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Abstract

Complexity theory typically studies the complexity of computing a function h(x) :
{0, 1}n → {0, 1}m of a given input x. We advocate the study of the complexity of
generating the distribution h(x) for uniform x, given random bits.

Our main results are:

• There are explicit AC0 circuits of size poly(n) and depth O(1) whose output
distribution has statistical distance 1/2n from the distribution (X,

∑
iXi) ∈

{0, 1}n × {0, 1, . . . , n} for uniform X ∈ {0, 1}n, despite the inability of these
circuits to compute

∑
i xi given x.

Previous examples of this phenomenon apply to different distributions such as
(X,

∑
iXi mod 2) ∈ {0, 1}n+1.

We also prove a lower bound independent from n on the statistical distance be-
tween the output distribution of NC0 circuits and the distribution (X,majority(X)).
We show that 1− o(1) lower bounds for related distributions yield lower bounds
for succinct data structures.

• Uniform randomized AC0 circuits of poly(n) size and depth d = O(1) with error ε
can be simulated by uniform randomized circuits of poly(n) size and depth d+ 1
with error ε+ o(1) using ≤ (log n)O(log log n) random bits.
Previous derandomizations [Ajtai and Wigderson ’85; Nisan ’91] increase the
depth by a constant factor, or else have poor seed length.

Given the right tools, the above results have technically simple proofs.
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1 Introduction

Complexity theory, with some notable exceptions, typically studies the complexity of com-
puting a function h(x) : {0, 1}n → {0, 1}m of a given input x. We advocate the study of
the complexity of generating the output distribution h(x) for random x, given random bits.
This question can be studied for a variety of computational models. In this work we focus
on small bounded-depth circuits with unbounded fan-in (AC0) or bounded fan-in (NC0).

An interesting example of a function h for which computing h(x) is harder than generating
its output distribution is h(x) := (x, parity(x)), where parity(x) :=

∑
i xi mod 2. Whereas

AC0 circuits cannot compute parity (cf. [H̊as87]), Babai [Bab87] and Boppana and Lagarias
[BL87] show a simple NC0 circuit C whose output distribution equals that of (x,

∑
i xi

mod 2) for random x ∈ {0, 1}n:

C(x1, x2, . . . , xn) := (x1, x1 + x2, x2 + x3, . . . , xn−1 + xn, xn). (1)

Later, Impagliazzo and Naor [IN96] extend this to show that small AC0 circuits can even
generate (x, f(x)) for more complicated functions such as inner product, i.e., f(x) := x1 ·x2+
x3 · x4 + · · ·+ xn−1 · xn. They use this to construct cryptographic pseudorandom generators
computable by poly-size AC0 circuits based on the hardness of the subset sum problem,
and similar techniques are useful in constructing depth-efficient generators based on other
assumptions [AIK06, Vio05].

To our knowledge, no other example was known of a function such that generating
(x, f(x)) is easier than computing f(x). Also, all the above examples exploit the same
cancelation properties of telescopic sums. In this work, we prove that small AC0 circuits can
generate (x, f(x)) for any symmetric function f , including for example the majority function,
except for an exponentially small statistical distance. This is an immediate corollary of the
following theorem, stating that one can generate (x,

∑
i xi) ∈ {0, 1}n × {0, 1, . . . , n}.

Theorem 1.1. There are explicit AC0 circuits C : {0, 1}poly(n) → {0, 1}n × {0, 1, . . . , n} of
size poly(n) and depth O(1) whose output distribution has statistical distance ≤ 2−n from
the distribution (x,

∑
i xi) ∈ {0, 1}n × {0, 1, . . . , n} for random x ∈ {0, 1}n.

Theorem 1.1 has a short proof relying on the results by Matias and Vishkin [MV91] and
Hagerup [Hag91] about depth-efficient generation of random permutations of [n] (a stripped-
down version of their result is presented in §A). Specifically, once a random permutation π of
[n] is generated, we only need to select s ∈ {0, 1, . . . , n} binomially distributed, let x ∈ {0, 1}n
be the string where exactly the bits at position π(i) for i ≤ s are set to 1, and output (x, s).

The circuits in Theorem 1.1 have two shortcomings over those of the previous examples
(1) and [IN96]. First, they use many random bits, while (1) and [IN96] do not waste ran-
domness, which is useful for constructing generators. Also, the circuits in Theorem 1.1 only
generate a distribution that is close to the desired distribution, while in previous examples
the distributions are equal. We do not know if these shortcomings can be overcome. More
generally, we raise the challenge of proving lower bounds for generating distributions.
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Challenge 1.2. Exhibit an explicit map h : {0, 1}poly(n) → {0, 1}n such that the output
distribution h(X) ∈ {0, 1}n cannot be generated by poly(n)-size AC0 circuits given random
bits as inputs.

Current lower-bounding techniques appear unable to tackle questions such as Challenge
1.2 (which, to our knowledge, is open even for DNFs). Note for example that standard
“hard functions” f such as parity, inner product, mod 3, and majority as we have seen all
have the property that (x, f(x)) can be (almost) exactly generated by small AC0 circuits.
This suggests that our understanding of even these simple models is incomplete, and that
pursuing the above direction may yield new proof techniques.

More concretely, the next section provides a motivation related to data structures lower
bounds.

Motivation: Data structures lower bounds. Succinct data structures aim to com-
press data using a number of bits close to the information-theoretic minimum while at the
same time supporting interesting queries (see, e.g., [Pǎt08] and the pointers there). For
concreteness, we focus on the so-called membership problem, which asks to store a subset
x of [n] of size ` (think of x as an n-bit string of weight `) in

⌈
log2

(
n
`

)⌉
+ r bits, where

r is as small as possible, while being able to answer the query “is i in x” by reading few
bits of the data structure. We note that the bounds on this central problem are not tight
[BMRS02, Pag01a, Pag01b, Pǎt08, Vio09]. For example, when ` := n/4 we are unaware of
lower bounds.

We observe that a lower bound for generating a distribution somewhat close to the
uniform distribution on subsets of size ` yields a data structure lower bound.

Claim 1.2.1. Suppose one can store subsets x of [n] of size n/4 in m :=
⌈
log2

(
n

n/4

)⌉
+ r

bits, while answering “is i in x” by non-adaptively reading q bits of the data structure. Then
there is a circuit C : {0, 1}m → {0, 1}n whose output distribution has statistical distance at
most 1 − 2−r−1 from the uniform distribution over subsets of [n] of size n/4, and such that
each output bit of C depends on only q input bits.

Proof. The i-th output bit of C is the algorithm answering “is i in x.” Think of feeding

C random bits. With probability
(

n
n/4

)
/2dlog2 ( n

n/4)e+r ≥ 1/2r+1 the input is uniform over

encodings of subsets of [n] of size n/4, in which case the statistical distance is 0. If we
distinguish in every other case, the distance is at most 1− 1/2r+1.

Similar considerations extend to adaptive bit-probes and cell probes. The latter case
is where memory is divided in cells of log n bits each. We note that q cell probes can be
simulated by an nO(q)-size DNF, thus sufficiently strong lower bounds for generating these
distributions by DNFs yield lower bounds in the cell-probe model. We note that the proof of
Theorem 1.1 also shows that small AC0 circuits can generate the uniform distribution over
sets of size ` with error at most 1/2n, for any given `. But these circuits both have large
depth > 2 and use many random bits, two reasons why this is not an obstacle to the above
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data structure application. While one could prove lower bounds for data structures without
using this approach, Claim 1.2.1 appears to suggest an uncharted direction, along which we
now report some partial progress.

For distributions whose output bits depend only on d input bits (i.e., generated by NC0

circuits) we are able to obtain statistical distance 1/2O(d) which is independent from n.
Improving this lower bound to distance close to 1 would have data structures consequences
via Claim 1.2.1 (for simplicity the next theorem is stated for sets of size n/2 rather than n/4
as in Claim 1.2.1).

Theorem 1.3. Let n be even and C : {0, 1}d·n → {0, 1}n be a function such that each
output bit Ci of C depends on only d inputs bits. Then the output distribution of C (for
random input) has statistical distance at least 1/2O(d) from the uniform distribution over
(characteristic vectors of) sets x ⊆ [n] of size n/2.

Proof. Suppose the output distribution of C is 4-wise independent. Then by standard anti-
concentration inequalities such as the Paley-Zygmund inequality (alternatively, ask for larger
independence and use [DGJ+09]), Prx[

∑
iCi(x) > n/2] ≥ Ω(1). The statistical test which

checks if the output bits sum to n/2 proves the claim in this case.
Otherwise, there are 4 output bits of C that are not uniformly distributed over {0, 1}4.

Since these 4 bits depend on at most 4d input bits, there must be an output combination
that has probability at least 1/24 + 1/24d. But, when the output is a uniform set of size n/2,
this output combination of the 4 bits has probability at most

1

2
· n/2
n− 1

· n/2
n− 2

· n/2
n− 3

≤ 1

24
(1 + o(1)).

So, just looking at these four bits, we get statistical distance 1/2O(d).

It is possible to push the above techniques to obtain a similar lower bound for generating
(x,majority(x)) ∈ {0, 1}n+1, where majority(x) = 1⇔

∑
i xi ≥ n/2.

Theorem 1.4. Let n be odd and C : {0, 1}d·n → {0, 1}n+1 be a function such that each
output bit Ci of C depends on only d inputs bits. Then the output distribution of C (for
random input) has statistical distance at least 1/2O(d) from (x,majority(x)) ∈ {0, 1}n+1 for
uniform x ∈ {0, 1}n.

Pseudorandom generators The ability to generate a distribution efficiently has obvious
applications in pseudorandomness which we now elaborate upon. The ultimate goal of
derandomization of algorithms is to remove, or reduce, the amount of randomness used
by a randomized algorithm while incurring the least possible overhead in other resources,
such as time. Typically, this is achieved by substituting the needed random bits with the
output of a pseudorandom generator. There are two types of generators. Cryptographic
generators [BM84, Yao82] (a.k.a. Blum-Micali-Yao) use less resources than the algorithm to
be derandomized. In fact, computing these generators can even be done in the restricted
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circuit class NC0 [AIK06]. However, unconditional instantiations of these generators are
rare, and in particular we are unaware of any unconditional cryptographic generator with
large stretch, a key feature for derandomization. By contrast, Nisan-Wigderson generators
[NW94] use more resources than the algorithm to be derandomized, and this looser notion
of efficiency allows for more unconditional results [Nis91, NW94, LVW93, Vio07]. Moreover,
all of these results yield generators with large, superpolynomial stretch.

In particular, Nisan [Nis91] shows a generator that fools small AC0 circuits of depth
d with exponential stretch, or seed length logO(d) n. As mentioned above, this generator
uses more resources than the circuits to be derandomized. Specifically, it computes the
parity function on ≥ logd n bits, which requires AC0 circuits that have either depth ≥ d
or superpolynomial size. Thus, if one insists on polynomial-size circuits, the derandomized
circuit, consisting of the circuit computing the generator and the original circuit, has depth
at least twice that of the original circuit. This constant factor blow-up in depth appears
necessary for Nisan-Wigderson constructions.

In this work we present a derandomization which only blows up the depth by 1, and uses
a number of random bits close to Nisan’s (an improvement in the tools we use would let us
match the number of random bits in Nisan’s result).

Theorem 1.5 (Depth-efficient derandomization of AC0). The following holds for every d.
Let f : {0, 1}∗ → {0, 1}∗ be computable by uniform randomized AC0 circuits of poly(n)-size
and depth d with error ε. Then f is computable by uniform randomized circuits of poly(n)-
size and depth d+ 1 with error ε+ o(1) using ≤ (log n)O(log log n) random bits.

Theorem 1.5 is proved by exhibiting a generator whose output looks random to small
AC0 circuits, and yet each of its output bits can be computed by a DNF, i.e., a depth-2
circuit (of size nO(d)). Some evidence that such a generator may exist comes from Example
(1), which implies a generator mapping n−1 bits to n bits that can be shown to look random
to AC0 circuits, and yet each output bit just depends on 2 inputs bits. However, the seed
length of this generator is very poor, and it is not clear how to improve on it. Intuitively, one
would like to be able to generate the output distribution of Nisan’s generator [Nis91] more
efficiently than shown in [Nis91]. We were not able to do so, and we raise this as another
challenge.

For Theorem 1.5, we notice that the recent line of work by Bazzi, Razborov, and Braver-
man [Bra09] shows that any distribution that is (k := logc n)-wise independent looks random
to small AC0 circuits of depth d, for a certain constant c = c(d) ≥ d.

We show how such distributions can be generated by DNFs. Although the constructions
of k-wise independent distributions in [CG89, ABI86, GV04] all require iterated sums of k
bits, which for k := logc n is unfeasible in our setting, we give an alternative construction
using the recent unique-neighbor expanders by Guruswami, Umans, and Vadhan [GUV09],
resulting in a generator with seed length s := (log n)O(log log n). Specifically, the results in
[GUV09] give explicit bipartite expanders with n nodes on the left, s nodes on the right,
and left degree O(log n) such that any subset of left-hand nodes of size ≤ k = logc n has at
least one unique neighbor. Wed define the i-th output bit of our (logc n)-wise independent
generator as the xor of the O(log n) neighbors of the left-hand node i in this graph, which
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can be computed by a poly(n)-size DNF. The unique neighbor property guarantees that the
xor of any t ≤ k = logc n output bits will be unbiased. And this, by the so-called Vazirani
xor lemma, implies that any k output bits are uniformly distributed over {0, 1}k, concluding
our overview.

We note that the use of unique-neighbor expanders to construct distributions with
bounded independence is not new. It appears for example in the work by Mossel, Shpilka,
and Trevisan [MST06] which studies the complexity of small-bias distributions, and shows
that there are such distributions with non-trivial stretch computable in NC0.

More related work A result (we already mentioned briefly) by Applebaum, Ishai, Kushile-
vitz [AIK06] shows, under standard assumptions, that there are pseudorandom distributions
computable by NC0 circuits. Their result is obtained via a generic transformation that turns
a distribution D into another “padded” distribution D′ that is computable in NC0 and at
the same time maintains interesting properties, such as pseudorandomness (but not stretch).
The techniques in [AIK06] do not seem to apply to distributions such as (x,

∑
i xi) (Theorem

1.1), and they destroy stretch, which prevents them from obtaining Theorem 1.5 (regardless
of the stretch of the original generator, the techniques in [AIK06] always produce a generator
with sublinear stretch).

Organization In §2 we prove theorems 1.1 and 1.4, while in §3 we prove Theorem 1.5. In
§4 we conclude and summarize a few open problems.

2 Generating (x,
∑

i xi)

In this section we prove theorems 1.1 and 1.4. We start with the first.

Theorem 1.1. (Restated.) There are explicit AC0 circuits C : {0, 1}poly(n) → {0, 1}n ×
{0, 1, . . . , n} of size poly(n) and depth O(1) whose output distribution has statistical distance
≤ 2−n from the distribution (x,

∑
i xi) ∈ {0, 1}n × {0, 1, . . . , n} for random x ∈ {0, 1}n.

First, we note that the statistical distance can be made 2−nc
for an arbitrary constant c

at the price of having the size of the circuit be a polynomial depending on c (choose larger
` in §A). Second, an immediate corollary of Theorem 1.1 is the ability to generate (x, f(x))
for any symmetric function f , e.g., majority.

Corollary 2.1. For every symmetric function f : {0, 1}n → {0, 1} there are explicit AC0

circuits C : {0, 1}poly(n) → {0, 1}n+1 of size poly(n) and depth O(1) whose output distribution
have statistical distance ≤ 2−n from the distribution (x, f(x)) ∈ {0, 1}n+1 for random x ∈
{0, 1}n.

The proof of Theorem 1.1 relies on the following result by Matias and Vishkin [MV91] and
Hagerup [Hag91] about generating random permutations of [n]. We think of a permutation
of [n] as represented by an array A[1..n] ∈ [n]n.
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Lemma 2.2 ([MV91, Hag91]). There are explicit AC0 circuits C : {0, 1}poly(n) → [n]n of
size poly(n) and depth O(1) whose output distribution has statistical distance ≤ 2−n from
the uniform distribution over permutations of [n].

Lemma 2.2 is obtained in [MV91] and Hagerup [Hag91, Theorem 3.9] in the context of
PRAMs. Those works also achieve a nearly optimal number of processors, which appears
to make the proofs somewhat technical. In §A we present a proof that uses the ideas in
[MV91, Hag91] but is simpler and sufficient for our purposes.

Proof of Theorem 1.1. First, note for every s ∈ {0, . . . , n} there is a circuit Cs of size poly(n)
and depth O(1) whose output distribution is exponentially close to the uniform distribution
over n-bit strings of weight s. To see this, run the circuit from Lemma 2.2 to produce array
A[1..n] containing a random permutation. The i-th output bit of Cs is set to 1 if and only
if there is j ≤ s such that A[j] = i. In other words, we set to 1 exactly the first s elements
of A. It is easy to see that this can be implemented using poly-size AC0 circuits.

To generate (x,
∑

i xi), it remains to select the circuits Cs with the correct probability.
To do this, recall that, given two n-bit integers a, b, we can efficiently determine if a > b as
follows (a1 is the most significant digit):

a > b⇔ (a1 > b1) ∨ (a1 = b1 ∧ a2 > b2) ∨ (a1 = b1 ∧ a2 = b2 ∧ a3 > b3) . . . .

Now interpret n fresh random bits as an integer z ∈ {1, . . . , 2n}. Let circuit D : {0, 1}n →
{0, 1, . . . , n} output s ∈ {0, . . . , n} if and only if

s−1∑
i0

(
n

i

)
< z ≤

s∑
i=0

(
n

i

)
.

To do this in parallel, we can for example construct circuits Ds each responsible of one
output, and then take the OR of their outputs. By construction, the output distribution
of D over uniform input equals the distribution

∑
iXi where Xi are independent uniform

random bits.
The circuit claimed in the theorem first runs D to obtain s, then runs Cs to obtain

x ∈ {0, 1}n, and outputs (x, s).

We now prove a lower bound for NC0 circuits.

Theorem 1.4. (Restated.) Let n be odd and C : {0, 1}d·n → {0, 1}n+1 be a function such
that each output bit Ci of C depends on only d inputs bits. Then the output distribution of C
(for random input) has statistical distance at least 1/2O(d) from (x,majority(x)) ∈ {0, 1}n+1

for uniform x ∈ {0, 1}n.

Proof. Let X be a random input to C, and let C(X) = (Y,M) where |Y | = n, |M | = 1, and
M is supposed to be the majority of Y . Let R ∈ {0, 1}n be a uniform string.

First, Pr[M = 1] = 1/2, for else the same argument as in the proof of Theorem 1.3 shows
that |Pr[M = 1] − 1/2| ≥ 1/2d, and, since Pr[majority(R) = 1] = 1/2, we get the desired
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statistical distance just looking at this bit. (Note that Pr[majority(R) = 1] = 1/2 because
n is odd.)

Consider the distribution Y ′ := Y |M = 1, i.e., Y conditioned on the event M = 1. Let
k be a large constant, independent from n, to be set later.

If Y ′ is k-wise independent, then by [DGJ+09] we have Pr[majority(Y ′) = 0] ≥ Pr[majority(R) =
0] − 1/4 = 1/4, for a sufficiently large k. Therefore we obtain constant statistical dis-
tance via the test T that, given (z, b), |z| = n, |b| = 1, outputs 1 if and only if b = 1 and
majority(z) = 1: on the one hand, Pr[(R,majority(R)) ∈ T ] ≥ 1/2, while on the other
hand Pr[(Y,M) ∈ T ] = Pr[(Y,M) ∈ T |M = 1] · Pr[M = 1] = Pr[majority(Y ′) = 1] · 1/2 ≤
(1− 1/4) · 1/2.

Otherwise, assume that Y ′ is not k-wise independent. So there are k bits (Y ′i1 , Y
′
i2
, . . . , Y ′ik)

whose distribution is not uniform over {0, 1}k. The distribution Y ′ is the same as the first n
output bits of C(X ′) where X ′ := X|M = 1 is the distribution on the input bits conditioned
of yielding M = 1. Since Pr[M = 1] = 1/2, X ′ is the uniform distribution over the input
bits conditioned on the event that the d input bits M depends on are uniformly distributed
over 2d/2 combinations. Even if the k = O(1) bits (Y ′i1 , Y

′
i2
, . . . , Y ′ik) depended on k · d

uniform and independent bits and also on the d input bits M depends on, there must be an
output combination a ∈ {0, 1}k such that Pr[(Y ′i1 , Y

′
i2
, . . . , Y ′ik) = a] ≥ 1/2k + 1/2k·d · 2/2d ≥

1/2k + 1/2O(d). On the other hand, a calculation shows that any k = O(1) bits of the
distribution R|majority(R) = 1 are equal to a with probability that approaches 1/2k as n
tends to infinity. So looking at these k bits we get distance 1/2O(d).

3 Depth-efficient derandomization of AC0

In this section we prove Theorem 1.5:

Theorem 1.5 (Depth-efficient derandomization of AC0). (Restated.) The following holds
for every d. Let f : {0, 1}∗ → {0, 1}∗ be computable by uniform randomized AC0 circuits of
poly(n)-size and depth d with error ε. Then f is computable by uniform randomized circuits
of poly(n)-size and depth d+ 1 with error ε+ o(1) using ≤ (log n)O(log log n) random bits.

First, we remark that previous derandomizations [AW89, Nis91] increase the depth by a
constant factor, as opposed to adding 1 in our result, or else have poor seed length.

For our depth-efficient derandomization, we need the results by Bazzi, Razborov, and
Braverman that polylog-wise distributions fool small AC0 circuits.

Theorem 3.1 ([Bra09]). For every d there is c such that the following holds for every m.
Let C be a boolean circuit of depth d and size m. Let D be a (logcm)-wise distribution. Then

|PrU [C(U) = 1]− Pr[C(D) = 1]| ≤ 1/m,

where U is the uniform distribution.

We also need the following result by Guruswami, Umans, and Vadhan.
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Theorem 3.2 (Theorem 3.3 in [GUV09]). For any integers s,m, and q, where q is a power
of 2, there are explicit graphs G : [q]s × [q] → [q]m+1 such that any set S ⊆ [q]s of size at
most 2m has at least |S| · (q − (s− 1)m) neighbors.

The following is our efficient constructions of k-wise independent distributions.

Theorem 3.3. For every n and d ≤ log n there is an explicit circuit C : {0, 1}` → {0, 1}n
such that:

(i) each output bit of C is a DNF of size nO(d),
(ii) the distribution C(U) for random U ∈ {0, 1}s is (logd n)-wise independent,
(iii) ` ≤ (log n)O(d·log log n).

Proof. Let c be a sufficiently large, even constant to be set later. Let q be a power of 2 such
that

c · d · log n ≤ q ≤ 2c · d · log n.

Choose

s :=

⌈
log n

log q

⌉
,

and

m :=

⌈
q

4
· log q

log n

⌉
≤
⌈

2c · d log n

4
· log q

log n

⌉
=
c · d · log q

2
.

Let G be the graph given by Theorem 3.2 for the above parameters. The i-th output
bit of C is the parity of the neighbors of the i-th left-hand node in G. First, note that the
numbers of left-hand nodes in G is

qs ≥ q(log n)/ log q ≥ n,

so the output length of C is as desired. Also, each left-hand node has ≤ 2c ·d log n neighbors
by our choice of q. The corresponding parity can be computed in brute-force by a DNF of
size nO(d). This verifies (i).

The number of right-hand side nodes is the input length ` of C. Using our above bounds
on m and q, and the assumption that d ≤ log n, we have

` = qm+1 ≤ (2c · d · log n)O(d·log q) ≤ (log n)O(d·log log n).

This verifies (iii).
To see (ii), it is enough to observe that every S ⊆ [q]s of size |S| ≤ logd n has at least one

unique neighbor. This unique neighbor guarantees that the parity of the bits corresponding
to S (which recall are each defined to be the parity of their neighbors) is unbiased. Therefore,
by the so-called Vazirani XOR lemma (cf. [Gol97]) the output distribution is (logd n)-wise
independent.
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Indeed, note that the expansion property of the graph holds for sets of size up to

2m ≥ exp

(
q

4
· log q

log n

)
≥ exp

(
c · d · log n

4
· log log n

log n

)
≥ exp

(
c · d · log log n

4

)
≥ logd n,

for a sufficiently large c.
Hence, by the expansion property, S has at least |S|(q−(s−1)m) neighbors. To guarantee

a unique neighbor, we need more than |S|q/2 neighbors. Equivalently, (s− 1)m < q/2. By
our choice of s and m we have

(s− 1)m ≤
(

log n

log q
+ 1− 1

)
m =

log n

log q
· q

4

log q

log n
=
q

4
<
q

2
,

concluding the proof.

Combining the above two theorems yields Theorem 1.5. Suitable improvements in theo-
rems 3.2 and 3.1 would make the number of random bits in the conclusion of Theorem 1.5
match the state-of-the-art [Nis91].

We also draw a connection to the long-standing challenge of finding an algorithm that,
given a DNF, computes an additive approximation to the number of satisfying assignments
(see, e.g., [Tre04]). The above techniques show that the latter problem is polynomial-time
reducible to the problem of computing an additive approximation to the number of satisfying
assignments of a given depth-3 circuit with only (log n)O(log log n) variables.

4 Conclusion

This paper makes a step towards a systematic study of the complexity of generating distribu-
tions. Many open problems remain. What is the complexity of generating (x,majority(x)) ∈
{0, 1}n+1? We have proved the existence of AC0 distributions that are exponentially close,
while NC0 distributions are at distance ε > 0 independent from n.

What is the complexity of generating the uniform distribution over sets of a fixed size
` ≤ n? Our techniques yield the same bounds for this problem too. A sufficiently strong
lower bound for this problem would have interesting consequences for data structures.

Finally, what is the complexity of generating distributions that look random to small
AC0 circuits? We have shown how to efficiently generate k-wise independent distributions,
and obtained a new derandomization of depth-d circuits by circuits of depth d + 1 that
use a number of random bits close to the best known polynomial-time derandomization
[Nis91]. Still, the parameters can be improved. What is the complexity of generating the
output distribution of Nisan’s generator [Nis91]? Efficient generation of such distributions
allows one to bypass the computational overhead that is intrinsic in the Nisan-Wigderson
generators.
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[LVW93] Michael Luby, Boban Veličković, and Avi Wigderson. Deterministic approximate
counting of depth-2 circuits. In 2nd Israeli Symposium on Theoretical Computer
Science (ISTCS), pages 18–24, 1993. 4

[MST06] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On epsilon-biased generators

in nc0. Random Struct. Algorithms, 29(1):56–81, 2006. 5

[MV91] Yossi Matias and Uzi Vishkin. Converting high probability into nearly-constant
time-with applications to parallel hashing (extended abstract). In 23rd ACM
Symposium on Theory of Computing (STOC), pages 307–316, 1991. 1, 5, 6, 12

[Nis91] Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica,
11(1):63–70, 1991. 4, 7, 9

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Computer &
Systems Sciences, 49(2):149–167, 1994. 4

[Pag01a] Rasmus Pagh. Low redundancy in static dictionaries with constant query time.
SIAM J. Comput., 31(2):353–363, 2001. 2

[Pag01b] Rasmus Pagh. On the cell probe complexity of membership and perfect hashing.
In 33rd Annual Symposium on Theory of Computing (STOC), pages 425–432.
ACM, 2001. 2
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A Generating random permutations in AC0

In this section we give a simple proof of the following lemma.

Lemma 2.2 ([MV91, Hag91]). (Restated.) There are explicit AC0 circuits C : {0, 1}poly(n) →
[n]n of size poly(n) and depth O(1) whose output distribution has statistical distance ≤ 2−n

from the uniform distribution over permutations of [n].

The main technique is known as “dart throwing:” we view the input random bits as
random pointers p1, p2, . . . , pn into m � n cells. We then write i in the pi-th cell (empty
cells get “∗”). If there are no collisions, the ordering of [n] in the cells gives a random
permutation of [n]. However, it is not clear how to explicitly write out this permutation
using small depth, because to determine the image of i one needs to count how many cells
before pi are occupied, which cannot be done in small depth.

The key insight of Matias and Vishkin [MV91] (see also [Hag91]) is to view the cells as
representing the permutation in a different format, one from which we can explicitly write
out the permutation in small depth. The format is known as the canonical form for the cyclic
notation. We now briefly review it closely following [MV91]. Just like the standard format,
the alternative format represents a permutation via an array A[1..n] whose entries contain
all the elements [n]. However, rather than thinking of A[i] as the image of i, we think of the
entries of A as listing the cycles of the permutation in order. Each cycle is listed starting
with its smallest element, and cycles are listed in decreasing order of the first element in the
cycle. This format allows for computing the permutation efficiently: the image of i is the
element to the right of i in A, unless the latter element is the beginning of a new cycle, in
which case the image of i is the first element in the cycle containing i. Identifying the first
element of a cycle is easy, because they are smallest than any element preceding them in A.
One can now verify that computing the image of i can be done by circuits of size poly(n)
and depth O(1).
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The benefit of this format is that it works even if the array A has m� n cells, of which
m− n are empty and marked by “∗.”

To conclude the proof of the lemma, generate ` uniform and independent sets of pointers
pi

1, . . . , p
i
n, i = 1, . . . , `, where each pointer has range [m] for m the smallest power of 2 larger

than 2n2 (thus each pointer can be specified by logm bits).
If there exists i such that the pointers pi

1, . . . , p
i
` are all distinct (i.e., there are no colli-

sions), then run the above algorithm on the output corresponding to the first such i. This
results in a random permutation.

Since the pointers are chosen independently, the probability that there is no such i is

Pr[∀i∃j, k ≤ n : pi
j = pi

k] = Pr[∃j, k ≤ n : p1
j = p1

k]` ≤ (1/2)`.

Choosing ` := n proves the lemma.
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