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Abstract

Following Hastad et al. [HPPW08], we study parallel repetition theorems for public-coin
interactive arguments and their generalizations. We obtain the following results:

1. We show that the reduction of Hastad et al. [HPPW08] actually gives a tight direct
product theorem for public-coin interactive arguments. That is, n-fold parallel repetition
reduces the soundness error from δ to δn. The crux of our improvement is a new analysis
that avoid using Raz’s Sampling Lemma, which is the key to the previous results.

2. We give a new reduction to strengthen the direct product theorem of Hastad et al. for
arguments with extendable and simulatable verifiers. We show that n-fold parallel rep-
etition reduces the soundness error from δ to δn/2, which is almost tight. In particular,
we remove the dependency on the number of rounds in the bound, and as a consequence,
extend the “concurrent” repetition theorem of Wikström [Wik09] to this model.

3. We give a simple and generic reduction which shows that tight direct product theorems
imply almost-tight Chernoff-type theorems. The reduction extends our results to Chernoff-
type theorems, and gives an alternative proof to the Chernoff-type theorem of Impagliazzo
et al. [IJK07] for weakly-verifiable puzzles.

4. As an additional contribution, we observe that the reduction of Pass and Venkitasub-
ramaniam [PV07] for constant-round public-coin arguments gives tight parallel repetition
theorems for threshold verifiers, who accept when more than a certain number of repetition
accepts.

Keywords: parallel repetition, interactive argument, public-coin, Arthur-Merlin, direct prod-
uct theorem

∗Supported by US-Israel BSF grant 2006060 and NSF grant CNS-0831289.

0

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 109 (2009)



1 Introduction

In an interactive protocol, a prover P wants to convince the verifier V the validity of some statement
x. Two desired properties are completeness: for a valid statement, the honest prover can always
convince the honest verifier; and soundness: for an invalid statement, an honest verifier, even when
interacting with an adversarial prover, should accept with bounded probability, namely at most
some δ, where δ is called the soundness error or error probability of the protocol. A protocol is
called an interactive proof if the soundness holds against computationally unbounded provers, and
an interactive argument if the soundness only holds against efficient provers.

When the soundness error of a protocol is too high, a natural way to reduce it is by repetition.
That is, a prover and a verifier run n copies of a protocol, and the verifier decides whether to accept
or not based on the outcomes of the n executions. For example, a direct product verifier Vn,n accepts
if all outcomes are acceptance, and more generally a threshold verifier Vn,k accepts if at least k
outcomes are acceptance. Repetitions can be either sequential or parallel. Sequential repetition
reduces soundness error for all known settings, but increases the round complexity, which is usually
undesirable. Parallel repetition does not increase the number of rounds and reduces soundness
error for interactive proofs. However, for interactive arguments, whether parallel repetition reduces
soundness error is a subtle question.

For three-message arguments, a sequence of works [BIN97, CHS05, IJK07, CLLY09, HS09]
shows that parallel repetition reduces the soundness error for threshold verifiers Vn,k at the optimal,
information-theoretic rate, namely, the probability that n independent Bernoulli random variables
with expectation δ have sum at least k. However, Bellare, Impagliazzo [BIN97], and Naor, and
Pietrzak and Wikström [PW07] construct four-message protocols where the soundness error does
not reduce at all under parallel repetition. Thus, parallel repetition theorems for general arguments
have been ruled out. (However, Haitner [Hai09] recently showed that any interactive arguments
can be slightly modified so that parallel repetition reduces the error; see Section 1.4.) On the other
hand, for the class of public-coin arguments, recent study shows that the soundness error is reduced
even for protocols with an arbitrary (polynomial) number of messages. In this paper, we continue
the study of parallel repetition theorems for public-coin arguments.

1.1 Parallel Repetition for Public-coin Arguments

The first parallel repetition theorem for public-coin arguments is by Pass and Venkitasubramaniam
[PV07] for constant-round protocols. They give an efficient reduction that converts a parallel
prover (for a direct product verifier) with success probability δn to a single-copy prover with success
probability essentially1 δ, which is optimal. However, the reduction is only efficient for constant-
round protocols.

Hast̊ad, Pass, Pietrzak, and Wikström [HPPW08] give a more efficient reduction that proves
parallel repetition theorem for public-coin arguments with an arbitrary number of rounds. The
reduction also gives a more general Chernoff-type theorem where a parallel prover Pn∗ for Vn,(1−γ)n

with success probability ε is converted to a prover P∗ for V with success probability 1 − γ −
O(m

√
log(1/ε)/n), where γ ∈ [0, 1) and m is the number of rounds. In particular, when γ = 0 (i.e.,

the direct product case), the success probability is 1 − O(m
√

log(1/ε)/n), which is suboptimal in
compare to ε1/n ≈ 1−O(log(1/ε)/n). Their analysis uses Raz’s Sampling Lemma [Raz98] in every

1Throughout the introduction, we ignore the required negligible slackness for such reductions in the discussion.
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round, which is the reason for the factor O(m
√

log(1/ε)/n) in the bound.2 An immediate question
is whether the sub-optimality is inherent for super-constant round protocols.

Recently, Wikström [Wik09] strengthened the bound of H̊astad et al. [HPPW08] by generalizing
Raz’s Lemma and applying it only once instead of every round. He shows that the reduction of
[HPPW08] actually achieves success probability 1−γ−O(

√
log(1/ε)/n) for Cheonoff-type case, and

1−O(
√

log(1/ε)/n) for direct product case. Removing the dependency on m allows him to prove a
more general “concurrent” repetition theorem. However, it remained open whether n-fold parallel
repetition for public-coin arguments with a super-constant number of rounds reduces soundness
error in an optimal, information-theoretic rate from δ to δn.
Our Result. In this paper, we answer the question affirmatively. We show that the reduction of
H̊astad et al. [HPPW08] reduces soundness error from δ to δn for direct product case for public-coin
arguments with an arbitrary number of rounds. The crux of our improvement is a way to avoid
using Raz’s Sampling Lemma.
Techniques. The reductions of efficient parallel repetition theorems mentioned above share the
following structure. Let Pn∗ be a deterministic parallel prover. The reduced prover P∗ simulates
internally an interaction between Pn∗ (given as a black-box) and n verifiers V1, . . . ,Vn, where one
coordinate Vi for some i ∈ [n] chosen by P∗ is played by the external verifier V. That is, throughout
the interaction, P∗ forwards the message that Pn∗ sends to Vi to the external V, and forwards V’s
message to Pn∗ as Vi’s message. Since Pn∗ is deterministic (wlog), the interaction of Pn∗ and Vn,n is
determined by the verifiers’ messages. In each round, V selects a uniformly random message for Vi,
and the task of P∗ is to select good messages for the rest verifiers (denoted by V−i) that maximize
the probability of V = Vi accepting at the end of interaction.

For example, the prover P∗ of Pass and Venkitasubramaniam uses recursive sampling to select
a good coordinate i ∈ [n] and good messages for V−i such that Pn∗ could convince Vi with highest
probability. However, since P∗ recursively takes many samples in each round, the number of samples
grows exponentially in the number of rounds. Thus, the reduction is only efficient for constant round
protocols.

To cope with the inefficiency, the prover P∗ of H̊astad et al. [HPPW08] selects coordinate
i ∈ [n] uniformly at random, and uses rejection sampling to select good messages for V−i. More
precisely, let (~v1, ~p1, . . . , ~vm, ~pm) denote the messages of 〈Pn∗,Vn,n〉, where ~vj = (vj,1, . . . , vj,n) and
~pj = (pj,1, . . . , pj,n) are messages of Vn,n and Pn∗ in round j ∈ [m], respectively. In the j-th round,
when P∗ receives V’s message, P∗ considers the message as vj,i, and repeatedly samples random
continuations from the current partial interaction of Pn∗ and Vn,n for a polynomial number of times.
That is, P∗ samples messages ~vj,−i = (vj,1, . . . , vj,i−1, vj,i+1, . . . , vj,n), and ~vj+1, . . . , ~vm uniformly
at random to complete the interaction. Once the continuation is successful, i.e., Vn,n accepts, P∗

selects the ~vj,−i of this continuation as V−i’s messages, and forwards Pn∗’s response pj,i to the
external verifier V. If no successful continuations are found in polynomially many samples, P∗

simply aborts.
To analyze the success probability, H̊astad et al. [HPPW08] consider an “ideal” version of the

procedure, where there is no external verifier, and a prover P̃∗ simulates the interaction of Pn∗ and
Vn,n alone by selecting each round of all internal verifiers’ messages by rejection sampling, i.e.,
conditioning on a successful random continuation. Since successful continuation always exists by
construction, P̃∗ can always complete a successful interaction (i.e., Vn,n accepts) with probability
1. They then apply Raz’s Lemma [Raz98] for every round to upper bound the statistical distance
between the two experiments. Each application of Raz’s Lemma incurs distance O(

√
log(1/ε)/n).

2We elaborate more detail in the Techniques paragraph below.
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Thus, the real prover P∗ can succeed with probability at least 1−O(m
√

log(1/ε)/n). The analysis
of Wikström [Wik09] follows the same structure as H̊astad et al. [HPPW08]. He generalizes
Raz’s Lemma to a “multi-round” setting which allows him to bound the statistical distance by one
application of the generalized lemma, and hence remove the dependency on m. However, to get
a tight direct product theorem, we cannot afford the O(

√
log(1/ε)/n) loss of applying the Raz’s

Lemma. It is also not clear whether the bound on the statistical distance of two experiments can
be improved to 1− ε1/n.

We instead analyze the reduction algorithm directly, avoiding the use of any form of Raz’s
Lemma. We lower bound the success probability of the reduction algorithm by induction. Let ηi
be the success probability of P∗ (i.e., the probability that P∗ convinces V) when the external verifier
V is embedded in the i-th coordinate, and γ the success probability of Pn∗ (i.e., the probability
that Pn∗ convinces Vn,n). We essentially3 show by induction on the round j ∈ [m] that

n∏
i

ηi ≥ γ, when conditioning on any partial interaction (~v1, ~p1, . . . , ~vj , ~pj).

The base case where j = m is trivial. The inductive step is proved by two applications of Hölder’s
Inequality. It follows that the success probability of P∗ when j = 0 is

1
n
·
n∑
i=1

ηi ≥

(
n∏
i=1

ηi

)1/n

≥ γ1/n,

which is at least ε1/n by assumption.

1.2 Extension to Arguments with Extendable and Simulatable Verifiers

The results of H̊astad et al. [HPPW08] extend to arguments with extendable and simulatable veri-
fiers defined in [HPPW08]. The model generalizes both three-message arguments and public-coin
arguments, and contains other natural protocols. Roughly speaking, extendability and simulata-
bility refer to the ability of efficiently simulating a random continuation of internal and external
verifiers, respectively. Extendability means that given a partial transcript and the coins of a ver-
ifier, one can efficiently sample from the distribution of the possible next messages conditioning
on the partial transcript, including the final decision of the verifier. Simulatability means that
given a partial transcript (without the verifier’s coins), one can efficiently generate a next message.
However, since the verifier’s coins are not given, one may not know the decision of the verifier in
the end of the interaction.

The argument of H̊astad et al. [HPPW08] extends to this model, and gives parallel repetition
theorems with the same parameters. That is, the reduction achieves success probability 1 − γ −
O(m

√
log(1/ε)/n) for Cheonoff-type case, and 1−O(m

√
log(1/ε)/n) for direct product case, where

m is the number of rounds. Unfortunately, the analysis of Wikström [Wik09] does not extend to
this model. Thus the best known bound remains dependent on m.
Our Result. We give a new reduction that converts a parallel prover Pn∗ for Vn,n with success
probability ε to a prover P∗ for V with success probability ε2/n ≈ 1−O(log(1/ε)/n), which is almost

3Technically, this is for a stronger prover who can sample random continuation for unbounded number of times.
For the real prover, we need to modify the inductive hypothesis to take into account the fact that the prover may
fail to find a successful continuation and abort.
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tight. In particular, removing the dependency on m extends the “concurrent” repetition theorem
of Wikström [Wik09] (for public-coin arguments) to arguments with extendable and simulatable
verifiers.
Techniques. Recall that the prover P∗ of H̊astad et al. [HPPW08] selects good messages of V−i
by sampling and selecting a “successful” random continuation. However, since the decision of the
external verifier is not known, P∗ cannot check whether a random continuation is successful. To
handle this issue, [HPPW08] ignores the decision of the external verifier and uses rejection sampling
with “soft decision”: the more the number of accepting internal verifiers, the higher the probability
that the prover selects a random continuation. [HPPW08] shows that in the ideal version of this
procedure, the success probability of P̃∗ is still close to 1. Thus, the success probability of P∗ is
close to 1−O(m

√
log(1/ε)/n) by Raz’s Lemma.

As we do not analyze the ideal procedure, we do not use the soft decision. Rather, our reduction
P∗ simply selects a random continuation where all the internal verifiers accept. We are able to lower
bound the success probability of P∗ by a similar induction. Let ηi be the success probability of P∗

when the external verifier V is embedded in the i-th coordinate. Let γ be the success probability
of Pn∗, and γi the probability that Pn∗ convinces verifiers V1, . . . ,Vi−1,Vi+1, . . . ,Vn. We show by
induction on the round j ∈ [m] that

n∏
i=1

ηi ≥
(

γn+1∏n
i=1 γi

)
, when conditioning on any partial interaction (~v1, ~p1, . . . , ~vj , ~pj).

By assumption on Pn∗, we have γ ≥ ε. If Pn∗ satisfies the additional property that γi ≤ ε
n−1

n , then
the success probability of P∗ is

1
n
·
n∑
i=1

ηi ≥

(
n∏
i=1

ηi

)1/n

≥
(

γn+1∏n
i=1 γi

)1/n

≥ ε2/n.

Of course, the additional property may not hold. Fortunately, we can enforce this property by
the following observation. If there exists some coordinate i ∈ [n] such that γi ≥ ε(n−1)/n, then we
can obtain a prover P(n−1)∗ that convinces Vn−1,n−1 with probability at least γi ≥ ε(n−1)/n. For
simplicity, let us assume that we can compute γi’s exactly.4 The prover P(n−1)∗ simply finds such
a coordinate i and interacts with Vn−1,n−1 by simulating the interaction of Pn∗ and Vn,n with the
i-th coordinate played by an internal verifier and the rest coordinates played by Vn−1,n−1. Clearly,
P(n−1)∗ convinces Vn−1,n−1 if and only if Pn∗ convinces verifiers V1, . . . ,Vi−1,Vi+1, . . . ,Vn of Vn,n,
and the probability is γi by definition. Applying the observation iteratively, we obtain a prover
Pn
′∗ such that (i) Pn

′∗ convinces Vn
′,n′ with probability at least εn

′/n, and (ii) either n′ = 1 or the
additional property holds. If n′ = 1, then we are done. Otherwise, applying the reduction on Pn

′∗,
we obtain a prover P∗ with success probability at least (εn

′/n)2/n
′

= ε2/n.

1.3 Extension to Chernoff-type Theorems

We give a simple and generic reduction which shows that tight direct product theorems imply
almost tight Chernoff-type theorems, and thus extend our results to Chernoff-type Theorems. Our
reduction applies to various models such as weakly-verifiable puzzles, and gives an alternative proof

4It is easy to estimate γi by sampling, and a more careful argument can handle the estimation error.
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to the Chernoff-type theorem of Impagliazzo et al. [IJK07] as a consequence of the tight direct
product theorem of Canetti et al. [CHS05].

The reduction converts a parallel prover Pn∗ for Vn,k to a parallel prover Pt∗ for Vt,t for any
t ≤ k. The prover Pt∗ simply samples a random set of coordinate S ⊂ [n] of size t, and interacts
with Vt,t by simulating the interaction of Pn∗ and Vn,k with coordinates S played by Vt,t and the
remaining coordinates played by internal verifiers. Clearly, Pt∗ convinces Vt,t if and only if Pn∗

convinces verifiers Vi’s for i ∈ S of Vn,k. Let ε be the success probability of Pn∗. It is not hard to
show that Pt∗ has success probability at least ε·

(
k
t

)
/
(
n
t

)
by an averaging argument. Let k = (1−γ)n,

and suppose a tight direct theorem holds, then applying the reduction on Pt∗ with properly chosen
t gives a prover P∗ with success probability (ε ·

(
k
t

)
/
(
n
t

)
)1/t ≈ 1− γ −O(

√
log(1/ε)/n).5

For public-coin arguments, the reduction extends our direct product theorem to a Chernoff-
type theorem with similar parameter to [Wik09]. For arguments with extendable and simulatable
verifiers, the reduction and our improved direct product theorem gives a prover P∗ with success
probability (1 − γ)2 − O(

√
log(1/ε)/n). The bound is incomparable to the previous bound of

1 − γ − O(m
√

log(1/ε)/n) of [HPPW08] in that our bound does not depend on m, but has a
slightly worse dependency on γ.

As an additional contribution, we also prove that the reduction of Pass and Venkitasubrama-
niam [PV07] for constant-round public-coin arguments gives tight parallel repetition theorems for
any threshold verifiers, i.e., if V has soundness error δ, then Vn,k has soundness error essentially
P (n, k, δ), where P (n, k, δ) = Pr[

∑n
i=1Xi ≥ k] with Xi’s being i.i.d. binary random variables and

Pr[Xi = 1] = δ.

1.4 Related Work

An important work that is not mentioned in the above discussion is the work of Haitner [Hai09].
Haitner proves that any interactive arguments can be modified slightly so that parallel repetition
does reduce the soundness error. However, Haitner’s result holds only for sufficiently large n and
is far from the information-theoretic bound: the error probability is 1 − O(mn−1/10). Haitner’s
analysis also seems to use Raz’s Lemma in an essential way.

1.5 Organization of the Paper

We first present some basic notation. Then we prove the direct product theorem for public-coin
arguments in Section 3. We extend our results to arguments with extendable and simulatable
verifiers in Section 4, and Chernoff-type theorems in Section 5. Finally we discuss constant-round
public-coin arguments in Section 6.

2 Preliminary and Notation

We use s to denote the security parameter, and introduce the following notation for an interactive
protocol 〈P,V〉. Let x denote the common input. We assume the verifier speaks first. One round
contains two message exchanges – from the verifier to the prover and back. Let m denote the

5Technically, for the reduction to be efficient, we cannot set the parameter t to be too large. Thus, the reduction
P∗ can only success with probability 1 − γ − max{α,O(

p
log(1/ε)/n)} for an arbitrarily small constant α, which

suffices for most applications.
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number of rounds. A transcript of an interaction is denoted by (v1, p1, . . . , vm, pm) = 〈P,V〉(x).
When V is public-coin, verifier’s messages v1, . . . , vm are independent uniformly random strings.

Consider parallel execution of a protocol. We use 〈Pn,Vn,k〉 to denote a n-fold parallel repetition
of 〈P,V〉, where n copies of verifiers are denoted by V1, . . . ,Vn, and Vn,k accepts iff at least k copies
of Vi’s accept. A transcript of an interaction is denoted by (~v1, ~p1, . . . , ~vm, ~pm) = 〈Pn,Vn,k〉(x),
where ~vj = (vj,1, . . . , vj,n) and ~pj = (pj,1, . . . , pj,n).

When a parallel prover Pn∗ is deterministic, the interaction 〈Pn∗,Vn,k〉 is determined by the
verifier’s messages (~v1, . . . , ~vm). Thus, we can skip prover’s messages and describe an interaction
by (~v1, . . . , ~vm). We refers to a partial transcript as a history h̄ = (~v1, . . . , ~vj).

The main tool used in our analysis is Hölder’s Inequality.

Lemma 1 (Hölder’s Inequality[Dur04])

• Let F,G be two non-negative functions from Ω to R, and a, b > 0 satisfying 1/a + 1/b = 1.
Let q be a uniformly random variable over Ω. We have

E
q
[F (q) ·G(q)] ≤ E

q
[F (q)a]1/a · E

q
[G(q)b]1/b.

• In general, let F1, . . . , Fn be non-negative functions from Ω to R, and a1, . . . an > 0 satisfying
1/a1 + . . . 1/an = 1. We have

E
q
[F1(q) · · ·Fn(q)] ≤ E

q
[F1(q)a1 ]1/a1 · · ·E

q
[Fn(q)an ]1/an .

3 Tight Direct Product Theorem for Public-Coin Arguments

In this section, we prove a tight direct product theorem for public-coin interactive arguments.

Theorem 2 Let V ∈ PPT be public-coin. There exists a prover strategy P∗ such that for every
common input x, every n ∈ N, every ε, ξ ∈ (0, 1), and every parallel prover strategy Pn∗,

1. P∗(x, n, ε, ξ) runs in time poly(|x|, n, ε−1, ξ−1) given oracle access to Pn∗(x).

2. Pr[〈Pn∗,Vn,n〉(x) = 1] ≥ ε⇒

Pr[〈P∗(n, ε, ξ),V〉(x) = 1] ≥ ε1/n · (1− ξ).

We can assume without loss of generality that Pn∗ is deterministic, since by sampling, we can
find a fixing of the coin tosses of Pn∗ with only a small loss in the accepting probability.

Let us first recall the common approach of such a reduction. On input x, the reduced prover
P∗ simulates the interaction of 〈Pn∗,Vn,n〉(x) internally, where P∗ simulates n− 1 internal verifiers
by himself, and lets the external verifier V play Vi for some coordinate i ∈ [n] by forwarding the
messages accordingly. Since Pn∗ is deterministic, the interaction is determined by Vn,n’s message
(~v1, . . . , ~vm). Let Ti(·) denote whether Vi accepts. That is, Ti(~v1, . . . , ~vm) = 1 iff Vi accepts in
〈Pn∗,Vn,n〉(x) with history (~v1, . . . , ~vm).

This can be viewed as a game G(Pn∗, x) played between P∗ and V as follows. At beginning, P∗

plays a move i ∈ [n]. Then for each round j ∈ [m], V plays a random move vj,i, and P∗ plays a
(carefully chosen) move ~vj,−i = (vj,1, . . . , vj,i−1, vj,i+1, . . . , vj,n) alternately. At the end, P∗ succeeds
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if Ti(~v1, . . . , ~vm) = 1. Note that a node of the game tree is of the form either (i;~v1, . . . , ~vj), in which
case it is V’s turn to move, or of the form (i;~v1, . . . , ~vj−1, vj,i), in which case it if P∗’s turn to move.
Phrased in this way, the task is to design a strategy for P∗ such that if 〈Pn∗,Vn,n〉(x) accepts with
probability at least ε, then P∗ can succeed with probability close to ε1/n in game G(Pn∗, x). We
present the “rejection sampling” reduction algorithm of Hastad et al. [HPPW08] as a strategy of
P∗ in this game:

Definition 3 (Strategy P∗rej) We define strategy P∗rej as follows. Let Pn∗ be a deterministic
parallel prover, x a common input, and G(Pn∗, x) the corresponding game defined as above.

• In the first P∗-move, P∗rej selects a coordinate i ∈R [n] uniformly at random.

• On P∗-move node u = (i;~v1, . . . , ~vj−1, vj,i), P∗rej simulates a random continuation of G(Pn∗, x)

(i.e., the interaction of 〈Pn∗,Vn,n〉(x)) at most M def= O(mn/εξ) times. That is, P∗rej simulates
the game from u with both parties playing random moves ~vj,−i, . . . , ~vm,i, ~vm,−i. A continuation
is successful if all verifiers accept, i.e., T`(~v1, . . . , ~vm) = 1 for all ` ∈ [n]. The first time a
successful continuation is found, P∗rej plays the corresponding move ~vj,−i. If no successful
continuations are found, P∗rej aborts.

Note that if P∗rej does not abort, P∗rej plays move ~vj,−i with the probability proportional to the
conditional success probability of Pn∗ given on the history (~v1, . . . , ~vj).

Clearly, strategy P∗rej can be implemented in time poly(|x|, n, ε−1, ξ−1). We next analyze the
success probability of P∗rej by induction on the round j ∈ [m]. For the sake of clarity, below
we first present the analysis of an ideal version P∗ideal of P∗rej , where P∗ideal can simulate random
continuations for unbounded number of times. The analysis of P∗rej is presented in the subsequent
section.

3.1 Analysis of P∗ideal

In this subsection, we analyze the success probability of an ideal version P∗ideal of strategy P∗rej ,
which is the same as P∗rej except that P∗ideal can simulate the random continuations an unbounded
number of times. Thus, P∗ideal will never abort whenever there is a successful continuation from
the current P∗-move node. We will show that if Pr[〈Pn∗,Vn,n〉(x) = 1] ≥ ε, then P∗ideal can succeed
with probability at least ε1/n in game G(Pn∗, x).

We first introduce the following notation to express the success probability of P∗ideal. We define

γ(h̄) def= Pr[〈Pn∗,Vn〉(x) = 1|h̄],

where h̄ is a history of the form either (~v1, . . . , ~vj) or (~v1, . . . , ~vj−1, vj,i). That is, γ(h̄) is the accepting
probability of 〈Pn∗,Vn〉 conditioning on the history h̄. Note that γ = Pr[〈Pn∗,Vn〉(x) = 1] ≥ ε by
assumption. Next, for every i ∈ [n], we define

ηi(h̄) def= Pr[P∗ideal succeeds |u = (i; h̄)]

to be the success probability of P∗ideal conditioning on node u = (i; h̄) of the game tree. Note that
the success probability of P∗ideal is (1/n) ·

∑n
i=1 ηi.
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Claim 4 For every i ∈ [n] and full history h̄ = (~v1, . . . , ~vm), we have ηi(h̄) = Ti(h̄). For every
i ∈ [n], j ∈ [m], and history h̄ = (~v1, . . . , ~vj−1), we have6

ηi(h̄) = E
~vj

[
γ(h̄, ~vj) · ηi(h̄, ~vj)

γ(h̄, vj,i)

]
.

Proof. The first part follows by definition. For the second part, recall that V plays the random
strategy and P∗ideal plays the rejection sampling strategy. V plays each vj,i with probability Pr[vj,i],
which corresponds to the expectation operator over vj,i. P∗ideal plays each ~vj,−i with probability
Pr[~vj,−i] · (γ(h̄, ~vj)/γ(h̄, vj,i)), which corresponds to the expectation operator over ~vj,−i with factor
γ(h̄, ~vj)/γ(h̄, vj,i) in the expectation.

We now prove that the success probability of P∗ideal is at least ε1/n by induction. In fact,
we induct on a slightly stronger inductive hypothesis: for every j ∈ {0, . . . ,m} and history h̄ =
(~v1, . . . , ~vj),

n∏
i=1

ηi(h̄) ≥ γ(h̄).

The base case j = m is trivial. For every full history h̄ = (~v1, . . . , ~vm), γ(h̄) = 1 iff ηi(h̄) = Ti(h̄) = 1
for every i ∈ [n]. Assuming that the inductive hypothesis holds for j and every h̄ = (~v1, . . . , ~vj),
we want to prove the inductive hypothesis for j − 1 and every h̄ = (~v1, . . . , ~vj−1). More precisely,
for every h̄ = (~v1, . . . , ~vj−1), we want to show that

n∏
i=1

ηi(h̄) =
n∏
i=1

E
~vj

[
γ(h̄, ~vj) · ηi(h̄, ~vj)

γ(h̄, vj,i)

]
≥ γ(h̄),

provided that for every ~vj ,
n∏
i=1

ηi(h̄, ~vj) ≥ γ(h̄, ~vj).

For notational simplicity, we abstract the above statement as the following lemma.

Lemma 5 Let γ, η1, . . . , ηn : Ωn → [0, 1] be [0, 1]-valued functions over a product space Ωn such
that

∏
i ηi(~q) ≥ γ(~q) for every ~q = (q1, . . . , qn) ∈ Ωn. Let γ = E~q[γ(~q)]. For every i ∈ [n], let

γ(qi) = E
~q−i

[γ(~q)] and ηi = E
~q

[
γ(~q) · ηi(~q)
γ(qi)

]
,

where the above expectation is over uniform distribution over Ωn. We have

n∏
i=1

ηi =
n∏
i=1

E
~q

[(
γ(~q) · ηi(~q)
γ(qi)

)]
≥ γ.

6We use the convention that if γ(h̄, vj,i) = 0 (which implies γ(h̄, ~vj) = 0), then the ratio is 0.
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Proof. The trick is to apply Hölder’s Inequality to “swap the operators”. We present the whole
computation first, and then explain how Hölder’s Inequality is applied.

n∏
i=1

E
~q

[(
γ(~q) · ηi(~q)
γ(qi)

)]

≥ E
~q

[(
γ(~q)n ·

∏n
i=1 ηi(~q)∏n

i=1 γ(qi)

)1/n
]n

(by Hölder’s Inequality)

≥ E
~q

[(
γ(~q)n+1∏n
i=1 γ(qi)

)1/n
]n

(by inductive hypothesis)

≥

[(
E~q[γ(~q)]n+1

E~q[
∏n
i=1 γ(qi)]

)1/n
]n

(by Hölder’s Inequality)

= (γn+1/γn) = γ.

We now explain the application of Hölder’s Inequalities.

• The first inequality uses E[Xn
1 ]1/n · · · · · E[Xn

n ]1/n ≥ E[X1 · · · · ·Xn] with

Xi =
(
γ(~q) · ηi(~q)
γ(qi)

)1/n

.

• The third inequality uses E
[
Bn+1

]1/(n+1) · E
[
(A/B)(n+1)/n

]n/(n+1) ≥ E[A], or equivalently,

E

[(
An+1

Bn+1

)1/n
]
≥
(

E[A]n+1

E[Bn+1]

)1/n

with {
A = γ(~q),
Bn+1 =

∏n
i=1 γ(qi).

Remark 6 One might worry about the legitimacy of the manipulation when the denominators are
zeros. One way to justify it is by adding some µ in the denominators before the manipulation.
Formally, we have

n∏
i=1

E
~q

[(
γ(~q) · ηi(~q)
γ(qi)

)]
≥

n∏
i=1

E
~q

[(
γ(~q) · ηi(~q)
γ(qi) + µ

)]
≥ · · · ≥ (γn+1/(γ + µ)n),

which is valid for arbitrary µ > 0. Taking µ→ 0, we obtain the desired result.

Applying the above lemma directly completes the proof of the induction. It follows that the
success probability of P∗ideal is

1
n
·
n∑
i=1

ηi ≥

(
n∏
i=1

ηi

)1/n

≥ γ1/n ≥ ε1/n.
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3.2 Analysis of P∗rej

In this section, we modify the analysis in Section 3.1 to analyze the success probability of strategy
P∗rej . The challenge is that P∗rej may abort due to the failure of finding a successful continuation in
M trials, which makes the success probability a more complicated formula. Nevertheless, we can
still lower bound the success probability by induction on a modified inductive hypothesis.

Again, we start by expressing the success probability of P∗rej . Recall γ and ηi defined in the
previous subsection. We use the same γ and modify the definition of ηi to be the conditional success
probability of P∗rej . That is, for every i ∈ [n] and history h̄, we define

ηi(h̄) def= Pr[P∗rej succeeds |u = (i; h̄)].

The formula for ηi(·) is given by the following claim.

Claim 7 For every i ∈ [n] and full history h̄ = (~v1, . . . , ~vm), we have ηi(h̄) = Ti(h̄). For every
i ∈ [n], j ∈ [m], and history h̄ = (~v1, . . . , ~vj−1), we have

ηi(h̄) = E
~vj

[
γ(h̄, ~vj) · ηi(h̄, ~vj)

γ(h̄, vj,i)
· f(γ(h̄, vj,i))

]
,

where f(α) = (1− (1− α)M ), and M = O(mn/εξ).

Proof. Observing that P∗rej can find a successful continuation with probability exactly f(γ(h̄, vj,i)),
and that conditioning on a successful continuation is found, P∗rej plays ~vj,−i with the same proba-
bility as P∗ideal, we obtain the above formula for ηi.

Our goal is to show that if the accept probability of 〈Pn∗,Vn,n〉(x) is γ ≥ ε, then the success
probability of P∗rej is at least δ · (1− ξ). Let ν = 1/M . We use the following inductive hypothesis:
for every j ∈ {0, . . . ,m} and history h̄ = (~v1, . . . , ~vj),

n∏
i=1

ηi(h̄) ≥

(
(γ(h̄)− (m− j) · ν)n+1

+

(γ(h̄) + ν)n

)
,

where (α)+
def= max{α, 0}. Again, the base case is trivial to check. We prove the following lemma

for the inductive step.

Lemma 8 Let ν ∈ (0, 1) and t,M ≥ 0 such that M · ν ≥ 1. Let γ, η1, . . . , ηn : Ωn → [0, 1] be
[0, 1]-valued functions over Ωn such that∏

i

ηi(~q) ≥

(
(γ(~q)− t · ν)n+1

+

(γ(~q) + ν)n

)
for every ~q = (q1, . . . , qn) ∈ Ωn. Let γ = E~q[γ(~q)]. For every i ∈ [n], let

γ(qi) = E
~q−i

[γ(~q)] and ηi = E
~q

[
γ(~q) · ηi(~q)
γ(qi)

· f(γ(qi))
]
,

where f(α) = (1− (1− α)M ), and the above expectation is over uniform distribution over Ωn. We
have

n∏
i=1

ηi =
n∏
i=1

E
~q

[(
γ(~q) · ηi(~q)
γ(qi)

)
· f(γ(qi))

]
≥

(
(γ − (t+ 1) · ν)n+1

+

(γ + ν)n

)
.
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Proof. The proof is similar to that of Lemma 16 but a bit more technical. Again, we first write
down the whole computation, and then justify the inequalities.

n∏
i=1

E
~q

[(
γ(~q) · ηi(~q)
γ(qi)

· f(γ(qi))
)]

=
n∏
i=1

E
~q

[(
γ(~q) · ηi(~q)

γ(qi)/f(γ(qi))

)]

≥ E
~q

[(
γ(~q)n ·

∏n
i=1 ηi(~q)∏n

i=1(γ(qi)/f(γ(qi)))

)1/n
]n

(by Hölder’s Inequality)

≥ E
~q

(γ(~q)n · (γ(~q)− t · ν)n+1
+ /(γ(~q) + ν)n∏n

i=1(γ(qi)/f(γ(qi)))

)1/n
n (by inductive hypothesis)

≥ E
~q

((γ(~q)− (t+ 1) · ν)n+1
+∏n

i=1(γ(qi)/f(γ(qi)))

)1/n
n

≥

[(
E~q[(γ(~q)− (t+ 1) · ν)+]n+1

E~q[
∏n
i=1(γ(qi)/f(γ(qi)))]

)1/n
]n

(by Hölder’s Inequality)

≥

(
(γ − (t+ 1) · ν)n+1

+

(γ + ν)n

)

In the first equality, observing that α/f(α) → 1/M as α → 0, we can take the convention that
0/f(0) = 1/M . This gives us a correct formula for ηi’s, and gets around the zero denominator
issue. The application of Hölder’s Inequalities are the same as the proof in Lemma 16. We check
the third and last inequality below.

• Third inequality: we check that the inequality holds pointwisely for every ~q. The denominator
is the same. For the numerator, we need to check that(

γ(~q) · (γ(~q)− t · ν)n+1
+

(γ(~q) + ν)n

)
≥ (γ(~q)− (t+ 1) · ν)n+1

+ ,

which follows by inequality αn · (α− tν)n+1
+ ≥ (α+ ν)n · (α− (t+ 1)ν)n+1

+ for every t, α, ν ≥ 0
(Claim 9 below).

• Last inequality: We have E~q[(γ(~q) − (t + 1) · ν)+] ≥ (γ − (t + 1) · ν)+ for the numerator by
Jensen’s inequality. For the denominator, we check that for every i ∈ [n],

Eqi

[
γ(qi)

1− (1− γ(qi))M

]
≤ γ + ν.

This holds since if Mν ≥ 1, then α/(1 − (1 − α)M ) ≤ α + ν for every α ∈ [0, 1] (Claim 10
below).

Claim 9 The inequality αn · (α− tν)n+1
+ ≥ (α+ ν)n · (α− (t+ 1)ν)n+1

+ holds for every t, α, ν ≥ 0.
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Proof. Fix arbitrary t, ν ≥ 0, the inequality is trivial for α ≤ (t + 1)ν. For α ≥ (t + 1)ν, let
us consider h(x) def= (α + x)n · (α − tν − x)n+1. Clearly, we have h(0) = αn · (α − tν)n+1

+ , and
h(ν) = (α + ν)n · (α − (t + 1)ν)n+1

+ . Furthermore, it is easy to verify that h′(x) ≤ 0 for every
x ∈ [0, ν]. Therefore, we have h(0) ≥ h(ν), which proves the claim.

Claim 10 Let M ∈ R, ν ∈ (0, 1] be two numbers with Mν ≥ 1. Let g(α) =

{
α

1−(1−α)M α ∈ (0, 1]
1/M α = 0

.

Then g(α) ≤ α+ ν for α ∈ [0, 1].

Proof. If α = 0, then the inequality holds trivially. For the case α ∈ (0, 1], first we consider
the function h(α) = (1 − (1 − α)M )(α + ν) − α, and prove that h(α) ≥ 0. By the fact h′(α) =
(1−α)M (Mα+Mν − 1) ≥ 0 for α ∈ [0, 1], which tells that h is a non-decreasing function in [0, 1],
we have h(0) = 0 implies h(α) ≥ h(0) ≥ 0 for α ∈ [0, 1]. Then we observe that for α ∈ (0, 1],
h(α) ≥ 0 implies g(α) ≤ α+ ν (since (1− (1− α)M ) > 0). Thus the claim holds for α ∈ [0, 1].

Applying the above lemma directly completes the proof of induction. It follows that the success
probability of P∗rej is

1
n
·
n∑
i=1

ηi ≥

(
n∏
i=1

ηi

)1/n

≥

(
(γ −m · ν)n+1

+

(γ + ν)n

)1/n

≥ γ1/n · (1−O(mnν/γ)) ≥ ε1/n · (1− ξ).

4 Protocols with Extendable and Simulatable Verifier

In this section, we present a new reduction that extends our results to interactive protocols with
extendable and simulatable verifiers. As mentioned in the introduction, extendability and simu-
latability refer to the ability of efficiently simulating a random continuation of internal and external
verifiers, respectively. Extendability means that given a partial transcript and the coins of a ver-
ifier, one can efficiently sample from the distribution of the possible next messages conditioning
on the partial transcript, including the final decision of the verifier. Simulatability means that
given a partial transcript (without the verifier’s coins), one can efficiently generate a next message.
However, since the verifier’s coins are not given, one may not know the decision of the verifier in the
end of the interaction. We will not define the properties formally and refer the reader to [HPPW08]
for more details.

Our reduction turns a parallel prover Pn∗ for Vn,n with success probability δn def= ε to a prover
P∗ for a single extendable and simulatable verifier V with success probability δ2 = ε2/n ≈ 1 −
O(log(1/ε)/n).7 As discussed in the introduction, when the verifier is extendable and simulatable,
in the game G(Pn∗, x), one can still simulate a random continuation from any P∗-move node u, but
no longer be able to know the decision of the external verifier. Thus, we first apply a preprocessing
algorithm and then use a modified rejection sampling strategy.

Let Pn∗ be a parallel prover for Vn,n and for some input x, Pr[〈Pn∗,Vn,n〉(x) = 1] ≥ δn. We first
apply a preprocessing algorithm to turn Pn∗ to a parallel prover Pn

′∗ for Vn
′,n′ for some 1 ≤ n′ ≤ n

such that (i) Pr[〈Pn′∗,Vn′,n′〉(x) = 1] & δn
′
, and (ii) for all i ∈ [n′], Pr[ Vj accepts ∀j 6= i in 〈Pn′∗,Vn′,n′(x)〉] .

δn
′−1. If n′ = 1, then we are done. Otherwise, we use a rejection sampling strategy where a random

continuation is selected when all internal verifiers accept. By a similar induction argument as in the
7It is more convenient to present our proof using parameter δn instead of ε in this section.
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proof of Theorem 2, we show that this reduction algorithm can break soundness with probability
close to δ2. Formally, we obtain the following theorem.

Theorem 11 Let V ∈ PPT be extendable and simulatable. There exists a prover strategy P∗ such
that for every common input x, every n ∈ N, every ε, ξ ∈ (0, 1), and every parallel prover strategy
Pn∗,

1. P∗(x, n, ε, ξ) runs in time poly(|x|, n, ε−1, ξ−1) given oracle access to Pn∗(x).

2. Pr[〈Pn∗,Vn,n〉(x) = 1] ≥ ε⇒

Pr[〈P∗,V〉(x) = 1] ≥ ε2/n · (1− ξ).

We present the preprocessing algorithm and its analysis in the following section, and the rejec-
tion sampling strategy and its analysis in the subsequent section.

4.1 The Preprocessing Algorithm

Let 〈P,V〉 be an arbitrary interactive argument. Let Pn∗ be a parallel solver and x a common input
such that Pr[〈Pn∗,Vn,n〉(x) = 1] ≥ δn. In this subsection, we present a transformation T that runs
in time poly(s, δn, ξ) and converts Pn∗ to another parallel prover Pn

′∗ for some 1 ≤ n′ ≤ n with
Pr[〈Pn′∗,Vn′,n′〉(x) = 1] ≥ δn

′
(1 − ξ) and Pr[ Vj accepts ∀j 6= i in 〈Pn′∗,Vn′,n′(x)〉] ≤ δn

′−1(1 + ξ)
for every i ∈ [n′]. Formally, we prove the following lemma.

Lemma 12 Let V ∈ PPT. There exists a PPT transformation T such that for every common
input x, every n ∈ N, every δ, ξ ∈ (0, 1), and every efficient parallel prover strategy Pn∗,

1. T (x, n, δ, ξ) runs in time poly(|x|, n, δ−n, ξ−1) given oracle access to Pn∗(x).

2. If Pr[〈Pn∗,Vn,n〉(x) = 1] ≥ δn, then with overwhelming probability, T (x, n, δ, ξ) outputs an
integer n′ ∈ [n] and a parallel prover strategy Pn

′∗ such that giving Pn
′∗ oracle access to Pn∗,

〈Pn′∗,Vn′,n′〉(x) runs in time poly(|x|, n). Furthermore,

Pr[〈Pn′∗,Vn′,n′〉(x) = 1] ≥ δn′ · (1− ξ),

and for every i ∈ [n′],

Pr[ Vj accepts ∀j 6= i in 〈Pn′∗,Vn′,n′〉(x)] ≤ δn′−1(1 + ξ).

Proof. We present the transformation in a slightly different way to that in the introduction. The
transformation T selects a subset S ⊂ [n] of coordinates by sampling and outputs the following
Pn
′∗
S with n′ = n − |S|: to interact with Vn

′,n′ , Pn
′∗
S simulates the interaction of 〈Pn∗,Vn,n〉 with

internal verifiers plays coordinate S and external verifier Vn
′,n′ plays the rest coordinates. Note

that Pn
′
S runs in time poly(|x|, n) given oracle access to Pn∗. T selects S ⊂ [n] as follows:

1. Initially, set S = φ.

2. Simulate the interaction 〈Pn∗,Vn,n〉(x) for M = O(n/(δ2n · ξ2)) times. For a coordinate set
T ⊂ [n], let p(T ) = ( # of simulation that Vi accepts ∀i ∈ T )/M be an estimation of the
probability Pr[∀i ∈ T,Vi accepts in 〈Pn∗,Vn,n〉(x)].
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3. Iteratively, if there exists i /∈ S such that p([n]\(S ∪ {i})) ≥ δn−|S|−1, then add i to S until
no such coordinate i exists or |S| = n− 1.

4. Outputs n′ = n− |S| and Pn
′
S .

Clearly, the process terminates in n iterations and in each iteration, we check at most n esti-
mation p(·)’s. By standard Chernoff bounds and union bounds, all estimations have error at most
δn/ξ with overwhelming probability. Thus, T runs in time poly(|x|, δn, ξ) and outputs a number
n′ ∈ [n] and a prover Pn

′
S such that either n′ = 1, or Pr[〈Pn′∗,Vn′,n′〉(x) = 1] ≥ δn

′
(1 − ξ) and

Pr[ Vj accepts ∀j 6= i in 〈Pn′∗,Vn′,n′(x)〉] ≤ δn′−1(1 + ξ) for every i ∈ [n′].

4.2 The Rejection Sampling Strategy

The preprocessing algorithm in the above section converts a parallel prover Pn∗ with Pr[〈Pn∗,Vn,n〉(x) =
1] ≥ δn to a parallel prover Pn

′∗ for some 1 ≤ n′ ≤ n with Pr[〈Pn′∗,Vn′,n′〉(x) = 1] ≥ δn
′
(1 − ξ),

and in addition, Pr[ Vj accepts ∀j 6= i in 〈Pn′∗,Vn′,n′(x)〉] ≤ δn
′−1(1 + ξ) for all i ∈ [n′]. In this

section, we present a modified rejection sampling strategy of P∗ in the game G(Pn
′∗, x), which can

be implemented efficiently when the verifier is extendable and simulatable, and can succeed with
probability close to δ2. Formally we prove the following lemma.

Lemma 13 Let V ∈ PPT be extendable and simulatable. There exists a prover strategy P∗ such
that for every common input x, every n ∈ N, every δ, ξ ∈ (0, 1), and every parallel prover strategy
Pn∗,

1. P∗(x, n, δ, ξ) runs in time poly(|x|, n, δ−n, ξ−1) given oracle access to Pn∗(x).

2. If Pr[〈Pn∗,Vn,n〉(x) = 1] ≥ δn(1− ξ), and for every i ∈ [n],

Pr[ Vj accepts ∀j 6= i in 〈Pn∗,Vn,n〉(x)] ≤ δn−1(1 + ξ),

then
Pr[〈P∗,V〉(x) = 1] ≥ δ2 · (1− 4ξ).

We start by defining the modified rejection sampling strategy, which is the same as Definition
3 except that the definition of a successful continuation is modified.

Definition 14 (Strategy P̃∗rej) We define strategy P̃∗rej as follows. Let Pn∗ be a deterministic
parallel prover, x a common input, and G(P̃n∗, x) the corresponding game.

• In the first P∗-move, P̃∗rej selects a coordinate i ∈R [n] uniformly at random.

• On P∗-move node u = (i;~v1, . . . , ~vj−1, vj,i), P̃∗rej simulates a random continuation of G(Pn∗, x)

at most M def= O(mn/εξ) times. A continuation is successful if all internal verifiers accept,
i.e., T`(~v1, . . . , ~vm) = 1 for all ` 6= i ∈ [n]. The first time a successful continuation is found,
P̃∗rej plays the corresponding move ~vj,−i. If no successful continuations are found, P̃∗rej aborts.

For simplicity, we again consider the ideal version P̃∗ideal of P̃∗rej , and prove the success probability
of P̃∗ideal is at least δ2(1 − 4ξ). The proof can be generalized to handle P̃∗rej as in the public-coin
case.
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We introduce similar notations to express the success probability of P̃∗ideal. For every history h̄,

let γ(h̄) def= Pr[〈Pn∗,Vn,n〉(x) = 1|h̄], ηi(h̄) def= Pr[P̃∗ideal succeeds |u = (i; h̄)], and

γi(h̄) def= Pr[ Vj accepts ∀j 6= i in 〈Pn∗,Vn,n〉(x)|h̄],

for every i ∈ [n]. Note that by assumption, we have γ ≥ δn and γi ≤ δn−1 for every i ∈ [n]. We
have the following claim for ηi(·) similar to Claim 4.

Claim 15 For every i ∈ [n] and full history h̄ = (~v1, . . . , ~vm), we have ηi(h̄) = Ti(h̄). For every
i ∈ [n], j ∈ [m], and history h̄ = (~v1, . . . , ~vj−1), we have

ηi(h̄) = E
~vj

[
γi(h̄, ~vj) · ηi(h̄, ~vj)

γi(h̄, vj,i)

]
.

Proof. The proof is similar to that of Claim 4. The only difference is that now rejection sampling
is accepted when all internal verifiers accept, which corresponds to γi instead of γ.

This time, we induct on the following inductive hypothesis: for every j ∈ {0, . . . ,m} and history
h̄ = (~v1, . . . , ~vj),

n∏
i=1

ηi(h̄) ≥ γn+1(h̄)∏n
i=1 γi(h̄)

.

The base case j = m is trivial. We prove the following lemma for the inductive step.

Lemma 16 Let γ, γ1, . . . , γn, η1, . . . , ηn : Ωn → [0, 1] be [0, 1]-valued functions over a product space
Ωn such that ∏

i

ηi(~q) ≥
γn+1(~q)∏n
i=1 γi(~q)

for every ~q = (q1, . . . , qn) ∈ Ωn. Let γ = E~q[γ(~q)]. For every i ∈ [n], let

γi = E
~q
[γi(~q)], γi(qi) = E

~q−i

[γi(~q)], and ηi = E
~q

[
γi(~q) · ηi(~q)
γi(qi)

]
,

where the above expectation is over uniform distribution over Ωn. We have

n∏
i=1

ηi =
n∏
i=1

E
~q

[(
γi(~q) · ηi(~q)
γi(qi)

)]
≥ γn+1∏n

i=1 γi
.
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Proof. The proof is similar.
n∏
i=1

E
~q

[(
γi(~q) · ηi(~q)
γi(qi)

)]

≥ E
~q

[(∏n
i=1 γi(~q) ·

∏n
i=1 ηi(~q)∏n

i=1 γi(qi)

)1/n
]n

(by Hölder’s Inequality)

≥ E
~q

[(∏n
i=1 γi(~q)

n · (γ(~q)n+1/
∏n
i=1 γi(~q)

n)∏n
i=1 γi(qi)

)1/n
]n

(by inductive hypothesis)

= E
~q

[(
γ(~q)n+1∏n
i=1 γi(qi)

)1/n
]n

≥

[(
E~q[γ(~q)]n+1

E~q[
∏n
i=1 γi(qi)]

)1/n
]n

(by Hölder’s Inequality)

=
γn+1∏n
i=1 γi

.

Applying the above lemma directly completes the proof of the induction. It follows that the success
probability of P̃∗ideal is

1
n
·
n∑
i=1

ηi ≥

(
n∏
i=1

ηi

)1/n

≥
(

γn+1∏n
i=1 γi

)1/n

≥

(
(δn(1− ξ))(n+1)

(δn−1(1 + ξ))n

)1/n

≥ δ2(1− 4ξ).

Theorem 11 follows straightforwardly by applying Lemma 12 and 13 with δ = ε1/n and ξ/4.

5 Extension to Chernoff-type Theorems

In this section, we present a generic reduction that converts a parallel prover Pn∗ that has good
success probability against a threshold verifier to a parallel prover Pt∗ that has good success proba-
bility against a direct product verifier for some t ≤ n. The reduction can be used to show that tight
direct product theorems implies Chernoff-type theorems. For example, using our reduction with the
direct product theorem of Canetti et al. [CHS05] yields an alternative proof of the Chernoff-type
theorem of Impagliazzo et al. [IJK07] for weakly-verifiable puzzles. The reduction also extends our
direct product theorems to Chernoff-type theorems.

The reduction is defined as follows. Pt∗ first selects a set S ⊂ [n] of size t uniformly at
random, and then interacts with Vt,t by simulating the interaction of 〈Pn∗,Vn,k〉 with Vt,t playing
the coordinates of Vn,k in S and the remaining n− t coordinates played by internal verifiers. The
following simple lemma easily follows by the definition.

Lemma 17 Let 〈P,V〉 be an interactive protocol, and t, k, n ∈ N such that 1 ≤ t ≤ k ≤ n. Let
Pn∗ be a parallel prover strategy, and Pt∗ the induced parallel prover strategy defined as above. For
every common input x, we have

Pr[〈Pt∗,Vt,t〉(x) = 1] ≥ Pr[〈Pn∗,Vn,k〉(x) = 1] ·
(
k
t

)(
n
t

) .
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Proof. By definition, we have

Pr[〈Pt∗,Vt,t〉(x) = 1]
≥ Pr[Vi accepts ∀i ∈ S in 〈Pn∗,Vn,k〉(x) ∧ 〈Pn∗,Vn,k〉(x) = 1]

= Pr[〈Pn∗,Vn,k〉(x) = 1] · Pr
[
Vi accepts ∀i ∈ S in 〈Pn∗,Vn,k〉(x)

∣∣∣〈Pn∗,Vn,k〉(x) = 1
]

≥ Pr[〈Pn∗,Vn,k〉(x) = 1] ·
(
k
t

)(
n
t

) .
When V is public-coin, the above lemma and Theorem 2 implies that for every parallel prover

Pn∗, every t ≤ k and ξ ∈ (0, 1), there exists a prover P∗ such that for every x with Pr[〈Pn∗,Vn,k〉(x) =

1] ≥ ε, we have Pr[〈P∗,V〉(x) = 1] ≥
(
ε ·
(
k
t

)
/
(
n
t

))1/t
· (1 − ξ). However, P∗ runs in time

poly(|x|, n,
(
n
t

)
/
(
k
t

)
, ε−1, ξ−1), which may not be efficient8 for large t. Nevertheless, we can ob-

tain the following Chernoff-type theorem by setting the parameters properly. We state the theorem
in a similar form to [HPPW08] and [Wik09].

Theorem 18 Let α, γ ∈ (0, 1) be any constants such that α + γ < 1. Let V ∈ PPT be public-
coin. There exists a prover strategy P∗ such that for every common input x, every n ∈ N, every
ε, ξ ∈ (0, 1) with n ≥ 4 log(1/ε)/α2, and every parallel prover strategy Pn∗,

1. P∗(x, n, ε, ξ) runs in time poly(|x|, n, ε−1, ξ−1) given oracle access to Pn∗(x).

2. Pr[〈Pn∗,Vn,(1−γ)n〉(x) = 1] ≥ ε⇒

Pr[〈P∗(n, ε, ξ),V〉(x) = 1] ≥ 1− γ − α.

In comparison, the simple reduction and tight direct product theorem yields a Chernoff-type
theorem with a slightly restricted parameter range where α and γ are constants. Nevertheless, it
suffices for conceivable applications and achieves almost tight bound 1− γ − 2

√
log(1/ε)/n in this

regime.
Proof. For simplicity, let us assume (1 − γ)n is an integer (if not, we can replace (1 − γ)n by
d(1− γ)ne.) Applying Lemma 17 and Theorem 2 with t = 2 · log(1/ε)/α and ξ = α/2, we obtain a
prover P∗ such that for every common input x with Pr[〈Pn∗,Vn,(1−γ)n〉(x) = 1] ≥ ε,

Pr[〈P∗,V〉(x) = 1] ≥

(
ε ·
(
(1−γ)n

t

)(
n
t

) )1/t

· (1− ξ) ≥ 1− γ − α,

since by the setting of parameters, we have ε1/t ≥ (1− α/2), (1− ξ) ≥ (1− α/2), and((
(1−γ)n

t

)(
n
t

) )1/t

≥
(

(1− γ)n− t
n− t

)
≥
(

1− γ − α/2
1− α/2

)
.

Furthermore, P∗ runs in time poly(|x|, n, (
(
n
t

)
/
(
(1−γ)n

t

)
), ε−1, ξ−1), which is efficient since(

n
t

)(
(1−γ)n

t

) ≤ ( n− t
(1− γ)n− t

)t
≤
(

1− α/2
1− γ − α/2

)t
= poly(1/ε).

8Here, by efficient we mean the running time is polynomial in |x|, n, ε−1, ξ−1.
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Similarly, when V is extendable and simulatable, we can extend Theorem 11 to the following
Chernoff-type theorem.

Theorem 19 Let α, γ ∈ (0, 1) be any constants such that α+ γ < 1. Let V ∈ PPT be exteandable
and simulatable. There exists a prover strategy P∗ such that for every common input x, every
n ∈ N, every ε, ξ ∈ (0, 1) with n ≥ 16 log(1/ε)/α2, and every parallel prover strategy Pn∗,

1. P∗(x, n, ε, ξ) runs in time poly(|x|, n, ε−1, ξ−1) given oracle access to Pn∗(x).

2. Pr[〈Pn∗,Vn,(1−γ)n〉(x) = 1] ≥ ε⇒

Pr[〈P∗(n, ε, ξ),V〉(x) = 1] ≥ (1− γ)2 − α.

Proof. Applying Lemma 17 and Theorem 11 with t = 4 · log(1/ε)/α and ξ = α/4, we obtain a
prover P∗ such that for every common input x with Pr[〈Pn∗,Vn,(1−γ)n〉(x) = 1] ≥ ε,

Pr[〈P∗,V〉(x) = 1] ≥

(
ε ·
(
(1−γ)n

t

)(
n
t

) )2/t

· (1− ξ) ≥ (1− γ)2 − α,

since by the setting of parameters, we have ε2/t ≥ (1− α/2), (1− ξ) ≥ (1− α/4), and((
(1−γ)n

t

)(
n
t

) )2/t

≥
(

(1− γ)n− t
n− t

)2

≥
(

1− γ − α/4
1− α/4

)2

.

Furthermore, P∗ runs in time poly(|x|, n, (
(
n
t

)
/
(
(1−γ)n

t

)
), ε−1, ξ−1), which is efficient since(

n
t

)(
(1−γ)n

t

) ≤ ( n− t
(1− γ)n− t

)t
≤
(

1− α/4
1− γ − α/4

)t
= poly(1/ε).

6 Constant-Round AM Arguments Systems

In this section, we prove a tight parallel repetition theorem for threshold verifiers Vn,k for constant-
round public-coin arguments, which generalizes the direct product theorem of Pass and Venkita-
subramaniam [PV07].

Theorem 20 Let m ∈ N be an arbitrary constant, and V ∈ PPT be m-round and public coin.
There exists a prover strategy P∗ such that for every common input x, every n, k ∈ N with k ∈ [n],
every δ, ξ ∈ (0, 1), and every parallel prover strategy Pn∗,

1. P∗(x, n, k, δ, ξ) runs in time poly(|x|, n, δ−m, P (n, k, δ)−m, ξ−m) given oracle access to Pn∗(x).

2. Pr[〈Pn∗,Vn,k〉(x) = 1] ≥ P (n, k, δ)⇒

Pr[〈P∗(n, k, δ, ξ),V〉(x) = 1] ≥ δ · (1− ξ).
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Let Pn∗ be a parallel prover with Pr[〈Pn∗,Vn,k〉] > P (n, k, δ). Without loss of generality, we
assume that Pn∗ is deterministic. Thus, the outcome of 〈Pn∗,Vn,k〉 depends only on ~v1, ~v2 . . . , ~vm,
all the verifiers’ messages. Our goal is to design a prover P∗ that can make V wrongly accept with
probability greater equal than δ · (1− ξ).

The framework here is similar to the one in previous sections. Here we give a brief review. Recall
that we have defined predicates Ti(~v1, . . . , ~vm) = 1 if on the history the i-th verifier Vi(~v1, . . . , ~vm)
accepts, and otherwise 0. Now P∗ and V is playing a game induced by Pn∗, x, denoted as G(Pn∗, x),
where in the i-th round V makes a move vi,j and P∗ makes a move ~vi,−j .

Pass and Venkitasubramaniam[PV07] used this approach for proving a Direct Product Theo-
rem for AM argument systems. They showed that, (i) if Pr[〈Pn∗,Vn,k〉(x) = 1] ≥ δn, then the
prover P∗opt using optimal strategy in this approach can succeed with probability at least δ, and
(ii) by recursive sampling, there exists an efficient prover P∗ and a modified P̃n∗ such that (a)
Pr[〈Pn∗,Vn,k〉(x) = 1] ≈ Pr[〈P̃n∗,Vn,k〉(x) = 1], and (b) the efficient prover P∗ achieves almost
the same success probability as the optimal solver P̃∗opt, who plays optimal strategy on the game
G(P̃n∗, x) (instead of G(Pn∗, x)). Thus, by (i), Pr[〈P∗,V〉(x) = 1] ≈ Pr[〈P̃∗opt,V〉(x) = 1] ≈ δ, and
the Direct Product Theorem follows. Note that the technical subtlety of introducing the modified
prover P̃n∗ is necessary, as it is possible that δ ≈ Pr[〈P∗,V〉(x) = 1]� Pr[〈P∗opt,V〉(x) = 1].

We generalize Pass and Venkitasubramaniam’s[PV07] argument to prove Theorem 2. Our
key observation is that for every k ∈ {1, . . . , n}, if Pr[〈Pn∗,Vn,k〉(x) = 1] ≥ P (n, k, δ), then the
optimal strategy prover in the aforementioned approach can success with probability at least δ, i.e.,
Pr[〈P∗,V〉(x) = 1] ≥ δ. Therefore, Theorem 2 follows by using exactly the same recursive sampling
algorithm of [PV07].

Now we analyze the success probability of the optimal strategy prover P∗opt.

Definition 21 We define functions γi’s and ηi’s, which represent the success probability of the
optimal P∗opt at each node of the game tree of G(Pn∗, x) as follows. For every leaf (~v1, . . . , ~vm), we
define

γi(~v1, . . . , ~vm) = Ti(~v1, . . . , ~vm).

For j ∈ {1, . . . ,m−1} and ~v1, . . . , ~vj−1, we inductively define γi(~v1, . . . , ~vj−1) and ηi(~v1, . . . , ~vj−1, vj,i)
for every i = 1, . . . , n as follows.

ηi(~v1, . . . , ~vj−1, vj,i) = max
~vj,−i

γi(~v1, . . . , ~vj), and γi(~v1, . . . , ~vj−1) = E
vj,i

[ηi(~v1, . . . , ~vj−1, vj,i)]

Finally, we define γ = maxi γi.

Observe that γ is the success probability of the optimal P∗opt in the game G(Pn∗, x), because the
uniformly random V corresponds to expectation operator and the optimal P∗opt corresponds to the
maximal operator. Our goal is to prove Pr[〈P∗opt,V〉(x) = 1] = γ ≥ δ.

The idea is to use a coupling argument. We can view Ti’s as binary random variables with
randomness ~v1, . . . , ~vm ∈R {0, 1}n×t. In this notation,

Pr

[
n∑
i=1

Ti ≥ k

]
= Pr[〈Pn∗,Vn,k〉(x) = 1] ≥ P (n, k, δ).

We show that there exists a coupling of (T1, . . . , Tn) and random variables (R1, . . . , Rn) such that
(i) Ti ≤ Ri for every i = 1, . . . , n with probability 1 and (ii) Ri’s are mutually independent
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and Pr[Ri = 1] = γi. By (i), Pr[
∑

iRi ≥ k] ≥ Pr[
∑

i Ti ≥ k] ≥ P (n, k, δ). Since Ri’s are
independent bits with bias γi, it is not hard to show that there exists some γi ≥ δ. Therefore,
Pr[〈P∗opt,V〉(x) = 1] = γ = maxi γi ≥ δ. Formally, we prove the following two lemmas.

Lemma 22 Let ~T = (T1, . . . , Tn) be binary random variables with randomness ~p1, . . . , ~pm ∈R
{0, 1}n×t, and γi’s and ηi’s defined as in Definition 21. There exists a coupling of (T1, . . . , Tn)
and binary random variables (R1, . . . , Rn) such that (i) Ti ≤ Ri for every i = 1, . . . , n with proba-
bility 1 and (ii) Ri’s are mutually independent with bias Pr[Ri = 1] = γi for i = 1, . . . , n.

Proof. We define the desired random variables ~R = ~R0 = (R0,1, . . . , R0,n) by induction. We
start by defining ~Rm = ~T and inductively define ~Rj for j = m − 1, . . . , 0 using the following two
inductive hypotheses.

1. Ti ≤ Rj,i for every i = 1, . . . , n with probability 1.

2. For every ~p1, . . . , ~pj , the conditional random variables (Rj,1, . . . , Rj,n)|~p1,...,~pj
are mutually

independent with Pr[Rj,i = 1] = γi(~p1, . . . , ~pj).

It follows that ~R0 = (R0,1, . . . , R0,n) are the desired random variables. It is easy to verify that the
inductive hypotheses hold for the base case j = m trivially, as ~Rm = ~T and there is no randomness
after conditioning on ~p1, . . . , ~pm. It remains to define ~Rj−1 from ~Rj as follows.

We define ~Rj−1 by defining its conditional distribution ~Rj−1|~p1,...,~pj
for every ~p1, . . . , ~pj . By

the inductive hypothesis, (Rj,1, . . . , Rj,n)|~p1,...,~pj
are independent bits with bias γi(~p1, . . . , ~pj). Since

ηi(~p1, . . . , ~pj−1, pj,i) ≥ γi(~p1, . . . , ~pj) for every i, we can define (Rj,1, . . . , Rj,n)|~p1,...,~pj
with the fol-

lowing two properties easily.9

• Rj,i|~p1,...,~pj
≤ Rj−1,i|~p1,...,~pj

for i = 1, . . . , n with probability 1.

• (Rj−1,1, . . . , Rj−1,n)|~p1,...,~pj
are independent bits with Pr[Rj−1,i|~p1,...,~pj

= 1] = ηi(~p1, . . . , ~pj−1, pj,i).

This completes the definition of ~Rj−1. We now to check that ~Rj−1 satisfies the inductive hypotheses.
The first condition holds because Ti ≤ Rj,i ≤ Rj−1,i for every i = 1, . . . , n with probability 1. The
second condition holds because once we fix ~p1, . . . , ~pj−1, the bias of Rj−1,i depends only on the
pj,i component of ~pj , and the pj,i’s are independent. More formally, for every ~p1, . . . , ~pj−1, every
i = 1, . . . , n and every ~r−i = (r1, . . . , ri−1, ri+1, . . . , rn) ∈ {0, 1}n−1, we have

Pr[Rj−1,i = 1|~p1, . . . , ~pj−1, ~Rj−1,−i = ~r−i]

= E
~pj

[Pr[Rj−1,i = 1|~p1, . . . , ~pj , ~Rj−1,−i = ~r−i]]

= E
~pj

[ηi(~p1, . . . , ~pj−1, pj,i)] (because Rj−1,i and Rj−1,−i are indep. given ~p1, . . . , ~pj)

= E
pj,i

[ηi(~p1, . . . , ~pj−1, pj,i)]

= γi(~p1, . . . , ~pj−1)

9For example, when Rj,i = 1, we set Rj−1,i = 1, and when Rj,i = 0, we toss independent coins and set Rj−1,i = 1
with certain probability to make Pr[Rj−1,i = 1] = ηi(~p1, . . . , ~pj−1, pj,i).
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Lemma 23 Let (R1, . . . , Rn) be independent binary random variables with bias Pr[Ri = 1] = γi
for every i = 1, . . . , n. If Pr[

∑
iRi ≥ k] ≥ P (n, k, δ), then there exists some γi ≥ δ.

Proof. Let f(α1, . . . , αn) be Pr[
∑

i Si ≥ k], where the Si’s are independent binary random
variables with bias Pr[Si = 1] = αi. Clearly, f is strictly increasing in every coordinate and
f(δ, . . . , δ) = P (n, k, δ). Therefore, if γi < δ for every i, then Pr[

∑
iRi ≥ k] = f(γ1, . . . , γn) <

f(δ, . . . , δ) = P (n, k, δ), a contradiction.
Combining Lemma 22 and 23, we obtain the following lemma.

Lemma 24 Let V be an AM verifier. Suppose there exists a parallel prover Pn∗ with Pr[〈Pn∗,Vn,k〉(x) =
1] ≥ P (n, k, δ), then the prover P∗opt, who plays the optimal strategy in the game G(Pn∗, x) can suc-
cessfully convince V with probability greater equal than δ, i.e. Pr[〈P∗opt,V〉(x) = 1] ≥ δ .

Followed by the argument of Pass and Venkitasubramaniam [PV07], one can relate the optimal
prover P∗opt to an efficient prover P∗ and then this completes the proof of Theorem 2. We omit the
argument and refer to [PV07] for the curious readers.
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