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Abstract

Is there a general theorem that tells us when we can hope for exponential speedups from
quantum algorithms, and when we cannot? In this paper, we make two advances toward such
a theorem, in the black-box model where most quantum algorithms operate.

First, we show that for any problem that is invariant under permuting inputs and outputs
and that has sufficiently many outputs (like the collision and element distinctness problems), the
quantum query complexity is at least the 7th root of the classical randomized query complexity.
(An earlier version of this paper gave the 9th root.) This resolves a conjecture of Watrous from
2002.

Second, inspired by work of O’Donnell et al. (2005) and Dinur et al. (2006), we conjecture
that every bounded low-degree polynomial has a “highly influential” variable. Assuming this
conjecture, we show that every T -query quantum algorithm can be simulated on most inputs
by a TO(1)-query classical algorithm, and that one essentially cannot hope to prove P 6= BQP

relative to a random oracle.

1 Introduction

Perhaps the central lesson gleaned from fifteen years of quantum algorithms research is this:

Quantum computers can offer superpolynomial speedups over classical computers, but
only for certain “structured” problems.

The key question, of course, is what we mean by “structured.” In the context of most existing
quantum algorithms, “structured” basically means that we are trying to determine some global
property of an extremely long sequence of numbers, assuming that the sequence satisfies some
global regularity. As a canonical example, consider Period-Finding, the core of Shor’s algorithms
for factoring and computing discrete logarithms [29]. Here we are given black-box access to an
exponentially-long sequence of integers X = (x1, . . . , xN ); that is, we can compute xi for a given
i. We are asked to find the period of X—that is, the smallest k > 0 such that xi = xi−k for
all i > k—promised that X is indeed periodic, with period k ≪ N (and also that the xi values
are approximately distinct within each period). The requirement of periodicity is crucial here:
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it is what lets us use the Quantum Fourier Transform to extract the information we want from a
superposition of the form

1√
N

N∑

i=1

|i〉 |xi〉 .

For other known quantum algorithms, X needs to be (for example) a cyclic shift of quadratic
residues [16], or constant on the cosets of a hidden subgroup.

By contrast, the canonical example of an “unstructured” problem is the Grover search problem.
Here we are given black-box access to an N -bit string (x1, . . . , xN ) ∈ {0, 1}N , and are asked
whether there exists an i such that xi = 1.1 Grover [20] gave a quantum algorithm to solve this
problem using O(

√
N) queries [20], as compared to the Ω (N) needed classically. However, this

quadratic speedup is optimal, as shown by Bennett, Bernstein, Brassard, and Vazirani [10]. For
other “unstructured” problems—such as computing the Parity or Majority of an N -bit string—
quantum computers offer no asymptotic speedup at all over classical computers (see Beals et al.
[8]).

Unfortunately, this “need for structure” has essentially limited the prospects for superpolyno-
mial quantum speedups to those areas of mathematics that are liable to produce things like periodic
sequences or sequences of quadratic residues.2 This is the fundamental reason why the greatest
successes of quantum algorithms research have been in cryptography, and specifically in number-
theoretic cryptography. It helps to explain why we do not have a fast quantum algorithm to solve
NP-complete problems (for example), or to break arbitrary one-way functions.

Given this history, the following problem takes on considerable importance:

Problem 1 (Informal) For every “unstructured” problem f , are the quantum query complexity
Q(f) and the classical randomized query complexity R(f) polynomially related?

Despite its apparent vagueness, Problem 1 can be formalized in several natural and convincing
ways—and under these formalizations, the problem has remained open for about a decade.

1.1 Formalizing the Problem

Let S ⊆ [M ]N be a collection of inputs, and let f : S → {0, 1} be a function that we are trying to
compute. In this paper, we assume for simplicity that the range of f is {0, 1}; in other words, that
we are trying to solve a decision problem. It will also be convenient to think of f as a function
from [M ]N to {0, 1, ∗}, where ∗ means ‘undefined’ (that is, that a given input X ∈ [M ]N is not in
f ’s domain S).

We will work in the well-studied decision-tree model. In this model, given an input X =
(x1, . . . , xN ), an algorithm can at any time choose an i and receive xi. We count only the number of
queries the algorithm makes to the xi’s, ignoring other computational steps. Then the deterministic
query complexity of f , or D(f), is the number of queries made by an optimal deterministic algorithm
on a worst-case input X ∈ S. The (bounded-error) randomized query complexity R(f) is the
expected number of queries made by an optimal randomized algorithm that, for every X ∈ S,
computes f(X) with probability at least 2/3. The (bounded-error) quantum query complexity Q(f)
is the same as R(f), except that we allow quantum algorithms. Clearly Q(f) ≤ R(f) ≤ D(f) ≤ N

1A variant asks us to find an i such that xi = 1, under the mild promise that such an i exists.
2Here we exclude BQP-complete problems, such as simulating quantum physics (the “original” application of

quantum computers), approximating the Jones polynomial [4], and estimating a linear functional of the solution of a
well-conditioned linear system [21].
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for all f . See Buhrman and de Wolf [15] for detailed definitions as well as a survey of these
measures.

If S = [M ]N , then we say f is total, and if M = 2, then we say f is Boolean. The case of total
f is relatively well-understood. Already in 1998, Beals et al. [8] showed the following:

Theorem 2 (Beals et al.) D(f) = O(Q(f)6) for all total Boolean functions f : {0, 1}N → {0, 1}.

Furthermore, it is easy to generalize Theorem 2 to show that D (f) = O(Q(f)6) for all total
functions f : [M ]N → {0, 1}, not necessarily Boolean.3 In other words, for total functions, the
quantum query complexity is always at least the 6th root of the classical query complexity. The
largest known gap between D(f) and Q(f) for a total function is quadratic, and is achieved by the
OR function (because of Grover’s algorithm).

On the other hand, as soon as we allow non-total functions, we can get enormous gaps. Aaron-
son [2] gave a Boolean function f : S → {0, 1} for which R(f) = NΩ(1), yet Q(f) = O (1).4 Other
examples, for which R(f) = Ω(

√
N) and Q(f) = O(logN log logN), follow easily from Simon’s al-

gorithm [30] and Shor’s algorithm [29]. Intuitively, these functions f achieve such large separations
by being highly structured: that is, their domain S includes only inputs that satisfy a stringent
promise, such as encoding a periodic function, or (in the case of [2]) encoding two Boolean functions,
one of which is correlated with the Fourier transform of the other one.

By contrast with these highly-structured problems, consider the collision problem: that of
deciding whether a sequence of numbers (x1, . . . , xN ) ∈ [M ]N is one-to-one (each number appears
once) or two-to-one (each number appears twice). Let Col(X) = 0 if X is one-to-one and
Col(X) = 1 if X is two-to-one, promised that one of these is the case. Then Col(X) is not
a total function, since its definition involves a promise on X. Intuitively, however, the collision
problem seems much less “structured” than Simon’s and Shor’s problems. One way to formalize
this intuition is as follows. Call a partial function f : [M ]N → {0, 1, ∗} permutation-invariant if

f(x1, . . . , xN ) = f(τ(xσ(1)), . . . , τ(xσ(N)))

for all inputs X ∈ [M ]N and all permutations σ ∈ SN and τ ∈ SM . Then Col(X) is permutation-
invariant: we can permute a one-to-one sequence and relabel its elements however we like, but it
is still a one-to-one sequence, and likewise for a two-to-one sequence. Because of this symmetry,
attempts to solve the collision problem using (for example) the Quantum Fourier Transform seem
unlikely to succeed. And indeed, in 2002 Aaronson [1] proved that Q (Col) = Ω(N1/5): that
is, the quantum query complexity of the collision problem is at most polynomially better than
its randomized query complexity of Θ(

√
N). The quantum lower bound was later improved to

Ω(N1/3) by Aaronson and Shi [3], matching an upper bound of Brassard, Høyer, and Tapp [13].
Generalizing boldly from this example, John Watrous (personal communication) conjectured

that the randomized and quantum query complexities are polynomially related for every permutation-
invariant problem:

3Theorem 2 is proved by combining three ingredients: D(f) = O (C(f) bs(f)), C(f) = O(bs(f)2), and bs(f) =
O(Q(f)2) (where C(f) is the certificate complexity of f and bs(f) is the block sensitivity). And all three ingredients
go through with no essential change if we set M > 2, and define suitable M -ary generalizations of C(f) and bs(f).
(We could also convert the non-Boolean function f : [M ]N → {0, 1} to a Boolean one, but then we would lose a factor
of logM .)

4Previously, de Beaudrap, Cleve, and Watrous [9] had stated a similar randomized versus quantum separation.
However, their separation applied not to the standard quantum black-box model, but to a different model in which
the black box permutes the answer register |y〉 in some unknown way (rather than simply mapping |y〉 to |y ⊕ f (x)〉).
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Conjecture 3 (Watrous 2002) R(f) ≤ Q(f)O(1) for every partial function f : [M ]N → {0, 1, ∗}
that is permutation-invariant.

Let us make two remarks about Conjecture 3. First, the conjecture talks about randomized
versus quantum query complexity, since in this setting, it is easy to find functions f for which R(f)
and Q(f) are both tiny but D(f) is huge. As an example, consider the Deutsch-Jozsa problem
[17]: given a Boolean input (x1, . . . , xN ), decide whether the xi’s are all equal or whether half of
them are 1 and the other half are 0, under the promise that one of these is the case.

Second, if M = 2 (that is, f is Boolean), then Conjecture 3 follows relatively easily from known
results: indeed, we prove in Appendix 6 that R(f) = O(Q(f)2) in that case. So the interesting
case is when M ≫ 2, as it is for the collision problem.

Conjecture 3 provides one natural way to formalize the idea that classical and quantum query
complexities should be polynomially related for all “unstructured” problems. A different way is
provided by the following conjecture, which we were aware of since about 1999:

Conjecture 4 (folklore) Let Q be a quantum algorithm that makes T queries to a Boolean input
X = (x1, . . . , xN ), and let ε > 0. Then there exists a deterministic classical algorithm that makes
poly(T, 1/ε, 1/δ) queries to the xi’s, and that approximates Q’s acceptance probability to within an
additive error ε on a 1− δ fraction of inputs.

But what exactly does Conjecture 4 have to do with “the need for structure in quantum
speedups”? With Conjecture 3, the connection to this paper’s theme was more-or-less obvious,
but with Conjecture 4, some additional explanation is probably needed.

Intuitively, we want to say the following: in order to achieve a superpolynomial speedup in
the black-box model, a quantum computer needs not merely a promise problem, but a “severely
constrained” promise problem. In other words, only a minuscule fraction of the 2N oracle strings
X = (x1, . . . , xN ) ought to satisfy the promise—precisely like what happens in Simon’s and Shor’s
problems, where the promise asserts that X encodes a periodic function. If the promise is too
“mild”—if, say, it holds for all X in some set S ⊆ {0, 1}N with |S| = Ω(2N )—then we should be
back in the situation studied by Beals et al. [8], where the oracle X lacked enough “structure”
for a Shor-like algorithm to exploit, and as a result, the best one could hope for was a polynomial
quantum speedup like that of Grover’s algorithm.

Yet, if we interpret the above intuition too näıvely, then it is easy to find counterexamples. To
illustrate, let S1 consist of all strings X ∈ {0, 1}N that encode valid inputs to Simon’s problem,
let S0 consist of all Y ∈ {0, 1}N that have Hamming distance at least N/10 from every X ∈ S1,
and let S = S0 ∪ S1. Then define a Boolean function fSimon : S → {0, 1} by fSimon(X) = 1 for
all X ∈ S1, and fSimon(X) = 0 for all X ∈ S0. As observed by Buhrman et al. [14] (see also
Ambainis and de Wolf [6] and Hemaspaandra, Hemaspaandra, and Zimand [22]), this “property-
testing version of Simon’s problem” achieves an exponential separation between randomized and
quantum query complexities: R(fSimon) = Ω(

√
N/ logN) while Q(fSimon) = O(logN). But the

promise is certainly “mild”: indeed |S| ≥ 2N − 2cN for some constant c < 1.
On the other hand, examining this counterexample more closely suggests a way to salvage our

original intuition. For notice that there exists a fast, deterministic classical algorithm that correctly
evaluates fSimon(X) on almost all inputs X ∈ S: namely, the algorithm that always outputs 0! This
algorithm errs only on the minuscule fraction of inputs X ∈ S that happen to belong to S1. Thus,
we might conjecture that this points to a general phenomenon: namely, whenever there exists a
fast quantum algorithm to compute a Boolean function f : S → {0, 1} with |S| = Ω

(
2N
)
, there
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also exists a fast classical algorithm to compute f(X) on most inputs X ∈ S. In Appendix 8, we
will prove that Conjecture 4 is equivalent to this conjecture.

Indeed, Conjecture 4 readily implies a far-reaching generalization of the result of Beals et al.
[8] stating that D(f) = O(Q(f)6) for all total Boolean functions f . In particular, define the
ε-approximate query complexity of a Boolean function f : {0, 1}N → {0, 1}, or Dε(f), to be the
minimum number of queries made by a deterministic algorithm that evaluates f correctly on at
least a 1 − ε fraction of inputs X. Likewise, let Qε(f) be the minimum number of queries made
by a quantum algorithm that evaluates f correctly on at least a 1 − ε fraction of inputs. Then
Conjecture 4 implies that Dε(f) and Qδ(f) are polynomially related for all Boolean functions f
and all constants ε > δ > 0 independent of N .5 This would provide a quantum counterpart to a
beautiful 2002 result of Smyth [31], who solved an old open problem of Steven Rudich by showing
that Dε(f) = O(Cε3/30(f)

2/ε3) for all ε > 0 (where Cδ(f) denotes the “δ-approximate certificate
complexity” of f).

More dramatically, if Conjecture 4 holds, then we basically cannot hope to prove P 6= BQP

relative to a random oracle. This would answer a question raised by Fortnow and Rogers [19] in
1998, and would contrast sharply with the situation for non-random oracles: we have had oracles
relative to which P 6= BQP, and indeed BQP 6⊂ MA, since the work of Bernstein and Vazirani [11]
in the early 1990s. More precisely, under some suitable complexity assumption (such as P = P#P),
we would get BQPA ⊂ AvgPA with probability 1 for a random oracle A. Here AvgP is the class
of languages for which there exists a polynomial-time algorithm that solves a 1 − o (1) fraction of
instances of size n. In other words, separating BQP from AvgP relative to a random oracle would be
as hard as separating complexity classes in the unrelativized world. This would provide a quantum
counterpart to a theorem of Impagliazzo and Rudich (credited in [23]), who used the powerful
results of Kahn, Saks, and Smyth [23] to show that if P = NP, then NPA ∩ coNPA ⊂ ioAvgPA with
probability 1 for a random oracle A.6

1.2 Our Results

Our main contribution in this paper is essentially to prove Watrous’s conjecture (Conjecture 3),
that randomized and quantum query complexities are polynomially related for every symmetric
problem.

Theorem 5 R(f) = O(Q(f)7 polylog Q(f)) for every partial function f : [M ]N → {0, 1, ∗} that is
permutation-invariant.

We conjecture that R(f) and Q(f) are polynomially related even for functions f satisfying
one of the two symmetries: namely, f(x1, . . . , xN ) = f(xσ(1), . . . , xσ(N)) for all σ ∈ SN . We also
conjecture that the exponent of 7 can be improved to 2: in other words, that Grover’s algorithm
once again provides the optimal separation between the quantum and classical models.

While the proof of Theorem 5 is somewhat involved, it can be entirely understood by those
unfamiliar with quantum computing: the difficulties lie in getting the problem into a form where
existing quantum lower bound technology can be applied to it. Let us stress that it was not at all
obvious a priori that existing quantum lower bounds would suffice here; that they did came as a
surprise to us.

5More generally, as we will show in Corollary 23, the relation we obtain is Dε+δ(f) ≤ (Qε(f)/δ)
O(1) for all ε, δ > 0.

6Here ioAvgP means “average-case P for infinitely many input lengths n.” The reason Impagliazzo and Rudich
only get a simulation in ioAvgP, rather than AvgP, has to do with the fact that Smyth’s result [31] only relates Dε(f)
to Cε3/30(f), rather than Dε+δ(f) to Cε(f) for all δ > 0.
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We first define and analyze a simple randomized algorithm, which tries to compute f(X) for a
given X = (x1, . . . , xN ) by estimating the multiplicity of each element xi. Next, by considering
where this randomized algorithm breaks down, we show that one can identify a “hard core” within
f : roughly speaking, two input types A∗ and B∗, such that the difficulty of distinguishing A∗ from
B∗ accounts for a polynomial fraction of the entire difficulty of computing f . The rest of the proof
consists of lower-bounding the quantum query complexity of distinguishing A∗ from B∗. We do so
using a hybrid argument: we develop a “chopping procedure” that gradually deforms A∗ to make it
more similar to B∗, creating a sequence of intermediate input types A0 = A∗,A1,A2, . . . ,A2L = B∗.
We then show that, for every ℓ ∈ [L], distinguishing Aℓ from Aℓ−1 requires many quantum queries,
either by a reduction from Zhandry’s recent Ω(N1/3) quantum lower bound for the SetEquality

problem [33] (which is a nontrivial generalization of Aaronson and Shi’s collision lower bound [3]),
or else by an application of Ambainis’s general quantum adversary theorem [5].

Note that, prior to Zhandry’s Ω(N1/3) quantum lower bound for SetEquality, Midrijanis
[24] had proved a lower bound of Ω((N/ logN)1/5); the latter was the first quantum lower bound
for SetEquality, and the only one for nearly a decade. An earlier version of this paper used
Midrijanis’s lower bound to show that R(f) = O(Q(f)9 polylog Q(f)) for all permutation-symmetric
f . The improvement to R(f) = O(Q(f)7 polylogQ(f)) in the current version comes entirely from
Zhandry’s improvement of the SetEquality lower bound to the optimal Ω(N1/3).

Doing the hybrid argument in the “obvious” way produces a bound of the form R(f) ≤
Q(f)O(1) polylogN , which fails to imply a polynomial relationship between R(f) and Q(f) when

Q(f) ≤ (logN)o(1). However, a more sophisticated hybrid argument eliminates the polylogN
factor.

Our second contribution is more exploratory, something we put forward in the hope of inspiring
followup work. We study Conjecture 4, which states that every T -query quantum algorithm can be
simulated on most inputs using TO(1) classical queries. We relate this conjecture to a fundamental
open problem in Fourier analysis and approximation theory. Given a real polynomial p : RN → R,
let

Inf i [p] := E
X∈{0,1}N

[
(p(X) − p(Xi))2

]

be the influence of the ith variable, where Xi means X with the ith bit flipped. Then we conjecture
that every bounded low-degree polynomial has a “highly influential” variable. More precisely:

Conjecture 6 (Bounded Polynomials Have Influential Variables) Let p : R
N → R be a

polynomial of degree d. Suppose that 0 ≤ p(X) ≤ 1 for all X ∈ {0, 1}N , and

E
X∈{0,1}N

[
(p(X)− E [p])2

]
≥ ε.

Then there exists an i such that Infi [p] ≥ (ε/d)O(1).

We show the following:

Theorem 7 Assume Conjecture 6. Then

(i) Conjecture 4 holds.

(ii) Dε+δ(f) ≤ (Qε(f)/δ)
O(1) for all Boolean functions f : {0, 1}N → {0, 1} and all ε, δ > 0.

(iii) If P = P#P, then BQPA ⊂ AvgPA with probability 1 for a random oracle A.
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The main evidence for Conjecture 6—besides the fact that all the Fourier analysis experts we
asked were confident of it!—is that extremely similar statements have recently been proved. Firstly,
O’Donnell, Saks, Schramm, and Servedio [26] proved an analogue of Conjecture 6 for decision trees,
which are a special case of bounded real polynomials:

Theorem 8 (O’Donnell et al. 2005) Let f : {0, 1}N → {0, 1} be a Boolean function, and sup-
pose Pr [f = 1] Pr [f = 0] ≥ ε. Then there exists an i such that Infi [f ] ≥ 4ε/D(f), where D(f) is
the decision tree complexity of f .

Unfortunately, Theorem 8 does not directly imply anything about our problem, even though
Beals et al. [8] showed that D(f) and Q(f) are polynomially related for all total Boolean functions
f . The reason is that the acceptance probability of a quantum algorithm need not approximate a
total Boolean function.

The second piece of evidence for Conjecture 6 comes from a powerful result of Dinur, Friedgut,
Kindler, and O’Donnell [18], which implies our conjecture, except with Infi [p] ≥ ε3/2O(d) instead

of Infi [p] ≥ (ε/d)O(1). Let us state the special case of their result that is relevant for us:

Theorem 9 (Dinur et al. 2006) Let ε > 0, and let p : RN → R be a degree-d polynomial such
that 0 ≤ p(X) ≤ 1 for all X ∈ {0, 1}N . Then there exists a 2O(d)/ε2-junta p̃ : RN → R (that is, a
polynomial depending on at most 2O(d)/ε2 variables) such that

E
X∈{0,1}N

[
(p̃(X)− p(X))2

]
≤ ε.

Even though Theorem 9 has an exponential rather than polynomial dependence on 1/d, we
observe that it already has a nontrivial consequence for quantum computation. Namely, it implies
that any T -query quantum algorithm can be simulated on most inputs using 2O(T ) classical queries.7

Recall that the gaps between classical and quantum query complexities can be superexponential
(and even NΩ(1) versus O (1), as in the example of Aaronson [2]), so even an exponential upper
bound is far from obvious.

1.3 Subsequent Work

Since the first version of this paper was circulated, there have been at least three interesting
developments (not counting the Ω(N1/3) quantum lower bound of Zhandry [33] for SetEquality,
which we incorporate here).

First, Yuen [32] adapted the hybrid argument that we used to prove Theorem 5, in order to
show that distinguishing a random function X : [N ] → [N ] from a random permutation requires
Ω(N1/5/ logN) quantum queries. (Subsequently, however, Zhandry [33] proved a tight lower bound
of Ω(N1/3) for the random function versus random permutation problem, using completely different
ideas.)

Second, Montanaro [25] used a hypercontractive inequality to prove Conjecture 6, in the special
case where p is a multilinear polynomial all of whose coefficients (when written in the Fourier basis)
have the same absolute value. Currently, it remains open to generalize Montanaro’s technique to
arbitrary multilinear polynomials, let alone arbitrary polynomials.

Third, Bačkurs and Bavarian [7] solved a technical problem that arose from an earlier version
of this paper. In the earlier version, we stated Conjecture 6 in terms of L1-influences rather

7Indeed, in this case the classical queries are nonadaptive.
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than L2-influences, and we also used the L1-norm in proving the consequences of Conjecture 6 for
quantum query complexity. Subsequently, Bačkurs (personal communication) found an error in
our proof. Fortunately, however, we noticed that (a) our proof could be fixed by simply switching
from L1-norm to L2-norm throughout, and (b) the L2 version of Conjecture 6 was, in any case,
provably equivalent to our original L1 version. So we switched to the L2-norm. At the same
time, though, we remained curious about our original L1-based argument could have worked. The
question boiled down to the following: given a degree-d real polynomial p : RN → R, let

Inf1i [p] := E
X∈{0,1}N

[∣∣p(X)− p(Xi)
∣∣] .

Then do we have
∑N

i=1 Inf
1
i [p] ≤ dO(1), whenever p(X) ∈ [0, 1] for all X ∈ {0, 1}N? Bačkurs and

Bavarian [7] show that the answer is yes: indeed, the sum of the L1-influences is upper-bounded
by O(d3 log d). Using their result, one can salvage our original L1-based argument.

For simplicity, though, in this version of the paper we stick with L2-influences. There, the
analogue of Bačkurs and Bavarian’s result is much easier, and states that

∑N
i=1 Infi [p] ≤ d (we

provide the folklore proof in Lemma 20). For completeness, in Appendix 7 we prove the equivalence
of the L1 and L2 versions of Conjecture 6.

2 Quantum Lower Bound for All Symmetric Problems

In this section we prove Theorem 5: that R(f) = O(Q(f)7 polylogQ(f)) for all permutation-
symmetric f .

We start with a simple observation that is essential to everything that follows. Since f is
symmetric, we can group the inputs X = (x1, . . . , xN ) into equivalence classes that we call types.

Definition 10 Given an input X = (x1, . . . , xN ) ∈ [M ]N , the type of X is a list of positive integers
A = (a1, . . . , au), which records the multiplicities of the integers occurring in X from most to least
frequent. So in particular, a1 ≥ · · · ≥ au and a1 + · · · + au = N . For convenience, we adopt the
convention that ai = 0 for all i > u.

In other words, a type is just a partition (or Young diagram) that records the multiplicities
of the input elements. For example, a one-to-one input has type a1 = · · · = aN = 1, while a
two-to-one input has type a1 = · · · = aN/2 = 2. We write X ∈ A if X is of type A. Clearly
f(X) depends only on the type of X. Furthermore, given a quantum query algorithm Q, we can
assume without loss of generality that Pr [Q accepts X] depends only on the type of X—since we
can “symmetrize” Q (that is, randomly permute X’s inputs and outputs) prior to running Q.

2.1 Randomized Upper Bound

Let X = (x1, . . . , xN ) be an input. For each j ∈ [M ], let κj be the number of i’s such that xi = j.
Then the first step is to give a classical randomized algorithm that estimates the κj ’s. This
algorithm, ST , is an extremely straightforward sampling procedure. (Indeed, there is essentially
nothing else that a randomized algorithm can do here.) ST will make O(T 1+c log T ) queries, where
T is a parameter and c ∈ (0, 1] is a constant that we will choose later to optimize the final bound.

Set U := 21T 1+c lnT
Choose U indices i1, . . . , iU ∈ [N ] uniformly at random with replacement
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Query xi1 , . . . , xiU
For each j ∈ [M ]:

Let zj be the number of occurrences of j in (xi1 , . . . , xiU )
Output κ̃j :=

zj
U ·N as the estimate for κj

We now analyze how well ST works.

Lemma 11 With probability 1−O (1/T ), we have |κ̃j − κj | ≤ N
T +

κj

T c for all j ∈ [M ].

Proof. For each j ∈ [M ], we consider four cases. First suppose κj ≥ N/T 1−c. Notice that zj is
a sum of U independent Boolean variables, and that E [zj ] =

U
N E[κ̃j ] =

U
N κj . Thus

Pr
[
|κ̃j − κj | >

κj
T c

]
= Pr

[∣∣∣∣zj −
U

N
κj

∣∣∣∣ >
Uκj
NT c

]

< 2 exp

(
−Uκj/N

3T 2c

)

< 2 exp

(
− U

3T 1+c

)

= 2T−7,

where the second line follows from a Chernoff bound and the third from κj ≥ N/T 1−c.
Second, suppose N/T ≤ κj < N/T 1−c. Then

Pr

[
|κ̃j − κj | >

N

T

]
= Pr

[∣∣∣∣zj −
U

N
κj

∣∣∣∣ >
U

T

]

< 2 exp

(
−Uκj/N

3

(
N

Tκj

)2
)

< 2 exp

(
− U

3T 1+c

)

= 2T−7

where the second line follows from a Chernoff bound (which is valid because N
Tκj

≤ 1) and the third

from κj < N/T 1−c.
Third, suppose N/T 6 ≤ κj < N/T . Then

Pr

[
|κ̃j − κj | >

N

T

]
= Pr

[∣∣∣∣zj −
U

N
κj

∣∣∣∣ >
U

T

]

<

(
eN/(Tκj)

(1 +N/ (Tκj))
1+N/(Tκj)

)Uκj/N

≤ exp

(
− N

Tκj
· Uκj

N

)

= exp

(
−U

T

)

= O

(
1

T 7

)
,

9



where the second line follows from a Chernoff bound, the third line follows from N
Tκj

> 1, and the

last follows from U = 21T 1+c lnT .
Fourth, suppose κj < N/T 6. Then

Pr

[
|κ̃j − κj | >

N

T

]
= Pr

[∣∣∣∣zj −
U

N
κj

∣∣∣∣ >
U

T

]

≤ Pr [zj ≥ 2]

≤
(
U

2

)(κj
N

)2

≤ U2

T 6

(κj
N

)

≤ κj
TN

for all sufficiently large T , where the second line follows from κj < N/T 6, the third from the union
bound, the fourth from κj < N/T 6 (again), and the fifth from U ≤ 21T 2 lnT .

Notice that there are at most T 6 values of j such that κj ≥ N/T 6. Hence, putting all four
cases together,

Pr

[
∃j : |κ̃j − κj | >

N

T
+

κj
T c

]
≤ T 6 · O

(
1

T 7

)
+

∑

j:κj<N/T 6

κj
TN

= O

(
1

T

)
.

Now call A a 1-type if f(X) = 1 for all X ∈ A, or a 0-type if f(X) = 0 for all X ∈ A. Consider
the following randomized algorithm RT to compute f(X):

Run ST to find an estimate κ̃i for each κi
Sort the κ̃i’s in descending order, so that κ̃1 ≥ · · · ≥ κ̃M
If there exists a 1-type A = (a1, a2, . . .) such that |κ̃i − ai| ≤ N

T + ai
T c

for all i, then output f(X) = 1
Otherwise output f(X) = 0

Clearly RT makes O(T 1+c log T ) queries, just as ST does. We now give a sufficient condition
for RT to succeed.

Lemma 12 Suppose that for all 1-types A = (a1, a2, . . .) and 0-types B = (b1, b2, . . .), there exists
an i such that |ai − bi| > 2N

T + ai+bi
T c . Then RT computes f with bounded probability of error, and

hence R(f) = O(T 1+c log T ).

Proof. First suppose X ∈ A where A = (a1, a2, . . .) is a 1-type. Then by Lemma 11, with
probability 1−O (1/T ) we have |κ̃i − ai| ≤ N

T + ai
T c for all i. (It is easy to see that sorting the κ̃i’s

can only decrease the maximum difference.) Provided this occurs, RT finds some 1-type close to
(κ̃1, κ̃2, . . .) (possibly A itself) and outputs f(X) = 1.

Second, suppose X ∈ B where B = (b1, b2, . . .) is a 0-type. Then with probability 1− O (1/T )
we have |κ̃i − bi| ≤ N

T + bi
T c for all i. Provided this occurs, by the triangle inequality, for every

1-type A = (a1, a2, . . .) there exists an i such that

|κ̃i − ai| ≥ |ai − bi| − |κ̃i − bi| >
N

T
+

ai
T c

.

10



Hence RT does not find a 1-type close to (κ̃1, κ̃2, . . .), and it outputs f(X) = 0.
In particular, suppose we keep decreasing T until there exists a 1-type A∗ = (a1, a2, . . .) and a

0-type B∗ = (b1, b2, . . .) such that

|ai − bi| ≤
2N

T
+

ai + bi
T c

(1)

for all i, stopping as soon as that happens. Then Lemma 12 implies that we will still have
R (f) = O(T 1+c log T ). For the rest of the proof, we will fix that “almost as small as possible”
value of T for which (1) holds, as well as the 1-type A∗ and the 0-type B∗ that RT “just barely
distinguishes” from one another.

2.2 The Chopping Procedure

Given two sets of inputs A and B with A∩B = ∅, let Q(A,B) be the minimum number of queries
made by any quantum algorithm that accepts every X ∈ A with probability at least 2/3, and
accepts every Y ∈ B with probability at most 1/3. Also, let Qε(A,B) be the minimum number of
queries made by any quantum algorithm that accepts every X ∈ A with at least some probability
p, and that accepts every Y ∈ B with probability at most p− ε. Then we have the following basic
relation:

Proposition 13 Q(A,B) = O(1ε Qε(A,B)) for all A,B and all ε > 0.

Proof. This follows from standard amplitude estimation techniques (see Brassard et al. [12] for
example).

The rest of the proof consists of lower-bounding Q(A∗,B∗), the quantum query complexity of
distinguishing inputs of type A∗ from inputs of type B∗. We do this via a hybrid argument. Let
L := ⌈log2 N⌉+ 1. At a high level, we will construct a sequence of types A0, . . . ,A2L such that

(i) A0 = A∗,

(ii) A2L = B∗, and

(iii) Q(Aℓ,Aℓ−1) is large for every ℓ ∈ [2L].

Provided we can do this, it is not hard to see that we get the desired lower bound on Q(A∗,B∗).
Suppose a quantum algorithm distinguishes A0 = A∗ from A2L = B∗ with constant bias. Then
by the triangle inequality, it must also distinguish some Aℓ from Aℓ+1 with reasonably large bias
(say Ω (1/ logN)). By Proposition 13, any quantum algorithm that succeeds with bias ε can be
amplified, with O (1/ε) overhead, to an algorithm that succeeds with constant bias.

Incidentally, the need, in this hybrid argument, to amplify the distinguishing bias ε = εℓ from
Ω (1/ logN) to Ω (1) is exactly what could produce an undesired 1/ logN factor in our final lower
bound on Q(f), if we were not careful. (We mentioned this issue in Section 1.2.) The way we will
solve this problem, roughly speaking, is to design the Aℓ’s in such a way that our lower bounds on
Q(Aℓ,Aℓ−1) increase quickly as functions of ℓ. That way, we can take the biases εℓ to decrease
quadratically with ℓ (thus summing to a constant), yet still have Q(Aℓ,Aℓ−1) increasing quickly
enough that

Qεℓ(Aℓ,Aℓ−1) = Ω(εℓQ(Aℓ,Aℓ−1))

remain “uniformly large,” with 1/ log T factors but no 1/ logN factor.

11



Figure 1: Chopping a row of Aℓ’s Young diagram to make it more similar to Bℓ.

We now describe the procedure for creating the intermediate types Aℓ. Intuitively, we want to
form Aℓ from Aℓ−1 by making its Young diagram more similar to that of B∗, by decreasing the
rows of Aℓ−1 which are larger than the corresponding rows of B∗ and increasing the rows of Aℓ−1

which are smaller than the corresponding rows of B∗.
More precisely, we construct the intermediate types A1,A2, . . . via the following procedure. In

this procedure, (a1, a2, . . .) is an input type that is initialized to A∗, and B∗ = (b1, b2, . . .).

let P be the first power of 2 greater than or equal to N
for ℓ := 1 to L

let SA be the set of i such that ai − bi ≥ P/2l

let SB be the set of i such that bi − ai ≥ P/2l

let m := min(|SA| , |SB|)
choose m elements i from SA, set ai := ai −P/2ℓ and remove them from SA

choose m elements i from SB, set ai := ai+P/2ℓ and remove them from SB

let A2ℓ−1 := type(a1, a2, . . .)
if |SA| > 0

let ai := ai − P/2ℓ for all i ∈ SA

choose |SA| elements i such that ai < bi and set ai := ai + P/2ℓ

if |SB | > 0
let ai := ai + P/2ℓ for all i ∈ SB

choose |SB| elements i such that ai > bi and set ai := ai − P/2ℓ

let A2ℓ := type(a1, a2, . . .)
next ℓ

The procedure is illustrated pictorially in Figure 1.
We start with some simple observations. First, by construction, this procedure halts after

2L = O (logN) iterations. Second, after the ℓth iteration, we have |ai − bi| < P
2ℓ

for all i. This

follows by induction. Let a′i be the value of ai before the ℓth iteration. Because of the inductive
assumption, we must have |a′i − bi| < P

2ℓ−1—for if |a′i − bi| ≥ P
2ℓ
, then ai is changed by P

2ℓ
during

the ℓth iteration, to decrease the difference |ai − bi|. After this change,

|ai − bi| =
∣∣a′i − bi

∣∣− P

2ℓ
<

P

2ℓ−1
− P

2ℓ
=

P

2ℓ
.

Besides the |a′i − bi| ≥ P
2ℓ

case, there is one other case where |ai − bi| could change. In the transition
from A2ℓ−1 to A2ℓ, if |SA| > 0 or |SB| > 0, then we change ai for |SA| or |SB| elements i that do not
belong to SA or SB . For those elements, we have |ai − bi| < P

2ℓ
and we change ai in the direction

12



of bi (we increase it by P
2ℓ

if ai < bi and decrease it by the same amount if ai > bi). Therefore,

after the change, the sign of the difference ai − bi flips and |ai − bi| < P
2ℓ
.

Now let us define

‖A − B‖ :=
1

2

N∑

i=1

|ai − bi| .

Notice that ‖Aℓ −Aℓ−1‖ = rP/2ℓ
′
, where r is the number of rows that get increased (or decreased)

in the ℓth iteration and l′ = ⌈ l
2⌉. We now prove an upper bound on ‖Aℓ −Aℓ−1‖ when ℓ is small,

which will be useful later.

Lemma 14 If ℓ ≤ (log2 T )− 2, then

‖A2ℓ−2 −A2ℓ−1‖+ ‖A2ℓ−1 −A2ℓ‖ ≤ 4N

T c
.

Proof. Let m := max(|SA| , |SB |). Then

‖A2ℓ−2 −A2ℓ−1‖+ ‖A2ℓ−1 −A2ℓ‖ = m
P

2ℓ
.

Without loss of generality, we assume that m = |SA|. To show the lemma, it suffices to prove that

|SA| ≤ 4N/T c

P/2ℓ
.

We consider the sum
∑

j∈R |aj − bj| where R is the set of all j such that |aj − bj| ≥ P
2ℓ
, with

(a1, a2, . . .) evolving from A0 to A2ℓ−2 and B∗ = (b1, b2, . . .) fixed. Initially (when (a1, a2, . . .) =
A0), we have

P

2ℓ
≤ |aj − bj| ≤

2N

T
+

aj + bj
T c

for each j ∈ R. Since ℓ ≤ (log2 T )− 2, the left inequality implies

|aj − bj| ≥
4N

T
,

which combined with the right inequality yields

aj + bj
T c

≥ 2N

T
. (2)

Therefore

∑

i∈R
|ai − bi| ≤

∑

i∈R

(
2N

T
+

ai + bi
T c

)

≤ 2
∑

i∈R

ai + bi
T c

≤ 4N

T c
,

where the third line uses (2).
The sum

∑
i∈R |ai − bi| is not increased by any step of the algorithm that generates A0, . . . ,A2ℓ−2.

Therefore, at the beginning of the ℓth iteration, we still have
∑

i∈R |ai − bi| ≤ 4N
T c . This means that

|SA| ≤ 4N/T c

P/2ℓ
.
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2.3 Quantum Lower Bounds

Recall that we listed four properties that we needed the chopping procedure to satisfy. We have
already seen that it satisfies properties (i)-(ii), so the remaining step is to show that it satisfies
property (iii). That is, we need to lower-bound Q(Aℓ,Aℓ−1), the bounded-error quantum query
complexity of distinguishing inputs of type Aℓ from inputs of type Aℓ−1. To do this, it will be
convenient to consider two cases: first, that forming Aℓ involved chopping few elements of Aℓ−1,
and second, that it involved chopping many elements. We will show that we “win either way,” by
a different quantum lower bound in each case.

First consider the case that few elements were chopped. Here we prove a lower bound using
Ambainis’s quantum adversary method [5], in its “general” form (the one used, for example, to
lower-bound the quantum query complexity of inverting a permutation). For completeness, we
now state Ambainis’s adversary theorem in the form we will need.

Theorem 15 (Ambainis [5]) Let A,B ⊆ [M ]N be two sets of inputs with A ∩ B = ∅. Let
R ⊆ A×B be a relation on input pairs, such that for every X ∈ A there exists at least one Y ∈ B
with (X,Y ) ∈ R and vice versa. Given inputs X = (x1, . . . , xN ) in A and Y = (y1, . . . , yN ) in B,
let

qX,i = Pr
Y ∈B

[xi 6= yi | (X,Y ) ∈ R] ,

qY,i = Pr
X∈A

[xi 6= yi | (X,Y ) ∈ R] .

Suppose that qX,iqy,i ≤ α for every (X,Y ) ∈ R and every i ∈ [N ] such that xi 6= yi. Then
Q(A,B) = Ω(1/

√
α).

Using Theorem 15, we can prove the following lower bound on Q (Aℓ,Aℓ−1).

Lemma 16 Let d = ‖Aℓ −Aℓ−1‖, and assume d ≤ N/2. Then Q(Aℓ,Aℓ−1) = Ω(
√

N/d).

Proof. Let Aℓ−1 = (a1, a2, . . .), and let ℓ′ = ⌈ ℓ
2⌉. Then in the transition from Aℓ−1 to Aℓ, we

augment or chop various rows by P/2ℓ
′
elements each. Let i (1) , . . . , i (r) be the r rows in Aℓ−1

that get chopped and let i′ (1) , . . . , i′ (r) be the r rows in Aℓ−1 that get augmented.
Fix distinct h1, . . . , hr ∈ [M ] and h′1, . . . , h

′
r ∈ [M ]. Also, let us restrict ourselves to inputs

such that for each j ∈ [r], there are exactly ai(j) indices i ∈ [N ] satisfying xi = hj and exactly ai′(j)
indices i ∈ [N ] satisfying xi = h′j . G iven inputs X = (x1, . . . , xN ) in Aℓ−1 and Y = (y1, . . . , yN )
in Aℓ, we set (X,Y ) ∈ R if and only if it is possible to transform X to Y in the following way:

(1) For each j ∈ [r], change exactly P/2ℓ
′
of the xi’s that are equal to hj to value h′j . (The total

number of changed elements is d.)

(2) Swap the d elements of X that were changed in step (2) with any other d elements xi of X,
subject to the following constraints:

(a) we do not use xi such that xi = hj for some j and
aij−P/2ℓ

′

P/2ℓ′
< N−d

3d ;

(b) we do not use xi such that xi = h′j for some j and
aij

P/2ℓ′
< N−d

3d .

The procedure is illustrated pictorially in Figure 2. Note that we can reverse the procedure in
a natural way to go from Y back to X:

14
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Figure 2: In this example, N = 11, r = 2, P/2ℓ = 2, and a1 = a2 = 3. So we transform X to Y by
choosing h1 = 1 and h2 = 2, changing any two elements equal to h1 and any two elements equal to
h2, and then swapping the four elements that we changed with four unchanged elements.

(1) For each j ∈ [r], change exactly P/2ℓ
′
of the xi’s that are equal to h′j to value hj .

(2) Swap the d elements of X that were changed in step (2) with any d elements xi of X, subject
to the same constraints as in the step (2) of the X → Y conversion.

Fix any (X,Y ) ∈ R, and let i ∈ [N ] be any index such that xi 6= yi. Then we claim that
the parameters of Theorem 15 satisfy either qX,i ≤ 6d

N−d or qY,i ≤ 6d
N−d . To see this, let us write

qX,i = q′X,i + q′′X,i, where q′X,i is the probability that xi is changed in step (1) of the X → Y
conversion and q′′X,i is the probability that xi is not changed in step (1), but is swapped with some
changed element in step (2). We also express qY,i in a similar way, with respect to the Y → X
conversion.

We consider two cases. The first case is that xi is one of the “other d elements” with which
we swap the changed elements in step (2) of the X → Y conversion. In this case, q′X,i 6= 0 only if

xi = hj for some j. Then because of the constraint (a), we have q′X,i ≤ 3d
N+2d . We also have

q′′X,i = Pr
Y ′∈Aℓ

[
xi 6= y′i |

(
X,Y ′) ∈ R

]
≤ d

(N − d)/3
=

3d

N − d
,

because each of the constraints (a) and (b) eliminates at most (N − d)/3 of the N − d variables xi
that are available for swapping in step (2). Therefore, qX,i = q′X,i + q′′X,i ≤ 6d

N−d .
The second case is that xi is one of the elements that are changed in step (1) of the X → Y

conversion. Then yi is one of the “other d elements” in step (2) of the Y → X conversion. Similarly
to the previous case, we can show that qY,i ≤ 6d

N−d .
Since qX,i ≤ 1 and qY,i ≤ 1, it follows that

qX,iqY,i ≤
6d

N − d
.

Thus, by Theorem 15,

Q(Aℓ,Aℓ−1) = Ω

(
1

√
qX,iqY,i

)
= Ω

(√
N − d

d

)
= Ω

(√
N

d

)
.

We now consider the case that many elements are chopped. Here we prove a lower bound by
reduction from SetEquality. Given two sequences of integers Y ∈ [M ]N and Z ∈ [M ]N , neither
with any repeats, the SetEquality problem is to decide whether Y and Z are equal as sets or
disjoint as sets, promised that one of these is the case. SetEquality is similar to the collision
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problem studied by Aaronson and Shi [3], but it lacks permutation symmetry, making it harder
to prove a lower bound by the polynomial method. By combining the collision lower bound with
Ambainis’s adversary method, Midrijanis [24] was nevertheless able to show that

Q (SetEquality) = Ω

((
N

logN

)1/5
)
.

Very recently, and using different ideas, Zhandry [33] managed to improve Midrijanis’s lower bound
to the following:

Theorem 17 (Zhandry [33]) Q(SetEquality) = Ω(N1/3).

Theorem 17 is known to be tight, by the upper bound of Brassard, Høyer, and Tapp [13]
mentioned in Section 1.1.

We will consider a modification of the SetEquality problem, which we call 3SetEquality.
Here we are given three sequences of integers Y,Z,W ∈ [M ]N , none of which has any repeats. We
are promised that Y and W are disjoint as sets, and that Z is equal either to Y or to W as a set.
The task is to distinguish between those two cases.

Theorem 18 Q(3SetEquality) = Ω(N1/3).

Proof. The theorem follows from Theorem 17 together with the following claim: if 3SetEquality
is solvable by a quantum algorithm A that uses T queries, then 3SetEquality is solvable by a
quantum algorithm that uses O(T ) queries.

To show this, let Y,W be an instance of SetEquality. We produce an instance of 3SetE-
quality by choosing Z to be either a randomly permuted version of Y or a randomly permuted
version of W . We then run the algorithm for 3SetEquality on that instance. If Y and W are
disjoint, then the promise of 3SetEquality is satisfied and the algorithm will find whether we
used Y or W to generate Z. If Y = W , then using Y and using W results in the same proba-
bility distribution for Z; hence no algorithm will be able to guess whether we used Y or W with
probability greater than 1/2.

We now use Theorem 18 to prove another lower bound on Q(Aℓ,Aℓ−1).

Lemma 19 Suppose Aℓ was formed from Aℓ−1 by chopping r rows. Then Q(Aℓ,Aℓ−1) = Ω
(
r1/3

)
.

Proof. We will show how to embed a 3SetEquality instance of size r into the Aℓ versus Aℓ−1

problem.
Let Aℓ−1 = (a1, . . . , au). Also, let i (1) , . . . , i (r) ∈ [u] be the r rows that are chopped in

going from Aℓ−1 to Aℓ, let i′ (1) , . . . , i′ (r) ∈ [u] be the r rows that are augmented, and let
j (1) , . . . , j (u− 2r) ∈ [u] be the u − 2r rows that are left unchanged. Recall that, in going
from Aℓ−1 to Aℓ, each row i (k) (or i′ (k)) is chopped or augmented by P/2ℓ

′
elements, where

ℓ′ = ⌈ ℓ
2⌉.

Now let Y = (y1, . . . , yr), Z = (z1, . . . , zr), W = (z1, . . . , zr) be an instance of 3SetEquality.
Then we construct an input X ∈ [M ]N as follows. First, for each k ∈ [r], set ai(k) − P/2ℓ

′
of the

xi’s equal to yk, set P/2ℓ
′
of the xi’s equal to zk and set a′i(k) of the xi’s equal to wk. Next, let

w1, w2, . . . ∈ [M ] be a list of numbers that are guaranteed not to be in Y ∪ Z. Then for each
k ∈ [u− 2r], set aj(k) of the xi’s equal to wk.

It is easy to see that, if Y and Z are equal as sets, then X will have type Aℓ−1, while if Z and
W are equal as sets, then X will have type Aℓ. So in deciding whether X belongs to Aℓ or Aℓ−1,
we also decide whether Y = Z or Z = W . The lemma now follows from Theorem 18.

16



2.4 Putting Everything Together

Let C be a quantum query algorithm that distinguishes A0 = A∗ from A2L = B∗, and assume C is
optimal: that is, it makes Q(A∗,B∗) ≤ Q(f) queries. As mentioned earlier, we can assume that
Pr [C accepts X] depends only on the type of X. Thus, let

pℓ := Pr [C accepts X ∈ Aℓ] .

Then by assumption, |p0 − p2L| ≥ 1/3. Now let βℓ := 1
10ℓ2

, and observe that
∑∞

ℓ=1 βℓ < 1
6 . By

the triangle inequality, it follows that there exists an ℓ ∈ [2L] such that |pℓ − pℓ−1| ≥ βℓ. In other
words, we get a Q(f)-query quantum algorithm that distinguishes Aℓ from Aℓ−1 with bias βℓ. By
Proposition 13, this immediately implies

Q(Aℓ,Aℓ−1) = O

(
Q(f)

βℓ

)

or equivalently

Q(f) = Ω

(
Q(Aℓ,Aℓ−1)

ℓ2

)
.

Now let d = ‖Aℓ −Aℓ−1‖, and suppose Aℓ was produced from Aℓ−1 by chopping r rows. Then
d = rP/2ℓ

′ ≤ 2rN/2ℓ
′
where l′ = ⌈ l

2⌉. Combining Lemmas 16 and 19, we find that

Q(Aℓ,Aℓ−1) = Ω

(
max

{√
N

d
, r1/3

})

= Ω

(√
2ℓ′

r
+ r1/3

)

= Ω
(
2ℓ

′/5
)
,

since the minimum occurs when r is asymptotically 23ℓ
′/5. If ℓ′ ≤ (log2 T ) − 2, then combining

Lemmas 16 and 14, we also have the lower bound

Q(Aℓ,Aℓ−1) = Ω

(√
N

4N/T c

)
= Ω(

√
T c).

Hence

Q(f) =





Ω
(√

T c

ℓ2

)
if ℓ′ ≤ (log2 T )− 2

Ω
(
2ℓ

′/5
)

if ℓ′ > (log2 T )− 2.

Let us now make the choice c = 2/5, so that we get a lower bound of

Q(f) = Ω

(
T 1/5

log2 T

)

in either case. Hence T = O(Q(f)5 log10 Q(f)). By Lemma 12:

R(f) = O(T 1+c log T )

= O(T 7/5 log T )

= O(Q(f)7 log15 Q(f)).

This completes the proof of Theorem 5.
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3 Quantum Lower Bounds Under The Uniform Distribution

In this section, we consider the problems of P
?
= BQP relative to a random oracle, and of simulating

a T -query quantum algorithm on most inputs using TO(1) classical queries. We show that these
problems are connected to a fundamental conjecture about influences in low-degree polynomials.

Recall Conjecture 6, which said that bounded polynomials have influential variables: that is, for
every degree-d polynomial p : RN → R such that 0 ≤ p(X) ≤ 1 for all X ∈ {0, 1}N , there exists an
i ∈ [N ] such that Infi [p] ≥ (Var [p] /d)O(1), where

Infi [p] := E
X∈{0,1}N

[
(p(X) − p(Xi))2

]
,

Var [p] := E
X∈{0,1}N

[
(p(X) − E [p])2

]
.

We will show that Conjecture 6 has several powerful consequences for quantum complexity theory.
As a first step, let

Inf [p] :=

N∑

i=1

Inf i [p]

be the total influence of p. Then we have the following bound, versions of which have long been
known in the analysis of Boolean functions community,8 but which we prove for completeness.

Lemma 20 (folklore) Let p : RN → R be a degree-d real polynomial such that 0 ≤ p(X) ≤ 1 for
all X ∈ {0, 1}N . Then Inf [p] ≤ d.

Proof. Let q be the analogue of p in the Fourier representation:

q(x1, . . . , xN ) := 1− 2p

(
1− x1

2
, . . . ,

1− xN
2

)
.

Clearly deg(q) = deg(p) = d and −1 ≤ q(X) ≤ 1 for all X ∈ {1,−1}N . Also, defining Xi to be
X ∈ {1,−1}N with xi negated, and

Inf i [q] :=
1

4
E

X∈{1,−1}N
[
(q(X)− q(Xi))2

]
,

we have Inf i [q] = Infi [p].
Note that we can express q as

q(X) =
∑

S⊆[N ] : |S|≤d

αSχS(X),

where αS ∈ R and χS(X) :=
∏

i∈S xi is the Fourier character corresponding to the set S. Further-
more, by Parseval’s identity,

∑

|S|≤d

α2
S =

1

2N

∑

X∈{1,−1}N
q(X)2 ≤ 1.

8For example, Shi [28] proved the bound for the special case of Boolean functions, and generalizing his proof to
arbitrary bounded functions is straightforward.
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Now, in the Fourier representation, it is known that

Inf i [q] =
∑

|S|≤d : i∈S
α2
S .

Hence

Inf [p] = Inf [q] =
∑

i∈[N ]

∑

|S|≤d : i∈S
α2
S =

∑

|S|≤d

∑

i∈S
α2
S =

∑

|S|≤d

|S|α2
S ≤ d

∑

|S|≤d

α2
S ≤ d

as claimed.
We also need the following lemma of Beals et al. [8].

Lemma 21 (Beals et al.) Suppose a quantum algorithm Q makes T queries to a Boolean input
X ∈ {0, 1}N . Then Q’s acceptance probability is a real multilinear polynomial p(X), of degree at
most 2T .

3.1 Consequences of Our Influence Conjecture

We now prove our first consequence of Conjecture 6: namely, that it implies the folklore Conjecture
4.

Theorem 22 Suppose Conjecture 6 holds, and let ε, δ > 0. Then given any quantum algorithm
Q that makes T queries to a Boolean input X, there exists a deterministic classical algorithm
that makes poly(T, 1/ε, 1/δ) queries, and that approximates Q’s acceptance probability to within an
additive constant ε on a 1− δ fraction of inputs.

Proof. Let p(X) be the probability that Q accepts input X = (x1, . . . , xN ). Then Lemma 21 says
that p is a real polynomial of degree at most 2T . Assume Conjecture 6. Then for every such
p, there exists an index i satisfying Infi [p] ≥ w(Var [p] /T ), for some fixed polynomial w. Under
that assumption, we give a classical algorithm C that makes poly(T, 1/ε, 1/δ) queries to the xi’s,
and that approximates p(X) on most inputs X. In what follows, assume X ∈ {0, 1}N is uniformly
random.

set p0 := p
for j := 0, 1, 2, . . .:

if Var [pj] ≤ ε2δ/2
output EY ∈{0,1}N−j [pj(Y )] as approximation for p(X) and halt

else

find an i ∈ [N − j] such that Infi [pj] > w(ε2δ/2T )
query xi, and let pj+1 : R

N−j → R be the polynomial

induced by the answer

When C halts, by assumption Var [pj] ≤ ε2δ/2. By Markov’s inequality, this implies

Pr
X∈{0,1}N−j

[|pj(X) − E [pj]| > ε] <
δ

2
,

meaning that when C halts, it succeeds with probability at least 1− δ/2.
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On the other hand, suppose Var [pj ] > ε2δ/2. Then by Conjecture 6, there exists an index
i∗ ∈ [N ] such that

Inf i∗ [pj] ≥ w

(
Var [pj ]

T

)
≥ w

(
ε2δ

2T

)
.

Thus, suppose we query xi∗ . Since X is uniformly random, xi∗ will be 0 or 1 with equal probability,
even conditioned on the results of all previous queries. So after the query, our new polynomial
pj+1 will satisfy

Pr
[
pj+1 = pj|xi∗=0

]
= Pr

[
pj+1 = pj|xi∗=1

]
=

1

2
,

where pj|xi∗=0 and pj|xi∗=1 are the polynomials on N−j−1 variables obtained from pj by restricting
xi∗ to 0 or 1 respectively. Therefore

E
xi∗∈{0,1}

[Inf [pj+1]] =
1

2

(
Inf
[
pj|xi∗=0

]
+ Inf

[
pj|xi∗=1

])

=
1

2


∑

i 6=i∗

Infi
[
pj|xi∗=0

]
+
∑

i 6=i∗

Inf i
[
pj|xi∗=1

]



=
∑

i 6=i∗

Infi [pj]

= Inf [pj ]− Infi∗ [pj]

≤ Inf [pj ]− w

(
ε2δ

2T

)
.

By linearity of expectation, this imples that for all j,

E
X∈{0,1}N

[Inf [pj ]] ≤ Inf [p0]− jw

(
ε2δ

2T

)

But recall from Lemma 20 that
Inf [p0] ≤ deg (p0) ≤ 2T.

It follows that C halts after an expected number of iterations that is at most

Inf [p0]

w(ε2δ/2T )
≤ 2T

w(ε2δ/2T )
.

Thus, by Markov’s inequality, the probability (over X) that C has not halted after 4T
δ·w(ε2δ/2T )

iterations is at most δ/2. Hence by the union bound, the probability over X that C fails is at most
δ/2 + δ/2 = δ. Since each iteration queries exactly one variable and

4T

δ · w(ε2δ/2T ) = poly(T, 1/ε, 1/δ),

this completes the proof.
An immediate corollary is the following:

Corollary 23 Suppose Conjecture 6 holds. Then Dε+δ(f) ≤ (Qε(f)/δ)
O(1) for all Boolean func-

tions f and all ε, δ > 0.
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Proof. Let Q be a quantum algorithm that evaluates f(X), with bounded error, on a 1−ε fraction
of inputs X ∈ {0, 1}N . Let p(X) := Pr [Q accepts X]. Now run the classical simulation algorithm
C from Theorem 22, to obtain an estimate p̃(X) of p(X) such that

Pr
X∈{0,1}N

[
|p̃(X) − p(X)| ≤ 1

10

]
≥ 1− δ.

Output f(X) = 1 if p̃(X) ≥ 1
2 and f(X) = 0 otherwise. By the theorem, this requires poly(T, 1/δ)

queries to X, and by the union bound it successfully computes f(X) on at least a 1− ε− δ fraction
of inputs X.

We also get the following complexity-theoretic consequence:

Theorem 24 Suppose Conjecture 6 holds. Then P = P#P implies BQPA ⊂ AvgPA with proba-
bility 1 for a random oracle A.

Proof. Let Q be a polynomial-time quantum Turing machine that queries an oracle A, and
assume Q decides some language L ∈ BQPA with bounded error. Given an input x ∈ {0, 1}n, let
px(A) := Pr

[
QA(x) accepts

]
. Then clearly px(A) depends only on some finite prefix B of A, of

size N = 2poly(n). Furthermore, Lemma 21 implies that px is a polynomial in the bits of B, of
degree at most poly(n).

Assume Conjecture 6 as well as P = P#P. Then we claim that there exists a deterministic
polynomial-time algorithm C such that for all Q and x ∈ {0, 1}n,

Pr
A

[
|p̃x(A)− px(A)| >

1

10

]
<

1

n3
, (3)

where p̃x(A) is the output of C given input x and oracle A. This C is essentially just the algorithm
from Theorem 22. The key point is that we can implement C using not only poly(n) queries to
A, but also poly(n) computation steps.

To prove the claim, let M be any of the 2poly(n) monomials in the polynomial pj from Theorem
22, and let αM be the coefficient of M . Then notice that αM can be computed to poly(n) bits of
precision in P#P, by the same techniques used to show BQP ⊆ P#P [11]. Therefore the expectation

E
Y ∈{0,1}N−j

[pj(Y )] =
∑

M

αM

2|M |

can be computed in P#P as well. The other two quantities that arise in the algorithm—Var [pj ]
and Infi [pj]—can also be computed in P#P, since they are simply sums of squares of differences of
pj(X)’s. This means that finding an i such that Infi [pj] > w(ε2δ/T ) is in NP#P. But under the
assumption that P = P#P, we have P = NP#P as well. Therefore all of the computations needed
to implement C take polynomial time.

Now let δn(A) be the fraction of inputs x ∈ {0, 1}n such that |p̃x(A)− px(A)| > 1
10 . Then by

(3) together with Markov’s inequality,

Pr
A

[
δn(A) >

1

n

]
<

1

n2
.

Since
∑∞

n=1
1
n2 converges, it follows that δn(A) ≤ 1

n for all but finitely many values of n, with
probability 1 over A. Assuming this occurs, we can simply hardwire the behavior of Q on the
remaining n’s into our classical simulation procedure C. Hence L ∈ AvgPA.
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Since the number of BQPA languages is countable, the above implies that L ∈ AvgPA for every
L ∈ BQPA simultaneously (that is, BQPA ⊂ AvgPA) with probability 1 over A.

As a side note, suppose we had an extremely strong variant of Conjecture 6, one that implied
something like

Pr
A

[
|p̃x(A)− px(A)| >

1

10

]
<

1

exp(n)
.

in place of (3). Then we could eliminate the need for AvgP in Theorem 24, and show that P = P#P

implies PA = BQPA with probability 1 for a random oracle A.

3.2 Unconditional Results

We conclude this section with some unconditional results. These results will use Theorem 9 of
Dinur et al. [18]: that for every degree-d polynomial p : RN → R such that 0 ≤ p(X) ≤ 1 for
all X ∈ {0, 1}N , there exists a polynomial p̃ depending on at most 2O(d)/ε2 variables such that
‖p̃− p‖22 ≤ ε, where

‖p‖22 := E
X∈{0,1}N

[
p(X)2

]
.

Theorem 9 has the following simple corollary.

Corollary 25 Suppose a quantum algorithm Q makes T queries to a Boolean input X ∈ {0, 1}N .
Then for all α, δ > 0, we can approximate Q’s acceptance probability to within an additive constant

α, on a 1− δ fraction of inputs, by making 2O(T )

α4δ4
deterministic classical queries to X. (Indeed, the

classical queries are nonadaptive.)

Proof. Let p(X) := Pr [Q accepts X]. Then p is a degree-2T real polynomial by Lemma 21.

Hence, by Theorem 9, there exists a polynomial p̃, depending on K = 2O(T )

α4δ4
variables xi1 , . . . , xiK ,

such that
E

X∈{0,1}N
[
(p̃(X)− p(X))2

]
≤ α2δ2.

By the Cauchy-Schwarz inequality, then,

E
X∈{0,1}N

[|p̃(X) − p(X)|] ≤ αδ,

so by Markov’s inequality
Pr

X∈{0,1}N
[|p̃(X)− p(X)| > α] < δ.

Thus, our algorithm is simply to query xi1 , . . . , xiK , and then output p̃(X) as our estimate for p(X).

Likewise:

Corollary 26 Dε+δ(f) ≤ 2O(Qε(f))/δ4 for all Boolean functions f and all ε, δ > 0.

Proof. Set α to any constant less than 1/6, then use the algorithm of Corollary 25 to simulate the
ε-approximate quantum algorithm for f . Output f(X) = 1 if p̃(X) ≥ 1

2 and f(X) = 0 otherwise.

Given an oracle A, let BQPA[log] be the class of languages decidable by a BQP machine able to
make O (log n) queries to A. Also, let AvgPA

|| be the class of languages decidable, with probability

1 − o (1) over x ∈ {0, 1}n, by a P machine able to make poly(n) parallel (nonadaptive) queries to
A. Then we get the following unconditional variant of Theorem 24.
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Theorem 27 Suppose P = P#P. Then BQPA[log] ⊂ AvgPA
|| with probability 1 for a random oracle

A.

Proof. The proof is essentially the same as that of Theorem 24, except that we use Corollary 25
in place of Conjecture 6. In the proof of Corollary 25, observe that the condition

E
X∈{0,1}N

[|p̃(X) − p(X)|] ≤ αδ

implies
E

X∈{0,1}N
[|pµ(X)− p(X)|] ≤ αδ (4)

as well, where pµ(X) equals the mean of p(Y ) over all inputs Y that agree with X on xi1 , . . . , xiK .
Thus, given a quantum algorithm that makes T queries to an oracle string, the computational
problem that we need to solve boils down to finding a subset of the oracle bits xi1 , . . . , xiK such

that K = 2O(T )

α4δ4
and (4) holds. Just like in Theorem 24, this problem is solvable in the counting

hierarchy CH = P#P ∪ P#P
#P ∪ · · · . So if we assume P = P#P, then it is also solvable in P.

In Theorem 24, the conclusion we got was BQPA ⊂ AvgPA with probability 1 for a random
oracle A. In our case, the number of classical queries K is exponential (rather than polynomial)
in the number of quantum queries T , so we only get BQPA[log] ⊂ AvgPA. On the other hand, since
the classical queries are nonadaptive, we can strengthen the conclusion to BQPA[log] ⊂ AvgPA

|| .

4 Open Problems

It would be nice to improve the R(f) = O(Q(f)7 polylogQ(f)) bound for all symmetric problems.
As mentioned earlier, we conjecture that the right answer is R(f) = O(Q(f)2). In trying to
improve our lower bound, it seems best to avoid the use of SetEquality. After all, it is a curious
feature of our proof that, to get a lower bound for symmetric problems, we need to reduce from
the non-symmetric SetEquality problem!

Another problem is to remove the assumption M ≥ N in our lower bound for symmetric
problems. Experience with related problems strongly suggests that this can be done, but one
might need to replace our chopping procedure by something different.

We also conjecture that R(f) ≤ Q(f)O(1) for all partial functions f that are symmetric only
under permuting the inputs (and not necessarily the outputs). Proving this seems to require a
new approach. Another problem, in a similar spirit, is whether R(f) ≤ Q(f)O(1) for all partial
functions f : S → {0, 1} such that S (i.e., the promise on inputs) is symmetric, but f itself need
not be symmetric.

It would be interesting to reprove the R(f) ≤ Q(f)O(1) bound using only the polynomial
method, and not the adversary method. Or, to rephrase this as a purely classical question: for all
X = (x1, . . . , xN ) in [M ]N , let BX be the N ×M matrix whose (i, j)th entry is 1 if xi = j and 0

otherwise. Then given a set S ⊆ [M ]N and a function f : S → {0, 1}, let d̃eg(f) be the minimum
degree of a real polynomial p : RMN → R such that

(i) 0 ≤ p(BX) ≤ 1 for all X ∈ [M ]N , and

(ii) |p(BX)− f(X)| ≤ 1
3 for all X ∈ S.
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Then is it the case that R(f) ≤ d̃eg(f)O(1) for all permutation-invariant functions f?
On the random oracle side, the obvious problem is to prove Conjecture 6—thereby establishing

that Dε(f) and Qδ(f) are polynomially related, and all the other consequences shown in Section
3. Alternatively, one could look for some technique that was tailored to polynomials p that arise
as the acceptance probabilities of quantum algorithms. In this way, one could conceivably solve
Dε(f) versus Qδ(f) and the other quantum problems, without settling the general conjecture about
bounded polynomials.
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6 Appendix: The Boolean Case

Given a partial Boolean function f : {0, 1}N → {0, 1, ∗}, call f symmetric if f(X) depends only
on the Hamming weight |X| := x1 + · · · + xN . For completeness, in this appendix we prove the
following basic fact:

Theorem 28 R(f) = O(Q(f)2) for every partial symmetric Boolean function f .

For total symmetric Boolean functions, Theorem 28 was already shown by Beals et al. [8],
using an approximation theory result of Paturi [27]. Indeed, in the total case one even has
D(f) = O(Q(f)2). So the new twist is just that f can be partial.

Abusing notation, let f (k) ∈ {0, 1, ∗} be the value of f on all inputs of Hamming weight k
(where as usual, ∗ means ‘undefined’). Then we have the following quantum lower bound:

Lemma 29 Suppose that f (a) = 0 and f (b) = 1 or vice versa, where a < b and a ≤ N/2. Then

Q(f) = Ω
(√

bN
b−a

)
.

Proof. This follows from a straightforward application of Ambainis’s adversary theorem (Theorem
15). Specifically, let A,B ⊆ {0, 1}N be the sets of all strings of Hamming weights a and b
respectively, and for all X ∈ A and Y ∈ B, put (X,Y ) ∈ R if and only if X � Y (that is, xi ≤ yi
for all i ∈ [N ]). Then

Q (f) = Ω

(√
N − a

b− a
· b

b− a

)
= Ω

(√
bN

b− a

)
.

Alternatively, this lemma can be proved using the approximation theory result of Paturi [27],
following Beals et al. [8].

In particular, if we set β := b
N and ε := b−a

N , then Q(f) = Ω(
√
β/ε). On the other hand, we

also have the following randomized upper bound, which follows from a Chernoff bound (similar to
Lemma 11):
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Lemma 30 Assume β > ε > 0. By making O(β/ε2) queries to an N -bit string X, a classical
sampling algorithm can estimate the fraction β := |X| /N of 1 bits to within an additive error ±ε/3,
with success probability at least 2/3.

Thus, assume the function f is non-constant, and let

γ := max
f(a)=0,f(b)=1

√
bN

b− a
. (5)

Assume without loss of generality that the maximum of (5) is achieved when a < b and a ≤ N/2, if
necessary by applying the transformations f(X) → 1−f(X) and f(X) → f(N−X). Now consider
the following randomized algorithm to evaluate f , which makes T := O(γ2) queries:

Choose indices i1, . . . , iT ∈ [N ] uniformly at random with replacement

Query xi1 , . . . , xiT
Set k := N

T (xi1 + · · ·+ xiT )

If there exists a b ∈ {0, . . . , N} such that f (b) = 1 and |k − b| ≤
√
bN
3γ

output f(X) = 1
Otherwise output f(X) = 0

By Lemma 30, the above algorithm succeeds with probability at least 2/3, provided we choose
T suitably large. Hence R(f) = O(γ2). On the other hand, Lemma 29 implies that Q(f) = Ω(γ).
Hence R(f) = O(Q(f)2), completing the proof of Theorem 28.

7 Appendix: 1-Norm versus 2-Norm

As mentioned in Section 1.3, in the original version of this paper we stated Conjecture 6, and all
our results assuming it, in terms of L1-influences rather than L2-influences. Subsequently, Arturs
Bačkurs discovered a gap in our L1-based argument. In recent work, Bačkurs and Bavarian [7]
managed to fill the gap, allowing our L1-based argument to proceed. Still, the simplest fix for the
problem Bačkurs uncovered is just to switch from L1-influences to L2-influences, so that is what
we did in Section 3 (and in our current statement of Conjecture 6).

Fortunately, it turns out that the L1 and L2 versions of Conjecture 6 are equivalent, so making
this change does not even involve changing our conjecture. For completeness, in this appendix we
prove the equivalence of the L1 and L2 versions of Conjecture 6.

As usual, let p : {0, 1}N → [0, 1] be a real polynomial, let X ∈ {0, 1}N , and let Xi denote X
with the ith bit flipped. Then the L1-variance Vr [p] of p and the L1-influence Infi [p] of the ith

variable xi are defined as follows:

Vr [p] := E
X∈{0,1}N

[|p(X)− E [p]|] ,

Inf1i [p] := E
X∈{0,1}N

[∣∣p(X)− p(Xi)
∣∣] .

The L1 analogue of Conjecture 6 simply replaces Var [p] by Vr [p] and Inf i [p] by Inf1i [p]:

Conjecture 31 (Bounded Polynomials Have Influential Variables, L1 Version) Let p : RN →
R be a degree-d real polynomial such that 0 ≤ p(X) ≤ 1 for all X ∈ {0, 1}N . Then there exists an
i ∈ [N ] such that Inf1i [p] ≥ (Vr [p] /d)O(1).
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We now prove the equivalence:

Proposition 32 Conjectures 6 and 31 are equivalent.

Proof. First assume Conjecture 6. By the Cauchy-Schwarz inequality,

Infi [p] = E
X∈{0,1}N

[
(p(X)− p(Xi))2

]
≥
(

E
X∈{0,1}N

[∣∣p(X)− p(Xi)
∣∣]
)2

= Inf1i [p]
2 .

Also, since p(X) ∈ [0, 1],

Vr [p] = E
X∈{0,1}N

[|p(X)− E [p]|] ≥ E
X∈{0,1}N

[
(p(X)− E [p])2

]
= Var [p] .

Hence there exists an i ∈ [N ] such that

Infi [p] ≥ Inf1i [p]
2 ≥

(
Vr [p]

d

)O(1)

≥
(
Var [p]

d

)O(1)

and Conjecture 31 holds.
Likewise, assume Conjecture 31. Then we have Inf1i [p] ≥ Infi [p] since p(X) ∈ [0, 1], and

Var [p] ≥ Vr [p]2 by the Cauchy-Schwarz inequality. Hence there exists an i ∈ [N ] such that

Inf1i [p] ≥ Infi [p] ≥
(
Var [p]

d

)O(1)

≥
(
Vr [p]

d

)O(1)

and Conjecture 6 holds.

8 Appendix: Equivalent Form of Conjecture 4

Recall Conjecture 4, which said (informally) that any quantum algorithm that makes T queries to
X ∈ {0, 1}N can be simulated to within ±ε additive error on a 1− δ fraction of X’s by a classical
algorithm that makes poly(T, 1/ε, 1/δ) queries. In Section 1.1, we claimed that Conjecture 4 was
equivalent to an alternative conjecture, which we now state more formally:

Conjecture 33 Let S ⊆ {0, 1}N with |S| ≥ c2N , and let f : S → {0, 1}. Then there exists a
deterministic classical algorithm that makes poly(Q(f), 1/α, 1/c) queries, and that computes f(X)
on at least a 1− α fraction of X ∈ S.

In this appendix, we justify the equivalence claim. We first need a simple combinatorial lemma.

Lemma 34 Suppose we are trying to learn an unknown real p ∈ [0, 1]. There are k “hint bits”
h1, . . . , hk, where each hi is 0 if (i− 1) /k ≤ p or 1 if i/k ≥ p (and can otherwise be arbitrary).
However, at most b < k/2 of the hi’s are then corrupted by an adversary, producing the new string
h′1, . . . , h

′
k. Using h′1, . . . , h

′
k, one can still determine p to within additive error ± (b+ 1) ε.

Proof. Given the string h′ = (h′1, . . . , h
′
k), we apply the following correction procedure: we repeat-

edly search for pairs i < j such that h′i = 1 and h′j = 0, and “delete” those pairs (that is, we set
h′i = h′j = ∗, where ∗ means “unknown”). We continue for t steps, until no more such pairs exist.
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Next, we delete the rightmost b− t zeroes in h′ (replacing them with ∗’s), and likewise delete the
leftmost b− t ones. Finally, as our estimate for p, we output

q :=
i∗ + j∗ − 1

2k
,

where i∗ is the index of the rightmost 0 remaining in h′ (or i∗ = 0 if no 0’s remain), and j∗ is the
index of the leftmost 1 remaining (or j∗ = k + 1 if no 1’s remain).

To show correctness: every time we find an i < j pair such that h′i = 1 and h′j = 0, at least
one of h′i and h′j must have been corrupted by the adversary. It follows that t ≤ b, where t is
the number of deleted pairs. Furthermore, after the first stage finishes, every 1 is to the right of
every 0, at most b− t of the remaining bits are corrupted, and the bits that are corrupted must be
among the rightmost zeroes of the leftmost ones (or both). Hence, after the second stage finishes,
every h′i = 0 reliably indicates that p ≥ (i− 1) /k, and every h′j = 1 reliably indicates that p ≤ j/k.
Moreover, since only 2b bits are deleted in total, we must have j∗ − i∗ ≤ 2b + 1, where i∗ and j∗

are as defined above. It follows that |p− q| ≤ (b+ 1) ε.

Theorem 35 Conjectures 4 and 33 are equivalent.

Proof. We start with the easy direction, that Conjecture 4 implies Conjecture 33. Given f : S →
{0, 1} with |S| ≥ c2N , let Q be a quantum algorithm that evaluates f with error probability at
most 1/3 using T queries. Let p(X) be Q’s acceptance probability on a given input X ∈ {0, 1}N
(not necessarily in S). Then by Conjecture 4, there exists a deterministic classical algorithm
that approximates p(X) to within additive error ±ε on a 1 − δ fraction of X ∈ {0, 1}N using
poly(T, 1/ε, 1/δ) queries. If we set (say) ε := 1/7 and δ := αc, then such an approximation lets
us decide whether f(X) = 0 or f(X) = 1 for a 1 − α fraction of X ∈ S, using poly(T, 1/α, 1/c)
queries.

We now show the other direction, that Conjecture 33 implies Conjecture 4. Let Q be a T -query
quantum algorithm, let p(X) be Q’s acceptance probability on input X, and suppose we want to
approximate p(X) to within error ±ε on at least a 1 − δ fraction of X ∈ {0, 1}N . Let ǫ := ε/3.
Assume for simplicity that ǫ has the form 1/k for some positive integer k; this will have no effect
on the asymptotics. For each j ∈ [k], let

Sj :=

{
X : p(X) ≤ j − 1

k
or p(X) ≥ j

k

}
,

and define the function fj : Sj → {0, 1} by

fj(X) :=

{
0 if p(X) ≤ (j − 1) /k
1 if p(X) ≥ j/k.

By Proposition 13, we have Q(fj) = O(kT ) for all j ∈ [k]. Also, note that

E
j
[|Sj|] ≥

(
1− 1

k

)
2n.

By Markov’s inequality, this implies that there can be at most one j ∈ [k] (call it j∗) such that
|Sj | < 2n−2. Likewise, note that for every X ∈ {0, 1}N , there is at most one j ∈ [k] such that
X /∈ Sj.

Together with Conjecture 33, the above facts imply that, for all j 6= j∗ and α > 0, there exists
a deterministic classical algorithm Aj,α, making poly(T, 1/α) queries, that computes fj(X) on at
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least a 1−α fraction of all X ∈ Sj . Suppose we run Aj,α for all j 6= j∗. Then by the union bound,

for at least a 1− kα fraction of X ∈ {0, 1}N , there can be at most two j ∈ [k] such that Aj,α fails
to compute fj(X): namely, j∗, and the unique j (call it j′) such that X /∈ Sj′ . Thus, suppose Aj,α

succeeds for all j /∈ {j∗, j′}. By Lemma 34, this implies that p(X) has been determined up to an
additive error of ±3ǫ = ±ε. Hence, we simply need to set α := δ/k, in order to get a classical
algorithm that makes k · poly(T, k/δ) = poly(T, 1/ε, 1/δ) queries, and that approximates p(X) up
to additive error ±ε for at least a 1− δ fraction of X ∈ {0, 1}N .
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