark 10. We note that the definition of small bias spaces in [AMN98] differs somewhat from
our own definition above. But it is easy to see that an ε-bias space in Znd in the sense of [AMN98]
is a (dε)-bias space according to our definition above.

Remark 11. In a recent paper, Meka and Zuckerman [MZ09] observe, as we do below, that the
construction of [AMN98] gives small bias spaces for any arbitrary Abelian group G. Nevertheless,
we present our own proof of this fact, since the small bias spaces that follow from our proof are of
smaller size. Specifically, our proof shows how to explicitly construct sample spaces of size O

(
n2

ε2

)
,

whereas the relevant result in [MZ09] only produces small bias spaces of size O
(
(nε )b

)
, where b is

some constant that depends on G (and can be as large as Ω(log |G|)).

Lemma 12. For any fixed group G, there is an NC2 algorithm which, on input n and ε > 0 in
unary, produces a symmetric multiset S ⊆ Gn of size O((nε )2) such that S is an ε-biased space in
Gn.

Proof. By the Fundamental Theorem of finite Abelian groups, G ∼= Zd1⊕Zd2⊕· · ·⊕Zdk
, for positive

integers d1, d2, . . . , dk such that d1 | d2 | · · · | dk. Let G0 denote Zkdk
. Note that for any s, t ∈ N,

Zs ∼= Zst/Zt. Hence, we see that that G ∼= G0/H, where H is the subgroup Ze1 ⊕ Ze2 ⊕ · · · ⊕ Zek
,
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and ei = dk/di for each i ∈ [k]. Therefore, Gn ∼= Gn0 /Hn. Let π : Gn0 → Gn be the natural onto
homomorphism with kernel Hn. Note that π is just the projection map and can easily be computed
in NC2.

Since Gn0 ∼= Znkdk
, by Theorem 9, there is an NC2 algorithm that constructs a symmetric multiset

S0 ⊆ Gn0 of size O(
(
kn
ε

)2
) such that S0 is an ε-biased space in Gn0 . We claim that the multiset

S = π(S0) is a symmetric ε-biased space in Gn. To see this, consider any non-trivial character χ of
Gn; note that χ0 = χ ◦ π is a non-trivial character of Gn0 . We have∣∣∣∣ E

x∼S
[χ(x)]

∣∣∣∣ =
∣∣∣∣ E
x0∼S0

[χ(π(x0))]
∣∣∣∣ =

∣∣∣∣ E
x0∼S0

[χ0(x)]
∣∣∣∣ ≤ ε

where the first equality follows from the definition of S, and the last inequality follows from the
fact that S0 is an ε-biased space in Gn0 . Since χ was an arbitrary non-trivial character of Gn, we
have proved that S is indeed an ε-biased space in Gn. It is easy to see that S is symmetric. Finally,
note that S can be computed in NC2. This completes the proof.

Finally, we mention a well-known connection between small bias spaces in Gn and Cayley graphs
over Gn (e.g. see Alon and Roichman [AR94]).

Lemma 13. Given any symmetric multiset S ⊆ Gn, the Cayley graph C(Gn, S) is an (|G|n, |S|, α)-
graph iff S is an α-biased space.

Lemmas 13 and 12 have the following easy consequence:

Lemma 14. For any Abelian group G, there is an NC2 algorithm which, on unary inputs n and
α > 0, produces a symmetric multiset S ⊆ Gn of size O((nα)2) such that C(Gn, S) is a (|G|n, |S|, α)-
graph.

Putting the above statement together with the results of Section 3, we have the following.

Theorem 15. For any constant c > 0, the RPP over G has an NC2 (n/2, c log n)-algorithm.

Proof. Let H denote the input subgroup. By Lemma 7, there is a logspace (and hence NC2)
algorithm that computes a collection of m = nO(c) many subgroups H1,H2, . . . ,Hm such that
B(H, c log n) ⊆

⋃m
i=1Hi and δ(Hi) ≤ 2n/3 for each i ∈ [m]. Now, fix any multiset S ⊆ Gn such

that the Cayley graph C(Gn, S) is a (|G|n, |S|, α)-graph, where α = 1
2n20c ; by Lemma 14, such

an S can be constructed in NC2. It follows from Lemma 8 that there is some s ∈ S such that
s /∈

⋃m
i=1Hi. Finally, by Lemma 3, there is an NC2 algorithm to test if each s ∈ S belongs to Hi,

for any i ∈ [m]. Hence, we can find out (in parallel) exactly which s ∈ S do not belong to any of
the Hi and output one of them. The output element s is surely c log n-far from H.

Let G be Abelian. We observe that a method of [APY09], coupled with Theorem 15, yields an
efficient (k, cn log k

k )-algorithm for any constant c > 0, and k ≤ n/2.

Theorem 16. Let c > 0 be any constant. If G is an Abelian group, then the RPP over G has an
NC2 (k, cn log k

k )-algorithm for any k ≤ n/2.
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Proof. Given as input a subgroup H such that δ(H) = k ≤ n/2, the algorithm partitions [n] as
[n] =

⋃m
i=1 Ti, where 2k ≤ |Ti| < 4k for each i; note that m ≥ n/4k. Let Hi denote the subgroup

obtained when H is projected onto the coordinates in Ti. Since δ(Hi) ≤ k ≤ |Ti|/2, we can, by
Theorem 15, efficiently find a point xi ∈ G|Ti| that is at least 4c log k-far from Hi. Putting these xi
together in the natural way, we obtain an x ∈ Gn that is cn log k

k -far from the subgroup H.

Since G is Abelian, using the algorithm of Theorem 15, the xi can all be computed in parallel in
NC2. Hence, the entire procedure can be performed in NC2.

5 RPP over General Groups

Let G denote some fixed finite group. We now generalize the polynomial-time algorithm of [APY09],
described for F2, to compute a point x ∈ Gn that is c log n-far from a given input subgroup H such
that δ(H) ≤ n/2.

Theorem 17. For any constant c > 0, the RPP over G has a polynomial time (n/2, c log n)-
algorithm.

Proof. The algorithm we describe will work for n larger than a suitable constant. For smaller n,
we can solve the problem using a brute-force search algorithm. Given as input a subgroup H of
Gn such that δ(H) ≤ n/2 and r ≤ c log n, we first compute a collection of m = nO(c) subgroups
H1,H2, . . . ,Hm such that B(H, r) ⊆

⋃m
i=1Hi and δ(Hi) ≤ 2n/3 for each i. By Theorem 7, such a

collection of subgroups can be computed even in deterministic logspace, and hence in polynomial
time. Our aim is to pick a point x ∈ Gn such that x /∈

⋃m
i=1Hi.

We will pick the components x1, x2, . . . , xn of x from G, successively in the order of the indices,
maintaining the invariant that after x1, x2, . . . , xj have been picked, we have

∑m
i=1 |Hij | < |G|n−j ,

where Hij = {y ∈ Hi | yk = xk ∀k ≤ j}. For n larger than a constant depending on G and c,
the invariant clearly holds before x1 is picked. Furthermore, if the invariant holds after all of
x1, x2, . . . , xn have been fixed, then the resulting point x ∈ Gn does not belong to Hi for any i.

Suppose x1, x2, . . . , xj have been picked for some j ∈ {0, 1, . . . , n−1}. We pick xj+1 as follows. For
each g ∈ G, let Hijg = {y ∈ Hij | yj+1 = g}. By Lemma 4, we can compute |Hijg| for each g ∈ G
in polynomial time. Moreover, since |G|n−j >

∑
i |Hij | =

∑
i,g |Hijg|, there must be some g0 ∈ G

such that
∑

i |Hijg0 | < |G|n−j−1. Setting xj+1 to be g0, we are done.

The correctness of the algorithm is clear from the invariant maintained across iterations. That the
algorithm runs in polynomial time is obvious.

Analogous to Theorem 16, we have the following solution to RPP for general groups.

Theorem 18. Let c > 0 be any constant. For any G, the RPP over G has a polynomial time
(k, cn log k

k )-algorithm for any k ≤ n/2.
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Proof. The construction is exactly the same as in the proof of Theorem 16. The only difference is
that we will apply the algorithm of Theorem 17. In this case, the xi can all be found in deterministic
polynomial time. Hence, the entire procedure gives us a polynomial-time algorithm.

6 Limitations of expanding sets

In the previous sections, we have shown how generators for expanding Cayley graphs on Gn, where
G is a fixed finite group, can help solve the RPP over G. In particular, we have the following easy
consequence of Lemmas 7 and 8.

Corollary 19. For any constant c > 0, large enough n, and any symmetric multiset S ⊆ Gn such
that λ(C(Gn, S)) < 1

n20c , the following holds. If H is any subgroup of Gn such that δ(H) ≤ n/2,
there is some s ∈ S such that s /∈ B(H, c log n).

In this section, we explore the possibility that the parameters in Corollary 19 are far from optimal.
Is it true that any polynomial-sized symmetric multiset S ⊆ Gn with good enough expansion
properties is ω(log n)-far from every subgroup of dimension at most n/2? We show that this is not
true. Formally, we prove:

Theorem 20. For any constant c > 0 and large enough n, there is a symmetric multiset S ⊆ Fn2
such that λ(C(Fn2 , S)) ≤ 1

nc but there is a subspace L of dimension n/2 such that S ⊆ B(L, 20c log n).

It is known (see [HLW06]) that for any fixed G and any multiset S ⊆ Gn, λ(C(G, S)) = Ω(1/
√
|S|).

Hence, the above theorem tells us that just the expansion properties of C(Fn2 , S) for any poly(n)-
sized S are not sufficient to guarantee ω(log n)-distance from every subspace of dimension n/2.

Proof. Given any subspace L of Fn2 and any p ∈ [0, 1], define the probability distribution µ̃(L, p)
over Fn2 to be the distribution of the output of the following sampling algorithm: Pick x ∈ L
uniformly at random; pick y ∈ Fn2 by setting each yi to 1 independently with probability p; output
x+ y. Let µ(L, p) be the distribution µ̃(L, p) conditioned on the event that the output element of
the above sampling algorithm lies in B(L, 2pn). We will show that for suitable L and p0 = 10c logn

n ,
µ(L, p0) is a 1

nc -biased distribution. By Lemma 13, this will clearly imply the theorem with S being
the support of µ(L, p0) (with each x ∈ B(L, 2p0n) being repeated sufficiently many times in S); it is
obvious that S is symmetric since each x ∈ Fn2 is its own inverse. (Note that the space S produced
above is possibly of exponential size. However, it is easy to show by sampling from S that there
is a space S′ of size O(n2c+1) such that λ(C(Fn2 , S′)) ≤ 2

nc and S′ ⊆ B(L, 20c log n). We omit the
details.)

We choose L of dimension at most n/2 so that it has the following property: the subspace L⊥ =
{x ∈ Fn2 | ∀y ∈ L ⊕i xiyi = 0} contains no non-zero x such that wt(x) < n/10 (we note that this is
the same as stipulating that L⊥ is a binary linear code in Fn2 with rate at least n/2 and distance
at least n/10; however, this point is not essential to our proof). It is easy to check that a random
subspace of dimension n/2 satisfies this property. Fix any such subspace L. Having fixed the
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subspace L, the distribution µ(L, p0) has also been fixed. We now show that µ(L, p0) is a 1
nc -biased

distribution.

We will analyze the simpler distribution µ̃(L, p0). An application of the Chernoff bound tells us
that the statistical distance between µ̃(L, p0) and µ(L, p0) is at most 1/n2c and hence it suffices to
show that µ̃(L, p0) is 1

2nc -biased, if n is large enough. Let us denote µ̃(L, p0) by µ̃.

It is well known that the characters of Fn2 are of the form χz for z ∈ Fn2 , where χz(x) = (−1)⊕ixizi ;
note that χz is a non-trivial character iff z 6= 0. Fix a non-trivial character χz. Let χz,i denote the
function that maps a bit b to (−1)bzi ; we have χz(x) =

∏n
i=1 χz,i(xi). We will analyze |Ex′∼µ̃[χz(x′)]|

in one of two different ways depending on whether z ∈ L⊥ or not.

Case 1, z /∈ L⊥: In this case, we have∣∣∣∣ E
x′∼µ̃

[χz(x′)]
∣∣∣∣ =

∣∣∣∣Ex,y[χz(x+ y)]
∣∣∣∣

=
∣∣∣∣ E
x∈L

[χz(x)]
∣∣∣∣ · ∣∣∣∣Ey [χz(y)]

∣∣∣∣
= 0 ·

∣∣∣∣Ey [χz(y)]
∣∣∣∣ = 0

Case 2, z ∈ L⊥: We know, by the choice of L, that in this case, wt(z) ≥ n/10. Also, by definition,
each yi ∈ F2 is picked such that yi = 1 with probability p0. Hence, for any i ∈ [n], |Eyi [χz,i(yi)]| is
1− 2p0 if zi = 1 and 1 otherwise. Therefore, we have∣∣∣∣ E

x′∼µ̃
[χz(x′)]

∣∣∣∣ =
∣∣∣∣Ex,y[χz(x+ y)]

∣∣∣∣ =
∣∣∣∣ E
x∈L

[χz(x)]
∣∣∣∣ · ∣∣∣∣Ey [χz(y)]

∣∣∣∣
=
∣∣∣∣ E
x∈L

[χz(x)]
∣∣∣∣ ·∏

i

∣∣∣∣Eyi

[χz,i(yi)]
∣∣∣∣

≤ (1− 2p0)n/10 ≤ 1
n2c

<
1

2nc

Hence, the absolute value of the expectation of χz over the distribution µ̃ is bounded by 1
2nc . Since

χz was an arbitrary non-trivial character of Fn2 , this shows that µ̃ is 1
2nc -biased and completes the

proof.

7 Discussion

We have shown how expanding generating sets for Cayley graphs over Gn, where G is Abelian, can
be used to obtain deterministic NC2 algorithms for the Remote Point Problem over G. A natural
question that arises is whether we can obtain a similar algorithm in the non-Abelian setting. Note
that Lemma 8 holds in the non-Abelian setting too. Hence, in order to obtain an NC2-algorithm
for the RPP over arbitrary non-Abelian G along the lines of our algorithm for Abelian groups, we
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need to be able to check (in NC2) for membership in Gn, and we need to be able to construct
small multisets S of Gn such that C(Gn, S) has sufficiently good expansion properties. Luks’ work
[Lu86] yields an NC4 test for membership in Gn for arbitrary G. Building on that, there is a
also an NC2 membership test for Gn [AKV05]. However, we are unable to solve the problem of
computing a (good enough) expanding generator set for the group Gn, in deterministic NC or even
in deterministic polynomial time.
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