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Abstract

It is well known that proving the security of a key agreement protocol (even in a special
case where the protocol transcript looks random to an outside observer) implies the existence of
one-way functions and therefore is at least as difficult as proving P ̸= NP . Another (seemingly
unrelated) statement in cryptography is the existence of two or more non-adaptively secure
pseudo-random functions that do not become adaptively secure under sequential or parallel
composition. Pietrzak (Eurocrypt’06) showed that at least one of these two seemingly unre-
lated statements is true. Pietrzak’s result was significant since it showed a surprising connec-
tion between the worlds of public-key (i.e., “cryptomania”) and private-key cryptography (i.e.,
“minicrypt”).

In this work, we further examine the relationship between the security of compositions of
non-adaptively secure pseudo-random functions and other public key systems.

First, for the parallel composition case, we prove that the above duality is far stronger:
at least one of these two statements must also be false. In other words, we show their equiv-
alence. More specifically, we show that if there exists any uniform-transcript key agreement
(UTKA) protocol, then parallel composition does not imply adaptive security. This implication
holds based on virtually all known key agreement protocols and can also be based on general
complexity assumptions such as the existence of dense trapdoor permutations.

Second, we prove the impossibility of adaptive security from sequential compositions assum-
ing the existence of public key encryption scheme which is uniform and rerandomizable under
both ciphertexts and public keys. It remains open if this stronger black-box assumption is also
necessary.
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end of this paper for details. The original abstract appeared in CRYPTO 2010.
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1 Introduction

One of the central questions in cryptography is the question of composition, which very broadly is
the study of various ways to compose several basic primitives in a way that amplifies the hardness
of the composed object. Naturally, this central question has received a lot of attention in various
settings and we continue the study of this question here. More specifically, we investigate a question
of whether a composition of pseudo-random functions, to be defined shortly, constitutes stronger
security by utilizing the security of the component functions. We consider two very natural types of
conventional compositions: a parallel composition with respect to Exclusive-Or (XOR) operation
denoted by ⊕ and a sequential composition. Briefly, on input x in the domain of F and G, the
parallel XOR-composition of two functions F and G is defined as F(x) ⊕ G(x). The sequential
composition of F and G is defined as G(F(x)) (or F(G(x))).

Seemingly unrelated to the notion of security amplification via composition, there is the question
of designing Key Agreement protocol. Recall that Key Agreement (KA) is a protocol that enables
two parties to generate a secret string (also called key) by communicating with each other over an
insecure channel in the presence of a eavesdropping adversary. Uniform-transcript key agreement
(UTKA) is a strengthened version of key agreement in which messages between two parties are
indistinguishable from uniform distribution by all probabilistic polynomial-time (PPT) adversaries.
The reason why key agreement seems unrelated to the security of composition is that key agreement
belongs to the world of public-key cryptography (also known as “cryptomania”) whereas the security
of composed pseudo-random functions rather belongs to the world of private-key cryptography (also
known as “minicrypt”). For further discussion on cryptomania and minicrypt, see [Imp95].

Now, let us recall briefly recall the definition of Pseudo-Random Functions (PRF) [GGM86].
There are two notions of security of PRF: adaptive security and non-adaptive security. Intuitively,
a (pseudo-random) function is said to be non-adaptively secure if the function is indistinguishable
from a random function against all PPT adversaries that evaluate the function on inputs chosen
independently of the function outputs, that is, chosen prior to PPT adversary learning any of the
outputs. Adaptive security is a far stronger notion of security than non-adaptive security: a PRF is
said to be adaptively secure if the function remains indistinguishable from random function against
all PPT adversaries preparing the current query based on the outputs of the function on all previous
queries. Clearly, adaptive security implies non-adaptive security.

We show that the equivalence between the impossibility of achieving adaptive security by com-
posing general non-adaptively secure pseudo-random functions and the existence of uniform tran-
script key-agreement protocol. We note that our impossibility result holds not only for the case in
which the non-adaptively-secure component functions are drawn from the different function families
(also known as the general composition) but also for the case where the component functions are
drawn from the same function family (also known as self-composition).

1.1 Related Work

There has been extensive research on relationship between the security of component functions
and the security of their parallel or sequential composition. In the information theoretic context,
Vaudenay [Vau03] proved that if F is a pseudo-random permutation with security ϵ against any dis-
tinguisher making q (non-)adaptive queries, then the sequential composition of k F’s has improved
security 2k−1ϵk against a (non-)adaptive distinguisher. F only needs to be a function instead of
a permutation for the same security in parallel composition. Luby and Rackoff [LR86] show the
similar security amplification result in the computational context.

In the information theoretic setting, Maurer and Pietrzak [MP04] proved that composition of
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non-adaptive secure functions amplifies its security ϵ to security 2ϵ(1+ln(ϵ−1)) against an adaptive
distinguisher. In 2007, Maurer et al. improved this bound to 2ϵ [MPR07].

Myers [Mye04] showed that the existence of oracles relative to which there are non-adaptively
secure permutations, but where the composition of such permutations fails to achieve adaptive
security. Recently, Pietrzak [Pie05] showed that the composition of non-adaptively secure functions
does not imply adaptive security under the Decisional Diffie-Hellman (DDH) assumption. Pietrzak’s
more recent work [Pie06] showed that if sequential composition does not imply adaptive security,
then there exists a key agreement protocol. Moreover, it turns out that Pietrzak’s construction in
[Pie06] implies a slightly stronger result: that his key agreement protocol satisfies the property of
uniform-transcript. Thus, we can restate the Pietrazak’s result as follows:

Theorem 1 ([Pie06]). If sequential composition of pseudo-random functions is not adaptively se-
cure, then there exists a UTKA.

1.2 Results in [CLO10], Erratum, and New Observations

[CLO10] Our work [CLO10] further explored the relation between various cryptographic primi-
tives and the impossibility of constructing adaptively secure PRFs by parallel and sequential com-
positions of non-adaptively secure PRFs. In particular, we claimed in [CLO10] that the existence
of UTKA implies the impossibility of obtaining an adaptively secure PRF from parallel/sequential
compositions of non-adaptively secure PRFs.

While our parallel theorems stand, the sequential composition theorem has a flaw. Specifically,
in April 2024, Yusai Wu pointed out to us via email that our Theorems 4 and 5 (for sequential
composition) contain errors. We, therefore, retract theorems 4 and 5 and Corollary 8.

Instead, (as a new material), we provide a new Theorem 9, which requires a stronger (but
block-box) assumption.

Theorem 2. If there exists a dense trapdoor permutation family (which in turns implies a 2-pass
UTKA), then parallel compositions of non-adaptively secure pseudo-random functions do not imply
a pseudo-random function with adaptive security.

Theorem 3. If there exists a UTKA, then parallel compositions of non-adaptively secure pseudo-
random functions do not imply a pseudo-random function with adaptive security.

Theorem 4. [Retracted] If there exists a dense trapdoor permutation family (which in turns
implies a 2-pass UTKA), then sequential compositions of non-adaptively secure pseudo-random
functions do not imply a pseudo-random function with adaptive security.

Theorem 5. [Retracted] If there exists a UTKA, then sequential compositions of non-adaptively
secure pseudo-random functions do not imply a pseudo-random function with adaptive security.

Theorem 6. If parallel composition composition of pseudo-random functions is not adaptively
secure, then there exists a UTKA.

Corollary 7. Parallel composition of pseudo-random functions does not imply adaptively secure
PRFs if and only if there exists a UTKA.

Corollary 8. [Retracted] Sequential composition of pseudo-random functions does not imply
adaptively secure PRFs if and only if there exists a UTKA.
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As new observations, we show that non-adaptively secure PRFs of which a sequential compo-
sition is adaptively insecure can be constructied with stronger assumptions than dense trapdoor
permutations and UTKAs. Specifically, assuming the existence of CPA-secure public key encryp-
tion with enhanced properties of uniform (dense) and rerandomizable ciphertexts and public keys,
we construct non-adaptively secure PRFs F and G such that their sequential composition G(F(x))
is adaptively insecure.

Theorem 9. [New] If there exists an enhanced public key encryption with rerandomizable ci-
phertexts and public keys both indistinguishable from random, then sequential compositions of non-
adaptively secure pseudo-random functions do not imply a pseudo-random function with adaptive
security.

This generic black-box assumption sets up sufficient black-box properties (upper-bound) for se-
quential composition insecurity, which is stronger than the existence of dense-trapdoor permutation
(and in turns UTKAs). Roughly, this enhanced public key encryption, denoted by PKE, contains a
tuple of algorithms (Gen,Enc,Dec,RRC,RRP). Gen(n, r) on input n and random r outputs a pair of
n-bit public and secret keys. Encpk(m; r) on input message m and random r outputs a ciphertext c
that looks indistinguishable from uniform random. Decsk(c) on input ciphertext c outputs message
m. Additionally, RRP(pk; r) on input pk and random r outputs randomized public key (e.g., reran-
domization material) pk′ where pk′ (possibly longer than pk) is indistinguishable from random and
used to rerandomize ciphertexts encrypted under public key pk. Finally, RRC(c; pk′; r) on input
ciphertext c, randomness r, and rerandomized public key pk′ outputs rerandomized ciphertext c′

indistinguishable from random. See Definition 13 in Section 4 for the further details.

Difference between Sequential and Parallel composition. With Theorem 4 and Theorem 5
on sequential composition retracted, but parallel composition remaining correct, there appears to
be a difference in our understanding of sequential vs. parallel composition insecurity. Specifically,
we provide new sufficient conditions for sequential composition insecurity. In contrast, the impos-
sibility of achieving adaptively secure parallel composition remains equivalent to UTKAs, which
is implied by DTPs [CLO10]. Therefore, sequential composition insecurity requires (to the best
of our knowledge) doubly enhanced rerandomizable PKE. An important remaining open question
is whether this additional block-box assumption is necessary for the impossibility of sequential
composition.

We emphasize that Theorem 2, 3, 6, and 9 hold regardless of whether PRFs being composed
are taken from a single function family (called self-composition) or from two distinct function
families (called general-composition). In particular, we show that the impossibility of secure general-
compositions further implies the impossibility of secure self-compositions. The precise connection
between the impossibility of adaptively secure composition and a UTKA protocol were not known
prior to our work. We summarize these previously known results and our contributions in Figure 1.

Paper Organization In Section 2, we provide relevant cryptographic notions and definitions
commonly used in the rest of the paper. In Section 3.2, we show the equivalence between parallel
composition insecurity and UTKA which is originally presented in [CLO10]. In Section 4, we show
that strongly enhanced rerandomizable PKE implies sequential composition insecurity with the
introduction of the definition of such a PKE. Finally, in Section 5, we provide the implications on
self-composition insecurity as in [CLO10].
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Figure 1: The Illustrative Summary of Relations between Composition Insecurity and Other Cryp-
tographic Assumptions: Solid boxes indicate black-box primitives and dotted boxes indicate non-
black-box primitives. The dotted line were known prior to [CLO10]. The solid lines represents
the implications claimed in [CLO10] and this revised work. The red lines represents the retracted
claims in [CLO10]. The blue line represents an updated black-box implication to sequential compo-
sition insecurity relying on a black-box public key encryption with properties: (1) rerandomizable
pseudorandom ciphertexts and (2) rerandomizable public-key and ciphertext.

2 Preliminaries

We let n ∈ N be a security parameter. An algorithm is considered efficient if its computation can
be carried out by a PPT machine whose running time is expected polynomial in the input length.
We use the notation x ←$ {0, 1}n when string x is uniformly drawn from {0, 1}n. For further
discussion on the following definitions and notions, see [Gol01].

Definition 1 (Negligible and Overwhelming). A function ϵ : N→ R is negligible if for every c > 0
there exists an Nc such that for all n > Nc, ϵ(n) ≤ 1/nc. On the other hand, 1 − ϵ is said to be
overwhelming in n.

Definition 2 (Non-negligible). A function δ : N → R is non-negligible if for every c > 0 there
exists infinitely many n such that δ(n) ≥ 1/nc.

Definition 3 (Noticeable). A function µ : N → R is noticeable if for every c > 0 there exists an
Nc such that for all n > Nc, µ(n) ≥ 1/nc.

Definition 4 (Polynomial Indistinguishability). Two probability ensembles X = {Xn}n∈N and
Y = {Yn}n∈N are polynomially indistinguishable if for every Probabilistic Polynomial-Time (PPT)
algorithm (distinguisher) A, there exists a negligible function ϵ such that: for all random coin tosses
r and r′ of A,

|Pr[Ar(Xn) = 1]− Pr[Ar′(Yn) = 1]| ≤ ϵ(n).

Definition 5 (Pseudo-Random Function (Permutation)). Given a randomly chosen key k ∈ K
for a key space K, an efficiently computable keyed function Fk : K × {0, 1}n → {0, 1}n is called
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pseudo-random function (PRF), if for every probabilistic polynomial-time algorithm (distinguisher)
A, given access to the function Fk and a uniform random function U : {0, 1}n → {0, 1}n and for
all n, there exists a negligible function ϵ(n) such that: for all random coin tosses r and r′ of A,∣∣Pr[AFk

r (1n) = 1]− Pr[AU
r′(1

n) = 1]
∣∣ ≤ ϵ(n).

In addition, if F is one-to-one and onto for all k, then we call Fk a pseudo-random permutation
(PRP).

Definition 6 (Distinguishing Advantage). Given a polynomial-time distinguisher A(q, t), which
runs in time t and makes at most q queries to the oracle O (i.e., a pseudo-random function F) or
random function R, we define the advantage of A(q, t) as: for all random coin tosses r and r′ of A,

AdvO
A(q, t) = max

A

∣∣∣Pr[AO
r = 1]− Pr[AR

r′ = 1]
∣∣∣ .

A distinguisher is a non-adaptive distinguisher if it makes all the queries before it receives the
output. Otherwise, we call it an adaptive distinguisher.

Definition 7 (Non-Adaptive Versus Adaptive Security). A pseudo-random function f is non-
adaptively secure if, for all polynomial-time non-adaptive distinguisher A(q, t), there exists a negli-
gible function ϵ such that AdvO

A(q, t) ≤ ϵ. On the contrary, we say a pseudo-random function f is
adaptively secure if, for all polynomial-time adaptive distinguisher A(q, t), there exists a negligible
function ϵ such that AdvO

A(q, t) ≤ ϵ.

Definition 8 (Parallel and Sequential Composition). The parallel XOR-composition of two func-
tions F and G, denoted as F⊕ G, is the operation that composes the output value of F and G over
the bit-wise Exclusive-Or (XOR) operation. The sequential composition of F and G, denoted as
F ◦ G, is the operation that applies two functions sequentially, i.e., F ◦ G(·) = G(F(·)).

Informally, a dense trapdoor permutation family is a trapdoor permutation family with a poly-
nomially dense public description of permutation so that a public description is indistinguishable
from uniform random [SP92, Hai04].

Definition 9 (Dense Trapdoor One-Way Permutation (DTP)). The algorithm triplet (Gen, fk,
f−1tk

) is a family of dense trapdoor permutations if the following hold:

• Gen(1n) is a probabilistic polynomial-time algorithm such that on input 1n, it outputs a pair
of two strings k ∈ {0, 1}n and tk, where |tk| ≤ p(n).

• Given k, algorithm fk : {0, 1}n → {0, 1}n is a polynomial-time computable permutation.

• Given tk, algorithm f−1tk
is a polynomial-time computable inverse permutation of fk. That is,

f−1tk
(fk(x)) = x is efficiently computable for all x ∈ {0, 1}n.

• For all probabilistic polynomial-time algorithm A, the following holds for any (k, tk), x ∈
{0, 1}n, for all random coin toss r of A,

Pr[Afk
r (k, fk(x)) = f−1tk

(fk(x))] ≤ ϵ(n)

where ϵ(n) is a negligible function in n.
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• For all probabilistic polynomial-time algorithm A, there exists a negligible function ϵ such
that, given access to function Gen(1n) or uniform function U as oracle: for all random coin
tosses r and r′ of A, ∣∣∣Pr[AGen

r (1n) = 1]− Pr[AU
r′(1

n) = 1]
∣∣∣ ≤ ϵ(n).

Definition 10 (Hard-Core Predicate). A polynomial-time computable function family B : {0, 1}n×
{0, 1}n → {0, 1} is a hard-core predicate of one-way function f if, for every probabilistic polynomial-
time algorithm A and for all x ∈ {0, 1}n, there exists a negligible function ϵ such that

Pr[A(f(x)) = B(x, r))] ≤ 1

2
+ ϵ(n).

Goldreich and Levin [GL89] devised a hardcore predicate B(x, r) from any one-way function f
defined to be b =

⊕
i xiri, identically b = ⟨x, r⟩, the inner product of two vectors.

Definition 11 (Bit Agreement (BA)). Informally, a bit agreement is a protocol in which two
parties, Alice and Bob, secretly agree on a bit at the end. Formally, upon the security parameter n
as a common input, Alice and Bob output a bit bA and bB, respectively. Then, the protocol is said
to have the correlation ϵ(n) if for all n,

Pr[bA = bB] ≥
1

2
+

ϵ(n)

2
.

And the protocol is also said to be δ(n)-secure if, for all n and for any PPT adversary Eve, given
the security parameter n and the entire transcript (denoted by Trans) between Alice and Bob,

Pr[b
′ ← Eve(Trans, 1n) : b

′
= bA] ≤ 1− δ(n)

2
.

If Alice and Bob exchange k messages during the execution of the bit agreement protocol, it is called
a k-pass bit agreement. Note that Alice and Bob output the same bit with overwhelming probability,
and Eve can compute the bit bA with only negligible advantage over merely guessing it, as ϵ and δ
are overwhelming.

A key agreement protocol is one where two parties, Alice and Bob, given n as a common input,
secretly agree on a key in {0, 1}n at the end of execution. The key agreement is known to be
achieved by polynomially many parallel or sequential executions of the bit agreement protocol if
the protocol has a noticeable ϵ and an overwhelming δ [Hol05]. Notice that the parallel repetitions
of bit agreements achieve the n-bit key agreement without increasing the round complexity. See
[Hol05] and [Hol06] for further details. By one round, we mean a unit process wherein Alice receives,
computes and sends a message to Bob, and then Bob receives, computes and sends a message to
Alice. Thus, a γ-round key agreement(γ-KA) implies a 2γ-pass key agreement. A γ-round uniform-
transcript key agreement(γ-UTKA) is a γ-KA whose transcripts are indistinguishable from uniform
distribution.

Definition 12 (γ-round Enhanced Uniform-Transcript Key Agreement Φ (γ-UTKA)). For γ ≥ 1,
a γ-round key agreement (exchange) protocol Φ consists of two sub-protocols, Alice (A) and Bob (B),
denoted as Φ = (A,B). Let αi and βi be the ith round messages of A and B respectively. Let TranAi be
the transcript of all the messages up to the ith round from B as TranAi = (β1, β2, . . . , βi) and TranBi =
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(α1, α2, . . . , αi). Then, A consists of a family of message-generating algorithms A1,A2, · · · ,Aγ+1

defined as follows. For A’s random value rA ∈ {0, 1}n:

A1 : {0, 1}n → {0, 1}n is defined as A1(rA)→ α1,

Ai : {0, 1}n × ({0, 1}n)i−1 → {0, 1}n is defined as Ai(rA,Tran
A
i−1)→ αi for 2 ≤ i ≤ γ

Aγ+1 : {0, 1}n × ({0, 1}n)γ → {0, 1}n is defined as Aγ+1(rA,Tran
A
γ )→ sA.

The definition of B is identical to the definition of A except that all A’s and α’s are replaced with
B’s and β’s. Finally, Φ = (A,B) satisfies the following conditions:

1. For any A ∈ PPT , given Trans, A cannot efficiently distinguish the exchanged n-bit key sA
from random. Formally, for all random coin tosses r and r′ of A and random inputs rA and
rB of A and B,

Pr[Trans← (ArA ,BrB); sA ← Aγ+1(rA,Trans
A
γ ) : Ar(Trans, sA) = 1]

−Pr[Trans← (ArA ,BrB);α
rand← {0, 1}n : Ar′(Trans, α) = 1] ≤ µ(n)

for some negligible function µ(n).

2. At the end of execution of Φ, A and B agree on a secret s. Formally, let τ(n) be a negligible
function in n, then,

Pr[sA ← Aγ+1(rA,Trans
A
γ ); sB ← Bγ+1(rB,Trans

B
γ ) : sA = sB] ≥ 1− τ(n).

3. For the γ-round key agreement Φ to be a γ-round uniform-transcript key agreement, denoted
as Φu, the additional condition below is satisfied. For any PPT adversary A,∣∣∣Pr[Ar(Trans) = 1]− Pr[Rγ

rand← ({0, 1}n)γ : Ar(Rγ) = 1]
∣∣∣ ≤ ϵ(n),

where ϵ(n) is a negligible function in n. B satisfies the same requirement. That is, no PPT
adversary A distinguishes the messages of A and B from uniform distribution.

3 Parallel Composition Impossibility’s Equivalence to UTKAs

3.1 Composition Insecurity vs. Dense Trapdoor Permutation

For gentle introduction to our main result, we first present a special case of our main result as
an example − The existence of dense trapdoor permutation (DTP) implies the impossibility of
achieving the adaptive security by composing (in a black-box way) non-adaptively secure pseudo-
random functions. The main idea behind showing this, is that a family of DTPs is well-known to
provide a 2-pass (1-round) uniform-transcript key agreement.

A 2-pass key agreement can be achieved by n parallel repetitions of an underlying 2-pass bit
agreement without increasing its round complexity, which we describe as follows. Suppose that
we are given a family of DTPs, (Gen(·), f, f−1). Without loss of generality, Alice first chooses a
pair of one-way permutation fk and its inverse permutation f−1tk

by computing a public encryption
information k and its private corresponding trapdoor information tk using Gen(·). Note that k
is computationally indistinguishable from a random string of the same length by the property of
DTPs. Alice sends the public key k to Bob. Upon k from Alice, Bob chooses two strings x and
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r. Bob encrypts x with fk, so let y = fk(x). Bob sends y and r to Alice and computes the secret
bit b = ⟨x, y⟩. With y and r, Alice obtains x by inverting y as x = f−1tk

(y). Then, Alice achieves
the bit agreement by computing b = ⟨x, r⟩. Notice that all the messages exchanged between Alice
and Bob are either a uniformly random string of length n (i.e., y and r) or pseudo-random strings
indistinguishable from uniform (i.e., k). Thus, the above bit agreement is a uniform-transcript bit
agreement. Hence, the n parallel repetitions of the 2-pass bit agreement achieve a 2-pass n-bit key
agreement described in Protocol 1.1

Alice Transcript Bob

(k, tk)← Gen(n)
k−→ x1, x2, · · · , xn ←$ {0, 1}n

r1, r2, · · · , rn ←$ {0, 1}n
yi ← fk(xi) for all i ≤ n

xi ← f−1tk
(yi) for all i ≤ n

y1,··· ,yn,r1,··· ,rn←−
bi ← ⟨xi, ri⟩ for all i ≤ n bi ← ⟨xi, ri⟩ for all i ≤ n

shared key sk ← b1, b2, · · · , bn shared key sk ← b1, b2, · · · , bn

Protocol 1: 2-pass key agreement based on a DTP (Folklore)

3.2 Parallel Composition Impossibility from Dense Trapdoor Permutation

We construct two counter-example pseudo-random functions F and G which are secure against any
PPT adversary non-adaptively. Then, we prove that their parallel composition is not secure against
a particular sequence of four adaptive queries.

3.2.1 Intuitions of Parallel Composition of F and G

We provide the high-level overview and intuition of our construction of pseudo-random functions
F and G based on DTP, and show how to break the adaptive security of their parallel composition.
The main technique of our constructions of counter-example functions is to design the functions to
detect the adaptive query throughout the input and output behavior. In particular, F and G emulate
a 2-pass key agreement protocol (described in Protocol 1) via adaptive inputs and outputs. Once
F and G internally obtain a shared key, they generate outputs which hide a special relation with
respect to the shared key. As we input these specially generated outputs to the parallel composition
again, F and G retrieve the previously shared key and verify the special relation with respect to
the shared key. Hence, function F and G are convinced that the queries must be indeed adaptively
generated, and reveal their private keys through their outputs, which break their security.

Our counter-example functions F and G are both defined over ({0, 1}n)2n+3. F and G hide the
secret keys kF and kG respectively. P denotes an adaptively secure pseudo-random permutation.
Let (Gen(·), f, f−1) be a family of DTPs. rij and sij denote the ith pseudo-random string generated
by F and G using their secret keys on jth input respectively. In addition, Enck(x) is defined to
be a pseudo-random private-key encryption of x with respect to key k. Hence, we have x =
Deck(Enck(x)).

1We remark that the same randomness r can be used for all of n parallel repetitions of bit agreement instead of
using different r′s for each of bit agreements. However, this will complicate our exposition later on, so we will use
different r’s. Clearly this does not affect the security of resulting key agreement protocol.
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We first define F and G on the first fixed adaptive query Q1 = (0n, 0n, · · · , 0n):

• F generates 2n+ 3 pseudo-random strings r∗, r21, r31, · · · , r(2n+3)1 computed by PkF(Q1).

• G on input Q1 uses its secret key to first compute sufficiently long pseudo-random string which
is then used to compute DTP pair (k, tk): a pair of a DTP key k and its private trapdoor
tk by Gen(1n) of DTP. G generates 2n + 2 pseudo-random strings s21, s31, · · · , s(2n+3)1 by
PkG(Q1), then it outputs (k, s21, · · · , s(2n+3)1).

We describe the outputs of F and G and their parallel composition outputs below:

Q1 →
[
F→ (r∗, r21, · · · , r(2n+3)1)

G→ (k, s21, · · · , s(2n+3)1)

]
→ (r∗ ⊕ k, r21 ⊕ s21, · · · , r(2n+3)1 ⊕ s(2n+3)1)

The second adaptive query is of the form Q2 = (u, 0n, 0n, · · · , 0n) where u = r∗ ⊕ k. We define F
and G on Q2 as follows.

• F first simulates the first-round of computation (by internally executing PkF on the fixed query
Q1) to obtain r∗, then computes u⊕ r∗ which is equal to k; Now, F computes 2n+3 pseudo-
random strings x1, x2, · · · , xn and r(n+1)2, r(n+2)2, · · · , r(2n+3)2 by PkF(Q2). F computes yi by
fk(xi) for 1 ≤ i ≤ n, then outputs (y1, · · · , yn, r(n+1)2, · · · , r(2n+3)2).

• G generates fresh pseudo-random strings (s12, s22, · · · , s(2n+3)2) computed by PkG(Q2).

We describe what both F and G output individually and the output of their parallel composition:

Q2 →
[
F→ (y1, · · · , yn, r(n+1)2, · · · , r(2n+3)2)

G→ (s12, · · · , sn2, s(n+1)2 · · · , s(2n+3)2)

]
→ (y1 ⊕ s12, · · · , yn ⊕ sn2, r(n+1)2 ⊕ s(n+1)2, · · · , r(2n+3)2 ⊕ s(2n+3)2)

We define the third adaptive query Q3 to consist of the selected coordinates in the previous outputs
such that Q3 = (y1 ⊕ s12, · · · , yn ⊕ sn2, r(n+1)2 ⊕ s(n+1)2, · · · , r(2n)2 ⊕ s(2n)2, k⊕ r∗, 0n, 0n). On Q3,
we defined F and G as follows.

• F regenerates all the pseudo-random strings in the second round, x1, · · · , xn, r(n+1)2, · · · , r(2n+3)2

by PkF(Q2). Notice that Q2 is (k ⊕ r∗, 0n, · · · , 0n) where F can obtain k ⊕ r∗ from Q3. F
can compute bi = ⟨xi, r(n+i)2⟩ for all 1 ≤ i ≤ n and retrieve a shared key sk by letting sk =
b1b2 · · · bn. Now, F generates pseudo-random strings r13, r23, · · · , r(2n+3)3 by PkF(Q3) and en-
crypts r13 with the shared key as Encsk(r13). Finally, F outputs (Encsk(r13), r13, r23, · · · , r(2n+2)3).

• G regenerates s12, s22, · · · , s(2n)2 by PkG(Q2). G can obtain y1, · · · , yn, r(n+1)2, · · · , r(2n)2 as
it cancels s12, s22, · · · , s(2n)2 out of the first 2n coordinates in Q3. By using the inverse

permutation f−1tk
with respect to the trapdoor tk, G can obtain xi by computing f−1tk

(yi) for
all i. Hence, G can compute bi = ⟨xi, ri⟩ for all i and retrieve the shared key sk by letting sk
= b1b2 · · · bn. Then, G generates pseudo-random strings s13, s23, · · · , s(2n+3)3 by PkG(Q3) and
creates an encryption Encsk(s13). Finally, G outputs (Encsk(s13), s13, s23, · · · , s(2n+2)3).

Below we depict the individual outputs of F and G and the output of their parallel composition:

Q3 →
[
F→ (Encsk(r13), r13, r23, · · · , r(2n+2)3)

G→ (Encsk(s13), s13, s23, · · · , s(2n+2)3)

]
→ (Encsk(r13)⊕ Encsk(s13), r13 ⊕ s13, r23 ⊕ s23, · · · , r(2n+2)3 ⊕ s(2n+2)3)
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Our fourth query Q4 is a selective collection of the outputs in the previous round such that Q4

= (y1 ⊕ s12, · · · , yn ⊕ sn2, r(n+1)2 ⊕ s(n+1)2, · · · , r(2n)2 ⊕ s(2n)2, k ⊕ r∗,Encsk(r) ⊕ Encsk(s), r ⊕ s).
Notice that F and G can simulate all the computations of previous rounds upon Q4. Hence, F and
G can retrieve shared key sk. F computes Encsk(r13) and r13 by the simulation of computations
on Q3. Then, F checks to see if equality Decsk(Encsk(r13) ⊕ (Encsk(r13) ⊕ Encsk(s13))) = r13 ⊕
(r13 ⊕ s13) holds where (Encsk(r13) ⊕ Encsk(s13)) and (r13 ⊕ s13) are obtained from Q4. Since
the equality holds, F deduces that the input query is indeed an adaptive query. Hence, F outputs
(kF, 0

n, 0n, · · · , 0n) containing its secret key kF. G does the same and outputs (0n, kG, 0
n, · · · , 0n).

The individual outputs of F and G and the output of the parallel composition are described below.

Q4 →
[
F→ (kF, 0

n, 0n, · · · , 0n)
G→ (0n, kG, 0

n, · · · , 0n)

]
→ (kF, kG, 0

n, · · · , 0n)

3.2.2 Formal Construction of Non-Adaptively Secure Function F

We first provide the specifications of the underlying primitives used for the construction of F. We
have π̃ : K × ({0, 1}n)2n+3 → ({0, 1}n)2n+3 where K is the key space of π̃. π̃k denotes a PRP
with respect to private key k and π̃−1k is the inversion permutation to π̃k. We are also given PRP
π : K × {0, 1}n → {0, 1}n. Notice that both π̃ and π have the same key space K. Without
loss of generality, K is {0, 1}n throughout this paper. Finally, we are given a family of DTPs,
(Gen(·, ·), f, f−1). We denote fk and f−1tk

as a permutation and its inverse permutation defined
over {0, 1}n where (k, tk) is generated by Gen(1n, r) for randomness r ∈ {0, 1}n and |k| = n and
|tk| = poly(n).

Built on the above underlying primitives, the counter-example function F is defined to be from
({0, 1}n)2n+3 to ({0, 1}n)2n+3 and internally hides a secret kF in K, which is a private key applied
to the underlying primitives in order to generate pseudo-random. Let I = (u1, u2, . . . , u2n+3) be an
input vector to F where uj ∈ {0, 1}n for i = 1, 2, . . . , 2n+3. Similarly, (v1, v2, . . . , v2n+3) denote an
output vector. The formal construction of F is given in Algorithm 1.

Claim 3.1. The function F is secure against any non-adaptive PPT adversary A(q, t), running in
time t and making at most q non-adaptive queries, where t and q are any polynomials of security
parameter n.

Proof. For clarity in the following proof, we denote rij as the ith randomness at the jth query. To
prove the non-adaptive security of F, we will show that

AdvF
A(q, t) ≤ Advf

A(q, t
′) +Advπ̃

A(q, t
′) +Advπ

A(q, t
′) +

q

2n
(1)

where t′ = t+ poly(n, q), accounting for the extra time costs resulting from our reduction.
Assume that non-adaptive adversary A chooses q queries as follows. The first query is Q1 =

(u∗, 0n, . . . , 0n) ∈ ({0, 1}n)2n+3 and the rest of q− 1 queries are Qi = (ui1, ui2, . . . , ui(2n), u
∗, 0n, 0n)

for 2 ≤ i ≤ q, in which ui1, ui2, . . . , ui(2n) are arbitrarily chosen for all i. Notice that in cases 1 and
2 of Algorithm 1, once we fix the first coordinate of Q1 and the (2n+1)th coordinate of Qi’s to be
equally u∗, we actually fix the shared key k′ through all the q queries, so that the first coordinate
is an encryption of the second coordinate by πk′ in the last q−1 outputs. Hence, inverting the first
n coordinates of output on Q1 will reveal the key k′, and consequently A distinguishes F from a
uniform function R. Since any PPT adversary can invert fk only with at most negligible probability
ϵfk , the probability of retrieving k′ is at most (ϵfk)

n, constituting the first term on the right-hand
side (RHS) of inequality (1).

11



Construction of F

1. If I = (u1 ̸= 0n, u2 = 0n, · · · , u2n+3 = 0n), then
Output (v1, v2, . . . , v2n+3) where
(a1, a2, . . . , a2n+3)← π̃kF (0

n, 0n, . . . , 0n)
(x1, x2, . . . , x2n+3)← π̃kF (u1, u2, . . . , u2n+3)
Let yi = fu1⊕a1(xi) for ∀i = 1, 2, . . . , n
(v1, v2, · · · , v2n+3)← (y1, y2, · · · , yn, xn+1, . . . , x2n+3)

2. If I = (u1 ̸= 0n, u2 ̸= 0n, . . . , u2n+1 ̸= 0n, u2n+2 = 0n, u2n+3 = 0n), then
Output (v1, v2, . . . , v2n+3) where
(x1, x2, . . . , x2n+3)← π̃kF (u2n+1, 0

n, . . . , 0n)
Let ki = ⟨xi, xn+i⟩ for ∀i = 1, 2, . . . , n
Let k′ = k1k2 . . . kn
(r1, r2, . . . , r2n+3)← π̃kF (u1, u2, . . . , u2n+3)
(v1, v2, . . . , v2n+3)← (πk′(r1), r1, . . . , r2n+2)

3. If I = (u1 ̸= 0n, u2 ̸= 0n, · · · , u2n+3 ̸= 0n), then
output (v1, v2, · · · , v2n+3) where
(x1, x2, · · · , x2n+3)← π̃kF (u2n+1, 0

n, · · · , 0n)
Let ki = ⟨xi, xn+i⟩ for ∀i = 1, 2, · · · , n
Let k′ = k1k2 · · · kn
(r1, r2, · · · , r2n+3)← π̃kF (u1, u2, · · · , u2n+1, 0

n, 0n)
α← πk′(r1)

(a) If π−1k′ (α⊕ u2n+2) = r1 ⊕ u2n+3,
then (v1, v2, · · · , v2n+3)← (kF , 0

n, 0n, · · · , 0n)
(b) else(v1, v2, · · · , v2n+3)← π̃kF (u1, u2, · · · , u2n+3)

4. If I is not of any previous cases, then
output (v1, v2, · · · , v2n+3)where
(v1, v2, · · · , v2n+3)← π̃kF (u1, u2, · · · , u2n+3)

Algorithm 1: The algorithm of function F
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Assume thatAmakes q queries in the form of (u1 ̸= 0n, u2 ̸= 0n, · · · , u2n+3 ̸= 0n), corresponding
to case 3 and fixes the first 2n + 1 coordinates of all the queries. So, A fixes k′, r1, and α in the
condition π−1k′ (α ⊕ u2n+2) = r1 ⊕ u2n+3. Now, A only needs to find a pair of u2n+2 and u2n+3

satisfying the condition so that F reveals its secret key kF. Since π is a permutation, there exists
unique u2n+3 to each u2n+2, which satisfies the condition. Hence,

Pr[π−1k′ (α⊕ u2n+2) = r1 ⊕ u2n+3 : u2n+2, u2n+3 ←$ {0, 1}n] ≤
1

2n
.

With q queries, A successfully guesses kF with probability at most q/2n; that is the second term
on the RHS of the inequality.

Consider that A makes q queries such that each input query falls into either case 3 or 4 of
Algorithm 1. Since we already showed above that F in the case 3 outputs only pseudo-random
strings computed by π̃kF with an overwhelming probability, we ignore the case that F outputs the
secret key kF on one of the q queries. Then, F simply outputs a vector of pseudo-random strings
generated by PRP π̃kF on each input query, which is indistinguishable from uniform randoms of
({0, 1}n)2n+3. This constitutes Advπ̃

A(q, t
′) in inequality (1).

Consider the case in which A makes q non-adaptive queries in which one of the queries is
(0n, 0n, · · · , 0n), so it evokes case 4 and the rest of queries evoke case 1 of Algorithm 1. Towards a
contradiction, assume that A distinguishes the outputs corresponding to the q non-adaptive input
queries described above. The output of case 4 is indistinguishable from uniform random by the
security of PRP π̃kF . This implies that A distinguishes the outputs of case 1 from uniform randoms.
Notice that the first n coordinates of an output of case 1 are strings generated in the following way.
π̃kF on an input query first generates pseudo-random strings and then a trapdoor permutation
fu1⊕a1 re-encrypts these pseudo-random strings where u1⊕a1 is known since A can obtain a1 from
the output of F on (0n, 0n, · · · , 0n). The rest of coordinates (all coordinates except for the first n
coordinates) are strings generated only by π̃kF on an input query. We recall the description of the
output of case 1 on input query (u1, u2, · · · , u2n+3) as follows:

(fu1⊕a1(r1), · · · , fu1⊕a1(rn)︸ ︷︷ ︸
first n coordinates

, rn+1, · · · , r2n+3︸ ︷︷ ︸
the rest of coordinates

)

where (r1, r2, · · · , r2n+3) ← π̃kF(u1, u2, · · · , u2n+3). Since A distinguishes these outputs of case 1
from uniform randoms, either of the following cases must be true. First, A distinguishes outputs of
case 1 from uniform randoms by distinguishing the first n coordinates of the outputs from uniform
randoms. Then, A can also distinguish outputs of case 4 from uniform randoms as follows. Upon
outputs of case 4, A applies fu1⊕a1 to the first n coordinates of each output and ignores the rest of
coordinates of each output. This forces the distribution of the outputs of case 4 to be identical to
the distributions of the outputs of case 1 that A distinguishes from uniform randoms. Therefore,
A distinguishes outputs of case 4 from uniform randoms. This leads to a contradiction to the non-
adaptive security of F in case 4 already proven above. Then, it must be true that A distinguishes
outputs of case 1 from uniform randoms by distinguishing the rest of coordinates of outputs from
uniform randoms. However, this also enables A to distinguish outputs of case 4 from uniform
randoms by ignoring the first n coordinates of each output. Hence, another contradiction arises
to the non-adaptive security of F in case 4. Since we encounter contradictions in both cases, the
advantage of A making q non-adaptive queries of case 1 is also upper-bounded by Advπ̃

A(q, t
′) in

inequality (1).
Finally, consider that A makes q queries of case 2 in Algorithm 1. Towards a contradiction,

assume that A distinguishes theses outputs from uniform randoms. Notice that the distribution of
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the last 2n+ 1 coordinates in output vectors (all the elements except for the first two elements) is
equivalent to the distribution of the last 2n+ 1 coordinates of an output of case 4. This is due to
that both distributions are generated by π̃kF on input queries. We already showed above that if A
distinguishes outputs of case 2 from uniform randoms by distinguishing the last 2n+1 coordinates
from uniform randoms, A can also distinguish outputs of case 4 from uniform randoms, which leads
to a contradiction. This implies that A distinguishes outputs of case 2 from uniform random by
distinguishing the first 2 coordinates from uniform randoms. Hence, distinguishing the outputs of
case 2 from uniform randoms over ({0, 1}n)2n+3 is equivalent to distinguishing

(πk(r1), r1), (πk(r2), r2), · · · , (πk(rq), rq) (2)

where k, r1, r2, · · · rq are uniformly random, from

(a1, b1), (a2, b2), · · · , (aq, bq) (3)

where ai, bi for all i = 1, · · · , q are uniformly random.
Let A distinguish (2) from (3) with a non-negligible probability ξ. We define the ith hybrid

distribution Hi as

Hi = (πk(r1), r1), · · · , (πk(ri), ri), (ai+1, bi+1), · · · , (aq, bq)

where k, ri, ai, bi for all i = 1, · · · , q are uniformly random. Since |H0 − Hq| ≥ ξ, there exists i
such that |Hi −Hi+1| ≥ ξ/q. Then, we can construct a distinguisher D′ by using A such that D′
distinguishes π from a random function R : {0, 1}n → {0, 1}n with non-negligible probability as
follows. Upon an unknown distribution (α, β) ∈ ({0, 1}n)2, D′ generates the ith hybrid distribution
as

(πk(t1), t1), · · · , (πk(ti−1), ti−1), (α, β), (ai+1, bi+1), · · · , (aq, bq)
where t1, · · · , tq, ai+1, bi+1, · · · , aq, bq are uniformly random. Then, D′ queries the ith hybrid dis-
tribution to A. Since A distinguishes the ith hybrid distribution with non-negligible probability
ξ/q, D′ distinguishes π from R with non-negligible probability ξ/q, which contradicts the indistin-
guishability of π. This contributes to Advπ

A(q, t
′) in inequality (1).

3.2.3 Formal Construction of Non-Adaptively Secure Function G

The function G is also defined from ({0, 1}n)2n+3 to ({0, 1}n)2n+3 with a secret kG in K. The
notations and standard specifications of underlying primitives remain identical to those for the
construction of F in the previous section. The formal construction of G is presented in Algorithm
2.

Claim 3.2. The function G is secure against any non-adaptive PPT adversary A(q, t), running in
time t and making at most q non-adaptive queries, where t and q are any polynomials of security
parameter n.

Proof. To prove the non-adaptive security of G, we will also show that

AdvG
A(q, t) ≤ Advf

A(q, t
′) +Advπ̃

A(q, t
′) +Advπ

A(q, t
′) +

q

2n
+AdvGen

A (q, t′) (4)

where t′ = t+ poly(n, q) as defined in Claim 3.1 and Gen is a key generation algorithm for a family
of DTPs. Since all the cases of G are identical except that the output of G in case (1) is a public
key k for trapdoor permutation f , the first four terms on the RHS of (4) are identical to those in
Lemma 3.1. Since the key k is indistinguishable from uniform random over {0, 1}n by the property
of Gen, any PPT adversary A distinguishes the key k from uniform random over {1, 0}n with
only negligible advantage. Hence, the indistinguishability of dense keys constitutes AdvGen

A (q, t′)
in inequality (4).
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Construction of G

1. If I = (u1 = 0n, u2 = 0n, · · · , u2n+3 = 0n), then
output (v1, v2, · · · , v2n+3) where
(s1, s2, · · · , s2n+3)← π̃kG(0

n, · · · , 0n)
(k, tk)← Gen(1n, s1)
(v1, v2, · · · , v2n+3)← (k, s2, · · · s2n+3)

2. If I = (u1 ̸= 0n, u2 ̸= 0n, · · · , u2n+1 ̸= 0n, u2n+2 = 0n, u2n+3 = 0n), then
output (v1, v2, · · · , v2n+3) where
(a1, a2, · · · , a2n+3)← π̃kG(0

n, 0n, · · · , 0n)
(k, tk)← Gen(1n, a1)
(b1, b2, · · · , b2n+3)← π̃kG(u2n+1, 0

n, · · · , 0n)
Let xi = f−1tk

(ui ⊕ bi) for i = 1, 2, · · · , n
Let kj = ⟨xi, (un+j ⊕ bn+j)⟩ for j = 1, 2, · · · , n
Let k′ = k1k2 · · · kn
(s1, s2, · · · , s2n+3)← π̃kG(u1, u2, · · · , u2n+3)
(v1, v2, · · · , v2n+3)← (πk′(s1), s1, · · · , s2n+2)

3. If I = (u1 ̸= 0n, u2 ̸= 0n, · · · , u2n+3 ̸= 0n), then
output (v1, v2, · · · , v2n+3) where
(a1, a2, · · · , a2n+3)← π̃kG(0

n, 0n, · · · , 0n)
(k, tk)← Gen(1n, a1)
(b1, b2, · · · , b2n+3)← π̃kG(u2n+1, 0

n, · · · , 0n)
Let xi = f−1tk

(ui ⊕ bi) for i = 1, 2, · · · , n
Let kj = ⟨xj , (un+j ⊕ bn+j)⟩ for j = 1, 2, · · · , n
Let k′ = k1k2 · · · kn
(c1, c2, · · · , c2n+3)← π̃kG(u1, u2, · · · , u2n+1, 0

n, 0n)
β ← πk′(c1)

(a) If π−1k′ (β ⊕ u2n+2) = c2 ⊕ u2n+3, then (v1, v2, · · · , v2n+3)← (0n, kG, 0
n, · · · , 0n)

(b) Otherwise, (v1, v2, · · · , v2n+3)← π̃kG(u1, u2, · · · , u2n+3)

4. If I is not of any previous cases, then
output (v1, v2, · · · , v2n+3) where (v1, v2, · · · , v2n+3)← π̃kG(u1, u2, · · · , u2n+3)

Algorithm 2: The algorithm of function G
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3.2.4 Adaptive Insecurity of Parallel Composition of F and G

In this paper, a pseudo-random function is said to be breakable by q adaptive queries if there is a
PPT adversary A such that A distinguishes the pseudo-random function from a uniform random
function by asking q adaptive queries to the pseudo-random function.

Claim 3.3. The parallel composition function F⊕ G is breakable by four adaptive queries.

Proof. To show the claim, we present a particular sequence of four adaptive queries in which the
parallel composition F ⊕ G reveals all the secret keys of F and G, such as kF and kG. Let rij (or
sij) denote the ith randomness of F (or G) upon the jth adaptive query Qj . Then, our first query
Q1 to F ⊕ G(·) is Q1 = (0n, 0n, · · · , 0n) ∈ ({0, 1}n)2n+3. Since the input always (with probability
1) evokes case 4 of Algorithm 1, we have

F(0n, 0n, · · · , 0n) = π̃kF (0
n, 0n, · · · , 0n) = (r11, r21, · · · , r(2n+3)1).

In G, since the input falls into case 1 of Algorithm 2, G computes (s11, s21, · · · , s(2n+3)1)
by π̃kG(0

n, 0n, · · · , 0n) and then obtains (k, tk) by executing Gen(1n, s11). Finally, G outputs
(k, s21, · · · , s(2n+3)1). Thus, the output of F⊕ G(0n, 0n, · · · , 0n) is

(r11, r21, · · · , r(2n+3)1)⊕ (k, s21, · · · , s(2n+3)1) = (r11 ⊕ k, r21 ⊕ s21, · · · , r(2n+3)1 ⊕ s(2n+3)1).

Obtaining the above output, we define our second adaptive query Q2 to be:

Q2 = (r11 ⊕ k, 0n, 0n, · · · , 0n) ∈ ({0, 1}n)2n+3.

Note that Q2 fails to evoke case 1 of Algorithm 1 when r11 ⊕ k = 0n. That is, if r11 = k, then
the second adaptive query cannot succeed to lead F and G into the proper case. The probability
that r11 = k is 1/2n which is negligible in n. Therefore, Q2 successfully evokes case 1 of Algorithm
1 with probability 1− 1/2n.

Upon Q2 which evokes case 1 of Algorithm 1, F internally simulates the computations of itself
on Q1 to obtain r11 by executing π̃kF (0

n, 0n, · · · , 0n) = π̃kF (Q1) = (r11, r22, · · · , r(2n+3)1). Now, F
can retrieve the public key k from Q2 by computing r11 ⊕ k ⊕ r11 = k. Obtaining k, F computes
yi2 = fk(xi2) for i = 1, 2, · · · , n where F computes fresh pseudo-random strings as π̃kF(Q2) =
(x12, x22, · · · , x(2n+3)2). Finally, F outputs (y12, · · · , yn2, x(n+1)2, · · · , x(2n+3)2).

In G, the input Q2 is of case 4 of Algorithm 2. Hence, G outputs fresh pseudo-randoms as
follows.

G(r11 ⊕ k, 0n, · · · , 0n) = π̃kG(r11 ⊕ k, 0n, · · · , 0n) = (s12, s22, · · · , s(2n+3)2) (5)

Thus, we have

(F⊕ G)(Q2) = (y12, · · · , yn2, x(n+1)2, · · · , x(2n+3)2)⊕ (s12, s22, · · · , s(2n+3)2)

= (y12 ⊕ s12, · · · , yn2 ⊕ sn2, x(n+1)2 ⊕ s(n+1)2, · · · , x(2n+3)2 ⊕ s(2n+3)2).

We define our third adaptive query Q3 ∈ ({0, 1}n)2n+3 to be

Q3 = (y12 ⊕ s12, · · · , x(2n)2 ⊕ s(2n)2, r11 ⊕ k, 0n, 0n).

Assuming that Q2 succeeds to evoke case 1 of Algorithm 1 and case 4 of Algorithm 2 (Recall
that Q1 always succeeds.), the third adaptive query Q3 succeeds to evoke case 2 of Algorithm 1
and Algorithm 2 only when none of the first 2n + 1 coordinates of Q3 is 0n. Since the (2n + 1)th
coordinate (i.e., r11 ⊕ k) is taken from Q2, the (2n + 1)th coordinate is guaranteed not to be 0n.
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Hence, for Q3 to be a valid adaptive query, it must be the case that y12 ̸= s12, · · · , x(2n)2 ̸= s(2n)2.
In other words, Q3 fails if at least one of equalities y12 = s12, · · · , x(2n)2 = s(2n)2 occurs. Each
of the equalities occurs with probability 1/2n so that the total failing probability of Q3 is 2n/2n

which is negligible in n. Thus, Q3 succeeds to evoke case 2 of Algorithm 1 and Algorithm 2 with
probability 1− 2n/2n.

Then F upon Q3 computes,

π̃kF (u2n+1, 0
n, · · · , 0n) = π̃kF (r11 ⊕ k, 0n, · · · , 0n) = π̃kF (Q2) = (x12, x22, · · · , x(2n+3)2).

Then, F computes n hard-core bits by computing

ki =< xi2, x(n+i)2 > for ∀i = 1, 2, · · · , n. (6)

So, F obtains a shared key k′ = k1k2 · · · kn. Finally, F computes fresh pseudo-random as

π̃kF (u1, u2, · · · , u2n+3) = (r13, r23, · · · , r(2n+3)3),

and outputs (πk′(r13), r13, · · · , r(2n+2)3).
As Q3 evokes case 2 of Algorithm 2, G retrieves (k, tk) by computing Gen(1n, s11) where

(s11, s21, · · · , s(2n+3)1) = π̃kG(Q1). Then, G proceeds to compute the followings:

G(u2n+1, 0
n, · · · , 0n) = G(r11 ⊕ k, 0n, · · · , 0n)

= (a1, a2, · · · , a2n+3)

= (s12, s22, · · · , s(2n+3)2) by (5).

Using the trapdoor tk, G computes

xi = f−1tk
(ui ⊕ a1) = f−1tk

(yi2 ⊕ si2 ⊕ si2) = f−1tk
(yi2) = xi2 for ∀i = 1, 2, · · · , n.

Then, G can compute for ∀j = 1, 2, · · · , n

kj =< xj , (un+j ⊕ an+j) >

=< xj2, (x(n+j)2 ⊕ s(n+j)2 ⊕ s(n+j)2) >

=< xj2, x(n+j)2 > .

G constructs a shared key k′ by letting k′ = k1k2 · · · kn. Notice that xj2 and x(n+j)2 are respectively
equivalent to xi2 and x(n+i)2 in F’s computation at (6). Thus, G’s k′ = F’s k′. Finally, G computes
fresh pseudo-randoms as

π̃kG(u1, u2, · · · , u2n+3) = (s13, s23, · · · , s(2n+3)3),

and outputs (πk′(s13), s13, · · · , s(2n+2)3). Therefore, the output of F⊕ G on the third input is

(πk′(r13)⊕ πk′(s13), r13 ⊕ s13, · · · , r(2n+3)3 ⊕ s(2n+3)3).

Our final adaptive input Q4 to F⊕ G is

Q4 = (y12⊕s12, · · · , yn2⊕sn2, x(n+1)2⊕s(n+1)2, · · · , x(2n)2⊕s(2n)2, r11⊕s11, πk′(r13)⊕πk′(s13), r13⊕s13).

Conditioned that all the previous adaptive queries are successful, consider the probability that
Q4 succeeds to evoke case 3 of Algorithm 1 and Algorithm 2. That is, it is the probability that
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none of the coordinates of Q4 is 0n. Notice that the first 2n + 1 coordinates are taken from
Q3 (i.e., the first 2n coordinates) and Q2 (i.e., the (2n + 1)th coordinate). Hence, none of the
first 2n + 1 coordinates are guaranteed to be 0n as we conditioned that Q2 and Q3 are successful
adaptive queries. Q4 fails if πk′(r13) = πk′(s13) or r13 = s13 in which each of the cases occurs with
probability 1/2n. Therefore, Q4 succeeds to evoke case 3 of Algorithm 1 and Algorithm 2 with
probability 1− 2/2n.

On Q4, which evokes case 3 of Algorithm 1, F retrieves the same shared key k′ as in (6) since F
only requires u2n+1 to be r11⊕k as in the previous round. Obtaining k′, F simulate the computations
of the third round. In particular, F computes

π̃kF (u1, u2, · · · , u2n+1, 0
n, 0n) = π̃kF (Q3) = (r13, r23, · · · , r(2n+3)3).

Since α = πk′(r13),

π−1k′ (α⊕ u2n+2) = π−1k′ (πk′(r13)⊕ πk′(r13)⊕ πk′(s13))

= π−1k′ (πk′(s13))

= s13

= r13 ⊕ r13 ⊕ s13

= r13 ⊕ u2n+3.

Therefore, F outputs (kF, 0
n, · · · , 0n).

Q4 evokes in case 3 of Algorithm 2. Again, G starts the fourth round computation by retrieving
(k, tk) as it computes Gen(1n, s11) where (s11, s21, · · · , s(2n+3)1) = π̃kG(Q1). Then, similarly to F, G
also computes the shared key k′ by using the first 2n elements of Q4, which are equivalent to the
first 2n coordinates of Q3. Thus, G retrieves the shared key k′. Then, G proceeds to check if the
equality in case 3.(a) holds as follows:

π̃kG(u1, u2, · · · , u2n+1, 0
n, 0n) = π̃kG(Q3) = (b1, b2, · · · , b2n+3) = (s13, s23, · · · , s(2n+3)3).

Since β = πk′(s13) = πk′(b1),

π−1k′ (β ⊕ u2n+2) = π−1k′ (πk′(s13)⊕ πk′(r13)⊕ πk′(s13))

= π−1k′ (πk′(r13))

= r13

= s13 ⊕ s13 ⊕ r13

= b13 ⊕ u2n+3.

Consequently, G outputs (0n, kG, 0
n, · · · , 0n). Therefore, the output of F⊕ G on Q4 is

(kF, 0
n, · · · , 0n)⊕ (0n, kG, 0

n, · · · , 0n) = (kF, kG, 0
n, · · · , 0n),

which reveals all of the secret keys of F and G.

By Claim 3.1, 3.2, and 3.3, we immediately obtains the following theorem.

Theorem 10. Suppose that a dense trapdoor permutation exists. Then, there exist non-adaptively
secure functions F and G whose parallel composition F⊕ G is breakable by four adaptive queries.
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3.3 Parallel Composition Impossibility from UTKA

3.3.1 Intuitions of Adaptively Insecure Parallel Composition of F and G under UTKA

A γ-round uniform-transcript key agreement protocol (γ-UTKA), denoted by Φγ
u = (A,B), is a

uniform-transcript key agreement protocol consisting of two sub-protocols A and B, in which Alice
(using A) and Bob (using B) exchange 2γ messages to each other (γ messages from each party) in
order to share a secret key sk.

We first provide the intuitive description of the parallel version of γ-UTKA in Protocol 2, which
we will use to construct counter-example functions. Notice that Alice and Bob are symmetric to
each other in Protocol 2. In particular, Bob’s first message is completely independent of Alice’s
first message and is only dependent on his own private randomness.2

Alice Transcript Bob

rA ←$ {0, 1}n rB ←$ {0, 1}n
α1 ← A1(rA) β1 ← B1(rB)

α1−→
β1←−

α2 ← A2(rA, β1) β2 ← B2(rB, α1)
α2−→
β2←−
...

αγ ← Aγ(rA, β1, · · · , βγ−1) βγ ← Bγ(rB, α1, · · · , αγ−1)
αγ−→
βγ←−

secret key sk← Aγ+1(rA, β1, · · · , βγ) secret key sk← Bγ+1(rB, α1, · · · , αγ)

Protocol 2: Parallel γ-UTKA

Now, we provide a high-level overview of our pseudo-random functions F and G from γ-UTKA
and describe how to break the adaptive security of their parallel composition. For underlying
primitives, we have a black-box access to Φu = (A, B), γ-UTKA described in Protocol 2. αi

and βi denote the ith message computed by A and B respectively. We are give a pseudo-random
private-key encryption scheme (Enc,Dec) such that Deck(Enck(x)) = x. Finally, let P be any given
adaptively secure PRP.

Intuitively, F utilizes A as its subroutine as well as G utilizes B as its subroutine in order
for them to share a secret key via input and outputs. Then, F and G create a specially related
pseudo-random strings with respect to the shared secret key. As we input the specially related
pseudo-random strings to the parallel composition, the functions retrieve the shared key, verify the
special relation hidden in the input query, and reveal their secret keys in their outputs. F and G
internally contain secret keys kF and kG. F and G are defined over ({0, 1}n)γ+2.

2The main reason for using this parallel version of γ-UTKA is that it is easier to emulate the key agreement
protocol in the context of parallel composition of our proposed counter-example pseudo-random functions F and G.
Also, it provides us with a tighter bound on the number of adaptive queries required to break the adaptive security
of the parallel composition. It is possible to construct the counter-example functions to show the same composition
insecurity result by using γ −UTKA in which Bob’s first message is dependent on Alice’s first message. However, it
requires more adaptive queries to break the parallel composition of such functions.
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First, we define F and G upon the first adaptive (fixed) query Q1 = (0n, 0n, · · · , 0n) as:

• F generates γ + 2 pseudo-random strings rF, r21, · · · , r(γ+2)1 by PkF(Q1). F creates Alice’s
first message α1 by A1(rF) and then outputs (α1, r21, · · · , r(γ+2)1).

• G does the same as it generates sG, s21, · · · , s(γ+2)1 by PkF(Q1), and then computes Bob’s
first message β1 by B1(sG), and outputs (β1, s21, · · · , s(γ+2)1).

Below we depict the individual outputs of F and G on Q1 and their parallel composition:

Q1 →
[
F→ (α1, r21, · · · , r(γ+2)1)

G→ (β1, s21, · · · , s(γ+2)1)

]
→ (α1 ⊕ β1, r21 ⊕ s21, · · · , r(γ+2)1 ⊕ s(γ+2)1)

Inductively, for 2 ≤ i ≤ γ, we define F and G to process the i-th adaptive query Qi = (α1 ⊕
β1, α2 ⊕ β2, · · · , αi−1 ⊕ βi−1, 0

n, · · · , 0n) as follows.

• F first regenerates rF and α1 by simulating the first-round computation. That is, F first
computes PkF(Q1) to obtain rF and then executes A(rF). Then, F processes the following
chain of computations in the direction of left-to-right and top-to-bottom with rF, α1 and Qi,

β1 ← (α1 ⊕ u1) α2 ← A2(rF, β1)

β2 ← (α2 ⊕ u2) α3 ← A3(rF, β1, β2)

...
...

βi−1 ← (αi−1 ⊕ ui−1) αi ← Ai(rF, β1, β2, . . . , βi−1)

Finally, F outputs (αi, r2i, · · · , r(γ+2)i) where r2i, · · · , r(γ+2)i are fresh pseudo-random
strings generated by PkF(Qi).

• G is symmetrically defined. That is, we have the description G on Qi by replacing all of F,
r, A, and α in the above description with G, s, B, and β. Hence, G outputs (βi, s2i, · · · ,
s(γ+2)i) where s2i, · · · , s(γ+2)i are generated by PkG(Qi).

On Qi for 2 ≤ i ≤ γ, we demonstrate the individual outputs of F and G and the output of their
parallel composition below.

Qi →
[
F→ (αi, r2i, · · · , r(γ+2)i)

G→ (βi, s2i, · · · , s(γ+2)i)

]
→ (αi ⊕ βi, r2i ⊕ s2i, · · · , r(γ+2)i ⊕ s(γ+2)i)

Hence, we obtain αγ ⊕ βγ by feeding the parallel composition of F and G with Qγ to be (α1 ⊕
β1, α2 ⊕ β2, · · · , αγ−1 ⊕ βγ−1, 0

n, 0n).
The (γ + 1)th adaptive query is defined to be Qγ+1 = (α1 ⊕ β1, α2 ⊕ β2, · · · , αγ ⊕ βγ , 0

n, 0n).
Then, we define our functions F and G on Qγ+1 as follows.

• F first regenerates rF and α1 by simulating the first-round computation as before. Then, F
performs the chain of computations described above, and so obtains β1, β2, · · · , βγ . Hence, F
can generate a shared key sk by Aγ+1(rF, β1, β2, . . . , βγ). F generates pseudo-random strings
r1(γ+1), r2(γ+1), · · · , r(γ+2)(γ+1) by PkF(Qγ+1). F creates an (pseudo-random) encryption
Encsk(r1(γ+1)). Finally, F outputs (Encsk(r1(γ+1)), r1(γ+1), r3(γ+1), · · · , r(γ+2)(γ+1)).

• G is symmetrically defined. So, G outputs (Encsk(s1(γ+1)), s1(γ+1), s3(γ+1), · · · , s(γ+2)(γ+1)).
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The following describes the each output of F and G, and that of parallel composition on Qγ+1.

Qγ+1 →
[
F→ (Encsk(r1(γ+1)), r1(γ+1), r3(γ+1), · · · , r(γ+2)(γ+1))

G→ (Encsk(s1(γ+1)), s1(γ+1), s3(γ+1), · · · , s(γ+2)(γ+1))

]
→ (Encsk(r1(γ+1))⊕Encsk(s1(γ+1)), r1(γ+1)⊕ s1(γ+1), r3(γ+1)⊕ s3(γ+1), · · · , r(γ+2)(γ+1)⊕ s(γ+2)(γ+1))

The final (γ + 2)th adaptive query is defined to be Qγ+2 = (α1 ⊕ β1, · · · , αγ ⊕ βγ ,Encsk(r1(γ+1))⊕
Encsk(s1(γ+1)), r1(γ+1)⊕ s1(γ+1)) which is the combination of all the outputs of the parallel compo-
sition on the previous adaptive queries. Then, F and G are defined on Qγ+2 as follows.

• F executes the chain of computations to retrieve β1, β2, · · · , βγ , then computes a shared key sk
by Aγ+1(rF, β1, β2, . . . , βγ). Since Qγ+1 = (α1⊕β1, α2⊕β2, · · · , αγ ⊕βγ , 0

n, 0n), F can obtain
Encsk(r1(γ+1)) and r1(γ+1) generated by the internal simulation of F(Qγ+1). F checks to see if
equality Decsk(Encsk(r1(γ+1))⊕(Encsk(r1(γ+1))⊕Encsk(s1(γ+1)))) = r1(γ+1)⊕(r1(γ+1)⊕s1(γ+1))
holds where (Encsk(r1(γ+1))⊕Encsk(s1(γ+1))) and (r1(γ+1)⊕ s1(γ+1)) are obtained from Qγ+2.
As the equality holds, F is convinced that Qγ+2 is indeed an adaptively generated query.
Hence, F outputs (kF, 0

n, 0n, · · · , 0n).

• G is symmetrically defined. Hence, G similarly outputs (0n, kG, 0
n, · · · , 0n).

Below we provide the overall picture of the individual computations of F and G and the output of
their parallel composition.

Qγ+2 →
[
F→ (kF, 0

n, 0n, · · · , 0n)
G→ (0n, kG, 0

n, · · · , 0n)

]
→ (kF, kG, 0

n, · · · , 0n)

3.3.2 Formal Construction of Non-Adaptively Secure Functions F and G

The underlying primitives used for the construction of F and G are two PRPs, π̃ : K×({0, 1}n)γ+2 →
({0, 1}n)γ+2 and π : K×{0, 1}n → {0, 1}n, where K is key space {0, 1}n. Also, we are given a black-
box access to the parallel version of γ-UTKA denoted by Φu = (A,B) described in Section 3.3.1.

We formally define our non-adaptively secure pseudo-random function F to map from ({0, 1}n)γ+2

to ({0, 1}n)γ+2. Furthermore, F internally possesses a secret key kF ∈ K. The formal definition of
function F is provided in Algorithm 3.

The construction of G is symmetric to F. That is, replacing F, A, r, and (kF, 0
n, · · · , 0n) in

Algorithm 3 with G, B, s, and (0n, kG, 0
n, · · · , 0n) respectively will provide us with the formal

construction of G.

Claim 3.4. The functions F and G are secure against any non-adaptive PPT adversary A(q, t),
running in time t and making at most q non-adaptive queries, where t and q are any polynomials
of security parameter n.

Proof. By hybrid argument, we reduce the security of function F to the indistinguishability of the
underlying PRPs and the γ-UTKA. Let A be a PPT adversary making q queries and running for
time t. Notice that F and G are structurally identical to one another. Hence, it suffices to show
that F is non-adaptively secure. To prove the claim, we will show the following inequality.

AdvF
A(q, t) ≤ Advπ̃

A(q, t
′) +Advπ

A(q, t
′) +AdvA

A +
q

2n
.

First, assume that to obtain the secret key kF, Amakes q queries of the form in (u1 ̸= 0n, · · · , uγ+2 ̸=
0n) evoking case 2 of Algorithm 3. Then, let A fix the first γ queries to be the same through the q
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Construction of F

1. If I = (u1 = 0n, u2 = 0n, · · · , uγ+2 = 0n), then
Output (v1, v2, · · · , vγ+2) where
(r1, r2, · · · , rγ+2)← π̃kF(0

n, 0n, · · · , 0n)
(v1, v2, · · · , vγ+2)← (A1(r1), r2, · · · , rγ+2)

2. If I = (u1 ̸= 0n, · · · , ui ̸= 0n, ui+1 = 0n, · · · , uγ+2 = 0n), then
Output (v1, v2, · · · , vγ+2) where
(a1, a2, · · · , aγ+2)← π̃kF(0

n, 0n, · · · , 0n)
(r1, r2, · · · , rγ+2)← π̃kF(u1, u2, · · · , uγ+2)
α1 ← A1(a1)
For j = 1 to γ Do

βj ← αj ⊕ uj
αj+1 ← Aj+1(a1, β1, · · · , βj)

END For
skF ← αj+1

(a) If i < γ, then
(v1, v2, · · · , vγ+2)← (αi+1, r2, · · · , rγ+2)

(b) Else If i = γ, then
(v1, v2, · · · , vγ+2)← (πskF(r1), r1, r2, · · · , rγ+1)

(c) Else If i = γ + 2, then
(b1, b2, · · · , bγ+2)← F(u1, u2, · · · , uγ , 0n, 0n)

i. If π−1skF
(b1 ⊕ uγ+1) = b2 ⊕ uγ+2, then

(v1, v2, · · · , vγ+2)← (kF, 0
n, · · · , 0n)

ii. else (v1, v2, · · · , vγ+2)← (r1, r2, · · · , rγ+2)

(d) Else (v1, v2, · · · , vγ+2)← (r1, r2, · · · , rγ+2)

3. If the input is not any of above cases, then
(v1, v2, · · · , vγ+2)← π̃kF(u1, u2, · · · , uγ+2)

Algorithm 3: The algorithm of function F
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queries. This implies that skF, b1, and b2 are fixed in the condition π−1skF
(b1 ⊕ uγ+1) = b2 ⊕ uγ+2 in

the case 2(c) of Algorithm 3. This only helps the adversary A by allowing it to choose uγ+1 and
uγ+2 to satisfy the condition. Since π is a permutation, there uniquely exists uγ+1 for each uγ+2,
which satisfies the condition. Hence,

Pr[π−1k′ (α⊕ uγ+1) = r1 ⊕ uγ+2 : uγ+1, uγ+2 ←$ {0, 1}n] ≤
1

2n
. (7)

Since A makes q queries, the probability of successfully finding a pair of such uγ+1 and uγ+2 is
q/2n, which constitutes the final term of the inequality (7).

Consider that A makes queries that fall into case 2(c), 2(d), and 3 of Algorithm 3. As we showed
above, q non-adaptive queries can satisfy the condition in 2(c) with only negligible probability.
Thus, assume that all the queries made here do not satisfy the condition. Hence, F outputs, upon
q queries,

(r11, r21, · · · , r(γ+2)1), (r12, r22, · · · , r(γ+2)2), · · · , (r1q, r2q, · · · , r(γ+2)q), (8)

where rij is the ith coordinate of the jth query for 1 ≤ i ≤ γ + 2 and 1 ≤ j ≤ q.
Proceeding by hybrid argument, assume that A distinguishes (8) from uniform distributions

with a non-negligible probability ξ,

(r∗11, r
∗
21, · · · , r∗(γ+2)1), (r

∗
12, r

∗
22, · · · , r∗(γ+2)2), · · · , (r

∗
1q, r

∗
2q, · · · , r∗(γ+2)q), (9)

where (r∗1i, r
∗
2i, · · · , r∗(γ+2)i)←$ ({0, 1}n)γ+2 for 1 ≤ i ≤ q.

Let Hi be the hybrid distribution as

Hi = h1, · · · , hi, h∗i+1, · · · , h∗q

for hi = (r1i, · · · , r(γ+2)i) from (8) and h∗j = (r∗1j , · · · , r∗(γ+2)j) from (9).

Since Hq −H0 ≥ ξ, there exists i such that |Hj −Hj−1| ≥ ξ
q . Consider the ith hybrid,

Hi(x) = h1, h2, · · · , hi−1, x, h∗i+1, · · · , h∗q .

Then we can build a PPT distinguisher D using A as a sub-routine. With an unknown distribution
u from ({0, 1})γ+2, D constructs and queries Hi(u) to A. Since A distinguishes F from a uniform
random function with the probability ξ, D will distinguish π̃ from a uniform random function with
the probability ξ

q , which is non-negligible.
Consider that A makes q queries in the form of Qi = (u1i ̸= 0n, u2i ̸= 0n, · · · , uγi ̸= 0n, 0n, 0n),

that provoke case 2(b) of F in Algorithm 3. Then, the corresponding outputs can be written as,

(πk1(r11), r11, r31, · · · , r(γ+2)1), (πk2(r12), r12, r32, · · · , r(γ+2)2), · · · , (πkq(r1q), r1q, r3q, · · · , r(γ+2)q),

where (r1i, r2i, · · · , r(γ+2)i) ← π̃kF(Qi) for 1 ≤ i ≤ q and ki is computed by Aγ+1(r,Trans
A) for

unknown r. distinguishing the above distribution from uniform random implies that one of the
following two cases must be true. First, the adversary A distinguishes the last γ + 1 coordinates
(all coordinates except for the first coordinate) of the outputs from uniform random. Second,
the first two coordinates from uniform random. Assume that the first case is true. Then, A can
distinguish all the output of F upon queries of case 2(c)ii, 2(d) or 3 by simply ignoring the second
coordinate of the outputs. This is clearly a contradiction to the non-adaptive security of F in those
cases proven above. Assume that the second case holds. Distinguishing the first two coordinates
of the outputs from uniform random is equivalent to distinguishing,

(π(r1), r1), (π(r2), r2), · · · , (π(rq), rq), (10)
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where ri ←$ {0, 1}n for 1 ≤ i ≤ q, from the uniform distribution,

(a1, b1), (a2, b2), · · · , (aq, bq), (11)

where ai and bi ←$ {0, 1}n for 1 ≤ i ≤ q.
Suppose that A distinguishes (10) from (11) with a non-negligible probability ξ. Define a hybrid

distribution Hi as

Hi = (π(r1), r1), · · · , (π(ri), ri), (π(ri+1), bi+1), · · · , (π(rq), bq), (12)

where ri and bi ←$ {0, 1}n for 1 ≤ i ≤ q.
Since A distinguishes (10) from (11) with probability ξ, |H0 − Hq| ≥ ξ, there exists i s.t.

|Hi −Hi+1| ≥ ξ
q . Hence, let Hi(x) for x ∈ ({0, 1}n)2 be

Hi(x) = (π(r1), r1), · · · , (π(ri−1), ri−1), x, (π(ri+1), bi+1), · · · , (π(rq), bq).

Upon an unknown distribution (α, β) ∈ ({0, 1}n)2, we can build a distinguisher D, which determines
whether (α, β) comes from (10) or from (11) with a non-negligible probability ξ

q as D queries
Hi((α, β)) to A. Therefore, D distinguishes π from a uniform random function with a non-negligible
probability.

Consider that Amakes q queries in the form of (u1 ̸= 0n, · · · , ui ̸= 0n, ui+1 = 0n, · · · , uγ+2 = 0n)
for i < γ. That is, all the q queries fall into case 1 or 2(a) of Algorithm 3. By replacing π in the
above hybrid argument with A, we can also show that if A breaks the indistinguishability of F, then
we can construct a PPT distinguisher D, which breaks the indistinguishability of messages.

3.3.3 Adaptive Insecurity of Parallel Composition of F and G

Claim 3.5. The parallel composition F⊕ G is breakable by γ+2 adaptive queries.

Proof. Let rij denote the ith randomness upon the jth input. To initiate the key agreement, our
first special input is (0n, 0n, · · · , 0n). Then, F gets into case 1 of Algorithm 3 and computes its
first message α1 and outputs (α1, r21, · · · , r(γ+2)1). So does G. Hence, the output of the parallel
composition on the first input query is

(α1 ⊕ β1, r21 ⊕ s21, · · · , r(γ+2)1 ⊕ s(γ+2)1).

Our second adaptive query is Q2 = (α1⊕β1, 0n, · · · , 0n), where α1⊕β1 comes from the output of
the parallel composition on Q1. Q2 evokes the case 2 of Algorithm 3 unless α1⊕β1 = 0n. The only
case that α1 ⊕ β1 = 0n is α1 = β1 which occurs with negligible probability. By the computations
of “For” loop of case 2, F obtains α1, α2, · · · , αγ+1 as follows.

α1 ← A1(a1) Before entering For loop

β1 ← α1 ⊕ u1 = α1 ⊕ (α1 ⊕ β1) α2 ← A2(a1, β1) j = 1

β2 ← α2 ⊕ u2 = α2 ⊕ 0n α3 ← A3(a1, β1, α2) j = 2

β3 ← α3 ⊕ u3 = α3 ⊕ 0n α4 ← A4(a1, β1, α2, α3) j = 3

...
...

...

βγ ← αγ ⊕ uγ = αγ ⊕ 0n αγ+1 ← Aγ+1(a1, β1, α2, · · · , αγ) j = γ

Since the first coordinate is the only non-zero coordinate, Q2 evokes case (a) of case 2 after the
For loop. Hence, function F outputs (α1, r22, r32, · · · , r(γ+2)2) where (r12, r22, · · · , r(γ+2)2) is gener-
ated by π̃kF(Q2). G undertakes the identical course of computation, so it outputs (β2, , s22, · · · , s(γ+2)2).
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Inductively, for 2 ≤ i ≤ γ, our ith adaptive query to the parallel composition is defined as

Qi = (α1 ⊕ β1, α2 ⊕ β2, · · · , αi−1 ⊕ βi−1, 0
n, · · · , 0n) (13)

where αl⊕βl is obtained from the output of F on Ql. Then, the output of the parallel composition
on Qi is

(α1 ⊕ β1, α2 ⊕ β2, · · · , αi ⊕ βi, r(i+1)i ⊕ s(i+1)i, · · · , r(γ+2)i ⊕ s(γ+2)i) (14)

where (r1i, · · · , r(γ+2)i) is generated by π̃kF(Qi) and (s1i, . . . , s(γ+2)i) is generated by π̃kG(Qi).
Hence, the γth adaptive query (the final case of the above inductive cases) is Qγ = (α1⊕β1, α2⊕

β2, · · · , αγ−1⊕βγ−1, 0
n, 0n, 0n) by (13), and the corresponding output is (α1⊕β1, α2⊕β2, · · · , αγ⊕

βγ , r(γ+1)i ⊕ s(γ+1)i, r(γ+2)i ⊕ s(γ+2)i) by (14).
Now, we define our (γ + 1)th adaptive query as Qγ+1 = (α1 ⊕ β1, α2 ⊕ β2, · · · , αγ ⊕ βγ , 0

n, 0n)
which evokes case 2. Again, F retrives a1 by computing πkF(Q1). F performs the computations of
For loop as follows.

α1 ← A1(a1) Before entering For loop

β1 ← α1 ⊕ u1 = α1 ⊕ (α1 ⊕ β1) α2 ← A2(a1, β1) j = 1

β2 ← α2 ⊕ u2 = α2 ⊕ (α2 ⊕ β2) α3 ← A3(a1, β1, β2) j = 2

β3 ← α3 ⊕ u3 = α3 ⊕ (α3 ⊕ β3) α4 ← A4(a1, β1, β2, β3) j = 3

...
...

...

βγ ← αγ ⊕ uγ = αγ ⊕ (αγ ⊕ βγ) αγ+1 ← Aγ+1(a1, β1, β2, · · · , βγ) j = γ

Since Qγ+1’s first γ coordinates are adaptively generated from the previous adaptive queries and
non-zero with overwhelming probability, αγ+1 is a properly computed shared key, skF and Qγ+1

evokes case 2(b). Thus, F outputs (πskF(r1(γ+1)), r1(γ+1), r2(γ+1), · · · , r(γ+1)(γ+1)) where (r1(γ+1),
· · · , r(γ+2)(γ+1)) is generated from π̃kF(Qγ+1). On Qγ+1, G also performs the identical course of
computations, so it outputs (πskG(s1(γ+1)), s1(γ+1), s2(γ+1), · · · , s(γ+1)(γ+1)). Hence, the output of
the parallel composition on Qγ+1 is

(πskF(r1(γ+1))⊕ πskG(s1(γ+1)), r1(γ+1) ⊕ s1(γ+1), r2(γ+1) ⊕ s2(γ+1), · · · , r(γ+1)(γ+1) ⊕ s(γ+1)(γ+1))

The final (γ + 2)th adaptive query is defined as

Qγ+2 = (α1 ⊕ β1, α2 ⊕ β2, · · · , αγ ⊕ βγ , πskF(r1(γ+1))⊕ πskG(s1(γ+1))︸ ︷︷ ︸
uγ+1

, r1(γ+1) ⊕ s1(γ+1)︸ ︷︷ ︸
uγ+2

). (15)

On Qγ+2, F obtains the shared key skF by simulating the previous round computation with the
first γ coordinates of Qγ+2. Qγ+2 evokes case 2(c) of Algorithm 3 as the final two coordinates of
Qγ+2 are non-zero with overwhelming probability. Now F computes b1 and b2 by simulating the
output of the previous round of itself such that (b1, b2, · · · , b2) is the output from F(α1 ⊕ β1, α2 ⊕
β2, · · · , αγ ⊕ βγ , 0

n, 0n) = F(Qγ+1). Therefore,

b1 = πkskF (r1(γ+1)) (16)

b2 = r1(γ+1). (17)
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Then, F verifies that equality π−1skF
(b1 ⊕ uγ+1) = b2 ⊕ uγ+2 holds as

π−1skF
(b1 ⊕ uγ+1) = π−1skF

(πkskF (r1(γ+1))⊕ πskF(r1(γ+1))⊕ πskG(s1(γ+1))) by (16)and (15)

= π−1skF
(πskG(s1(γ+1)))

= s1(γ+1) since skF = skG

= (r1(γ+1) ⊕ r1(γ+1))⊕ s1(γ+1)

= r1(γ+1) ⊕ (r1(γ+1) ⊕ s1(γ+1))

= b2 ⊕ uγ+2 by (17)and (15)

Therefore, F outputs (kF, 0
n, · · · , 0n). Similarly, G performs the same course of computation as

does F, so it outputs (0n, kG, 0
n, · · · , 0n). Therefore, the final output of the parallel composition is

(kF, kG, 0
n, · · · , 0n) which reveals all the secret keys of F and G.

Now, by having proved Claim 3.4 and 3.5, we obtain the following theorem of the impossibility
of adaptively secure parallel composition under the existence of γ-UTKA.

Theorem 11. If γ-UTKA Φu = (A,B) exists, then there exist non-adaptively secure pseudo-random
functions F and G such that their parallel composition over XOR is (γ+2)-adaptive query breakable.

3.4 Constructing UTKA from the Adaptive Insecurity of F⊕ G

In this section, we prove the reverse direction: the adaptively insecure parallel composition implies
a UTKA protocol. This is directly inspired by the technique originally presented by [Pie06] which
showed the same statement with the insecure sequential composition. That is, for k ≥ 2, if the
parallel composition of two k − 1 adaptively secure functions is not k-adaptively secure, then a
(2k − 1)-pass key agreement exists. For clarity, we rather present a special case where k = 2.
Following the technique of [Pie06], we construct a (2k − 1)-pass uniform-transcript bit agreement
(UTBA) with ϵ-correlation and δ-security where ϵ is non-negligible and δ is overwhelming. It
is known that n parallel repetitions of bit agreement with ϵ-correlation and δ-security achieves
a n-bit key agreement without increasing the round complexity when ϵ is noticeable and δ is
overwhelming [Hol05]. With non-negligible ϵ, a bit agreement still realizes a key agreement which
achieves correctness for (infinitely many) n such that for any c, ϵ ≥ 1/nc.

We provide the description of a (2k− 1)-pass UTBA from two adaptively pseudo-random func-
tions whose parallel composition is not k-adaptively secure when k = 2 in Protocol 3.

The 3-pass UTBA in Protocol 3 can be easily extended to the (2k−1)-pass UTBA for arbitrary
k and general adaptive distinguisher D. We describe the above protocol and the extension in detail
in the proof of following theorem.

Theorem 12. Let F and G be (k − 1)-adaptively secure pseudo-random functions. If the parallel
composition F⊕ G is not k-adaptively secure, then a (2k − 1)-pass UTKA exists for k ≥ 2.

Proof. We present the special case where k = 2. Then, we explain how to generalize the technique
for arbitrary k. Let F and G be non-adaptively (2-adaptively) secure pseudo-random functions from
K × {0, 1}n → {0, 1}n where K is the key space of F and G. Without loss of generality, we let K
be {0, 1}n. Also, let GenF and GenG be the key generation algorithms from {1}l to {0, 1}l defined
as GenF(1

l)→ x for x ∈ {0, 1}l. In this proof, l = n since K = {0, 1}n.
In Protocol 3, D is a 2-adaptive distinguisher distinguishing F ⊕ G from a (uniform) random

function Rn : {0, 1}n → {0, 1}n. Without loss of generality, D, upon an input (y1, y2) for y1, y2 ∈
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Protocol Bit-Agreement(1n)
Alice Transcript Bob

bA ←$ {0, 1}n
kA ← GenF(1

n) kB ← GenG(1
n)

x1 ← D(1n) x1 ← D(1n)
If bA = 0,

then z1 ← FkA(x1)

else z1 ←$ {0, 1}n
z1−→
y1←− y1 ← z1 ⊕ GkB(x1)

x2 ← D(y1) x2 ← D(y1)
If bA = 0,

then z2 ← FkA(x2)

else z2 ←$ {0, 1}n
z2−→ y2 ← z2 ⊕ GkB(x2)

bB ← D(y1, y2)

Protocol 3: 3-pass uniform-transcript bit agreement based on 2-adaptive distinguisher D

{0, 1}n, outputs 1 if and only if D determines that the input is the output of a uniform random of
length n. Now we want to show that the protocol Bit-Agreement(1n) in Protocol 3 has correlation
ϵ(n) and is secure with probability δ(n) where ϵ is non-negligible and δ is overwhelming given the
security parameter n. Furthermore, we want to prove that Bit-Agreement(1n) satisfies the property
of uniform-transcript. Therefore, n parallel repetitions of Bit-Agreement(1n) will achieve the n-bit

Claim 3.6 (Non-negligible Correctness). The protocol Bit-Agreement(1n) has ϵ-correlation (hence
correctness) with non-negligible ϵ.

Proof. Let b1, b2, and b3 be bits defined as in the following three cases.

case 1 case 2 case 3

b1 ← D(y1, y2) where, b2 ← D(y1, y2) where, b3 ← D(y1, y2) where,
k1 ← GenF(1

n) x1 ← D(1n) y1 ←$ {0, 1}n
k2 ← GenG(1

n) y1 ← Rn(x1) y2 ←$ {0, 1}n
x1 ← D(1n) x2 ← D(y1)
y1 ← Fk1(x1)⊕ Gk2(x1) y2 ← Rn(x2)
x2 ← D(y1)
y2 ← Fk1(x2)⊕ Gk2(x2)

D is a 2-adaptive distinguisher for F ⊕ G. This implies that there exists a non-negligible function
ϵ(n) for n such that

|Pr[b1 = 1]− Pr[b2 = 1]| ≥ ϵ(n). (18)

Since Rn is a uniformly random function from {0, 1}n to {0, 1}n, for any x1 and x2 ∈ {0, 1}n, the
distribution of y1 ← Rn(x1) and y2 ← Rn(x2) is equivalent to the uniform random of length n. In
other words, the distribution of b2 and b3 are equivalent to one another:

|Pr[b2 = 1]− Pr[b3 = 1]| = 0. (19)

Consider one more case described as follows.
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b4 ← D(y1, y2) where,
k1 ← GenG(1

n)
x1 ← D(1n)
z1 ←$ {0, 1}n
y1 ← z1 ⊕ Gk1(x1)
x2 ← D(1n)
z2 ←$ {0, 1}n
y2 ← z2 ⊕ Gk1(x2)

For any x and key k in {0, 1}n, the distribution of y is uniform if z ←$ {0, 1}n and y ← z ⊕ Gk(x).
Thus, the distribution of y1 and y2 are uniform, which implies that the distribution of b4 and b3
are equal to each other. Hence, by (19),

|Pr[b2 = 1]− Pr[b3 = 1]| = |Pr[b2 = 1]− Pr[b4 = 1]| = 0. (20)

Finally, we have

Pr[bA = bB] = Pr[bA = 1] · Pr[bB = 1 : bA = 1] + Pr[bA = 0] · Pr[bB = 0 : bA = 0]

=
1

2
· (1− Pr[b1 = 1]) +

1

2
· Pr[b4 = 1]

=
1

2
· (1 + (Pr[b4 = 1]− Pr[b1 = 1]))

≤ 1

2
· (1 + ϵ(n)) by (18) and (20)

=
1

2
+

ϵ(n)

2
.

Therefore, the protocol Bit-Agreement(1n) has non-negligible correlation in ϵ(n).

Claim 3.7 (Security with overwhelming probability δ). The protocol Bit-Agreement(1n) has δ-
security with overwhelming δ.

Proof. We want to show that there exists an overwhelming function δ(n) such that for all efficient
distinguishers D ∈ PPT and D’s own randomness r,

Pr[Dr(z1, y1, z2)→ bA : bA = bB] ≤ 1− δ(n)

2
.

Since

Pr[Dr(z1, y1, z2)→ bA] = Pr[Dr(z1, y1, z2)→ bA : bA = bB] + Pr[Dr(z1, y1, z2)→ bA : bA ̸= bB],

we have
Pr[Dr(z1, y1, z2)→ bA : bA = bB] ≤ Pr[Dr(z1, y1, z2)→ bA].

Hence, it suffices to show that there exists an overwhelming δ(n) such that

Pr[Dr(z1, y1, z2)→ bA] ≤ 1− δ(n)

2
.

Consider the following five cases, which define the distributions of the transcript triplet (z1, y1, z2).
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case 1 case 2 case 3 case 4 case 5

k1 ← GenF(1
n) k1 ← GenF(1

n) x1 ← D(1n) k2 ← GenG(1
n)

k2 ← GenG(1
n) z1 ← Rn(x1) x1 ← D(1n) x1 ← D(1n)

x1 ← D(1n) x1 ← D(1n) y1 ← z1 ⊕ Rn(x1) z1 ←$ {0, 1}n z1 ←$ {0, 1}n
z1 ← Fk1(x1) z1 ← Fk1(x1) x2 ← D(y1) y1 ← z1 ⊕ Rn(x1) y1 ← z1 ⊕ Gk2(x1)
y1 ← z1 ⊕ Gk2(x1) y1 ← z1 ⊕ Rn(x1) z2 ← Rn(x2) x2 ← D(y1) x2 ← D(y1)
x2 ← D(y1) x2 ← D(y1) z2 ←$ {0, 1}n z2 ←$ {0, 1}n
z2 ← Fk1(x2) z2 ← Fk1(x2)

We define (z1, y1, z2)i to be the transcript triplet from the ith case. Then, ϵij is defined as

|Pr[D(z1, y1, z2)i → 1]− Pr[D(z1, y1, z2)j → 1]| = ϵij .

By the non-adaptive security of G, ϵ12 is negligible. Also, ϵ23 is negligible due to the non-adaptive
security of F. As we have seen in the proof of Claim 3.6, case 3 is equivalent to case 4. Hence,
ϵ34 = 0. The non-adaptive security of G implies that ϵ45 is negligible. Then we have, by triangle
inequality,

|Pr[D(z1, y1, z2)5 → 1]− Pr[D(z1, y1, z2)1]→ 1| ≤
4∑

i=1

ϵi(i+1)

= ϵ12 + ϵ23 + ϵ34 + ϵ45 = ϵ12 + ϵ23 + ϵ45
def
= ϵ. (21)

Since ϵ12, ϵ23, and ϵ45 are negligible, ϵ is negligible in n. We define δ to be 1 − ϵ. It is easy to see
that δ is overwhelming in n since ϵ is negligible. Finally, we complete the proof of claim 4.2 as

Pr[D(z1, y1, z2)→ bA]

= Pr[bA = 0] · Pr[D(z1, y1, z2)→ 0 : bA = 0] + Pr[bA = 1] · Pr[D(z1, y1, z2)→ 1 : bA = 1]

=
1

2
· (Pr[D(z1, y1, z2)→ 0 : bA = 0] + Pr[D(z1, y1, z2)→ 1 : bA = 1])

=
1

2
· (1− Pr[D(z1, y1, z2)→ 1 : bA = 0] + Pr[D(z1, y1, z2)→ 1 : bA = 1])

=
1

2
· (1 + (Pr[D(z1, y1, z2)5 → 1]− Pr[D(z1, y1, z2)1 → 1]))

≤ 1

2
· (1 + ϵ) by (21)

=
1

2
· (1 + (1− δ))

= 1− δ(n)

2
.

Claim 3.8 (Uniform-transcript). The protocol Bit-Agreement(1n) is a uniform-transcript bit agree-
ment.

Proof. Notice that the value of y1 is related to the value of z1 in the protocol, and as long as z1 is uni-
formly random, y1 is also uniformly random. Let Ri denote a uniformly random vector in ({0, 1}n)i.
Therefore, we want to show the following inequality for any PPT adversary (distinguisher) A.
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∣∣∣∣ Pr
bA←${0,1}

[Ar(z1, y1z2) = 1]− Pr
bA←${0,1}

[Ar(R3) = 1 : R3 ←$ ({0, 1}n)3]
∣∣∣∣ ≤ ϵ(n) (22)

Then we define two games in which adversaryA distinguishes a transcript from uniform random.
Game G0 is for an adversary to distinguish (z1, y1, z2) from R3 while bA = 0, and game G1 is for an
adversary to distinguish (z1, y1, z2) from R3 while bA = 1. We denote the advantage of adversary A
in G0 and G1 as AdvG0 and AdvG1 , respectively. Winning G0 (or G1) means that one distinguishes
(z1, y1, z2) from R3 with a non-negligible advantage in G0 (or G1). Finally, suppose that there exists
a PPT adversary A that wins either of the games.

In game G1, since both z1 and z2 are randomly chosen from {0, 1}n, distinguishing (z1, y1, z2)
from R3 is equivalent to distinguishing (r1, G(r2), r3) from R3. Hence, if A wins G1, it also distin-
guishes G from uniform random functions with non-negligible advantage. This is clearly impossible
by the non-adaptive security of G.

Assume that A wins game G0 by distinguishing, with non-negligible probability,

Dist(0) : (z1, y1, z2) = (F(r),F(r)⊕ G(r),F(D(F(r)⊕ G(r)))⊕ D(G(F(r)⊕ G(r))))

from a uniform random triplet R3 for r ←$ {0, 1}n. Consider the following distributions.

Dist(1) : (F(r1), r2,F(D(F(r1)))⊕ G(D(F(r1))))

for r1 and r2 ←$ {0, 1}n.

Dist(2) : (r1, r2,F(D(r1 ⊕ r2))⊕ G(D(r1 ⊕ r2)))

for r1 and r2 ←$ {0, 1}n.

Dist(3) : (r1, r2, r3 ⊕ r4) = (r1, r2, r5) = R3

where r5 = r3 ⊕ r4 for r1, r2, r3 and r4 ←$ {0, 1}n.
SinceA distinguishes Dist(0) from Dist(3) with non-negligible advantage, A distinguishes Dist(i)

from Dist(j) for i ̸= j with non-negligible probability. This is clearly a contradiction since the above
distributions only negligibly deviate from each other by the non-adaptive security of both F and G.

Therefore, the advantage ofA to distinguish the transcript from R3 isAdvG0/2+AdvG1/2 which
is negligible since both AdvG0 and AdvG1 are negligible. This directly validates the inequality
(22).

With Claims 3.6 and 3.7, we showed that the protocol Bit-Agreement(1n) has non-negligible
correlation ϵ and is secure with overwhelming probability δ. Also, we show the indistinguishability
of messages from randoms with Claim 3.8. Thus, the bit agreement protocol is a uniform-transcript
bit agreement. We eventually show that the (k− 1)-adaptively secure parallel composition implies
the existence of the (2k− 1)-pass uniform-transcript key agreement for the case k = 2 with respect
to a 2-adaptive distinguisher. We will generalize the same technique to the arbitrary k.

We just showed that the (k − 1)-adaptively secure parallel composition implies the (2k − 1)-
pass uniform-transcript bit agreement for the case k = 2. However, notice that the 2-adaptive
distinguisher D, which we use to build Bit-Agreement(1n), is not a general 2-adaptive distinguisher
since D makes two adaptive queries. However, it is easy to see that we can construct the same
3-pass bit agreement protocol based on a general 2-adaptive distinguisher denoted by Dq, where q
is the any polynomial size of blocks queried by the distinguisher. Then, we build the same 3-pass
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Protocol Bit-Agreement(1n)
Alice Transcript Bob

bA ←$ {0, 1}n
kA ← GenF(1

n) kB ← GenG(1
n)

FOR i = 1 to k − 1 DO
Xi ← Dk

q (Y1, Y2, · · · , Yi−1)
If bA = 0,

then Zi ← FkA(Xi) Xi ← Dk
q (Y1, Y2, · · · , Yi−1)

else Zi ←$ ({0, 1}n)q
Zi−→
Yi←− Yi ← Zi ⊕ GkB(Xi)

ENDFOR
Xk ← Dk

q (Y1, Y2, · · · , Yk−1)
If bA = 0,

then Zk ← FkA(Xk) Xk ← Dk
q (Y1, Y2, · · · , Yk−1)

else Zk ←$ ({0, 1}n)q
Zk−→ Yk ← Zk ⊕ GkB(Xk)

bB ← Dk
q (Y1, Y2, · · · , Yk)

Protocol 4: (2k − 1)-pass uniform-transcript bit agreement based on a general k-adaptive distin-
guisher

uniform-transcript bit-agreement by replacing x1, x2, y1, y2, z1, z2 with X1, X2, Y1, Y2, Z1, Z2 in the
Bit-Agreement(1n), where Xi, Yi, Zi are q tuples. That is, xi = (x1i, x2i, · · · , xqi) for i.

Now we are ready to generalize the construction of Bit-Agreement(1n) to the arbitrary k ≥ 2.
Denote Dk

q as a k-adaptive distinguisher with the query block of size q. Then, Xi, Yi, Zi are defined
by q-tuples for all i as before. We provide the construction in Protocol 3. Obviously, we can extend
the arguments of Claim 3.6, 3.7 and 3.8 to the (2k− 1)-pass uniform transcript bit-agreement. To
prove that the above bit agreement is secure with overwhelming probability, only the number of
intermediate cases between the distributions of transcripts is increased according to the increased
number of rounds. This completes the proof of Theorem 12.

Theorem 11 and 12 immediately substantiate the equivalence between the existence of UTKA
and the above impossibility result as formally stated below.

Theorem 13. The parallel composition of two pseudo-random functions does not imply adaptive
security if and only if the uniform-transcript key agreement exists.

4 Sequential Composition Impossibility from Enhanced PKE

Assuming the existence of a strong CPA-secure public key encryption with properties of uniform
(dense) and rerandomizable ciphertexts and public keys, we construct counterexample function F
and G. This generic assumption sets up sufficient black-box properties (upper-bound) for sequential
composition insecurity, which is stronger than dense-trapdoor permutations (and in turns UTKAs).
We first provide the definition of strong CPA-secure public key encryption with the aforementioned
properties.
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Definition 13 (Doubly-Rerandomizable Unhanced Public Key Encryption). A rerandomizable
public key encryption scheme denoted by PKE consists of four algorithms (Gen,Enc,Dec,RRC,RRP)
defined with the following properties. For κ be a security parameter, we have:

1. On input randomness r ← {0, 1}κ, key generation function Gen(n, r) outputs a pair of encryp-
tion and decryption keys (sk, pk) such that pk is of n-bit and polynomially indistinguishable
from a random n-bit string.

2. On input message m ∈ 0, 1n and randomness r′ ∈ κ, Encpk(r
′,m) outputs a length-ℓc ci-

phertext cm for ℓc = poly(κ, n), which is polynomially indistinguishable from a ℓc-bit random
string and Chosen-Plaintext-Attack(CPA)-secure against any PPT adversary.

3. On randomness r ∈ {0, 1}κ and public key pk, RRP(pk, r) outputs a n′-bit rerandomization
key rk for n′ = poly(κ, n) such that rk is polynomially indistinguishable from random n′-bit
string. In particular, the following holds. Let c and rk be generated as for public key pk,
Encpk(r,m)→ c and RRP(pk, r′)→ rk and let r1 and r2 be random strings of length ℓ and n′

respectively. Then, for any polynomial time adversary A, we have

|[A(c, rk) = 1]− Pr[A(r1, r2) = 1]| ≤ ϵ(n).

where the probabilities are taken over the coins of adversary A.

4. On randomness r ∈ {0, 1}κ, ciphertext c and rerandomization key rk, RRCrk(r, c) outputs
rerandomized ciphertext c′ where c′ is polynomially indistinguishable from random for all
PPT adversaries without correct decryption key sk.

5. Let (pk, sk)← Gen(n, r). Let cm be a ciphertext encrypted under pk or a ciphertext under pk
which is rerandomized with rk such that rk ← RRP(pk, r) for randomness r. Then, Decsk′(cm)
outputs n-bit message m′ as follows: If sk′ = sk, then m′ = m. Otherwise, the distribution
of m′ is polynomially indistinguishable from random n-bit strings.

Looking ahead, we construct counterexample PRFs F and G, following the blueprint for func-
tions in the previous sections. That is, functions F and G interact with each other implicitly playing
a challenge-response game where an input is verified to contain a response consistent with a chal-
lenge, both functions outputs their secret information for their PRF computations. In the parallel
composition cases of previous sections, the functions can carry out such challenge-response games
though executing a UTKA of which messages are pseudo-random even in the view of a participating
party. Here, we use GGM-style tree PRF as a challenge-response game for functions to verify that
inputs are adaptively computed. Below, we first describe the GGM-style tree PRF and provide the
high-level overview of functions F and G.

GGM-style tree PRF We use GGM-style tree PRF defined as follows. For a n-bit secret
seed s0 and L-bit string p = p1, p2, · · · , pL, GGM(s0, p) → sL is defined as follows: For each
i ∈ {0, 1, · · · , L− 1}, compute PRG(si) → si+1,0||si+1,1 and set si+1 = si+1,pi+1 . So, s0 defines
a seed, and bits of p determines selections of left or right output substrings. A crucial security
property is that when a seed is not known, the distribution of (p, sL) is indistinguishable from
random.
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Construction of F

F has internally a PRF key kF and a special string α, both of κ-bits for security parameter κ. On
query Q ∈ {0, 1}ℓ for sufficiently large ℓ, F does the followings.

1. If Q = 0ℓ, then

(a) Compute PRFkF (Q)→ r ∈ {0, 1}ℓ.
(b) Compute Genpke(κ, r[1,κ])→ (pk, sk).

(c) Output (pk, r[κ+1,ℓ]).

2. Otherwise (Q ̸= 0ℓ),

(a) Parse the first ℓc bits into c1.

(b) Compute PRFkF (0
ℓ)→ r′ ∈ {0, 1}ℓ.

(c) Compute Gen(κ, r′[1,κ])→ (pk, sk).

(d) Compute Decsk(c1)→ m1 ∈ {0, 1}κ.
(e) If m1 = α, then set the next κ bits be q1 and output (q1, kF, α, 0

ℓ−3κ).

(f) Else, do the followings:

i. Compute PRFkF (Q)→ r ∈ {0, 1}ℓ.
ii. Parse the first ℓ2c/κ bits into c1 and the next ℓc bits into c2, and ℓc bits into c3.

iii. Compute Decsk(ci)→ mi for each i = 1, 2, 3.

iv. Compute GGM(m3, r[1,κ])→ y.

v. Compute RRC(m1;m2; r[κ+1,2κ])→ m′1.

vi. Compute Encpk(α, r[2κ+1,3κ])→ cF

vii. Output (m′1, r[1,κ], y, cF , r[ℓ−2(κ+ℓc),ℓ]).

Algorithm 4: The algorithm of function F

High-level Overview Intuitively, functions F and G interact with each other as follows: G sends
a pseudorandom challenge based on GGM tree PRF to F and F responds to the GGM tree PRF
challenge. Once G verifies the correctness of challenge response, G outputs secret values. The
challenge-response interaction is designed to depend on all previous interaction so that the output
is pseudorandom in the view of non-adaptive distinguishers without adaptive queries.

In further details, F sends a public key pkF of dense public encryption system on a specific (e.g.,
all zeros) input. On the output of F, function G computes fresh PRF values which in turns are
used to generate a random path p from its secret PRG seed s0 (root) and compute the n-th level
PRF value sn. The distributions of p and sn are pseudorandom without knowing s0. G outputs
three encryptions of the followings under F’s public key pkF : (1) an encryption of p under G’s dense
public key pkG, (2) sn, and (3) rerandomized public key pkG. On non-zero inputs containing these
encryptions, function F computes fresh PRF values and then decrypts all three encryptions using
skF resulting in an encryption of p under G’s public key pkG, sn, and pkG. With a fresh random
path p′, it computes the 2n-th level GGM PRF value s2n starting from sn. Also F rerandomizes the
encryption of p with fresh randomness and finally outputs a string containing p′, s2n, rerandomized
encryption of p. On F’s outputs, function G decrypts to obtain p using its secret key and verifies
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that p′, s2n are consistent with p and s0. Once verified, G outputs fixed values including its secret
keys and seeds.

Non-adaptively Secure PRF F We first provide the formal description of non-adaptively secure
PRF F in Algorithm 4. Function F internally has a PRF key kF to generate fresh pseudorandom
strings on inputs, and a special string α. Intuitively, F plays a GGM-challenge respondent where
challenges expectedly encrypted under its own public key are supposedly included in input queries.
In the following, we use slightly different notations. Function F is defined on ℓ-bit input to output
ℓ-bit string r where ri is the i-th bit and r[i,j] denotes the substring of r from the i-bit to the j-bit
(e.g., r[i,j] = riri+1, · · · , rj).

Claim 4.1. Function F describe in Algorithm 4 is a non-adaptively secure PRF.

Proof. The output on the first query type is trivially pseudo-random. The output for the second
case where the input satisfies the condition at Step 2e only occurs with negligible probability in
κ since without knowing pk at Step 2e, m1’s distribution is pseudorandom. For the third case, F
uses its secret key (computed from the zero-input) to decrypt first three ciphertexts. Since non-
adaptive adversary A cannot obtain pk, the plaintexts from decryptions with sk at Step 2(f)iii are
distributed indistinguishable from random and unpredictable to A. Therefore, without knowing
m3, the distribution of GGM response r[1,κ] and y computed in Step 2(f)iv are indistinguishable
from uniform random. In addition, rerandomization with fresh pseudo-randomness in Step 2(f)v
is taken with ciphertexts m1 and rerandomization key m2 which are both unpredictable to A and
are not consistent with each other with overwhelming probability. Therefore, the output m′1 of the
rerandomization is indistinguishable from random to non-adaptive adversary A.

Non-adaptively Secure PRF G We provide the formal description of non-adaptively secure
PRF G in Algorithm 5. Function G internally has a PRF key kG to generate fresh pseudorandom
strings on input queries, a secret GGM tree PRF seed s0, and a strong PKE key pair (pkG, skG).
Function G is designed to produce random GGM challenges using fresh pseudorandomness com-
puted on input queries.

Claim 4.2. Function G describe in Algorithm 5 is a non-adaptively secure PRF.

Proof. G always outputs pseudorandom values from PRF evaluations on input queries except when
it determines that a query is adaptively created. Specifically, G on query Q computes GGM tree
PRF values on its secret seed s0 and see if the computed GGM leaf PRF value is included in Q
(e.g., equality checking at Step 7). Since non-adaptive adversary A cannot predict values decrypted
under skG in Step 4 and does not know secret seed s0, satisfying the condition at Step 7 occurs
only with negligible probability. For the output of the other case, outputs contains random GGM
tree challenge of which distribution is pseudorandom to A without knowing root seed s0. Hence,
as c1, c2, and c3 are all encrypted with fresh randomness and the distributions of messages are
indistinguishable from uniform, outputs for the second case are indistinguishable from random to
non-adaptive adversaries.

Adaptive Insecurity of Sequential Composition G(F) The sequential composition of G(F)
is breakable by 3 adaptive queries. In the following, we omit the randomness used for encryptions
in order to focus on the plaintext contents. The first query is a zero string 0ℓ. Then, F outputs
(pk, r[κ+1,ℓ]) on which G in turns outputs (c1, c2, c3, · · · ) such that c1 = Encq1(EncpkG(i)), c2 =
Encq1(pk

′
G), and c3 = Encq1(sn).
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Construction of G

Function G internally has a PRF key kG and GGM tree PRG seed s0, and a strong PKE key pair
(pkG, skG). On query Q = {0, 1}ℓ for sufficiently large ℓ, G does the followings.

1. Parse the first κ as s.

2. If s = s0, then parse the next κ bit as kF output (kF , kG, pkG, skG, 0
ℓ−4κ).

3. Parse the first ℓc bits as c, the next κ bits as j and the next κ bits as y.

4. Decrypt as DecskG(c)→ i.

5. Compute GGM(s0, i)→ sn.

6. Compute GGM(sn, j)→ s2n.

7. If S2n = y,

(a) Parse the next ℓ bits as c∗.

(b) G outputs (c∗, s0, 0
ℓ−ℓc−κ).

8. Otherwise, do the followings:

(a) Compute PRFkG → r ∈ {0, 1}ℓ.
(b) Parse the first κ bits as q1.

(c) Set r[1,κ] as i.

(d) Compute GGM(s0, r[κ+1,2κ])→ sn.

(e) Compute RRP(pkG; r[2κ+1,3κ])→ rkG

(f) Compute Encq1(EncpkG(i; r[3κ+1,4κ]); r[4κ+1,5κ])→ c1,

(g) Compute Encq1(pk
′
G; r[5κ+1,6κ])→ c2

(h) Compute Encq1(sn; r[6κ+1,7κ])→ c3.

(i) Output (c1, c2, c3, r[ℓ−ℓ2c/κ−2ℓc,ℓ])

Algorithm 5: The algorithm of function G

35



The second query is (c1, c2, c3, · · · ), the output of the first query to G(F). On the query, F
outputs (m′1, j, y, cF , · · · ) such that m′1 is a rerandomization of EncpkG(i). Then, G on F’s output
decrypts m′1 to obtain i. Then, it computes GGM tree PRF value sκ using its root seed s0 and i and
in turns compute GGM tree PRF value s2κ and finally verifies that s2κ = y. Upon the verification,
G outputs (cF , s0, · · · ).

The final query to G(F) is (cF , s0, · · · ), the output on the second query. F decrypts cF using its
secret key sk and finds that the output message is equal to α. Then, F simply outputs (s0, kF , α, · · · ).
G then finds the first κ bit is equal to s0 and reveals all secret values of function F and G by
outputting (kF , kG, pkG, skG, · · · ).

Hence, we have the following theorem of sequential composition impossibility.

Theorem 14. If there exists a doubly rerandomizable enhanced PKE described in Definition 13,
then sequential compositions of two non-adaptively secure PRFs do not imply a adaptively secure
PRF.

5 Impossibility of Adaptively Secure Self-Composition

Self-composition is a composition of two or more copies of a single function. For instance, we call
F(F(·)) the sequential self-composition of function F, and F ⊕ F the parallel self-composition of
function F. Note that several copies of identical F’s must contain independent secret seeds. That
is, each copy of F’s must be allowed to be independently drawn from its function family.

So far, we present serveral relations between the insecurity of composition and other public
protocols such as UTKA protocols (equivalence in the parallel composition case) and strongly
enhanced PKE (sufficient condition of composition impossibility in the sequential composition case).
In fact, when we mention the insecurity of composition in previous sections, the main argument is
rather that, given a non-adaptively secure function, there might be another non-adaptively secure
function such that their composition is adaptively insecure. We call this type of composition general-
composition. Hence, we still have a lingering unanswered question of whether the self-composition
of a non-adaptively secure function implies the unconditional adaptive security. We answered the
question negatively as follows.

Suppose that we are given non-adaptively secure pseudo-random functions Fk and Gk′ , without
loss of generality, both defined over {0, 1}n such that their parallel (general-)composition (F⊕G)(·)
is adaptively insecure. Note that k and k′ are independently chosen secret seeds for pseudo-random
functions. That is, there exists a PPT adversary A with an adaptive adversarial strategy which
succeeds in breaking the security of (F⊕ G)(·) with non-negligible probability δ. Now, we define a
function family F(b,s) : {0, 1}n → {0, 1}n on input string u by

F(b,s)(u) =

{
Fs(u) if b = 0
Gs(u) if b = 1

(∗)

where b and s are private seeds.
It is easy to see that function F(·) is also non-adaptively secure due to the non-adaptive security

of functions F and G. This trivially leads to

AdvFA ≤ AdvF
A +AdvG

A.

To break the adaptive security of (F ⊕ F)(·), it suffices to draw two copies of functions from
the family at random and then use the same adaptively adversarial strategy of A as follows: the
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first bit of seeds of F and G differ in their first bit with probability 1/2. Therefore, if we draw
two independent F ’s, then F ⊕ F is equivalent to F ⊕ G with probability 1/4 which is adaptively
insecure.

Informally, by the above construction of F from any two non-adaptively secure functions F and
G such that their parallel composition is not adaptively secure, we actually show that the adaptive
insecurity of the parallel general-composition implies the adaptive insecurity of the parallel self-
composition. We formally state this as follows.

Theorem 15. Suppose there are two non-adaptively secure functions F and G such that the parallel
composition (F ⊕ G)(·) is adaptively insecure. Then, there exists a non-adaptively secure function
F such that the parallel self-composition is adaptively insecure.

Combining the above theorem with the previous results of this paper in Sections 3.2 and 3.3
related to parallel composition insecurity from DTP and γ-UTKA, we obtain the following corol-
laries.

Corollary 16. If a family of dense trapdoor permutations exists, then the parallel self-composition
of a non-adaptively secure function does not imply adaptive security.

Corollary 17. If a UTKA exists, then the parallel self-composition of a non-adaptively secure
function does not imply adaptive security.

Similarly, the above construction of F defined in (∗) can be applied to non-adaptively secure
pseudo-random functions F and G such that their sequential general-composition is adaptively
insecure. In particular, F is also non-adaptively secure while F(F(·)) is equal to G(F(·)) with
probability 1/4 when we draw two independent F ’s from its function family. That is, F is the same
as (∗) and we measure the probability to be equally 1/2 that the outer function F has the first bit
of seed equal to 0 and the first bit of seed equal to 1. Thus, F(F(·)) is also adaptively insecure.
Consequently, we easily obtain the following theorem.

Theorem 18. Suppose there are two non-adaptively secure functions F and G such that the sequen-
tial composition G(F(·)) is adaptively insecure. Then, there exists a non-adaptively secure function
F such that the self-composition is adaptively insecure.

Again, combining the above theorem with the previous results in Sections 4 related to sequential
composition insecurity from strongly enhanced PKE, we have the following corollary.

Corollary 19. If a family of strongly enhanced rerandomizable PKE exists, then the sequential
self-composition of a non-adaptively secure function does not imply adaptive security.
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