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Abstract. Model theory is a branch of mathematical logic that investi-
gates the logical properties of mathematical structures. It has been quite
successfully applied to computational complexity resulting in an area
of research called descriptive complexity theory. Descriptive complexity
is essentially a syntactical characterization of complexity classes using
logical formalisms. However, there are still much more of model theory
technologies that have not yet been explored by complexity theorists,
especially the subarea of classification/stability theory. This paper is di-
vided into two parts. The first part quickly surveys the main results of
descriptive complexity theory. In the second part we introduce the field of
classification/stability theory, then give the outlines of a research project
whose aim is to apply this theory to give a semantical characterization
of complexity classes. This would initiate a brand new research area.
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1 Introduction

Model theory is the branch of mathematical logic that investigates the rela-
tionship between formal languages and their semantics. From a mathematical
perspective model theory studies the logical properties of mathematical struc-
tures. It was developed in the early years of the twentieth century by pioneering
logicians such as Löwenheim (1915), Skolem (1920), Gödel (1930), Tarski (1931),
and Malcev (1936). It gained its distinguishing identity as a separate branch of
mathematical logic with the work of Henkin, Robinson, and Tarski in the late
1940’s and early 1950’s [9].

Since the beginning till the early 1950’s, model theory exclusively investigated
infinite mathematical structures. This was due to two main reasons: (1) model
theory was developed as part of the earnest effort towards developing a solid
foundation of mathematics and (2) many of the nice abstract logical properties
of classes of infinite structures axiomatized by first-order logic fail in the finite
case.

Finite structures started getting attention in 1950; this year witnessed the
birth of finite model theory identified with Trakhtenbrot’s result stating that
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logical validity over finite models is not recursively enumerable. A direct conse-
quence of this result is the failure of completeness over classes of finite structures.
Other negative results (as opposed to the infinite case) concerning the model-
theoretic behavior of classes of finite models include the failure of compactness,
some preservation theorems such  Los-Tarski and Lyndon’s theorems, Craig’s
theorem, and Beth’s theorem.

Despite these negative results, finite model theory survived and established
itself as an independent field of study. Two things might have helped that: the
need for developing a foundation of finite mathematics and the birth of descrip-
tive complexity theory.

2 Descriptive Complexity Theory

In the following subsections we give a quick survey of descriptive complexity.

2.1 Algorithmic complexity

In 1952 H. Scholz, G. Kreisel, and L. Henkin [31] defined the spectrum of a
first-order sentence σ to be the set of natural numbers n such that σ has a finite
model of cardinality n. They asked for a characterization of such spectrum.
Subsequently, several people had worked on the computational aspects of this
problem such as G. Asser in 1955 [1], A. Mostowski in 1956 [29], and J. Bennett
in 1962 [5]. They had shown that the spectra lies between the third and fourth
levels of the Grzegorczyk hierarchy (the third level coincides with the class of
functions computable in linear space and the fourth level coincides with the class
of elementary computable functions). Then N. Jones and A. Selman in 1972 [24,
25] showed that spectra and context-sensitive languages are closely related; in
particular they proved that the spectra are just those sets acceptable by non-
deterministic Turing machines in exponential time 2O(n).

In the early seventies Ronald Fagin studied generalized spectra: a generalized
spectrum is the class of finite models of an existential second-order sentence.
Consequently in 1974 he proved his celebrated theorem that generalized spec-
tra coincides with the complexity class NP ; in other words NP can be exactly
captured by existential second-order logic [13]. This is considered by many to
mark the beginning of the new research area of descriptive complexity which
investigates how hard it is to express the computational problem in some logical
formalism. Hence, the resources considered are basically logical such as the num-
ber of object variables, quantifier depth, type, and alternation, sentence length
(finite vs. infinite), inductive vs. non-inductive capabilities, etc.

The work done by Fagin in 1974 and most of the work done afterwards
have been leaning towards computation in the computation/logic duality. This
can be described as the computerization of logic. The converse direction, the
logicization of computation, has recently started to get attention with the work of
A. Blass, Y. Gurevich, and S. Shelah on the Choiceless Polynomial Time model
[6]. As a direct consequence of Fagin’s theorem it follows that coNP is exactly



captured by universal second-order logic. Fagin’s result has also been generalized
by Stockmeyer [42] to show that the whole of the polynomial hierarchy is exactly
captured by second-order logic.

What about the complexity-theoretic behavior of first-order logic FOL? Al-
though this logic is very powerful over infinite structures, its expressibility over
finite structures is surprisingly too weak. It has to be augmented with additional
logical resources in order to be useful enough to capture important complexity
classes. Such resources include among others generalized quantifiers, transitive
closure operators, inductive capabilities, infinitude of formulas.

The simplest operator to add to FOL is the deterministic transitive closure
DTC. Let G = (V, E) be a graph, then

DTC(G) ={(a, b) ∈ E : there exists n > 0 and a0, . . . , an ∈ V

such that a0 = a and an = b and for each i < n,

ai+1 is the unique a for which (ai, a) ∈ E}

In other words, DTC(G) is the set of ordered pairs (a, b) such that there is
a deterministic path in G from vertex a to vertex b.

An ordered structure is a structure with a built-in binary relation symbol (not
necessarily in the vocabulary) that is always interpreted as a linear ordering over
the universe. Let FO(DTC) denote first-order logic augmented with the DTC
operator and let L denote the logspace complexity class. Then L can be logically
characterized as follows.

Theorem 1 ([21]). L over ordered finite structures is captured by FO(DTC).

The next step is to augment FOL with the more powerful (transitive closure)
TC operator. TC behaves similarly to DTC except that the path between any
two vertices in the closure need not be deterministic (vertices along the path may
have multiple neighbors). As expected this adds a nondeterministic capability
to the logic which will be seen below when related to a complexity class. First,
we give an example that illustrates the working of the TC operator.

Example 1. Consider the language of groups. A simple group is a nontrivial
group whose only normal subgroups are the trivial group and the group itself.
The following FO(TC) sentence defines the class of simple groups.

∃x(x 6= 1) ∧ ∀x
(

x 6= 1 → ∀y[TC
u,v

∃w(u(w−1xw)) = v](1, y)
)

The first conjunct expresses the fact that the group is non-trivial and the
second one implies that the normal closure of any element, excluding the identity,
equals the whole group.

Let NL denote nondeterministic logspace. As expected, the following holds.

Theorem 2 ([21]). NL over ordered finite structures is captured by FO(TC).



Using FO(TC), N. Immerman [22] and R. Szelepcsényi [43] have discovered
the surprising fact that nondeterministic space classes are closed under comple-
mentation.

Another important operator added to FOL in order to improve its express-
ibility power is the least fixpoint operator. The resulting logic has inductive ca-
pabilities; it is called fixpoint logic and denoted by LFP . Consider a first-order
language L and let S be a relation symbol of arity n such that S 6∈ L. Consider
an (L ∪ {S})-formula ϕ(x̄, S) where |x̄| = n and ϕ is positive in S. Let A be a
finite L-structure. Define the following inductive sequence of subsets of An.

S0 = ∅

Si+1{ā ∈ An : A |= ϕ(ā, Si)}

By the positivity of S, the sequence Si is monotonically increasing, that is
S0 ⊆ S1 ⊆ · · · . By the finiteness of A this sequence will stop after a finite number
of steps, that is there exists some j such that Sj = Sk for any k ≥ j. Let j be
minimal, then Sj is called the least fixpoint of ϕ(x̄, S), and is usually denoted
by S∞. N. Immerman [20] and M. Vardi [44] have independently characterized
the polynomial time class P as follows.

Theorem 3 ([20, 44]). P over ordered finite structures is captured by LFP .

This theorem fails if the ordering is removed, that is LFP is too weak to
capture the whole of P . It is still an open problem whether there exists a logic
that characterizes P , the problem can be stated more formally as follows [8].

Question 1 Is there a recursively enumerable listing of a set of Turing machines
that accept exactly all the polynomial-time graph properties?

Relaxing LFP by removing the monotonicity condition would result in a
new logic called partial fixpoint logic PFP . Note that in such logic the fixpoint
operator is not guaranteed to converge. Divergence can be detected on finite
structures after a finite number of iterations, in this case the fixpoint is taken to
be the empty set. Let PSpace denote the class of problems decidable in polyno-
mial space, then

Theorem 4 ([18, 19, 44]). PSpace over ordered finite structures is captured by
PFP .

2.2 Circuit complexity

Circuit complexity is the branch of computational complexity that uses circuits
of boolean logic gates as its model of computation. Circuits are directed acyclic
graphs in which the input bits are placed at the leaves and signals proceed up
the circuit toward the root, thus a gate is never reused during a computation
[23].



Assume a polynomially bounded function t(n). Let AC[t(n)] denote the uni-
form family of boolean circuits {Cn}n∈N that have polynomial size, whose depths
are bounded by O(t(n)), and consist of AND and OR gates that have unbounded
fanin. Let FO[t(n)] denote the set of properties definable by a uniform sequence
of sentences {σn} such that each sentence σn has length O(t(n)) and has a
bounded number of variables independent of n. Let FO[t(n)](<, +,×) denote
FO[t(n)] extended with linear ordering and arithmetic. Then AC can be logi-
cally characterized as follows.

Theorem 5 ([23]). AC[t(n)] is captured by FO[t(n)](<, +,×).

The logical resource mainly used in this theorem to characterize AC is the
length of the defining first-order sentence. Instead of using one finite sentence
to define a given problem, we now use an infinite increasing chain of sentences,
each for a given input length, to describe it. This actually parallels the nature of
the circuit model of computation where a given problem is solved by an infinite
increasing chain of circuits.

In the remaining part of this subsection we shall return to the use of single
finite sentences. First we extend FOL with the majority quantifier. Let ϕ(x, ȳ) be
a first-order formula with free variables x, ȳ. Then (Maj x)ϕ(x, ȳ) is a formula
in FO(Maj) interpreted as follows: A |= (Maj x)ϕ(x, b̄) iff |{a ∈ A : A |=

ϕ(a, b̄)}| ≥ ⌈ |A|
2 ⌉.

The circuit class TC0 is the class of problems decidable by a family of boolean
circuits that have polynomial size, constant depth, and unbounded fanin; the
gates allowed in such circuits are: AND , OR, NOT , and threshold gates (a
threshold gate returns 1 if at least half of its inputs are 1, and 0 otherwise).
The following theorem logically characterizes TC0.

Theorem 6 ([4]). TC0 is captured by FO(Maj; <, +,×).

Another descriptive characterization of TC0 has been obtained through the
use of counting quantifiers. Let FOC denote FOL augmented with counting
quantifiers which are defined as follows. Let ϕ(x, ȳ) be a first-order formula with
free variables x, ȳ. Then ∃≥zxϕ(x, ȳ) is a formula in FOC where x is bounded and
z, ȳ are free. Given a structure A and parameters b̄ ∈ A, then A |= ∃≥zxϕ(x, b̄)
iff |{a ∈ A : A |= ϕ(a, b̄)}| ≥ z. Then TC0 can be characterized as follows.

Theorem 7 ([4]). TC0 is captured by FOC(<, +,×).

An important open problem in complexity theory is whether TC0 ( L. One
step towards the solution of this problem has been done by M. Ruhl in [30].
As mentioned above TC0 can be characterized by FOC(<, +,×). Ruhl proved
that the logic resulting from the absence of multiplication is too weak to capture
L, in other words FOC(<, +) ( L. The proof is based on giving an explicit
winning strategy for the duplicator in an Ehrenfeucht-Fräıssé game over two
graphs, one of which has a deterministic path between two designated vertices
whereas the other graph does not have such path. However, the proof breaks
down when adding the multiplication operation to the language because of the



combinatorial nature of the resulting structure which is much more involved
than the case with only the addition operation.

3 Semantical Characterization of Complexity Classes

So far the application of model theory to computational complexity has been
within the realm of descriptive complexity theory. As seen above descriptive
complexity is essentially a syntactical characterization of complexity classes.
However, there is a rich deep arena of research in model theory which, to the
best of our knowledge, has not yet been explicitly and satisfactorily applied
to computational complexity. This is the research area of classification/stability
theory.

3.1 Historical background

Classification theory is a sophisticated very well-developed subarea of pure model
theory. The work in classification theory was initiated in 1965 by M. Morley’s
celebrated categoricity theorem [28]: A first-order theory in a countable language
is categorical in an uncountable cardinal κ (has only one model of cardinality κ
up-to isomorphism) if and only if it is categorical in all uncountable cardinals.
Saharon Shelah’s taxonomy of first-order theories by the stability classification
laid the foundation for most model-theoretic research in the last 40 years [2].
He first introduced the dichotomy of stable vs. unstable theories in 1969 [32]
as an aid to count the number of non-isomorphic models of a theory in a given
cardinality. In the following few years he focused on the classification problem
[33, 36, 35, 34, 37] which , roughly speaking, aims at categorizing first-order com-
plete theories into two kinds: those whose models have a good structure theory
and those whose models are ill-behaved [16]. The main results for the countable
first-order case had been reached by the mid 1980’s [38, 40]. Every countable
theory T falls into one of two classes: either (1) T is intractable, that is, for all
sufficiently large κ, T has 2κ models (which is the maximum possible) or (2) the
number of models of T of cardinality κ is bounded well below 2κ; furthermore
every model of T can be decomposed as a tree of countable models [2]. For sev-
eral accounts of the subject the interested reader should consult S. Shelah [39],
W. Hodges [15], D. Lascar [26], and J. Baldwin [3].

This line of research has resulted in a huge rich body of model-theoretic
concepts, technologies, tools, and theorems. In the following subsections we will
introduce the classification/stability theory, its restriction to finite models, and
its potential application to computational complexity which would lead to a novel
research area that gives a semantical characterization of complexity classes (as
opposed to descriptive complexity).

3.2 Classification/Stability theory

The mainstream research in model theory since the seventies have been focusing
on the development of classification/stability theory for classes of infinite struc-



tures. Let K = (K,�
K

) be a class K of structures with the same vocabulary
along with a partial ordering �

K
defined over K. For example, K could be the

class of models of a first-order theory with the regular elementary substructure
relation. Let λ be a cardinal and let Kλ = {M ∈ K : |M | = λ}. Then classi-
fication theory aims at answering questions about Kλ of the following nature
[14].

1. Is Kλ 6= ∅?

2. Does Kλ 6= ∅ imply that Kλ+ 6= ∅?

3. If K is λ+-categorical (|Kλ+ | = 1 up-to isomorphism), does that imply it is
λ-categorical? (downward transfer of categoricity)

4. If K is λ-categorical, does that imply it is λ+-categorical? (upward transfer
of categoricity)

5. What are the possible functions λ 7−→ |Kλ|?
6. Under what conditions on K it is possible to find a nice independence rela-

tion on subsets of every M ∈ K ? (this is a generalization of linear indepen-
dence in vector spaces or algebraic independence in fields)

First-order stability theory is the main technology used to develop a classi-
fication theory for first-order logic: the study of the internal structure of mod-
els was developed to provide classifications of those models. First-order stable
classes behave very nicely and have a well-defined dimension theory [7] based on
an independence relation called forking [7, 27].

Let L(τ) denote first-order logic with vocabulary τ .

Definition 1 (Types). Let M be a τ -structure and let a ∈ M .

1. Define the type (sometimes called the pure type) of a inside M as follows.

tp(a,M) = {ϕ(x) ∈ L(τ) : M |= ϕ(a)}

2. Let B ⊆ M . Define the type of a over B inside M as follows.

tp(a/B,M) = {ϕ(x, b̄) ∈ L(τ ∪ {b̄}) : b̄ ∈ B and M |= ϕ(a, b̄)}

Definition 2 (Stability).

1. Let T be a first-order theory and let λ be an infinite cardinal. We say that
T is stable in λ if for every M |= T and for every A ⊆ M such that |A| ≤ λ,
the total number of types over A that are realized in M is at most λ. In
other words the number of types over sets of cardinality at most λ grows
polynomially with λ. (as opposed to the exponential growth in the case of
unstability)

2. Let K be a class of structures. We say that K is stable in λ if for every
M ∈ K and for every A ⊆ M with |A| ≤ λ, the total number of ‘types’ over
A realized in M is at most λ.



The second part of this definition is more general since K need not be first-
order axiomatizable and consequently the notion of K -‘type’ is more general
(need not be first-order). For example, it can be the class of models of a theory
defined in any logic such as Lω1ω, or even need not be associated with any logic
such as the case of abstract elementary classes [2, 14, 41] (where a class is defined
by a set of purely semantical axioms).

Roughly speaking, a set of elements have the same type means that they
are very much structurally alike as individuals. So stability implies polynomial,
rather than exponential, growth of the total number of really distinct elements
in terms of the number of parameters used to induce their types. Stability in
general implies a well-behaved class. For example in the first-order case stability
implies the existence of infinite arbitrarily large sets of indiscernible elements;
indiscernibility is much stronger measure of similarity among a set of elements
than a type is.

3.3 Stability theory for finite models

One of the fundamental difficulties to developing model theory, and in particular
classification theory, for finite structures is the choice of an appropriate ‘sub-
model’ relation. In classification theory for elementary classes (the first-order
case), the notion of elementary submodel (M � N ) has been used quite success-
fully; it is a strengthening of the notion of submodel (M ⊆ N ). Unfortunately,
for finite structures M � N always implies that M = N . Moreover, in many
cases even M ⊆ N implies M = N (e.g., when N is a group of prime order)
[12]. So a substitute is needed.

To the best of our knowledge there have been only three attempts to de-
veloping a classification/stability theory for finite models. The first of these is
given in an unpublished article by D. Ensley and R. Grossberg [12]. In this
article the authors started a project whose ultimate goal is to have a decompo-
sition theorem for finite structures like the theorem for finite abelian groups; a
finite structure be decomposed into a class of structures that have certain nice
properties (in some sense this class converges to the original structure). The ap-
proach taken is basically syntactical. They directly adapt the stability-theoretic
notions developed for elementary classes to the finite case through cardinality
restrictions. For example, (M, ϕ(x, y)) has the n-order property if there exists
{ai : i < n} ⊆ M such that M |= ϕ(ai, aj) if and only if i < j. Given some apri-
ori properties they define a class K = (K,�

K
) that satisfies three basic axioms:

(i) a finitary restricted version of elementary substructure (and consequently a
restricted form of the Tarski-Vaught test), (ii) a finitary restricted version of
saturation (realizing its own induced types), and (iii) a property similar to the
one in first-order model theory which guarantees that types over models are sta-
tionary (have unique nonforking extensions). Some properties of �

K
are proved

such as transitivity and coherence. A sort of independence relation called ‘stable
amalgamation’ is defined and its symmetry is proved.

The second attempt for developing a classification theory for classes of finite
structures is given by T. Hyttinen in [17]. The approach taken here is more



semantical. In his redefinition of stability-theoretic notions, finiteness is treated
as potential (non-uniform) infinity as opposed to both the actual infinity assumed
in first-order model theory and the actual finiteness assumed in the first approach
mentioned above. For example, in his version of the order property, a formula
ϕ(x, y) has this property if for every n < ω, there are a model M ∈ K and
{ai : i < n} ⊆ M such that M |= ϕ(ai, aj) if and only if i < j (also a coherent
sequence is defined that unifies all these partial finite sequences into one sequence
of length ω). K is defined to satisfy three basic axioms: (i) a sort of bounded
elementary equivalence among all models in K (for example with respect to the
bounded-variable logic Ln), (ii) a sort of amalgamation (to enable an effective
definition of types), and (iii) finiteness of the number of types. Some stability-
theoretic notions and results were obtained in this framework, for example: (i)
the equivalence between stability and the absence of the order property in K

and (ii) the equivalence between stability and the well-definededness of Shelah’s
ω-rank [17] for all types in K .

The third attempt is due to M. Djordjević in [10]. His approach is syntactical,
however, finite models is not the main focus of the paper. The main goal is to
study complete Ln-theories (theories in bounded-variable logic) and to transfer
concepts and methods from first-order stability theory to this context. Finite
models are investigated in Section 4 after the machinery of the Ln-stability
theory for infinite models have been developed. Two main results concerning
finite models are obtained: (i) a finitary version of the downward Löwenheim-
Skolem theorem assuming the Ln-theory is ω-categorical, ω-stable, and does not
have function symbols and (ii) the existence of arbitrarily large finite models
and finite amalgamation.

None of the aforementioned articles has tried to make any connection with
the computational complexity-theoretic properties of finite models.

3.4 Stability-theoretic characterization of complexity classes

Understanding the internal structure of finite models is necessary to understand
the computational complexity-theoretic nature of these models and to provide
complexity-theoretic classifications for them. Therefore, the connection between
the two fields, stability and complexity, is intuitive and natural. In the following
we will try to give the outlines of a research project aiming at connecting the
two fields.

Any such project may be divided into two interdependent parts: (1) devel-
oping a stability theory for classes of finite structures and (2) developing the
relationship between the stability-theoretic properties of these classes and their
complexity-theoretic ones, these latter properties can be either computational
or descriptive.

Two main goals should be considered when defining K = (K,�
K

), and in
particular defining �

K
,: (1) the definition be as purely semantical as possible

(independent of any particular logical formalism) taking the axiom system devel-
oped for abstract elementary classes [2, 14, 41] as a starting point and (2) the def-
inition be as closely related as possible to complexity-theoretic notions. Through



this philosophy there will be no fixed syntactical characterization of �
K

, it is
just required that �

K
satisfies a set of semantical conditions such as closure un-

der isomorphism, coherence, some version of the downward Löwenheim-Skolem
axiom, etc. The restricted form of elementary substructure or the bounded vari-
able substructure as both defined in the aforementioned articles may satisfy
these conditions making the intended axiom system comprehensive and inclu-
sive of many frameworks especially from the complexity-theoretic perspective. If
the semantical axiom system comes up too general to be useful, then syntactical
ingredients should be considered.

Developing the right axiom system for K is the most crucial task as it lays the
foundation for all later work. So this system must be tested thoroughly against
many frameworks of complexity-theoretic interest such as different classes of
graphs (planar, excluding a minor, with hamiltonian cycles, etc), groups, linear
orderings, etc.

Given the axiom system for K , the second major task is to define the basic
model-theoretic concepts such as types and saturation. A set of elements have
the same type means that they are very much structurally alike as individuals,
hence the concept of ‘types’ has natural complexity-theoretic consequences; for
example, having the same type can be a crucial hint for any algorithmic proce-
dure operating over the structure containing these elements. Based on the axiom
system and those basic definitions, primary model-theoretic theorems can be de-
rived such as uniqueness of saturated models (models that contain realizations
of their own induced types).

The third major task is to develop the stability-theoretic notions, tools, tech-
nologies, and theorems for K and correlate them with the complexity-theoretic
properties of K . The work done in the three aforementioned articles would pro-
vide ideas and hints for developing the stability-theoretic notions. As mentioned
above, in model theory stability vs. non-stability corresponds to polynomial vs.
exponential growth of the number of types. Stability on classes of finite struc-
tures should be defined in a similar, though finer, way.

An important concept in stability theory is the notion of an indiscernible
sequence/set, it is a much stronger measure of similarity among a set of elements
than a type is; a group of elements form an indiscernible set if they are very much
structurally alike, not just as individuals, but as tuples formed arbitrarily. The
existence of a large set of indiscernible elements implies that the model containing
them is very simple, hence nicely behaved from the complexity-theoretic perspec-
tive. Two possible approaches can be taken when correlating the complexity-
theoretic and the stability-theoretic properties of K : (1) a purely semantical
approach: roughly speaking a stable class has a small number of types and many
indiscernible elements, hence less structural variations inside the models of the
class, therefore the computational properties of the class are less complex and
(2) semantical-syntactical approach: the idea is to find a syntactical characteri-
zation of stable classes within the context of some logical formalism (similar to
preservation theorems), then use the relatively rich body of results in descriptive



complexity theory to find the corresponding computational complexity-theoretic
properties of K .

The fourth major task is to develop the deeper more advanced concepts of
stability and correlate them with complexity theory. Among these notions are
the order property, the independence property, and the cover property. These are
combinatorial concepts the existence of any of which in K typically implies non-
stability. Another concept that can be borrowed from first-order stability theory
is Morley rank [7, 11]. It is an ordinal assigned to definable subsets of structures
in K which indicates the complexity of their logical definability. Ranking from
the complexity-theoretic perspective should indicate how complex (from a logical
and/or computational perspective) a set is.

Another major advancement in first-order stability theory is the develop-
ment of an independence relation among the subsets of the structures in K .
This relation is a generalization of linear independence in vector spaces or alge-
braic independence in fields. Several such relations have been developed such as
splitting, dividing, and forking. Correlating independence among sets with their
complexity-theoretic behavior is natural and intuitive. For example, a vertex u
is independent from v over w could mean that there is no path from u to v
through w.

The developments done in [17] for these sophisticated notions could provide
starting points, ideas, and hints.
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43. R. Szelepcsényi. The Method of Forced Enumeration for Nondeterministic Au-
tomata. Acta Informatica, 26:279–284, 1988.

44. M. Vardi. The Complexity of Relational Query Languages. In Proc. of the 14th

ACM Symp. on Theory of Computing, pages 137–146, 1982.

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


