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Abstract

We give improved inapproximability results for some minimization problems in the second level
of the Polynomial-Time Hierarchy. Extending previous work by Umans [Uma99], we show that several
variants of DNF minimization are Σp2-hard to approximate to within factors of n1/3−ε and n1/2−ε (where
the previous results achieved n1/4−ε), for arbitrarily small constant ε > 0. For one problem shown to
be inapproximable to within n1/2−ε, we give a matching O(n1/2)-approximation algorithm, running in
randomized polynomial time with access to an NP oracle, which shows that this result is tight assuming
the PH doesn’t collapse.

1 Introduction

DNF minimization and related problems are among the most natural problems that are complete for levels
of the Polynomial-Time Hierarchy (PH) above NP. DNF minimization itself (“Given a DNF formula and an
integer k, is there an equivalent formula of size at most k?”) was shown to be Σp

2-complete in [Uma01], and
that problem and some surrounding minimization problems were further shown to be Σp

2-hard to approxi-
mate to within factors of the form nδ in [Uma99]. In this paper we study the particular constant δ achievable
in these inapproximability proofs.

There are quite a number of optimization problems in the literature that are complete for the second
level of the PH, and for many of these some inapproximability is known (see the surveys [SU02a, SU02b]).
For inapproximability proofs that rely on variants of the PCP Theorem for the levels of the PH, it seems
technically challenging to obtain tight results. However, for the collection of problems in [Uma99] with ap-
proximation thresholds of the form nδ, the inapproximability proofs used dispersers as their main technical
tool, and subsequent disperser constructions [TSUZ07] improved the constant δ to (the optimal) 1 − ε for
arbitrarily small ε > 0 for the basic problem (SHORTEST IMPLICANT CORE, defined below) of [Uma99].
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The constant δ for several other of the most important problems improved to only 1/4 − ε due to losses in
the reductions. There is thus an opportunity to further improve this constant by tightening the reductions
from SHORTEST IMPLICANT CORE. This is what we do in this paper: we improve 1/4 to 1/3 or 1/2 de-
pending on the problem. For one problem (IRREDUNDANT*(LITERALS), defined below), we show that the
n1/2−ε factor is tight (assuming the PH doesn’t collapse), which is somewhat surprising since it was natural
to conjecture that δ = 1− ε was the correct answer for all of these problems.

1.1 Preliminaries

Suppose Π is a minimization problem. Then Π WITH GAP r(n) is defined to be a promise variant of Π in
which positive instances have an optimal solution of at most k(n) and negative instances have an optimal
solution greater than r(n)k(n). If Π WITH GAP r(n) is C-hard for a class C, it is said to be C-hard to
approximate to within a factor r(n).

An implicant of a Boolean function f(x1, x2, . . . , xn) is a conjunction of literals that implies f . A prime
implicant C is a “minimal” implicant, i.e., no proper subset C ′ of C’s literals implies f .

We define a number of minimization problems related to DNF minimization. The decision versions of
all of these are known to be Σp

2-complete, and they are all Σp
2-hard to approximate to within factors of the

form nδ for some constant δ > 0 [Uma99].

SHORTEST IMPLICANT CORE: Given a DNF formula φ and an implicant X of φ, what is a shortest impli-
cant X ′ ⊆ X?

MIN DNF: Given a DNF formula φ, what is an equivalent DNF φ′ with the fewest occurrences of literals?

MIN TERM DNF: Given a DNF formula φ, what is an equivalent DNF φ′ with the least number of terms?

IRREDUNDANT: Given an n-term DNF formula φ = t1 ∨ · · · ∨ tn, what is a minimum cardinality index
set I ⊆ {1, . . . , n} such that φ is equivalent to

∨
i∈I ti?

IRREDUNDANT(LITERALS): Given an n-term DNF formula φ = t1 ∨ · · · ∨ tn, what is an index set
I ⊆ {1, . . . , n} with

∨
i∈I ti equivalent to φ such that

∨
i∈I ti has the fewest occurrences of literals?

IRREDUNDANT*(LITERALS): Given an n-term DNF formula φ = t1 ∨ · · · ∨ tn that depends on all of its
variables, what is an index set I ⊆ {1, . . . , n} with

∨
i∈I ti equivalent to φ such that

∨
i∈I ti has the

fewest occurrences of literals?

The problem IRREDUNDANT*(LITERALS) differs from IRREDUNDANT(LITERALS) only in the addi-
tional promise that the formula φ depends on all of its variables, meaning that for each variable x there
exists an assignment of the remaining variables such that changing x from false to true changes whether the
formula is satisfied. This is a natural demand (one can check that this promise holds on a given instance in
polynomial time with an NP oracle, which is “easy” when discussing Σp

2-hard problems) that ensures any
equivalent formula will mention all of the original variables at least once, and moreover, the known hardness
reductions (with a few simple modifications) produce instances that fulfill this promise.

The previous results of [Uma99] together with the disperser constructions in [TSUZ07] show that
SHORTEST IMPLICANT CORE is Σp

2-hard to approximate to within a factor n1−ε, and that the latter five
problems are Σp

2-hard to approximate within a factor n1/4−ε.
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1.2 Outline

In Section 2 we give improved inapproximability results for the above problems. Section 3 describes the
approximation algorithm for IRREDUNDANT*(LITERALS). We end with some open problems in Section 4.

2 Improved inapproximability results

We build on the reduction from SHORTEST IMPLICANT CORE in [Uma99] to obtain the following:

Theorem 2.1. MIN TERM DNF WITH GAP n1/3−ε is Σp
2-hard.

Proof. The proof follows the proof in [Uma99] closely, with the main difference being in the use of the z
variables below and how we reason about them. Begin with an instance (φ,X) of SHORTEST IMPLICANT

CORE, which we know to be Σp
2-hard to approximate to within a factor n1−ε. Suppose (φ ∧ ¬X) = s1 ∨

s2 ∨ · · · ∨ sm. Construct

φ′ =
m∨
i=1

s′i ∨
∨
xi∈X

m∨
j=1

uji ,

where s′i = si ∧
∧
k∈Si

zk and uji = xiajz1z2 · · · z2 logm, the a and z variables are new variables, and with

S1, S2, . . . , Sm distinct subsets of order logm of {1, 2, . . . , 2 logm}. Note that
(
2 logm
logm

)
≥
(2 logm

logm

)logm
=

m, so we can select our desired number of subsets.
We establish the following intermediate result:

Claim 1. There exists an implicant X ′ ⊆ X of φ of length k if and only if φ′ has an equivalent DNF φ′′

with at most m(k + 1) terms.

Proof. Let X ′ ⊆ X be an implicant of φ of length k. Construct

φ′′ =

m∨
i=1

s′i ∨
∨

xi∈X′

m∨
j=1

uji .

As every term of φ′′ also appears in φ′, φ′ will be true whenever φ′′ is true. We need to check that φ′ being
true implies that φ′′ is true. Suppose assignment A has φ′(A) = 1. If A has at least one z variable false,
or all a variables false, then it is inconsistent with all uji and hence must be consistent with some s′i. Since
all s′i terms are included in φ′′, φ′′(A) = 1. Otherwise, all z variables are true and at least one a variable
is true. If A is consistent with X ′, then φ(A) = 1. Every term of φ′ has a negated x variable, so A cannot
be consistent with X . But then an s′i term must be true, implying φ′′(A) = 1. If A is inconsistent with X ′,
there must be some xi ∈ X ′ set to false. Then some u term with a true aj and a negated xi will be true, and
will be included in φ′′.

In the other direction, we start with some φ′′ equivalent to φ′. Suppose term t of φ′′ contains no true
a variables. For any true assignment A of the variables in φ′′ with all a variables false, some s′i term from
φ′ must be true. This s′i term will remain true if some of the a variables are flipped to true, as no s′i term
contains any a variable. Since any assignment on which t is true will also force

∨
s′i to be true, we can say

that t implies
∨
s′i.

Let Ai be an assignment of φ′ consistent with s′i that sets all z variables not in Si to false and all a
variables to false. As φ′ will be true on Ai, some term t in φ′′ must be true. Term t cannot have any true a
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variables, and it must include all z variables in Si, since otherwise φ′′ would be true on an assignment with
less than logm of the z variables true. Moreover, t cannot contain any z variables not in Si, as t is true
on assignment Ai with these z variables false. Thus, each value of i gives us a term in φ′′ with no true a
variables that includes precisely the z variables from Si. As the sets Si are distinct and of equal size, there
must be at least m terms in φ′′ with no true a variables. We now discard all terms in φ′′ that imply

∨
s′i.

This removes at least m terms from φ′′, and all remaining terms must have no positive a variables.
Suppose we are left with R terms. Every assignment accepted by φ′ has a false x variable, so each term

of φ′′ must contain some negated xi. Label each of these R terms with a pair (i, j), where i is the index of
a negated x variable in the term and j is the index of a positive a variable in the term. We must have some j
that labels no more than dR/me terms. For this j, take X ′ to be the xi such that some term is labeled with
(i, j).

It remains to argue that this X ′ is an implicant of φ, and that |X ′| is small. Suppose X ′ were not an
implicant of φ. Then we have some assignment A consistent with X ′ on which φ is false. Set all z variables
to true in A, set aj to true for the j selected above, and set all other a variables to false. As φ does not
include any a or z variables, φ will remain false on A. As X is an implicant of φ, some xi must be set to
false. The uji term of φ′ will be true, so φ′ is true on A. Since ∨s′i = (φ ∧ ¬X), every s′i term will be false.
If one of the discarded terms above were true, then some s′i would have to be true, so no discarded term of
φ′′ is true. Moreover, the R remaining terms are unsatisfied, because each has a positive a literal with that a
set to false in A, or have a negated xi literal with that xi appearing in X ′ and hence set to true in A. Thus,
φ′′ is false on A while φ′ is true, violating the equivalence of φ′ and φ′′. Hence X ′ must be an implicant of
φ.

We have that |X ′| ≤ dR/me, and thatR ≤ |φ′′|−m. Let k be the least integer such that |φ′′| ≤ m(k+1),
so that R ≤ mk. This gives |X ′| ≤ dR/me ≤ dmk/me = k, completing the claim.

Let n be the total size of the original instance (φ,X) of SHORTEST IMPLICANT CORE. In creating the
instance φ′ of MIN DNF, m will be at most |φ| · |X| ≤ n2. Each term of φ′ has O(log n) literals, so the size
of φ′ will then be |φ′| ≤ O(n2 log n+n ·n2 log n) = O(n3+o(1)). Expressed in terms of the size of the MIN

DNF instance, our gap is n1/3−ε, for any constant ε > 0.

We use a nearly identical argument to prove inapproximability for IRREDUNDANT. The crucial differ-
ence is that we don’t need to form (φ ∧ ¬X) to begin with, because we can rely on the fact that the terms
of the solution are required to be terms of the original DNF formula. This simplifies some other steps in the
proof as well. For completeness we record the entire proof (with these simplifications) below:

Theorem 2.2. IRREDUNDANT WITH GAP n1/2−ε is Σp
2-hard .

Proof. Begin with an instance (φ,X) of SHORTEST IMPLICANT CORE, which we know to be Σp
2-hard to

approximate to within a factor n1−ε. Suppose φ = s1 ∨ s2 ∨ · · · ∨ sm. Construct

φ′ =

m∨
i=1

s′i ∨
∨
xi∈X

m∨
j=1

uji ,

where s′i = si ∧
∧
k∈Si

zk and uji = xiajz1z2 · · · z2 logm, the a and z variables are new variables, and with

S1, S2, . . . , Sm distinct subsets of order logm of {1, 2, . . . , 2 logm}. Note that
(
2 logm
logm

)
≥
(2 logm

logm

)logm
=

m, so we can select our desired number of subsets. We establish the following intermediate result:

Claim 2. There exists an implicant X ′ ⊆ X of φ of length k if and only if φ′ has an equivalent DNF φ′′

with at most m(k + 1) terms.
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Proof. Let X ′ ⊆ X be an implicant of φ of length k. Construct

φ′′ =

m∨
i=1

s′i ∨
∨

xi∈X′

m∨
j=1

uji .

As every term of φ′′ also appears in φ′, φ′ will be true whenever φ′′ is true. We need to check that φ′ being
true implies that φ′′ is true. Suppose assignment A has φ′(A) = 1. If A has at least one z variable false,
or all a variables false, then it is inconsistent with all uji and hence must be consistent with some s′i. Since
all s′i terms are included in φ′′, φ′′(A) = 1. Otherwise, all z variables are true and at least one a variable is
true. If A is consistent with X ′, then φ(A) = 1. But then an s′i term must be true, implying φ′′(A) = 1. If
A is inconsistent with X ′, there must be some xi ∈ X ′ set to false. Then some u term with a true aj and a
negated xi will be true, and will be included in φ′′.

In the other direction, we start with some φ′′ equivalent to φ′, with all of its terms coming from φ′. Since
each s′i term in φ′ has an assignment on which it’s true and no other term is true (namely, an assignment
with si true and all zk with k ∈ Si true, with the remaining zk false), each s′i term must be included in φ′′.
Discard all of these s′i terms from φ′′, and suppose we are left with R terms. Every remaining term is of the
form uji = xiajz1z2 · · · z2 logm. Fix some j such that no more than dR/me of the remaining terms contain
aj , and then take X ′ to be the xi such that some remaining term contains xi along with aj .

It remains to argue that this X ′ is an implicant of φ, and that |X ′| is small. Suppose X ′ were not an
implicant of φ. Then we have some assignment A consistent with X ′ on which φ is false. Set all z variables
to true in A, set aj to true for the j selected above, and set all other a variables to false. As φ does not
include any a or z variables, φ will remain false on A. As X is an implicant of φ, some xi must be set to
false. The uji term of φ′ will be true, so φ′ is true on A. Since ∨s′i = φ, every s′i term will be false. If one of
the discarded terms above were true, then some s′i would have to be true, so no discarded term of φ′′ is true.
Moreover, the R remaining terms are unsatisfied, because each has a positive a literal with that a set to false
in A, or have a negated xi literal with that xi appearing in X ′ and hence set to true in A. Thus, φ′′ is false
on A while φ′ is true, violating the equivalence of φ′ and φ′′. Hence X ′ must be an implicant of φ.

We have that |X ′| ≤ dR/me, and thatR ≤ |φ′′|−m. Let k be the least integer such that |φ′′| ≤ m(k+1),
so that R ≤ mk. This gives |X ′| ≤ dR/me ≤ dmk/me = k, completing the claim.

Let n be the total size of the original instance (φ,X) of SHORTEST IMPLICANT CORE. In creating the
instance φ′ of IRREDUNDANT, m will be at most |φ| ≤ n. Each term of φ′ has O(log n) literals, so the size
of φ′ will then be |φ′| ≤ O(n log n+ n · n log n) = O(n2+o(1)). Expressed in terms of the size of the MIN

DNF instance, our gap is n1/2−ε, for any constant ε > 0.

Similar arguments give the following:

Theorem 2.3. MIN DNF WITH GAP n1/3−ε, IRREDUNDANT(LITERALS) WITH GAP n1/2−ε and IRREDUN-
DANT*(LITERALS) WITH GAP n1/2−ε are all Σp

2-hard, for any constant ε > 0.

Proof. A reduction of [Uma99] using the disperser of [TSUZ07] proves that SHORTEST IMPLICANT CORE

is Σp
2-hard to approximate to within n1−ε by reducing from QSAT2. We describe a modification to this reduc-

tion to ensure that φ depends on all of its variables. This extra property is needed only for the reduction to
IRREDUNDANT*(LITERALS). An instance of QSAT2 consists of a 3-DNF formula φ(x, y), and the instance
is a positive one if and only if there exists an x such that for all y, φ(x, y) is satisfied. Without loss of
generality we can assume that every variable in x and y appears in φ. Begin by removing from φ all terms
with contradictory literals, meaning all terms with pairs of literals such that one is the negation of the other.

5



These terms can never be satisfied, so removing them does not affect the satisfiability of φ. Then augment
to each term t in φ a new variable xt by replacing t with t∧xt, and add to the set x each new xt variable. To
see that this modified formula, which is now a 4-DNF formula, depends on all of its variables, pick a term
t and set all literals in t to true while setting all xt′ with t′ 6= t to false (and setting the remaining variables
arbitrarily). Since each term t′ 6= t will then be set to false, we have an assignment that depends on all the
variables in t. Since every variable appears in some term of φ, we find that φ depends on all of its variables.
Moreover, if the original φ was a positive instance, then the modified φ is as well, by setting all of the new
xt variables to true. And in the other direction, if the modified φ is a positive instance, then there exists a
setting of the original x variables so that for all y variables the subformula of the original φ selected by the
true xt variables is true; this implies that the original φ itself is a positive instance (since adding additional
non-trivial terms cannot flip the output value to false).

Continuing the reduction from [Uma99] until we have an instance (φ′, X) of SHORTEST IMPLICANT

CORE, we see that the resulting DNF φ′ has only a constant number of literals per term. This means the
terms of φ′′ in the proofs of Theorems 2.1 and 2.2 are each of length O(logm). Moreover, an assignment
with fewer than logm of the z variables true can never evaluate to true, so each term in any equivalent DNF
formula will have length at least logm. A formula with a minimum number of terms can therefore differ by
at most a multiplicative constant in size from a formula with minimum size, so the analysis above also shows
that MIN DNF WITH GAP n1/3−ε is Σp

2-hard. As with MIN TERM DNF and MIN DNF, an IRREDUNDANT

formula with a minimum number of terms can differ by at most a multiplicative constant in size from an
IRREDUNDANT(LITERALS) formula with a minimum number of literal occurrences, giving Σp

2-hardness for
IRREDUNDANT(LITERALS) WITH GAP n1/2−ε.

Next, we deal with the reduction to IRREDUNDANT*(LITERALS). We first argue that the formula pro-
duced in the reduction of [Uma99] from QSAT2 to SHORTEST IMPLICANT CORE depends on all of its
variables. That reduction first produces a “co-ND” circuit on a larger set x′ of “x-variables” (so-labeled
because they encode an assignment to the original x variables), and polynomially many copies of the y
variables. By setting all of the copies of the y variables to an assignment that witnesses the dependence of
φ on some particular yi and setting x′ so that it encodes the associated assignment to the x variables, we
find that toggling the i-th y variable in any copy changes the output of the co-ND circuit; hence it depends
on all of its y variables as long as φ does. To see that the co-ND circuit depends on all of the x′ variables,
we select an assignment encoding a given x, and extend this to an assignment of the y variables, for which
the circuit outputs 1. To ensure that such an assignment of the y variables always exists, we apply an easy
transformation to the original formula that adds to the set y a single new variable y∗. We require φ to be
satisfied whenever y∗ is true, and whenever y∗ is false we require φ to be satisfied if and only if the original
formula is satisfied. Then for any setting of the existentially quantified variables, there exists an assignment
of the universally quantified variables, such that the formula is satisfied. The encoding used by the circuit
is such that toggling any of the true x′ variables to false makes the circuit output 0, so it depends on each
x′ variable that is true in this encoding. We then easily verify that every x′ variable is true in some such
encoding, and hence the co-ND circuit depends on all of its x′ variables. Finally, the composition of the
co-ND circuit with itself described in Section 5.1 of [Uma99] preserves the property of depending on all
variables, and the (standard) transformation to a 3-DNF that produces an instance of SHORTEST IMPLICANT

CORE continues to depend on all of its variables.
Lastly, we verify that if the φ coming from an instance of SHORTEST IMPLICANT CORE depends on all

of its variables, then the DNF φ′ produced in the reduction in the proof of Theorem 2.2 also depends on all
of its variables. The formula φ′ becomes equivalent to φ under the restriction that sets all of the z variables
to true and all of the a variables to false; thus it depends on all of the variables in φ, since φ depends on
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all of its variables. If we consider the assignment that sets exactly the literals in term s′i to true, we see
that toggling any of the z variables in the set Si changes the output of φ′, and every z variable appears in
some Si, so φ′ depends on all of the z variables. Finally, since φ depends on all of its variables, it cannot
be computing the trivial function 1. X is an implicant of φ, so there exists an assignment on which φ is
false which also has some xi set to false. Restricting φ′ to this assignment, we see that the resulting formula
depends on all of the a variables, so φ′ must as well.

The conclusion is that IRREDUNDANT(LITERALS) WITH GAP n1/2−ε remains Σp
2-hard even when de-

manding that the formula depends on all of its variables; in our language this gives Σp
2-hardness for IRRE-

DUNDANT*(LITERALS) WITH GAP n1/2−ε.

3 An approximation algorithm

In this section we will need to approximate the size of a set recognizable in P using randomness and an NP
oracle. The following lemma follows from well-known methods for approximate counting via hashing (see,
e.g., [BGP00]):

Lemma 3.1. There exists a constant c, and a polynomial-time randomized algorithm with access to an NP
oracle, which, when given a set S specified implicitly as the ones of a Boolean circuit C, returns an integer
t satisfying |S|/c ≤ t ≤ c|S| with probability at least 1− o(1/n2).

In fact c can be made arbitrarily close to 1, but we will not need that here. The following theorem shows
that the inapproximability factor for IRREDUNDANT*(LITERALS) in Theorem 2.3 is tight:

Theorem 3.2. IRREDUNDANT*(LITERALS) can be approximated to within a factorO(n1/2) in randomized
polynomial time with access to an NP oracle.

Proof. We describe the algorithm. Suppose we have a DNF formula φ with R variables. If R ≥ n1/2,
we can simply return the formula as is. Any formula equivalent to φ must at least mention all R of these
variables because φ depends on all of its variables, forcing it to have size at least R ≥ n1/2. Thus, returning
the original formula will give a result within an n1/2 factor of optimal.

If R < n1/2, we employ a different strategy. Let OPT be the fewest number of literals needed to give a
formula φ′′ equivalent to φ, with each term of φ′′ coming from φ. We construct an equivalent formula φ′ by
essentially implementing a greedy algorithm for weighted set cover. The setting is a bit non-standard, since
we only have approximate set sizes and succinct representations of the sets, so we go through the details.

The algorithm operates in iterations. At each iteration, we select a term t in φ and not in φ′. Our set-size
estimation procedure from Lemma 3.1 is used to (approximately) compute the number of true assignments
kt of φ not yet covered by φ′ that are covered by t. We add to φ′ a term t such that |t|/kt is estimated to
be minimum. (Here |t| denotes the number of literals in term t.) These iterations are repeated until all true
assignments of φ are covered by φ′ (which we can check with an NP oracle).

Suppose φ has m ≤ 2R true assignments of its variables. Label these assignments A1, A2, . . . , Am in
the order that they’re covered by φ′, breaking ties arbitrarily. If assignment Ai was first covered by term t,
which covered a total of kt previously uncovered assignments, we assign to Ai a cost c(Ai) = |t|/kt. The
sum of the costs will be the number of literals in our resulting subformula φ′. Observe that, at every iteration,
the new assignments covered by φ′ will have been, to within the uncertainty of our estimation, of minimum
cost. When selecting the term that first covers assignment Ai, we have already covered i − 1 assignments,
and we know that all assignments can be covered with only OPT literals, so we must be able to pick Ai such
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that c(Ai) ≤ c2 ·OPT/(m− (i− 1)). The factor of c2 results from the chance of overestimating the costs of
the cheapest terms and underestimating the costs of more expensive ones. Summing this inequality for all i
from 1 to m, we get

m∑
i=1

c(Ai) ≤
m∑
i=1

c2 · OPT/(m− (i− 1))

= c2 · OPT
m∑
i=1

1/(m− (i− 1))

≤ c2 · OPT lnm

= O(logm) · OPT.

As m ≤ 2R, logm ≤ R < n1/2, so this gives the desired approximation ratio. A union bound over
our O(n2) estimations, each of which will be inaccurate with probability o(n2), ensures that we err with
negligible probability. This completes the approximation algorithm for IRREDUNDANT*(LITERALS).

4 Conclusions and open problems

The most natural remaining open problems related to the results in this paper are to close the remaining
gaps in the approximability of these problems. Our results for IRREDUNDANT*(LITERALS) suggest (by
analogy) that perhaps the correct answer for some of these problems is an approximation threshold of nδ for
a constant δ bounded away from 1. If this is the case, then settling the approximability question will require
not just tighter reductions, but clever approximation algorithms (that are of course allowed access to an NP
oracle, since we are dealing with Σp

2 minimization problems).
We also note that there are numerous optimization problems listed in [SU02a] with large gaps in the best

known upper and lower bounds on their approximability.
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