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Abstract. Consider a communication network represented by a directed graph G =
(V, E) of n nodes and m edges. Assume that edges in E are partitioned into two sets:
a set C of edges with a fixed non-negative real cost, and a set P of edges whose price
should instead be set by a leader. This is done with the final intent of maximizing
the payment she will receive for their use by a follower, whose goal is to select for
his communication purposes a minimum-cost (w.r.t. to a given objective function)
subnetwork of G. In this paper, we study the natural setting in which the follower
computes a single-source shortest paths tree of G, and then returns to the leader a
payment equal to the sum of the selected priceable edges. Thus, the problem can
be modeled as a one-round two-player Stackelberg Network Pricing Game (SNPG),
with the additional complication that the objective functions of the two players are
asymmetric. Indeed, the revenue provided to the leader by any of her selected edges
is simply its price, while the cost of such an edge in the minimization function of the
follower is given by its price multiplied by the number of paths (emanating from the
source) it belongs to. As we will see, this asymmetry makes the problem much harder
than other previously studied symmetric SNPGs. More precisely, we show that for
any ε > 0, unless P = NP, the problem is not approximable within n1/2−ε, while if G
is unweighted and the leader can only decide which of her edges enter in the solution,
then the problem is not approximable within n1/3−ε. On the positive side, when edges
in C happen to form the common unweighted star network topology, then we show
the problem becomes APX-hard, and admits a 92-approximation algorithm. Further-
more, for general instances, we devise a strongly polynomial-time O(n)-approximation
algorithm, which favorably compares against the powerful single-price algorithm.

Keywords: Communication Networks, Shortest Paths Tree, Stackelberg Games, Net-
work Pricing Games.

1 Introduction

Leader-follower games were introduced by von Stackelberg in the far 1934 [15], with the aim
of modeling heterogeneous markets, namely markets in which one or more players are in
a leadership position, and can in practice manipulate the market to their own advantage,
by directly influencing the choices of the remaining subjects. In the basic formulation, the
game is played by only two players: the leader which moves first, and the follower which
observes the leader’s move and then makes his4 own move, after which the game is over. The
4 Throughout the paper, we adopt the convention of referring to the leader and to the follower

with female and male pronouns, respectively.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 112 (2009)



strategic aspect of the game consists of the fact that the follower computes a solution by
optimizing an objective (public) function, while the leader has her own objective function
which is, by the way, computed over the solution selected by the follower. In this way, to
optimize her revenue, the leader has to entail in her move the optimal response which will
be given by the follower.

Recently, leader-follower games received a considerable attention from the computer
science community, because of the perfect paradigm of heterogenous market expressed by
the Internet. In fact, the Internet is a vast, pervasive electronic market mainly composed of
millions of independent end-users, whose actions are by the way influenced by the owners
of physical/logical portions of the network, like for instance the service providers. Under
this perspective, it turns out to be particularly intriguing the problem of analyzing the
antagonism emerging between leaders and followers whenever a communication subnetwork
must be allocated.

1.1 Stackelberg network pricing games

Network games can be easily regarded as Stackelberg games, as soon as it arises a situation
in which a subset of dominant players control a higher-level decision phase in which part of
the game instance is set, for example by routing a substantial amount of a network flow [6],
or by deciding the cost of a subset of network arcs. In particular, games of this latter type,
which are of interest for this paper, are widely known as Stackelberg Network Pricing Games
(SNPGs).

A SNPG can be formalized as follows: We are given an either directed or undirected graph
G = (V, E = C∪P, C∩P = ∅), with an edge cost function c : e ∈ C 7→ R≥0, while edges in P
need to be priced by the leader. In the following, we assume that n = |V | and m = |C|+ |P |.
Then, the leader moves first and chooses a pricing function p : e ∈ P 7→ R≥0 for her
edges, in an attempt to maximize her objective function f1(p,H(p)), where H(p) denotes
the decision which will be taken by the follower, consisting in the choice of a subgraph of G.
This notation stresses the fact that the leader’s problem is implicit in the follower’s decision.
Once observed the leader’s choice, the follower reacts by selecting a subgraph H = (V ′, E′) of
G which minimizes his objective function f2(p,H), parameterized in p. Note that the leader’s
strategy affects both the follower’s objective function and the set of feasible decisions, while
the follower’s choice only affects the leader’s objective function. Throughout the paper, we
will naturally assume that f1 is price-additive, i.e., f1(p,H(p)) =

∑
e∈P∩E′ p(e). This means,

the leader decides edge prices having in mind that her revenue equals the overall price of
her selected edges.

The most immediate SNPG is that in which we are given two specified nodes in G, say
s, t, and the follower wants to travel along a shortest path in G between s and t (see [14]
for a survey). This problem has been shown to be APX-hard [10], as well as O(log |P |)-
approximable [13]. For the case of multiple followers (each with a specific source-destination
pair), Labbé et al. [11] derived a bilevel LP formulation of the problem (and proved NP-
hardness), while Grigoriev et al. [9] presented algorithms for a restricted shortest path
problem on parallel edges. Another basic SNPG game is that in which the follower wants
to use a minimum spanning tree of G (now considered as undirected). For this game, in [5]
the authors proved the APX-hardness already when the number of possible edge costs is 2,
and gave an O(log n)-approximation algorithm.
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All the above examples fall within the class of SNPGs which can be handled by the
general model proposed in [4], which encompasses all the cases where each follower optimizes
a polynomial-time network optimization problem in which the cost of the network is given
by the sum of prices and costs of contained edges, namely

f2(p,H) =
∑

e∈P∩E′
p(e) +

∑

e∈C∩E′
c(e). (1)

Thus, in this model we have that f1 coincides with f2 as soon as this latter is restricted to the
leader’s edges. To this respect, the leader’s and follower’s maximization and minimization
functions are therefore symmetric. The authors show that all SNPGs in this class can be
tightly approximated within (1 + ε)(Hk +H|P |), for any ε > 0, where k denotes the number
of followers, while Hi is the i-th harmonic number. But what about the case in which the
symmetry does not hold?

1.2 Asymmetric SNPGs

In this paper, we focus on an emblematic asymmetric SNPG, namely that in which the
follower aims at building a single-source shortest paths tree (SPT) S = (V, E′) of G rooted
at a given node r. This game is clearly asymmetric, since if we denote by π(r, v) the path
in S between r and v ∈ V , we have that

f2(p, S) =
∑

e∈P∩E′

∑

v∈V |e∈π(r,v)

p(e) +
∑

e∈C∩E′

∑

v∈V |e∈π(r,v)

c(e).

Such a game, that we name Asymmetric Stackelberg Shortest Paths Tree (ASSPT) game,
finds its motivation in the popularity of the multicast protocol in the Internet: here, the fol-
lower needs to perform a broadcasting from r, but this is implemented without a replication
for each of the destination nodes of the broadcasted message. Thus, just a single message
travels on each SPT edge during a broadcasting, and the revenue for a leader’s edge should
correspondingly be simply equal to its price.

With the study of the ASSPT game we continue in the effort of analyzing the compu-
tational aspect of SPT pricing games, which started in [3] with the symmetric version of
the game (i.e., that in which the leader’s revenue for each selected edge is given by its price
multiplied by the number of paths – emanating from the source – it belongs to). Recall that
for this game, we proved that finding an optimal pricing for the leader’s edges is NP-hard,
as soon as |P | = Θ(n). In the following, as usual we assume that when multiple optimal
solutions are available for the follower, then he selects an optimal solution maximizing the
leader’s revenue.5

1.3 Our results

In this paper, we analyze the ASSPT game under several respects. More precisely, we first
study the complexity of the game, and we show that finding an optimal pricing for the

5 At a first glance, this rule looks in contrast with the antagonistic nature of the game. However,
if this rule is relaxed, then it easy to see that an optimal solution for the leader can only be
reached within any arbitrary small subtractive term.
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leader’s edges is an extremely difficult task, even under strongly restrictive assumptions.
Indeed, we show that for every ε > 0, the ASSPT is not approximable within a factor of
n1/2−ε, unless P=NP. Then, we turn our attention to the unweighted ASSPT game, i.e.,
that in which c(e) = 1 for any e ∈ C, while p : e ∈ P 7→ {1, +∞}, and we prove that
for every ε > 0, the game is not approximable within a factor of n1/3−ε, unless P = NP.
As a further hardness result, we show the APX-hardness of the ASSPT game even for the
restrictive but still significant case in which edges in C have unitary cost and forms a star
rooted at r. Noticeably, this is obtained by proving its equivalence with the well-studied
Rooted Maximum Leaf Outbranching (RMLO) problem, which asks for finding a spanning
arborescence rooted at some prescribed vertex of a digraph with the maximum number of
leaves. This problem is known to be NP-hard already on acyclic digraphs (DAGs) [2], and it
admits a 92-approximation algorithm [7]. Hence, on one hand we obtain an approximation
algorithm for our problem, with the same performance ratio, and on the other hand we
improve the inapproximability result for the RMLO problem, by showing that it is APX-
hard even on DAGs.

Finally, we turn our attention to the development of an approximation algorithm for
the ASSPT game, and we devise a pricing strategy that in O(m + n log n) time returns an
(n − 1)-approximation of the optimal leader’s revenue. Although our algorithm leaves an
O(
√

n) gap open with the corresponding inapproximability result, remarkably its running
time is strongly polynomial (i.e., it does not depend on the numerical values of the costs
of the edges in C). Therefore, it compares favorably with the powerful but non-strongly
polynomial single-price algorithm [4], that has a provably logarithmic approximation ratio
for any symmetric SNPGs in which f2 is of the form (1), while in constrast we show that
for the ASSPT game it can only guarantee an Ω(n) factor.

The rest of the paper is organized as follows: Sections 2 contains inapproximability
results, while Section 3 deals with the unweighted star case. Finally, Section 4 presents our
approximation algorithm, along with a bad instance example for the single-price algorithm.

2 Non-approximability results

In this section we prove that the ASSPT game along with some basic variants of it are very
hard to approximate. For the sake of simplifying the presentation, we first analyze a binary
pricing version of the game, denoted as ASSPT({ρ1, ρ2}), in which the leader is constrained
to price her edges either ρ1 or ρ2. Then, we start by proving the following:

Theorem 1. For every ρ2 > ρ1 ≥ 0 and for every ε > 0, the ASSPT({ρ1, ρ2}) game is not
approximable within a factor of n1/2−ε, unless P = NP, even on DAGs.

Proof. The reduction is from the Maximum Independent Set (MIS) problem, i.e., that of
finding a maximum cardinality set I of vertices of a given undirected graph G such that no
pair of vertices in I is linked by an edge of G. For every ε > 0, the MIS problem is not
approximable within a factor of n1−ε, unless P = NP, where n is the number of vertices of
G [16]. The non-approximability result still holds for the class of connected graphs because
finding an independent set of a graph is equivalent to finding an independent set for each
of its connected components.

The reduction works as follows. From a given undirected connected graph G = (V, E)
of n vertices, we build a 3-layered DAG G′. The first layer of G′ contains the root vertex
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r (w.l.o.g., we can assume that r 6∈ V ), the second layer of G′ contains a copy of all the
vertices of G, while the third layer of G′ contains n copies of all the vertices of G. The set
of fixed-cost edges is the following: there is an edge of cost ρ2 from r to every vertex in the
second layer, and there is an edge of cost ρ = max{0, 2ρ1−ρ2} from a vertex u in the second
layer to all the copies of vertex v in the third layer iff (u, v) ∈ E. The set P of leader’s edges
is the following: there is an edge from r to every vertex in the second layer, and every vertex
u in the second layer has an outgoing edge towards each of its copies in the third layer. An
example of the reduction is shown in Figure 1.

ρ2

ρ2

ev′

ρ2

ev

euu

v′

G G′
ρ

ρ

ρ

ρ

n copies of v

n copies of u

n copies of v′

v

r

v

u

v′

Fig. 1. An example of the reduction defined in Theorem 1 for the graph G on the left side. The
DAG G′ restricted to the vertices u, v, v′ of G is shown on the right side. Dashed edges are fixed-cost
edges while the other edges of G′ are owned by the leader. Observe that the distance from r to v′

does not depend on the price set on the edge (r, v) but depends on the price set on the edge (r, u).
This is because {v, v′} is an independent set of G while {u, v} is not.

By the connectivity property of G, there is a fixed-cost path of length ρ2 from r to
every vertex in the second layer, and a fixed-cost path of length ρ2 + ρ from r to every
vertex in the third layer. Let ρ′ be equal to ρ1 if ρ1 > 0, ρ2 otherwise. In what follows, we
prove that every pricing p : P → {ρ1, ρ2} defines an independent set Ip of G, and yields a
revenue of at most ρ2n + ρ′n|Ip|. Moreover, we also prove that for every independent set
I of G, there exists a pricing p yielding a revenue of at least ρ′n|I|, and such that Ip = I.
The claim then follows from the non-approximability result of the MIS problem and by
observing that G′ has Θ(n2) vertices. Indeed, for the hardest instances of MIS problem,
the maximum independent set I∗ has size at least n1−ε′ , for every ε′ > 0. This implies that
ρ′n|I∗|

ρ2n > n1−ε′′ , for some ε′′.
Let eu denote any leader’s edge from a vertex u in the second layer to one of its copies

in the third layer. For a pricing p, let Ip denote the set of vertices u having some eu with
p(eu) > 0 being part of an SPT of G′. The edge eu is contained in an SPT of G′ iff

∀v ∈ V s.t. (u, v) ∈ E, p(r, u) + p(eu) ≤ p(r, v) + ρ.

From the above inequalities, we have that eu is contained in an SPT of G′ and p(eu) > 0 iff




p(r, u) = ρ1,

p(eu) = ρ′

p(r, v) = ρ2 ∀v ∈ V s.t. (u, v) ∈ E.
(2)
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This implies that if edge eu is in some SPT of G′ and p(eu) > 0, then no SPT of G′ contains
the edge ev, for every vertex v such that (u, v) ∈ E. As a consequence, the set Ip always
defines an independent set of G. Moreover, observe that the revenue yielded by p is at most
ρ2n for the leader’s edges outgoing from r, and at most ρ′n|Ip| for the other edges. Therefore,
the total revenue yielded by p is at most ρ2n + ρ′n|Ip|.

To complete the proof, let I be an independent set of G. The pricing p that satisfies the
equalities in (2) for every eu and for every u ∈ I, yields a revenue of at least ρ′n|I|, and
defines an independent set Ip such that Ip = I. ut

From the above theorem we can easily derive the following general result:

Theorem 2. For every ε > 0, the ASSPT game is not approximable within a factor of
n1/2−ε, unless P = NP, even on DAGs where fixed-cost edges have all cost 1.

Proof. Consider the DAG G′ built in the reduction of Theorem 1 for the case ρ1 = n+1
2

and ρ2 = n, which implies ρ = 1. Build a graph G′′ from a copy of G′ by replacing every
fixed-cost edge of cost k with k edges all having cost 1. Figure 2 shows an example of the
reduction. Observe that G′′ still contains Θ(n2) vertices.

ev′

ev

euu

v′

G G′′
n copies of v

n copies of u

n copies of v′

v

v

u

v′

r

Fig. 2. An example of the reduction defined in Theorem 2 for the graph G on the left side. The
fixed-cost paths going from r to u, v, v′ contains n edges, respectively.

For a feasible pricing p, let Ip denote the set of vertices u having some eu with p(eu) > 1
being part of an SPT of G′. The edge eu is contained in an SPT of G′ iff

∀v ∈ V s.t. (u, v) ∈ E, min {ρ2, p(r, u)}+ p(eu) ≤ min {ρ2, p(r, u)}+ 1.

This implies that if edge eu is in some SPT of G′ and p(eu) > 1, then no SPT of G′ contains
the edge ev, for every vertex v such that (u, v) ∈ E. Therefore, Ip is an independent set of
G. Moreover, p yields a revenue of at most O(n2) + n2|Ip|. In Theorem 1 we have shown
a pricing p in G′ yielding a revenue R of at least ρ2n|I| = n2|I|, where I is a maximum
independent set of G. It is easy to see that pricing G′′ with p yields a revenue of at least R.
This completes the proof. ut

We now turn our attention to the unweighted ASSPT game, i.e., that in which c(e) = 1
for any e ∈ C, while the leader’s price function is restricted to p : e ∈ P 7→ {1,+∞}. Even
in this simplified binary version, the game is very hard:
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Theorem 3. For every ε > 0, the unweighted ASSPT game is not approximable within a
factor of n1/3−ε, unless P = NP, even on DAGs.

Proof. Consider the DAG G′′ defined in the proof of Theorem 2. G′′ has been built from
the DAG G′ defined in Theorem 1 for the case ρ1 = n+1

2 and ρ2 = n, which implies ρ = 1.
From G′′, we built the DAG G′′′, which is obtained by replacing each edge eu by a path

πu of n leader’s edges. Moreover, for every vertex v′ ∈ πu and for every vertex v such that
(u, v) is a unit-cost edge of G′′, we add the unit-cost edge (v, v′) to G′′′. As a consequence,
there is a fixed-cost path of length n + 1 from r to every v′. Figure 3 shows an example of
the reduction. Observe that G′′′ has Θ(n3) vertices.

ru

v′

G G′′′ πv

πu

πv′

n copies of πu

n copies of πv′

n copies of πv

v

v′

u

v

Fig. 3. An example of the reduction defined in Theorem 3 for the graph G on the left side. The
reduction is an extension of the reduction of Theorem 2. The paths πu, πv, and πv′ contains n
priceable edges each.

Let p be a pricing in G′′′ that prices edges either 1 or +∞. Let p′ be a pricing in G′′

defined as follows. For an edge e incident to the root vertex, p′(e) = 1 if p(e) = 1. An edge
eu has a price of i if the first i ≥ 1 edges of the corresponding path πu in G′′′ are contained
in an SPT of G′′′, and no SPT of G′′′ contains the first i+1 edges of the corresponding path
πu in G′′′. All the remaining edges are priced with an arbitrarily large value.6 Observe that
if p yields a revenue of R, than so does p′. Indeed, an edge (r, u) is contained in an SPT of
G′′ iff it is contained in an SPT of G′′′. Furthermore, an edge eu with price i is contained
in an SPT of G′′ iff the first i edges of the corresponding path πu are contained in an SPT
of G′′′.

In the proof of Theorem 2, we have shown that p′ defines an independent set Ip′ of G, and
yields a revenue R′ of at most O(n2) + n2|Ip′ |. As a consequence, p defines an independent
set Ip = Ip′ of G, and yields a revenue R of at most R′. Let I be a maximum independent
set of G. Let p be a pricing in G′′′ which prices an edge e with 1 iff e = (r, u), or e ∈ E(πu)
and u ∈ I. Observe that p yields a revenue of |Ip|+ n2|Ip|. This completes the proof. ut

3 Dealing with unweigthed stars

In this section we focus on instances where edges in C have cost 1 and form a star emanating
from the source node r. We show that the problem of finding a pricing maximizing the
6 Observe that pricing an edge with +∞ is equivalent to pricing it with an arbitrarily large value.
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revenue is equivalent to another problem known in literature as the Rooted Maximum Leaf
Outbranching (RMLO) problem, which asks for finding a spanning arborescence rooted at
some prescribed vertex of a digraph with the maximum number of leaves. This problem
is known to be NP-hard even when restricted to DAGs [2], and MaxSNP-hard, even on
undirected graphs [8]. Moreover, it admits a 92-approximation algorithm [7]. Hence, the
equivalence result immediately implies the existence of a constant-factor approximation
algorithm for our problem, with the same approximation ratio. Moreover, we improve the
inapproximability result for the RMLO problem by showing that it is APX-hard even for
DAGs.

First of all, we observe that we can restrict ourselves to consider instances of pricing
where all nodes can be reached by a path of priceable edges, since any other node would be
reached through a single fixed-cost edge in any SPT computed by the follower, and thus it
cannot influence the revenue. We can prove the following:

Lemma 1. Let G = (V,C ∪ P ) be an instance of the ASSPT game where edges in C have
unitary cost and form a star rooted at r. Then, G admits a pricing with revenue greater
than or equal to k ∈ N if and only if G′ = (V, P ) has a spanning arborescence rooted at r
with at least k leaves.

Proof. Let T be a spanning arborescence of G′ rooted at r with at least k leaves. Then, we
can define the following pricing for G: p(e) = 1, if e enters into a leaf of T , 0 otherwise. It
is easy to see that such a pricing yields a revenue of k, since T is a SPT of G.

On the other hand, let us consider a pricing p with revenue R ≥ k. Let T be the SPT
computed by the follower after the leader prices her edges according to p, and let (r, v)
be an edge of T . Then, all the edges of the subtree of T rooted at v, say T (v), must be
priceable edges. Moreover, if (r, v) is a fixed-cost edge, then all the edges in T (v) must
have price 0. Now, let T ′ be the subtree of T obtained by removing every fixed-cost edge
(r, v) and the corresponding subtree T (v). From the arguments given above, we have that
R =

∑
e∈E(T ′) p(e). Now, we show that the number of leaves of T ′, say `, is at least R.

Indeed, we have that

R =
∑

e∈E(T ′)

p(e) ≤
∑

v | v is a leaf in T ′
dT ′(r, v) ≤ `,

where the last inequality holds since T ′ is a subtree of a SPT of G, which implies that for
each node v, dT ′(r, v) ≤ 1.

Now, notice that T ′ is an arborescence rooted at r of G′ as well, but it may not span
V . However, we can add priceable edges to T ′ in order to make it spanning. This does not
decrease the number of leaves. ut
Theorem 4. The ASSPT game where the edges of C have unitary cost and form a star
rooted at r is APX-hard, unless P = NP.

Proof. The reduction is from Set Cover problem (SCP). An instance I = 〈O,S〉 of SCP
consists of a set of O = {o1, . . . , on} objects and a set S = {S1, . . . , Sm} of m subset of O.
The objective is to find a minimum-size collection of subsets in S whose union is O. In [12],
it is shown that SCP is NP-hard.

Given an instance I = 〈O,S〉 of SCP we build the following instance of the ASSPT
game. We have the root vertex r, a node uj for each Sj , and a node vi for each oi. There is
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a fixed-cost edge (of cost 1) from r to each other node. Moreover, we have a priceable edge
(r, uj) for each uj , and a priceable edge (uj , vi) if and only if oi ∈ Sj (see Figure 4). We
have the following:

r

uj
u1

vi′vi

um

v1 vn

Fig. 4. The reduction of Theorem 4. Dashed edges are fixed-cost edges, while the other edges are
owned by the leader. In this example, oi is in Sj , but oi′ is not.

Lemma 2. The instance of the ASSPT game has a pricing yielding a revenue of at least
n + m− k if and only if I admits a cover of size at most k.

Proof. Let C be a cover of size k for I. Then, define the following pricing: set p(r, uj) = 0
for each Sj ∈ C, while all the other priceable edges are set to 1. It is easy to see that we
obtain a unit of revenue for each vi, and a unit of revenue for each uj with Sj /∈ C, which
provides a total revenue of n + m− k.

Conversely, let p be a pricing yielding a revenue R ≥ n + m− k, and let S be the SPT
computed by the follower according to p. We define two sets of nodes. Let X be the set
containing every uj which has in S at least one outgoing priceable edge, and let Y be the
set containing every vi which has in S an ingoing priceable edge. Then, since every node
has a distance from r of at most 1, an upper bound for R is:

R =
∑

e∈E(S)∩P

p(e) ≤
∑

vi∈Y

dS(r, vi) +
∑

uj /∈X

max{1, p(r, uj)} ≤ |Y |+ m− |X|.

We now define a pricing p′ as follows: p′(r, uj) = 0 for each uj ∈ X, while all the other edges
are priced at 1. Hence, it is easy to see that p′ yields a revenue of at least |Y | + m − |X|,
since now each vi ∈ Y is at distance 1 from r (and there is a path of priceable edges with
length 1), and since every uj /∈ X has an ingoing leader’s edge with price 1.

Now, we modifies p′ in such a way that (i) the revenue does not change, and (ii) in the
corresponding SPT S′ computed by the follower, every vi has an ingoing priceable edge with
price 1. We repeatedly do as follows. Consider any vi that is not reached in S′ by a priceable
edge with price 1, and consider a node uj such that oi ∈ Sj . We change p′(r, uj) from 1 to
0. This does not change the revenue, since we loose a unit of revenue from the edge (r, uj),
while we obtain an additional unit of revenue from the edge (uj , vi) which is now selected
by the follower.

Finally, we define a cover for I by selecting every Sj corresponding to a node uj having
distance 0 in p′. Since the revenue of p′ is at least n + m − k, and since in S′ every vi is
reached by a priceable edge with price 1, it follows that the size of the cover is at most k.
This concludes the proof. ut
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In order to prove the APX-hardness, we restrict ourselves to instances of the SCP in
which each subset has cardinality at most 3, and m ≥ n. Even in this case, the SCP is
APX-hard [1]. We show that a (1 + ε)-approximate algorithm for the ASSPT game would
imply a (1+ε′)-approximate algorithm for the SCP, for a suitable ε′. Assume that we have a
(1+ε)-approximate algorithm for the ASSPT, and let k∗ be the size of an optimum set cover
for I. We have that the algorithm returns a pricing p with revenue R ≥ (m+n−k∗)/(1+ ε).
In the proof of Lemma 2, we have shown that p can be modified in order to yield a revenue
of at least dRe. Let k be the integer such that dRe = m + n− k. Hence, from Lemma 2, we
have that p induces a set cover of size k. Then, since m ≤ 3k∗, we have that:

k ≤ k∗ +
ε

1 + ε
(n + m− k∗) ≤ k∗ +

5ε

1 + ε
k∗ ≤ (1 + ε′)k∗.

ut

Therefore, from Lemma 1 and Theorem 4, we obtain the following interesting result,
which improves over the NP-hardness on DAGs of the RMLO problem given in [2]:

Corollary 1. The RMLO problem is APX-hard even on DAGs.

4 A strongly polynomial O(n)-approximation algorithm

For symmetric SNPGs, Briest et. al [4] proved the existence of an algorithm, called the
single-price algorithm, that guarantees an approximation of (1 + ε)(Hk + H|P |), where k
denotes the number of followers. Notice that this result implies an O(log n)-approximation
for the symmetric version of the Stackelberg SPT game studied in [3]. Therefore, a simple
question is whether the single-price algorithm provides a good approximation also for the
ASSPT game. Not surprisingly, this is not the case, as illustrated in Figure 5, where we
give an instance for which the algorithm returns an (n − 3)-approximate solution. Thus,
the power of the single-price algorithm seems to rely on the alignment of the leader’s and
follower’s objective functions.

0 0

0eε

1 + ε

e′

r

Fig. 5. An example where the single-price algorithm, i.e., the algorithm that eventually will price
all the edges with a same value σ ≥ 0, does not return a better than (n− 3)-approximate solution.
Dashed edges are fixed-cost edges, while the other edges are owned by the leader. Pricing e with 0,
e′ with 1 + ε, and all the other edges with 1 yields a revenue of n− 3. On the other hand, pricing
all edges with any value σ ≥ 0 yields a revenue of only σ.

10



Besides being only Ω(n)-approximating, the single-price algorithm has also another
drawback, namely it is not strongly polynomial, since it is polynomial in the input size,
but its running time depends on the given edge costs. Indeed, for our problem, it requires
the testing of 1 + logdc0e

log(1+ε) different weights for the priceable edges, where c0 is the cost of a
cheapest feasible solution not containing leader’s edges. Therefore, in an effort of improving
on that, we developed the following simple strategy the leader can play in order to get in
strongly polynomial-time an (n−1)-approximation of the maximum achievable revenue. Ac-
tually, the goal of closing the O(

√
n) gap left open w.r.t. the corresponding inapproximability

result remains a challenging open problem.

Theorem 5. For the ASSPT problem, the pricing function p that prices each edge e =
(u, v) ∈ P with p(e) = min{0, dGC

(r, v)−dGC
(r, u)} is computable in O(m+n log n) time and

yields a revenue of at least 1
n−1R∗, where dGC

denotes distances computed in GC = (V, C),
and R∗ denotes the revenue yielded by an optimal pricing.

Proof. Let p∗ be a pricing such that f1(p∗, H(p∗)) = R∗. For a path π, we denote by
revenue(π) the value

∑
e∈E(π)∩P p∗(e). Let π be a path in H(p∗) outgoing from r such

that revenue(π) ≥ revenue(π′), for every other path π′ of H(p∗) outgoing from r. Clearly,
revenue(π) ≥ 1

n−1R∗. In what follows we show that f1(p,H(p)) ≥ revenue(π).
Let e1, . . . , ek denote the edges of E(π) ∩ P in the order in which they appear if we

traverse π starting from r. Let ei = (ui, vi), for every i = 1, . . . , k. Moreover, for every
i = 1, ..., k, let us denote by `i the length of the (fixed-cost) subpath of π going from vi−1

to ui, where v0 = r. We have that

∀i = 1, . . . , k − 1, dGC
(r, vi) + `i+1 ≥ dGC

(r, ui+1).

Summing over all i’s, adding up the two equalities dGC (r, u1) = `1 and dGC (r, vk) =
dGC

(r, vk), and rearranging the terms, we obtain

k∑

i=1

(
dGC (r, vi)− dGC (r, ui)

) ≥ dGC (r, vk)−
k∑

i=1

`i. (3)

Since π is a shortest path in G w.r.t. p∗, we have that revenue(π) +
∑k

i=1 `i ≤ dGC
(r, vk),

from which we get

revenue(π) ≤ dGC (r, vk)−
k∑

i=1

`i. (4)

Furthermore, notice that dGC
(r, v) = dH(p)(r, v) for every vertex v. Next, observe that every

edge e with p(e) > 0 is contained in a SPT of G w.r.t. p. As a consequence, there is a SPT
of G w.r.t. p that contains all the edges ei’s for which p(ei) > 0. Therefore,

f1(p,H(p)) ≥
k∑

i=1

(
dGC

(r, vi)− dGC
(r, ui)

)
. (5)

Combining inequalities (3), (4), and (5), we obtain f1(p, H(p)) ≥ revenue(π). From this
and from the fact that distances from r in GC can be easily computed in O(|C|+ n log n),
the claim follows. ut
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We conclude by observing that the upper-bound of the approximation ratio is asymp-
totically tight. Indeed, the digraph in Figure 5 without edge e′, shows an example where
pricing all edges according to the formula given in the above theorem does not return a
better than (n− 3)-approximate solution.
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