
Local list-decoding and testing of random linear codes from

high-error

Swastik Kopparty∗and Shubhangi Saraf†

November 13, 2009

Abstract

In this paper, we give surprisingly efficient algorithms for list-decoding and testing random
linear codes. Our main result is that random sparse linear codes are locally testable and locally
list-decodable in the high-error regime with only a constant number of queries. More precisely,
we show that for all constants c > 0 and γ > 0, and for every linear code C ⊆ {0, 1}N which is:

• sparse: |C| ≤ N c, and
• unbiased: each nonzero codeword in C has weight ∈ (1

2 −N
−γ , 1

2 +N−γ),

C is locally testable and locally list-decodable from (1
2 − ε)-fraction worst-case errors using

only poly(1
ε) queries to a received word. We also give sub-exponential time algorithms for list-

decoding arbitrary unbiased (but not necessarily sparse) linear codes in the high-error regime. In
particular, this yields the first sub-exponential time algorithm even for the problem of (unique)
decoding random linear codes of inverse-polynomial rate from a fixed positive fraction of errors.

Earlier, Kaufman and Sudan had shown that sparse, unbiased codes can be locally (unique)
decoded and locally tested from a constant-fraction of errors, where this constant-fraction tends
to 0 as the number of codewords grows. Our results significantly strengthen their results, while
also having significantly simpler proofs.

At the heart of our algorithms is a natural “self-correcting” operation defined on codes and
received words. This self-correcting operation transforms a code C with a received word w
into a simpler code C′ and a related received word w′, such that w is close to C if and only
if w′ is close to C′. Starting with a sparse, unbiased code C and an arbitrary received word
w, a constant number of applications of the self-correcting operation reduces us to the case of
local list-decoding and testing for the Hadamard code, for which the well known algorithms of
Goldreich-Levin and Blum-Luby-Rubinfeld are available. This yields the constant-query local
algorithms for the original code C.

Our algorithm for decoding unbiased linear codes in sub-exponential time proceeds simi-
larly. Applying the self-correcting operation to an unbiased code C and an arbitrary received
word a super-constant number of times, we get reduced to the problem of learning noisy
parities, for which non-trivial sub-exponential time algorithms were recently given by Blum-
Kalai-Wasserman and Feldman-Gopalan-Khot-Ponnuswami. Our result generalizes a result of
Lyubashevsky, which gave sub-exponential time algorithms for decoding random linear codes of
inverse-polynomial rate, from random errors.

∗Computer Science and Artificial Intelligence Laboratory, MIT, swastik@mit.edu. This work was done while the
author was a summer intern at Microsoft Research New England.
†Computer Science and Artificial Intelligence Laboratory, MIT, shubhangi@csail.mit.edu. This work was done

while the author was a summer intern at Microsoft Research New England.

0

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 115 (2009)

1 Introduction

In this paper, we study the basic tasks of error-correction and error-detection for random linear
codes in the presence of high error-rates. Our main result is that with high probability for a sparse
random linear code C, by inspecting just a constant number of coordinates of an arbitrary received
word w, one can (i) decide whether the distance of w from C is at most 49% or not, and (ii)
recover implicit descriptions of all the codewords of C which are 49%-close to w. We also give
sub-exponential time algorithms for decoding random linear codes of inverse-polynomial rate from
49% errors.

We begin by setting up some notation. A linear code C in FN2 is simply a linear subspace of FN2 .
The elements of C are often referred to as “codewords”. We say that C is sparse if |C| ≤ N c for some
constant c. For a string x ∈ FN2 , we define its (normalized Hamming) weight wt(x) to equal 1

n×
(the number of nonzero coordinates of x). We define the bias of the code C as maxy∈C\{0}

∣∣∣1−wt(y)
2

∣∣∣.
Thus each nonzero codeword y of a code of bias β has wt(y) ∈ [(1 − β)/2, (1 + β)/2]. For two
strings x, y ∈ FN2 , we define the (normalized Hamming) distance between x and y, ∆(x, y), to be
1
n× (the number of coordinates i ∈ [N] where xi and yi differ). We then define the distance of a
string x from the code C, ∆(x, C) to be the minimum distance of x to some codeword of C:

∆(x, C) = min
y∈C

∆(x, y).

The basic algorithmic tasks associated with codes are error-detection and error-correction. Here
we are given an arbitrary received word w ∈ FN2 , and we want to (1) determine if ∆(w, C) > δ, and
(2) find all codewords y ∈ C such that ∆(w, C) ≤ δ. In recent years, there has been much interest
in developing sublinear time algorithms (and in particular, highly query-efficient algorithms) for
these tasks. In what follows, we will describe our results on various aspects of these questions.

1.1 Local list-decoding

Informally, a local list-decoder for C from δ-fraction errors is a randomized algorithm A that,
when given oracle access to a received word w ∈ FN2 , recovers the list of all codewords c such
that ∆(c, w) < δ, while querying w in very few coordinates. The codewords thus recovered are
“implicitly represented” by randomized algorithms A1, . . . , Al with oracle access to w. Given a
coordinate j ∈ [N], Ai makes very few queries to w and is supposed to output the jth coordinate
of the codeword that it implicitly represents.

A particular case of local list-decoding which is of significant interest is local list-decoding in the
“high-error” regime. Specifically, for every constant ε > 0, one wants to query-efficiently locally
list-decode a code from (1

2−ε)-fraction errors (the significance of 1
2−ε is that it is just barely enough

to to distinguish the received word from a random string in FN2 ; for codes over large alphabets, one
considers the problem of decoding from (1−ε)-fraction errors). Local list-decoding in the high-error
regime plays a particularly important role in the complexity-theoretic applications of coding theory
(see [STV99], for example).

The first known local list-decoder (for any code) came from the seminal work of Goldreich and
Levin [GL89], which gave time-efficient, low-query, local list-decoders for the Hadamard code in

1

the high-error regime. In the following years, many highly non-trivial local list-decoders were devel-
oped for various codes, including multivariate polynomial based codes (in the works of Goldreich-
Rubinfeld-Sudan [GRS00], Arora-Sudan [AS03], Sudan-Trevisan-Vadhan [STV99], and Gopalan-
Klivans-Zuckerman [GKZ08]) and combinatorial codes such as direct-product codes and XOR codes
(in the works of Impagliazzo-Wigderson and Impagliazzo-Jaiswal-Kabanets-Wigderson [IW97, IJKW08]).
Many of these local list-decoders, especially the ones in the high-error regime, play a promi-
nent role in celebrated results in complexity theory on hardness amplification and pseudoran-
domness [IW97, STV99, IJKW08].

To summarize, all known local list-decoding algorithms were for highly structured algebraic or
combinatorial codes. Recently, Kaufman and Sudan [KS07] showed that random sparse linear codes
can be locally (unique-)decoded from a small constant fraction of errors. This was the first result to
show that query-efficient decoding algorithms could also be associated with random, unstructured
codes. This result was proved by studying the weight distribution of these codes and their duals,
and in particular was based on the MacWilliams identities and non-trivial information about the
roots of Krawtchouk polynomials. In an earlier paper [KS09], we gave an alternate (and arguably
simpler) proof of this result, as part of a more general attempt to characterize sparse codes that
are locally decodable and testable in the low-error regime. Popular belief [Sud09] suggested that
these low-error local decoders for random codes could not be extended to the high-error regime.

Our first main result is that even random codes can have query-efficient local list-decoders in the
high-error regime. Specifically, we show that linear codes which are sparse and unbiased (both
properties are possessed by sparse random linear codes with high probability) admit high-error
local list-decoders with constant query complexity.

Informal Theorem A For every constant c, γ > 0, every linear code C ⊆ FN2 with N c codewords
and bias N−γ can be locally list-decoded from (1/2− ε)-fraction errors using only poly(1

ε) queries
to a received word.

The formal statement appears in Theorem 4.

1.2 Local testing

Informally, a local tester for C is a randomized algorithm A, which when given oracle access to a
received word w ∈ FN2 , makes very few queries to the received word w, and distinguishes between
the case where w ∈ C and the case where w is “far” from all codewords of C.

The first local tester (for any code) came from the seminal work of Blum, Luby and Rubin-
feld [BLR93], which gave an efficient, 3-query local tester for the Hadamard code. This result
was subsequently generalized to the problem of local testing of low-degree multivariate polynomi-
als [RS96, AS98, ALM+98, AKK+03]. This body of work played a significant role in the proof of
the PCP theorem and were the harbingers of the field of property testing.

A particular variant of local testability which is of significant interest is local testing in the “high-
error” regime. Here, for every constant ε > 0, one wants to query-efficiently distinguish between
the cases ∆(w, C) < 1/2− ε, i.e., w is “close” to C, and ∆(w, C) ≈ 1/2, i.e., w is as far from C as a
random point is (for codes over large alphabets, 1/2 gets replaced by 1). For the Hadamard code, the

2

existence of such testers follows from the Fourier-analytic proof of the BLR linearity test [BCH+96].
For the code of degree 2 multivariate polynomials over F2, local testers in the high-error regime
were given by Samorodnitsky [Sam07]. For the code of multivariate polynomials over large fields,
local-testers in the high-error regime were given by Raz-Safra [RS97], Arora-Sudan [AS03] and
Moshkovitz-Raz [MR06]. More recently, Dinur-Goldenberg [DG08] and Impagliazzo-Kabanets-
Wigderson [IKW09] gave query-efficient local testing algorithms in the high-error regime for the
combinatorial families: the direct-product and XOR codes. These algebraic and combinatorial
high-error local-testers led to some remarkable constructions of PCPs with high soundness.

As in the case of list-decodability, we have the situation that all known locally-testable codes in
the high-error regime are for highly structured algebraic or combinatorial codes. Again, Kaufman
and Sudan [KS07] showed that a random sparse linear code is locally testable in the low-error
regime by studying its weight distribution and the weight distribution of its dual. We [KS09] had
an alternate proof of this result too. Popular belief [Sud09] again suggested that local-testability
in the high-error regime could not be found in random linear codes.

Our second main result is that random codes can have query-efficient local testers in the high-error
regime. Specifically, sparse and unbiased codes admit high-error local testers with constant query
complexity.

Informal Theorem B For every constant c, γ > 0, every linear code C ⊆ FN2 with N c codewords
and bias N−γ can be locally tested from (1/2 − ε)-fraction errors using only poly(1

ε) queries to a
received word.

The formal theorem appears as Theorem 4, where we in fact show something stronger (called
distance estimation in the high-error regime): for such codes, using constantly many queries, one can
distinguish between ∆(w, C) > 1/2−ε1 and ∆(w, C) < 1/2−ε2 for every constants 0 < ε1 < ε2 < 1/2.

1.3 Subexponential time list-decoding

The techniques we develop to address the previous questions turn out to be useful for making
progress on another fundamental algorithmic question in coding theory: that of time-efficient
worst-case decoding of random linear codes. Given a random linear code C ⊆ FN2 and an arbitrary
received word w ∈ FN2 , we are interested in quickly finding all the codewords c ∈ C such that
∆(w, c) < 1

2 − ε, for constant ε > 0. We show that this problem can be solved in sub-exponential
time, using just the unbiasedness of C. Our algorithm uses some recent breakthroughs on the
problem of learning noisy-parities due to Blum-Kalai-Wasserman [BKW03] and Feldman-Gopalan-
Khot-Ponnuswami [FGKP06].

Informal Theorem C For all constants α, γ > 0, for every linear code C ⊆ FN2 with dimension
n, where N = n1+α, and bias N−γ , and for every constant ε > 0, C can be list-decoded from
(1

2 − ε)-fraction errors in time 2O(n/ log logn).

The formal statement appears in Theorem 6.

In particular, the above theorem implies that if C ⊆ FN2 is a random linear code with dimension
n = N

1
1+α , then for every constant ε > 0, C can be list-decoded from (1

2 − ε)-fraction errors in time
2O(n/ log logn).

3

Earlier, it was not even known how to unique-decode random linear codes from 0.1-fraction worst-
case errors in time 2o(n). For decoding random linear codes of inverse-polynomial rate from random
errors, Lyubashevsky [Lyu05] gave a sub-exponential time algorithm, also based on algorithms
for the Noisy Parity problem. Our result generalizes his in two ways: we decode from worst-case
errors, and we give a natural, explicit criterion (namely low-bias) on the code C which guarantees
the success of the algorithm.

A related result (and one that we use in our proof) is the sub-exponential time worst-case decoding
of random linear codes in FN2 , of dimension n = O(logN · log logN), in a weaker model [FGKP06,
Theorem 10]. In this model, the adversary first corrupts the received bit associated to (1/2 − ε)-
fraction of the 2n possible linear encoding functions, after which the code is randomly chosen. Our
result has a more natural coding theory interpretation: the random code is chosen first, and then
the adversary choses an arbitrary received word at distance (1/2−ε) from the code. In the language
of learning theory, the [FGKP06] result concerns learning parities in the presence of agnostic noise,
while our result deals with the model of learning parities in the presence of nasty classification
noise [BEK02].

1.4 Time-efficient local algorithms for dual-BCH codes

For the family of dual-BCH codes, perhaps the most important family of sparse, unbiased codes, we
show that the constant-query local list-decoding and local testing algorithms can be made to run in
a time-efficient manner too. The dual-BCH codes form a natural family of polynomial-based codes
generalizing the Hadamard code. They have a number of extremal properties which give them an
important role in coding theory. For example, the dual-BCH code C ⊆ FN2 with N t codewords has
bias as small as O(t ·N−1/2), which is optimal for codes with N t codewords!

The key to making our earlier query-efficient local list-decoding and local testing algorithms run
in a time-efficient manner for dual-BCH codes, is a time-efficient efficient algorithm for a certain
sampling problem that arises in the local list-decoder and tester. This sampling problem turns
out to be closely related to an algorithmic problem that was considered in the context of low-error
testing of dual-BCH codes [KL05], that of sampling constant-weight BCH codewords. A variant
of the sampling algorithm of [KL05] turns out to suffice for our problem too, and this leads to the
following result.

Informal Theorem D For every constant c, the dual-BCH code C ⊆ FN2 with N c codewords,
can be locally list-decoded and locally tested from (1/2 − ε)-fraction errors in time poly(logN, 1

ε)
using only poly(1

ε) queries to a received word.

The formal statement appears as Theorem 5. The original algorithm for sampling constant-weight
BCH codewords given in [KL05], and was based [Lit09] on results on the weight distribution of
BCH codes [KL95]. We give an alternate (and possibly simpler) analysis in Section 6.

Organization of this paper: In Section 2, we give a brief overview of the techniques we use. In
Section 3 we formally define local list-decoders and testers and state our main results. The proofs
appear in Sections 4, 5 and 6.

4

2 Methods

In this section, we give an overview of the main ideas underlying our algorithms. Our goal in this
section is to stress the simplicity and naturalness of our techniques.

The main component of our algorithms is a certain “self-correcting” operation which transforms
a code C with a received word w into a simpler code C′ and a related received word w′, such
that w is close to C if and only if w′ is close to C′. Repeated application of this self-correcting
operation will allow us to reduce our list-decoding and testing problems for C to certain kinds of
list-decoding and testing problems for a significantly simpler code C∗ (in our case, C∗ will be the
Hadamard code). Query-efficient/time-efficient algorithms for the simpler code C∗ then lead to
query-efficient/time-efficient algorithms for the original code C.
In order to simplify the description of the self-correcting operation, we first translate our problems
into the language of list-decoding and testing under distributions. Let C ⊆ {0, 1}N be a linear code
of dimension n, and let G be an n × N generator matrix for C. Let S = {v1, v2, . . . , vN} ⊂ Fn2
denote the set of columns of G. We associate to C the distribution µ over Fn2 which is uniform over
S. Note that if the code C has low bias, then the resulting distribution µ has small Fourier bias.
Every word w in FN2 can be viewed as a function fw : S → F2, where fw(vi) = wi. Under this
mapping, every codeword of C gets associated with a linear function.

Note that via this translation, the problem of testing if w is close to some codeword exactly
translates into the problem of testing if fw is close to some linear function under the distribution
µ (where the distance of two functions g, h under µ is measured by the probability that g and h
differ on a random sample from µ). Similarly, the problem of local list-decoding, i.e. the problem
of finding all codewords close to w, translates into the problem of finding all linear functions that
are close to fw under the distribution µ.

We now come to the self-correcting operation on f and µ. The operation has the property that
it maintains the property “f correlates with a linear function under µ”, and at the same time it
results in a distribution that is “simpler” in a certain precise sense.

Define µ(2) to be the convolution of µ with itself; i.e., it is the distribution of the sum of two
independent samples from µ. We define f (2) : Fn2 → F2 to be the (probabilistic) function, where for
a given x, f (2)(x) is sampled as follows: first sample y1 and y2 independently and uniformly from µ
conditioned on y1 +y2 = x, and return f(y1) +f(y2) (if there are no such y1, y2, then define f (2)(x)
arbitrarily).

The following two simple facts are key to what follows:

• µ(2) is “simpler” than µ: the statistical distance of µ(2) to the uniform distribution on Fn2 is
significantly smaller than the statistical distance of µ to the uniform distribution on Fn2 (this
follows from the low Fourier bias of µ, which in turn came from the unbiasedness of C).

• If f is (1
2 − ε)-close to a linear function g under µ, then f (2) is (1

2 − 2ε2)-close to g under µ(2):
this is a formal consequence of our definition of f (2). In particular, if f is noticeably-close to
g under µ, then so is f (2) under µ(2).

This leads to a general approach for list-decoding/testing for linear functions under µ. First pick
k large, and consider the distribution µ(k) and the function f (k) (defined analogously to µ(2) and

5

f (2)). If k is chosen large enough, then µ(k) will in fact be 2−10n-close to the uniform distribution in
statistical distance. Furthermore, if k is not too large, then f (k) will be noticeably-close under µ(k)

to the same linear functions that f is close to under µ. Thus, if k is suitable (as a function of the
initial bias/sparsity of the code) f (k) is noticeably-close under the uniform distribution to the same
linear functions that f is close to under µ. Now all we need to do is run a local list-decoding/testing
algorithm on f (k) under the uniform distribution.

An important issue that was swept under the rug in this discussion, is the query/time-efficiency of
working with f (k) and µ(k). If we ignore running-time, one can simulate oracle access to f (k) using
just a factor k larger number of queries to f . This leads to our query-efficient (but time-inefficient)
algorithms for sparse, unbiased linear codes in the high-error regime (in this setting k only needs
to be a constant). We stress that our proof of this result is significantly simpler and stronger than
earlier analyses of local algorithms (in the low-error regime) of sparse, unbiased codes [KL05, KS07].

The bottleneck for implementing these local, query-efficient algorithms in a time-efficient manner
is the following algorithmic “back-sampling” problem: given a point x ∈ Fn2 , produce a sample
from the distribution of y1, . . . , yk picked independently from µ conditioned on

∑
yi = x. A time-

efficient back-sampling algorithm would allow us to time-efficiently simulate oracle access to f (k)

given oracle access to f . For random sparse linear codes, solving this problem in time sublinear in
N is impossible; however for specific, interesting sparse unbiased codes, this remains an important
problem to address. For the special case of dual-BCH codes, perhaps the most important family
of sparse, unbiased codes, we observe that the back-sampling problem can be solved using a small
variant of an algorithm of Kaufman-Litsyn [KL05]. Thus for dual-BCH codes, we get poly log(N)-
time, constant-query local testing and local list-decoding algorithms in the high-error regime.

For sub-exponential time list-decoding, we follow the same plan. Here too we will self-correct
f to obtain a function f (k), such that every linear function that correlates with f under the µ
distribution, also correlates with f (k) under the uniform distribution over Fn2 . However, since we
are now paying attention to running time (and we do not know how to solve the back-sampling
problem for µ efficiently in general), we cannot afford to allow the list-decoder over the uniform
distribution over Fn2 to query the value of f (k) at any point that it desires (since this will force us to
back-sample in order to compute f (k) at that point). Instead, we will use some recent remarkable
list-decoders ([FGKP06, BKW03]), developed in the context of learning noisy parities, which can
find all linear functions close (under the uniform distribution) to an arbitrary function h in sub-
exponential time by simply querying the function h at independent uniformly random points of
Fn2 ! Using the unbiasedness of µ, it turns out to be easy to evaluate f (k) at independent uniformly
random points of Fn2 . This leads to our sub-exponential time list-decoding algorithm.

Relationship to the k-wise XOR on codes: Back in the language of codes, what happened
here has a curious interpretation. Given a code C ⊆ FN2 , the k-wise XOR of C, C(⊕k), is the code

contained in FNk

2 defined as follows: for every codeword c ∈ C, there is a codeword c(⊕k) ∈ F [N]k

2

whose value in coordinate (i1, . . . , ik) equals ci1 ⊕ ci2 ⊕ . . . ⊕ cik . In terms of this operation, our
algorithms simply do the following: given a code C and received word w, consider the code C(⊕k)

with received word w(⊕k). The crucial observation is, that for k chosen suitably as a function of
the bias/sparsity of C, the code C(⊕k) is essentially, up to repeating each coordinate a roughly-equal
number of times, the Hadamard code! Additionally, w(⊕k) is close to c(⊕k) for a codeword c if and
only if w is close c. Thus decoding/testing w(⊕k) for the Hadamard code now suffices to complete
the algorithm.

6

The k-wise XOR on codes is an operation that shows up often as a device for hardness amplification,
to convert functions that are hard to compute into functions that are even harder to compute. Our
algorithms use the XOR operation for “good”: here the XOR operation is a vehicle to transfer query-
efficient/time-efficient algorithms for the Hadamard code to query-efficient/time-efficient algorithms
for arbitrary unbiased codes.

3 Definitions and Main Results

3.1 Codes

We begin by formalizing the notions of local list-decoding and local-testing of codes.

Definition 1 Let r ∈ FN2 . A randomized algorithm A is said to implicitly compute r with error δ
if for all j ∈ [N] it holds that

Pr [A(j) = rj] ≥ 1− δ,

where the probability is over the internal randomness of A.

Below we formally define local list-decoders. In what follows, we denote by Aw the randomized
algorithm A with oracle access to w.

Definition 2 (Local list-decoder) Let C ⊆ FN2 be a code. A (δ, q, l)-local list-decoder for C is a
randomized algorithm A, such that for every w ∈ FN2 , A outputs a list of randomized algorithms
{A1, . . . , Al}, such that:

• For each i ∈ [l], and for each input j ∈ [N], the algorithm Awi (j) makes at most q queries
into w during its execution.

• With probability at least 2/3, for every codeword c ∈ C with ∆(w, c) < δ, there exists an index
i such that the algorithm Awi implicitly computes c with error 1/3 (in the sense of Definition
1).

We now define local-testers.

Definition 3 (Local tester) Let C ⊆ FN2 be a code. Let 0 < δ1 < δ2. A (δ1, δ2, q)-local tester for
C is a randomized algorithm A, such that for every w ∈ FN2 ,

• Aw makes at most q oracle calls to w during its execution.

• If there is a codeword c ∈ C such that ∆(w, c) < δ1, Aw accepts with probability at least 2/3.

• If for all c ∈ C, ∆(w, c) > δ2, then Aw rejects with probability at least 2/3.

We can now formally state our main theorems regarding the local testability and local list-decodability
of sparse unbiased codes.

7

Theorem 4 (Constant-query local list-decoding and testing of sparse, unbiased, linear codes)
Let C ⊆ FN2 be a linear code with N c codewords and with bias β = N−γ. Then,

• Local list-decoding: for all 0 < ε < 1/2, there exists a
(

1/2− ε,
(

1
ε

)O(c/γ)
,
(

1
ε

)O(c/γ)
)

-local
list-decoder for C.

• Local testing: for all constants ε1, ε2 such that 0 < ε1 < ε2 < 1/2, there exists a(
1/2− ε2, 1/2− ε1,

(
1

ε2−ε1

)O(c/γ)
)

-local tester for C.

The next theorem states that the above algorithms can be implemented in a time-efficient manner
for the dual-BCH codes. The proof appears in Section 6.

Theorem 5 (Time-efficient local algorithms for dual-BCH codes) Let t be a constant, and
let N be an integer of the form 2s − 1. Let C be the dual-BCH code of length N and dimension st.
Then,

• Local list-decoding: for all 0 < ε < 1/2, there exists a
(
1/2− ε,poly

(
1
ε

)
, poly

(
1
ε

))
-local

list-decoder for C which runs in time poly(logN, 1
ε).

• Local testing: for all constants ε1, ε2 such that 0 < ε1 < ε2 < 1/2, there exists a(
1/2− ε2, 1/2− ε1,poly

(
1

ε2−ε1

))
-local tester for C which runs in time poly(logN, 1

ε).

Finally, we formally state our theorem on the sub-exponential time list-decoding of unbiased linear
codes from worst-case errors. The proof appears in Section 5.

Theorem 6 (Subexponential time list-decoding of unbiased codes) For all constants α, γ, ε >
0, there is an algorithm SubExpListDecode, which when given:

• the generator matrix G of a n-dimensional binary linear code C ⊆ FN2 , where C has bias N−γ

and N = n1+α, and

• a vector r ∈ FN2 ,

runs in time exp(n
log logn) and with high probability, finds all codewords c ∈ C such that ∆(c, r) <

1
2 − ε.

3.2 Distributions

As suggested earlier, it is greatly simplifying to work in the language of distributions over Fn2 . We
now formalize some notions in this context.

For sets D and R, we will use the concept of a probabilistic function from D to R. Formally, a
probabilistic function h from D to R is given by a collection of distributions (νd)d∈D, where each
νd is a distribution over R. Functionally, we view probabilistic functions as a black box, such that

8

whenever an element d ∈ D is fed into this box, a sample from νd is returned by the box. The
samples returned from different invocations of this box are mutually independent (in particular,
two different calls to the box on the same input may return different values). Abusing notation,
we write h : D → R. Note that ordinary (deterministic) functions can be viewed as a special case
of probabilistic functions.

For two probabilistic functions h1, h2 : Fn2 → F2 and a distribution µ over Fn2 , we define the
µ-distance between h1 and h2 by:

∆µ(h1, h2) = Pr
x∈µ

[h1(x) 6= h2(x)],

where the probability is over x chosen according to µ, and h1(x) and h2(x) being sampled inde-
pendently from the probabilistic functions h1 and h2.

We now introduce some terminology regarding linear functions and characters. Every linear func-
tion g : Fn2 → F2 is of the form g(x) = a · xdef=

∑n
i=1 aixi for some a ∈ Fn2 . A character of Fn2 is a

function χ : Fn2 → R such that for some linear function g : Fn2 → F2, we have χ(x) = (−1)g(x) for
all x. The character χ0 with χ0(x) = 1 for all x is called the trivial character.

We can now define the analogous versions of local list-decoding and local testing for distributions.

Definition 7 (Local list-decoder for linear functions under µ) Let µ be a distribution over
Fn2 . A (δ, q, l)-local list-decoder for linear functions under µ is a randomized algorithm A, such that
for every probabilistic function f : Fn2 → F2, A outputs a list of randomized algorithms {A1, . . . , Al},
such that:

• For each i ∈ [l], and for each input x ∈ Fn2 , the algorithm Afi (x) makes at most q queries into
f during its execution.

• With probability at least 2/3, for every linear function g : Fn2 → F2 such that ∆µ(f, g) < δ,
there exists an index i such that the algorithm Afi implicitly computes g with error 1/3 (in
the sense of Definition 1).

Definition 8 (Local tester for linear functions under µ) Let µ be a distribution over Fn2 . Let
0 < δ1 < δ2. A (δ1, δ2, q)-local tester for linear functions, or linearity tester, under µ is a randomized
algorithm A, such that for every probabilistic function f : Fn2 → F2,

• A makes at most q oracle calls to f .

• If there is a linear function g : Fn2 → F2 such that ∆µ(g, f) < δ1, Af accepts with probability
at least 2/3

• If for all linear functions g : Fn2 → F2, ∆µ(g, f) > δ2, then Aw rejects with probability at least
2/3

We now state our main theorem on the local list-decoding and testing of linear functions under
unbiased distributions. The proof appears in Section 4. In the next subsection, we will derive
Theorem 4 from it.

9

Theorem 9 (Local list-decoding and testing of linear functions under unbiased distributions)
Let µ be a distribution over Fn2 such that for all nontrivial characters χ : Fn2 → {− 1,+1},

| E
x∈µ

[χ(x)]| < 2−ηn.

Then,

1. Local list-decoder: for every 0 < ε < 1/2, there exists a
(

(1/2− ε),
(

1
ε

)O(1/η)
,
(

1
ε

)O(1/η)
)

-
local list-decoder for linear functions under µ.

2. Local tester: for every 0 < ε1 < ε2 < 1/2, there exists a
(

1/2− ε2, 1/2− ε1,
(

1
ε2−ε1

)O(1/η)
)

-

local tester for linear functions under µ.

3.3 From Distributions to Codes

In this subsection, we will use Theorem 9 on local algorithms for unbiased distributions to prove
Theorem 4 on local algorithms for sparse, unbiased codes.

Definition 10 (Distribution associated to a code) Let C ⊆ {0, 1}N be a linear code of dimen-
sion n. Let G be any generator matrix for C (i.e., G is an n × N matrix whose rows are linearly
independent and span C). Then the distribution associated to C via G is distribution µ over Fn2
which is uniform over the columns of G.

The connection between local algorithms for codes and local algorithms for distributions comes
from the following simple theorem.

Theorem 11 Let C be a code and let µ be a distribution associated to C via G. Then,

• Local list-decoding: If there exists a (δ, q, l)-local list-decoder for linear function under µ,
then there exists a (δ, q, l)-local list-decoder for C.

• Local testing: If there exists a (δ1, δ2, q)-local tester for linear functions under µ, then there
exists a (δ1, δ2, q)-local tester for C.

Proof Let v1, . . . , vN ∈ Fn2 be the columns of G. Let w ∈ FN2 be a received word.

Let f : Fn2 → F2 be the probabilistic function such that on input x, f(x) is sampled as follows: If
there exists i ∈ [N] such that x = vi, then pick an i uniformly at random from {i ∈ N | x = vi},
and output wi. If there is no i ∈ [N] such that x = vi, then output a uniformly random element of
F2 (or define f(x) arbitrarily).

Let c = a · G be a codeword of C, and let g : Fn2 → F2 be the corresponding linear function given
by g(x) = a · x. Observe that our definition of f implies that

∆(c, w) = ∆µ(g, f). (1)

10

Also note that one can simulate oracle access to f given oracle access to w.

The local list-decoding and testing algorithms for C can now be easily described. Given a received
word w ∈ FN2 , consider the corresponding probabilistic function f : Fn2 → F2, and run the algorithms
for local list-decoding/testing for linear functions under µ on f . The local tester for C accepts if and
only if the corresponding local tester for linear functions under µ accepts. The local list-decoding
algorithm for C outputs, for each linear function g(x) = a · x in the list output by the list-decoding
algorithm for linear functions under µ, the codeword c = a · G. Correctness follows immediately
from Equation (1).

We now give a proof of the main theorem on local list-decodability and testability of sparse, unbiased
codes, Theorem 4, assuming Theorem 9.

Proof of Theorem 4: Let C be a linear code with |C| ≤ N c and bias ≤ N−γ . Let G be a generator
matrix for C. Let n = log |C|. Let µ be the distribution associated to C via G.

We first notice that our assumptions on the sparsity and the bias of the code C imply that for all
nontrivial characters χ : Fn2 → {−1,+1},

| E
x∈µ

[χ(x)]| < 2−ηn, (2)

where η = γ/c. Indeed, if χ(x) = (−1)a·x, then the codeword a · G of the code C has weight
1+Ex∈µ[χ(x)]

2 . By assumption on the bias of C, the weight of any nonzero codeword of C lies
in the interval (1−N−γ

2 , 1+N−γ

2). By the sparsity of C, this interval is contained in the interval
(1−2−γn/c

2 , 1+2−γn/c

2), and Equation (2) follows.

Theorem 9 now implies that the existence of a suitable list-decoding algorithm and testing algorithm
for linear functions under µ. By Theorem 11, this implies the existence of the desired local list-
decoding and local testing algorithms for C.

4 Local list-decoding and testing under distributions

In this section, we prove Theorem 9.

4.1 Some notation

We now introduce some notation.

Let Un denote the uniform distribution over Fn2 .

Let µ be a distribution over Fn2 . For an integer k > 0, we let µ(k) denote the distribution of
x1 + . . .+ xk, where the xi are picked independently from µ. The crucial fact that we need about
this operation is given by the following lemma.

Lemma 12 Suppose that for every nontrivial character χ of Fn2 , we have

|Ex∈µ[χ(x)]| < β.

Then the distribution µ(k) is βk · 2n-close to Un in statistical distance.

11

For an integer k > 0 and y ∈ Fn2 , we let µ(k,y) denote the distribution of (x1, . . . , xk) ∈ (Fn2)k, where
the xi are picked independently from µ conditioned on

∑k
i=1 xi = y.

For a probabilistic function f : Fn2 → F2, we define the real function associated with f to be the
function F : Fn2 → [−1, 1], where for each x ∈ Fn2 , F (x) = 2px − 1, where px is the probability that
f(x) equals 0. Thus, if f was a deterministic function, then F (x) = (−1)f(x).

For functions F,G : Fn2 → R and a distribution µ over Fn2 , we define the µ-correlation between F
and G, denoted 〈F,G〉µ be the quantity

Ex∈µF (x)G(x).

Note that if f and g are probabilistic functions from Fn2 to F2, and F and G are the real functions
associated with them, then

〈F,G〉µ = 1− 2∆µ(f, g). (3)

4.2 Local list-decoding and testing for distributions

In this subsection, we will prove Theorem 9 on the local list-decoding and testing of linear functions
under unbiased distributions.

Recall the setup: we have a distribution µ over Fn2 and a function f : Fn2 → F2. Our algorithms will
work by reducing to the uniform distribution over Fn2 . Specifically, we will produce a (probabilistic)
function h : Fn2 → F2 (from which we can sample, given oracle access to f) such that the µ-distance
of f from a linear function g “corresponds” to the Un-distance of h from g. Then list-decoding
and linearity-testing of h under the uniform distribution will enable us to list-decode and test the
linearity of f under the µ-distribution.

We begin by introducing the local list-decoder for linear functions under the uniform distribution,
given by the famous Goldreich-Levin algorithm1.

Theorem 13 (Local list-decoder for the uniform distribution [GL89]) For every 0 < ε <
1/2, there exists a

(
1
2 − ε, poly(1

ε),poly(1
ε)
)
-local list-decoder for linear functions under Un.

This version of the Goldreich-Levin theorem, in conjunction with the BLR linearity test [BLR93]2,
easily implies a constant query local tester for linear functions under the uniform distribution in
the high error regime.

Theorem 14 (Local tester for the uniform distribution) For every 0 < ε1 < ε2 < 1/2, there
exists a

(
1
2 − ε2,

1
2 − ε1, poly

(
1

ε2−ε1

))
-local tester for linear functions under Un.

1To be precise, we state a generalization of the usual Goldreich-Levin theorem to handle probabilistic functions;
inspecting the original proof of the theorem immediately reveals that it applies verbatim to probabilistic functions
too.

2suitably generalized to handle probabilistic functions.

12

In Appendix A, we outline a proof of Theorem 14 using Theorem 13 and the BLR linearity test.

We now give a proof of the main result of this section, Theorem 9.

Theorem 9 (Local list-decoding and testing of linear functions under unbiased distri-
butions) Let µ be a distribution over Fn2 such that for all nontrivial characters χ : Fn2 → {−1,+1},

| E
x∈µ

[χ(x)]| < 2−ηn.

Then,

1. Local list-decoder: For every ε such that 0 < ε < 1/2, there exists a
(

1
2 − ε, (

1
ε)
O(1/η),

(
1
ε

)O(1/η)
)

-
local list-decoder for linear functions under µ.

2. Local tester: For every ε1, ε2 such that 0 < ε1 < ε2 < 1/2, there exists a(
1
2 − ε2,

1
2 − ε1,

(
1

ε2−ε1

)O(1/η)
)

-local tester for linear functions under µ.

Proof Let f : Fn2 → F2 be the probabilistic function which we want to locally list-decode or
locally test. Let k be an odd integer ≈ 100

η , and note that Lemma 12 implies that the distribution
µ(k) is 2−50n close to Un in statistical distance.

Let h : Fn2 → F2 be the probabilistic function defined as follows. For y ∈ Fn2 , to sample h(y), first
sample (x1, . . . , xk) from µ(k,y), and then output

∑k
i=1 f(xi). Clearly, any algorithm that is given

oracle access to f can simulate oracle access to h with a O(1
η)-blowup in the number of queries

(although the time complexity of this simulation need not be bounded). See also the Remark
following the proof.

We will assume without loss of generality in the rest of the proof that (1
ε)
k and (1

ε2−ε1)k are all
2o(n), since otherwise the trivial local testers and list-decoders that query the function at every
point of the domain will satisfy the bounds in the theorem.

The crux of our algorithms is the following claim (the proof appears in the analysis of the algo-
rithms).

Claim 15 For every linear function g : Fn2 → F2, letting ∆µ(f, g) = 1−β
2 and ∆Un(h, g) = 1−α

2 , we
have

α = βk ± 2−50n.

We now present our local list-decoding and testing algorithms for linear functions. Both these
algorithms will assume they have oracle access to the probabilistic function h, which by the earlier
discussion, can be simulated by using oracle access to f .

Algorithm for Local List-Decoding: Fix any ε such that 0 < ε < 1/2. We now describe a(
1
2 − ε, (

1
ε)
O(1/η),

(
1
ε

)O(1/η)
)

-local list-decoder, Dµ, for linear functions under µ. Let α = (2ε)k−2−50n

2 .

By Theorem 13, there is a
(

1
2 − α,poly(1

α), poly(1
α)
)
-local list-decoder, DUn , for linear functions

under Un. The list-decoder for linear functions under µ, Df
µ, works as follows given oracle access

to the probabilistic function f :

13

• Run DUn and get as output a list of randomized algorithms {D1, . . . , Dl}

• Return a list of randomized algorithms {Dµ,1, . . . , Dµ,l}, where Dµ,i works as follows: The
algorithm Df

µ,i(x) simulates Dh
i (x) (recall that given oracle access to f , one can simulate

oracle access to h) and returns the value returned by Dh
i (x).

Algorithm for Testing: Fix any ε1, ε2 such that 0 < ε1 < ε2 < 1/2. We now describe a(
1
2 − ε2,

1
2 − ε1,

(
1

ε2−ε1

)O(1/η)
)

-local tester, Tµ, for linear functions under µ.

Let α1 = (2ε1)k+2−50n

2 and let α2 = (2ε2)k−2−50n

2 . By Theorem 14, there is a
(

1
2 − α2,

1
2 − α1,poly

(
1

α2−α1

))
-

local tester, TUn , for linear functions under Un.

The linearity-tester under µ, Tµ, works as follows given oracle access to the probabilistic function
f :

• Simulate T hUn (again recall that given oracle access to f , one can simulate oracle access to h),
and accept if and only if T hUn accepts.

Analysis: The correctness of the algorithms will follow easily from Claim 15. We first prove this
claim.

Let F : Fn2 → [−1,+1] be the real function associated with f . Let H : Fn2 → [−1,+1] be the real
function associated with h.

Let χg be the real function associate with g. Note that since g is a deterministic function, χg(x)
simply equals (−1)g(x).

Note that by definition,

H(x) = E(x1,...,xk)∈µ(k,y)

[
k∏
i=1

F (xi)

]
.

We want to estimate ∆Un(h, g) in terms of ∆µ(f, g). Equivalently, by Equation (3), we want to
bound 〈H,χg〉Un in terms of 〈F, χg〉µ. We begin by expanding out the definition of 〈H,χg〉Un :

〈H,χg〉Un = Ey∈Un [H(y)χg(y)]

= Ey∈µ(k) [H(y)χg(y)]± 2−50n by Lemma 12 and choice of k

= Ey∈µ(k)

[(
E(x1,...,xk)∈µ(k,y)

[
k∏
i=1

F (xi)

])
χg(y)

]
± 2−50n

= Ey∈µ(k)

[
E(x1,...,xk)∈µ(k,y)

[
k∏
i=1

(F (xi)χg(xi))

]]
± 2−50n

= Ex1,...,xk∈µ

[
k∏
i=1

(F (xi)χg(xi))

]
± 2−50n

= (Ex∈µ[F (x)χg(x)])k ± 2−50n.

= 〈F, χg〉kµ ± 2−50n.

14

By Equation (3), we get that α = βk ± 2−50n. This proves the claim.

Analysis of decoder: Claim 15 together with Equation (3) implies that if g is a linear function
such that ∆µ(g, f) < 1/2− ε, then ∆Un(g, h) < 1/2− α, where α = (2ε)k−2−50n

2 . Now, the decoder
Df
µ simulates Dh

Un
, and hence returns an algorithm computing every linear function g such that

∆Un(g, h) < 1/2 − α. Hence, it also returns an algorithm computing every linear function g such
that ∆µ(g, f) < 1/2− ε.

Observe that the query complexity of Df
µ is given by the query complexity of Dh

Un
, but blown up

by a factor of k = O(1/η), since each each query to h is made by making k queries to f . Plugging
in the parameters of DUn , we obtain the desired query complexity for Df

µ

Analysis of tester: Just as we stated in the analysis of the decoder, Claim 15 together with
Equation (3) implies that

• If g is a linear function such that ∆µ(g, f) < 1/2 − ε2, then ∆Un(g, h) < 1/2 − α2, where
α2 = (2ε2)k−2−50n

2 .

• If g is a linear function such that ∆µ(g, f) > 1/2 − ε1, then ∆Un(g, h) > 1/2 − α1, where
α1 = (2ε1)k+2−50n

2 . (For this implication we use that k is odd.)

Now, the tester T fµ simulates T hUn , and outputs the output of T hUn . If f is 1/2− ε2 close to a linear
function under µ, then by the above implications, h is 1/2 − α2 close to a linear function under
Un, and hence T hUn accepts. If f is 1/2− ε1 far from all linear function under µ, then by the above
implications, h is 1/2− α1 far from all linear function under Un, and hence T hUn rejects.

Just as in the case of the local list-decoder, observe that the query complexity of T fµ is given by
the query complexity of T hUn , but blown up by a factor of k = O(1/η), since each each query to h
is made by making k queries to f . Plugging in the parameters of TUn , we obtain the desired query
complexity for T fµ

Remark (Time Complexity) Suppose there is an algorithm µSample that runs in time T , which
when given y ∈ Fn2 , produces a vector x ∈ (Fn2)k whose distribution is λ-close to to µ(k,y). Then
in time poly(T), one can sample (upto λ-statistical distance) the value of h(y) for any given y,
using oracle access to f . This will allow the algorithms of the previous section to run in time which
is a poly(T) factor larger than the corresponding running times of the invoked algorithms for the
uniform distribution. In particular, if λ < 2−Ω(n), the list-decoder will run in time poly

(
T,
(

1
ε

)1/η),

and the linearity-tester will run in time poly
(
T,
(

1
ε2−ε1

)1/η
)

.

In the Section 6, we show that show how to implement the µSample algorithm in time poly(n)
when µ is the distribution associated with the dual-BCH code via a particular generator matrix.

15

5 Sub-exponential time list-decoding of unbiased linear codes

In this section, we prove Theorem 6 on the sub-exponential time list-decoding of unbiased linear
codes.

As in the local algorithms given in Section 4, we first change our language to that of distributions
on Fn2 . Given a linear code C and a received word r from which we want to list-decode, we get a
distribution µ and a function f : Fn2 → F2, and we want to find all linear functions g : Fn2 → F2

that are close to f in µ-distance.

Following the local algorithms, here too we will “self-correct” f to obtain a function h, such that
every linear function that correlates with f under the µ distribution, also correlates with h under
the uniform distribution over Fn2 . However, since we are now paying attention to running time
(and we do not know how to solve the µSample problem efficiently in general), we cannot afford to
allow the list-decoder over the uniform distribution over Fn2 to query the value of h at any point
that it desires. Instead, we will use some recent remarkable list-decoders, developed in the context
of learning noisy parities, which can list-decode in sub-exponential time by simply querying the
function h at independent uniformly random points of Fn2 ! Using the unbiasedness of µ, it turns
out to be easy to evaluate h at independent uniformly random points of Fn2 . This completes the
informal description of the algorithm.

Below we state the result on agnostically learning parities ([FGKP06]) that gives a list-decoding
algorithm for any function h over the uniform distribution over Fn2 in sub-exponential time, in the
model where the algorithm receives independent and uniform samples from h. The parameters in
Theorem 16 below are obtained by combining the parameters for the running time and query com-
plexity of the Blum-Kalai-Wasserman [BKW03] algorithm for learning noisy parities with random
errors in sub-exponential time with the Feldman-Gopalan-Khot-Ponnuswami [FGKP06] algorithm
for reducing the problem of learning noisy parities with agnostic errors to the problem of learning
noisy parities with random errors.

Theorem 16 ([FGKP06]) There is an algorithm AgnosticParity, such that for every probabilistic
function h : Fn2 → F2, every β > 0 and every choice of parameter t > 0,:

• If AgnosticParity is given as input the parameter β and s ≥ exp(log(1/β)n1/t + tn
logn) indepen-

dent samples (x, h(x)), where x is chosen uniformly Fn2 , then AgnosticParity returns the set
of all linear functions g : Fn2 → F2 such that ∆Un(h, g) < 1−β

2 .

• AgnosticParity runs in time exp(log(1/β)n1/t + tn
logn)

We are now ready to prove our main theorem, Theorem 6, on the sub-exponential time list-decoding
of unbiased codes.

Theorem 6 (Subexponential time list-decoding of unbiased codes, restated) For all
constants α, γ, ε > 0, there is an algorithm SubExpListDecode, which when given:

• the generator matrix G of a n-dimensional binary linear code C ⊆ FN2 , where C has bias N−γ

and N = n1+α, and

16

• a vector r ∈ FN2 ,

runs in time exp(n
log logn) and with high probability, finds all codewords c ∈ C such that ∆(c, r) <

1−ε
2 .

Proof

Let vi denote the ith column of G.

Below we present the list-decoding algorithm. For concreteness, we will present the algorithm in
the language of codes. The proof of correctness will employ the language of distributions over Fn2 .

• Initialize the set Z = ∅.

• Set k = 100n
γ logN , t = 2 logn

log logn , and s = exp(log(1/ε)kn1/t + tn
logn).

• Repeat s times:

– Sample i1, . . . , ik uniformly at random from [N].

– Include (
∑k

j=1 vij ,
∑k

j=1 rij) in Z.

• Choose the parameter t = 2 logn
log logn , and feed εk/2 and Z as input to AgnosticParity, and let

its output be {g1, . . . , gl}.

• For each i ∈ [l], write the linear function gi in the form gi(x) = ai ·x, and output the codeword
ai ·G.

Clearly, (by Theorem 16), this algorithm runs in time exp(log(1/ε)kn1/t + tn
logn). By choice of k

and t, and since ε is constant and N = n1+α for constant α, this equals exp(n
log logn).

We now show that this algorithm is indeed a list-decoder as claimed. Let c = a ·G be a codeword
of C such that ∆(c, r) < 1−ε

2 . Let g : Fn2 → F2 be the linear function given by g(x) = a · x.

Let µ be the uniform distribution over the columns of G (i.e., µ is the distribution associated to
C via G). Let f : Fn2 → F2 be a probabilistic function, where to sample f(x), we pick an i ∈ [N]
uniformly at random from the set of all i such that x = vi, and output ri (if there are no such i,
then we can define f(x) arbitrarily).

Let h : Fn2 → F2 be the probabilistic function defined as follows. For y ∈ Fn2 , to sample h(y), first
sample (x1, . . . , xk) from µ(k,y) (recall that µ(k,y) denotes the distribution of (x1, . . . , xk) ∈ (Fn2)k,
where the xi are picked independently from µ conditioned on

∑k
i=1 xi = y), and then output∑k

i=1 f(xi).

As in the local setting, we have the following claim. We omit the proof (which is identical to the
proof Claim 15).

Claim 17 Let ∆Un(h, g) = 1−α′
2 . Then,

α′ > εk ± 2−50n.

17

Now, if εk ≤ 2−n, then the trivial brute force algorithm that searches over all possible linear
function also satisfies the parameters of the theorem. Hence, from now on we assume without loss
of generality that εk > 2−n. In particular, the claim above implies that α′ > εk/2.

Let us analyze a single iteration of the loop in the algorithm. We will show that the distribution
of the point (

∑
j vij ,

∑
j rij) (which gets included in the set Z) is 2−50n-close to the distribution

of (y, h(y)), where y is sampled uniformly at random from Fn2 , and h(y) is sampled independently
from the probabilistic function h.

Assuming this for the moment, it is easy to see that the algorithm will include c in its output.
Indeed, the set of samples Z fed into the algorithm AgnosticParity is 2−50n-close to the distribution
of

((x1, h(x1)), (x2, h(x2)), . . . , (xs, h(xs))),

where the xi are independent. Thus by Theorem 16, since ∆Un(h, g) < 1−εk/2
2 , we see that the

algorithm AgnosticParity will return g in its output. Thus c will be included in the output of the
algorithm SubExpListDecode, as desired.

We now analyze the distribution of (
∑

j vij ,
∑

j rij). By definition, the distribution of this is
identical to the distribution of (

∑k
j=1 xj ,

∑k
j=1 f(xj)), where x1, . . . , xk are sampled independently

and uniformly from µ. By Lemma 12, the distribution of
∑k

j=1 xj is 2−50n-close to uniformly
distributed over Fn2 . For any given y ∈ Fn2 , conditioned on

∑k
j=1 xj = y, the distribution of∑k

j=1 f(xj) has a distribution identical to that of h(y). Thus the distribution of (
∑

j vij ,
∑

j rij) is
2−50n-close to the distribution of (y, h(y)), for uniformly sampled y.

This completes the proof of correctness of the algorithm.

Since the bias of random linear codes is small, we immediately get the following corollary.

Corollary 18 For all constants α, ε > 0, there is an algorithm which when given the n × N
generator matrix G of a random binary linear code C, where N = n1+α, and when given a vector
r ∈ FN2 , runs in time exp(n

log logn) and finds all codewords c ∈ C such that ∆(c, r) < 1
2 − ε.

6 Efficient local algorithms for dual-BCH codes

In this section, we will prove Theorem 5 on the existence of time-efficient and query-efficient al-
gorithms for list-decoding and testing dual-BCH codes. As mentioned earlier, we will do this by
showing that the µ-sampling problem associated to the dual-BCH codes can be solved efficiently.
The algorithm presented here is a small variant of one given by Kaufman-Litsyn [KL05] for sam-
pling constant weight BCH codewords. The analysis we present is self-contained (and possibly
simpler).

Let us recall the definition of the dual-BCH code of length 2s − 1 and parameter t, dBCH(s, t).
First identify F2s with Fs2 in a linear fashion. For an element α ∈ F∗2s , let vα,t ∈ Ft2s be the vector
given by

vα,t = (α, α3, α5, . . . , α2t−1).

18

Define vα,t ∈ (Fs2)t to be the vector obtained from vα,t by interpreting each of its coordinates as
elements of Fs2. Then the dual-BCH code dBCH(s, t) is the code with the (st)× (2s − 1) generator
matrix G, where the columns of G are the vectors vα,t, for α ∈ F∗2s .

We denote by St,s ⊆ Ft2s the set of all vectors vt,α, where α ∈ F∗2s . By definition, the distribution
µ associated to dBCH(s, t) via G is the uniform distribution over St,s. In this setting, in the
µSample problem we are given a vector b ∈ Ft2s , and want to sample uniformly from the set of all
(x1, . . . ,xk) ∈ Skt,s such that

∑k
i=1 xi = b. Below we give an algorithm to sample uniformly from

the set of all (x1, . . . ,xk) ∈ Skt,s such that the xi are all distinct, and
∑k

i=1 xi = b. Later we will
show that this distribution is in fact 2−Ω(s)-close to the actual distribution that we want.

Before proceeding with the sampling algorithm, we state two of the fundamental properties of
dual-BCH codes that will be useful in the analysis.

Proposition 19 (Unbiasedness of dual-BCH codes) For every character χ : Ft2s → C, we
have ∣∣Ex∈St,s [χ(x)]

∣∣ ≤ 2t · 2−s/2.

This is a consequence of the Weil bound on character sums [LN94].

Proposition 20 (Distance of BCH codes [MS81]) For every V ⊆ St,s with 1 ≤ |V | ≤ 2t, we
have

∑
v∈V v 6= 0.

Theorem 21 There is an randomized algorithm BCHSample, which when given as input:

• integers t, k, s with 4t < k < s,

• a vector b ∈ Ft2s,

runs in time poly(tt, s), and outputs a random set T ⊆ F2s such that:

• |T | = k.

• The distribution of T is 2−Ω(s)-close to the uniform distribution over the set

F = {R ⊆ F2s | ||R| = k,
∑
α∈R

vα,t = b}.

Proof We give the algorithm BCHSample below. The main idea is to first pick all but t elements
of the set T uniformly at random, and to then consider the residual problem of picking the last
t elements such that

∑
α∈T vα,t equals b. We show that with probability at least 1

t! (which is
noticeable if t is a constant), there do exist t elements with this property. Finally, we notice that
the residual problem of finding the last t elements (when they exist) is precisely the problem of
syndrome decoding of BCH codes up to half the minimum distance, for which an efficient algorithm
was recently given by Dodis, Ostrovsky, Reyzin and Smith [DORS08].

We begin by stating the theorem describing the syndrome-decoding algorithm for BCH codes.

19

Theorem 22 (Syndrome-decoding of BCH codes [DORS08]) There is an algorithm
SyndromeDecode, which when given integers s, t and a vector y ∈ Ft2s, runs in time poly(s) and
returns the unique set U ⊆ F∗2s (if it exists) with:

• |U | ≤ t,

•
∑

α∈U vα,t = y.

We can now formally present our algorithm BCHSample.

• Repeat poly(t!, s) times:

– Pick α1, . . . , αk−t ∈ F2n uniformly at random.

– Let c =
∑k−t

i=1 vα,t.

– Run SyndromeDecode(s, t,b−c). If it runs successfully, let U ⊆ F2s be the set it returned.

– Let T = {α1, . . . , αk−t} ∪ U .

– If |T | = k, then return T and EXIT.

• FAIL.

The following lemma analyzes a single iteration of the loop, and immediately implies the correctness
of the algorithm.

Lemma 23 In a single iteration of the loop, a set T is returned with probability 1/t!− os(1), and
the distribution of this set T is uniform over F .

Proof The lemma will follow from a sequence of claims.

Claim 24 The distribution of c is 2−Ω(st)-close to the uniform distribution over Ft2s.

Proof This is a direct consequence of Proposition 19 and Lemma 12. Let µ be the uniform
distribution over S. Notice that the distribution of c is precisely µ(k−t).

Proposition 19 implies that for every nontrivial character χ : Ft2s → R

|Ex∈µ [χ(x)]| ≤ 2t · 2−s/2.

Lemma 12 then implies that the statistical distance of the distribution µ(k−t) from the uniform
distribution over Ft2s is at most 2st · (2t)k−t · 2−(k−t)s/2 ≤ 2−Ω(st), as desired.

Claim 25 If y ∈ Ft2s is picked uniformly at random, then with probability at least 1/t! − os(1),
SyndromeDecode(s, t,y) will succeed and output a set U with |U | = t. Furthermore, the distribution
of this U is uniformly distributed over the set of all t-element subsets of F2s.

20

Proof Recall that SyndromeDecode(s, t,y) will succeed and output a set U of size t, if and only
if y can be written as the sum of exactly t distinct vectors of S. However, and this is the crucial
point, any y0 ∈ Ft2s can be written as the sum of t distinct elements of S in at most 1 way. Indeed,
if there were 2 different ways of writing some y0 ∈ Ft2s as a sum of t distinct elements in Ft2s ,
then there would be a nonempty set of size at most 2t elements from S which sum to 0. But this
contradicts the distance property of BCH codes, Property 20.

Thus the set of all y0 ∈ Ft2s which can be written as a sum of exactly t distinct elements of S has
cardinality exactly

(|S|
t

)
≈ 2st

t! (1− os(1)). The claim follows.

We can now complete the proof of Lemma 23, and with that the proof of Theorem 21. By the
previous 2 claims, with probability at least 1/t!− 2−Ω(s), SyndromeDecode(s, t,b− c) will output a
set U of cardinality t which is disjoint from {α1, . . . , αk−t}. In this case, the algorithm will return
the set T .

It remains to see that the distribution of T is uniform over F . By design, the distribution of T is
supported on F . For every element R of F , T will equal R if and only if α1, . . . , αk−t are distinct
elements of R. The probability of this occurring does not depend on R, and thus the distribution
of T is uniform over F .

Remark Observe that what we just showed also implies that for every b, the number of
(x1, . . . ,xk) ∈ Skt,s such that the xi are all distinct and

∑
xi = b is 2s(k−t)(1 − o(1)). Conse-

quently, for every k′ < k, and for every b, the number of (x1, . . . ,xk′) ∈ Sk
′
t,s such that the xi are

all distinct and
∑

xi = b is at most 2s(k−t−1)(1 − o(1)). This implies that the distribution that
BCHSample samples from (the uniform distribution over the set of all (x1, . . . ,xk) ∈ Skt,s such that
the xi are all distinct and

∑
xi = b) is 2−Ω(s)-close to the distribution µ(k,b) (the uniform over the

set of all (x1, . . . ,xk) ∈ Skt,s such that
∑

xi = b is 2s(k−t)(1− o(1)).

We can now complete the proof of Theorem 5.

Proof of Theorem 5: Follows by combining Theorem 21 and the remark following it, with
Theorem 9 and the remark following it.

Acknowledgements

We are very grateful to Madhu Sudan for suggesting these problems to us, for constant encourage-
ment, valuable discussions and for conjecturing the impossibility of our results. We are also very
grateful to Adam Kalai for his enthusiastic support and many helpful discussions. Many thanks
also to Henry Cohn and Tali Kaufman for all their encouragement.

Finally, we would like to thank Microsoft Research, New England for its hospitality.

21

References

[AKK+03] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Testing
low-degree polynomials over GF(2). In Proceedings of RANDOM 2003, LNCS, vol.
2764, pages 188–199, New York, 2003. Springer.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM,
45(3):501–555, May 1998.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characteriza-
tion of NP. Journal of the ACM, 45(1):70–122, January 1998.

[AS03] Sanjeev Arora and Madhu Sudan. Improved low degree testing and its applications.
Combinatorica, 23(3):365–426, 2003. Preliminary version in Proceedings of ACM STOC
1997.

[BCH+96] Mihir Bellare, Don Coppersmith, Johan H̊astad, Marcos Kiwi, and Madhu Sudan.
Linearity testing over characteristic two. IEEE Transactions on Information Theory,
42(6):1781–1795, November 1996.

[BEK02] Nader H. Bshouty, Nadav Eiron, and Eyal Kushilevitz. PAC learning with nasty noise.
Theor. Comput. Sci., 288(2):255–275, 2002.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. J. ACM, 50(4):506–519, 2003.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applica-
tions to numerical problems. Journal of Computer and System Sciences, 47(3):549–595,
1993.

[DG08] Irit Dinur and Elazar Goldenberg. Locally testing direct product in the low error range.
In FOCS, pages 613–622. IEEE Computer Society, 2008.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. SIAM J. Comput.,
38(1):97–139, 2008.

[FGKP06] Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami.
New results for learning noisy parities and halfspaces. In FOCS, pages 563–574, 2006.

[GKZ08] Parikshit Gopalan, Adam R. Klivans, and David Zuckerman. List-decoding reed-muller
codes over small fields. In Ladner and Dwork [LD08], pages 265–274.

[GL89] Oded Goldreich and Leonid Levin. A hard-core predicate for all one-way functions.
Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pages 25–
32, May 1989.

[GRS00] Oded Goldreich, Ronitt Rubinfeld, and Madhu Sudan. Learning polynomials with
queries: The highly noisy case. SIAM Journal on Discrete Mathematics, 13(4):535–570,
November 2000.

22

[IJKW08] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. Uniform
direct product theorems: simplified, optimized, and derandomized. In Ladner and
Dwork [LD08], pages 579–588.

[IKW09] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. New direct-product
testers and 2-query pcps. In STOC, pages 131–140, 2009.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR Lemma. Proceedings of the 29th Annual ACM Symposium on
Theory of Computing, pages 220–229, May 1997.

[KL95] Ilia Krasikov and Simon Litsyn. On spectra of BCH codes. IEEE Transactions on
Information Theory, 41(3):786–788, 1995.

[KL05] T. Kaufman and S. Litsyn. Almost orthogonal linear codes are locally testable. In
Proceedings of the Forty-sixth Annual Symposium on Foundations of Computer Science,
pages 317–326, 2005.

[KS07] Tali Kaufman and Madhu Sudan. Sparse random linear codes are locally decodable and
testable. In FOCS, pages 590–600. IEEE Computer Society, 2007.

[KS09] Swastik Kopparty and Shubhangi Saraf. Tolerant linearity testing and locally testable
codes. In APPROX-RANDOM, pages 601–614, 2009.

[LD08] Richard E. Ladner and Cynthia Dwork, editors. Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17-20,
2008. ACM, 2008.

[Lit09] Simon Litsyn, 2009. Personal Communication.

[LN94] Rudolf Lidl and Harald Niedereitter. Introduction to Finite Fields and Their Applica-
tions. Cambridge University Press, 2nd edition, 1994.

[Lyu05] Vadim Lyubashevsky. The parity problem in the presence of noise, decoding random
linear codes, and the subset sum problem. In APPROX-RANDOM, pages 378–389,
2005.

[MR06] Dana Moshkovitz and Ran Raz. Sub-constant error low degree test of almost-linear
size. In Jon M. Kleinberg, editor, STOC, pages 21–30. ACM, 2006.

[MS81] F. J. MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting Codes.
Elsevier/North-Holland, Amsterdam, 1981.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM Journal on Computing, 25(2):252–271, April
1996.

[RS97] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and
a sub-constant error-probability PCP characterization of NP. In Proceedings of the
Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 475–484, New
York, NY, 1997. ACM Press.

23

[Sam07] Alex Samorodnitsky. Low-degree tests at large distances. In STOC, pages 506–515,
2007.

[STV99] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without the
XOR lemma. Proceedings of the 31st Annual ACM Symposium on Theory of Computing,
pages 537–546, 1999.

[Sud09] Madhu Sudan, 2009. Personal Communication.

24

A The Goldreich-Levin local list-decoder and tester

In this section, we prove Theorem 14, which gives a constant query linearity tester under the uniform
distribution (in the sense of Definition 8) in the high error regime. This linearity tester is a simple
combination of the Goldreich-Levin theorem, Theorem 13, and the BLR linearity test [BLR93].

We begin by formally stating these results3.

Theorem 13 ([GL89]) For every 0 < ε < 1/2, there exists a
(
(1/2− ε),poly(1

ε),poly(1
ε)
)
-local

list-decoder for linear functions under Un.

Theorem 26 ([BLR93], The BLR Linearity Tester) There is a tester ABLR such that for
any parameter ε such that 0 < ε < 0.1, there is a

(
ε, 50ε, poly(1

ε)
)
-local tester for linearity under

Un.

We can now prove Theorem 14.

Theorem 14 (Local List-Decoder =⇒ Local Tester) For every 0 < ε1 < ε2 < 1/2, there
exists a

(
1
2 − ε2,

1
2 − ε1, poly

(
1

ε2−ε1

))
-local tester for linear functions under Un.

Proof of Theorem 14: Fix ε1, ε2 such that 0 < ε1 < ε2 < 1/2, and let f : Fn2 → F2 be a
probabilistic function. Let δ = ε2−ε1

100 .

We now describe the
(

1
2 − ε2,

1
2 − ε1, poly(1

ε2−ε1)
)

-local tester for linearity under Un.

The Tester: The tester works in three stages:

1. Run the
(

(1/2− ε2),poly(1
ε2

), poly(1
ε2

)
)

-local list-decoder Adecoder for linear functions under

Un, given by Theorem 13, O(1) times. Each time Adecoder outputs a list of poly(1
ε2

) randomized
algorithms. Let {A1, . . . , Al} be the union of all these lists, where l = poly(1

ε2
).

For each i ∈ [l], let Bi : Fn2 → F2 be the randomized algorithm which on input x, executes Afi
on x O(log(1

δ)) times, and outputs the majority of the outputs of these executions. Thus, if
Ai computes a linear function g with error 1/3, then Bi computes that linear function with
error δΩ(1).

2. For each Bi (1 ≤ i ≤ l), run the BLR linearity test (given by Theorem 26) with parameter δ
to “test” if Bi is δ-close to a linear function. Repeat the test poly(l) times and take majority
of the output accept/reject decision.

3. For each Bi, estimate the Un-distance of f from Bi in the following manner:

(a) uniformly and independently sample poly(1
δ , l) elements of Fn2 , say x1, x2, . . . , xm,

3To be precise, we state generalizations of the usual Goldreich-Levin and Blum-Luby-Rubinfeld theorems to handle
probabilistic functions; inspecting the original proofs of these theorems immediately reveals that they apply verbatim
to probabilistic functions too.

25

(b) for each sample xj , 1 ≤ j ≤ m, take a sample of the evaluation of both f and Bi on xj
(recall that f and Bi are probabilistic functions and hence the evaluations are random
variables).

(c) let the estimated distance between f and Bi be the fraction of the xj (i ≤ j ≤ m) for
which f(xj) 6= Bi(xj).

If there is any Bi such that Bi got accepted by the majority vote of the repeated BLR test,
and the estimated distance of f from Bi is less than 1/2− ε1 − 60δ, then the Tester accepts,
else it rejects.

Analysis of the Tester: First observe that the number of oracles calls to f made by the tester
(in stages 1, 2 and 3) is poly(l, 1

δ . Now l = poly(1
ε2

) and δ = ε2−ε1
100 < ε2. Hence the number of oracle

calls is at most poly(1
ε2−ε1).

We want to show that for any (probabilistic) function f : Fn2 → F2 whose Un-distance from the set
of linear functions is less than 1/2− ε2, the above Tester accepts with probability at least 2/3, and
for any function f whose Un-distance from the set of linear functions is at least 1/2− ε1, the Tester
rejects with probability at least 2/3.

Case 1: Let f be a function such that the Un-distance of f from the set of linear functions is less
than 1/2−ε2. Let g : Fn2 → F2 be a linear function such that ∆Un(f, g) < 1/2−ε2. By Theorem 13,
each time the Goldreich-Levin

(
(1/2− ε2), poly(1

ε2
), poly(1

ε2
)
)

-local list-decoder Adecoder is run,

with probability at least 2/3, Adecoder returns some function Ai such that Afi implicitly computes
g. In stage 1 of the tester, since we run Adecoder multiple times, with probability at least 9/10, in
at least one of the iterations Adecoder will return an algorithm Ai such that Afi implicitly computes
g. By construction, this implies that ∆Un(Bi, g) ≤ δ. Thus the BLR linearity test (given by
Theorem 26) with parameter δ when applied to Bi will return “Accept” with probability at least
2/3. Thus the repeated version of the BLR test given in stage 2 will accept B1 with probability at
least 9/10. Finally, by the Chernoff bound, with probability at least 9/10, the estimated distance
between f andBi is at most ∆Un(f,Bi)+δ/2 < ∆Un(g,Bi)+δ+δ/2 < 1/2−ε2+3δ/2 < 1/2−ε1−60δ.

Thus with probability at least 7/10 > 2/3, the tester accepts.

Case 2: Let f be a function such that the Un-distance of f from the set of linear functions is
greater than 1/2 − ε1. Fix any Bi returned by stage 1. Now, if Bi is at least 50δ far from linear,
then then BLR linearity test will accept Bi with probability at most 1/3, and the repeated BLR
test given in stage 2 will accept f with probability at most (1/100) · l. If the Un-distance of Bi
from linear is at most 50δ, then since the distance of f from the set of linear functions is greater
than 1/2− ε1, the triangle inequality implies that ∆Un(Bi, f) ≥ 1/2− ε1− 50δ. Hence, for Bi to be
accepted, the estimated distance of Bi from f must deviate from the true Un-distance by at least
10δ. By the Chernoff bound, this happens with probability at most (1/100) · l. Hence, in either
case, the tester will accepted with probability at most (1/50) · l. Since there are a most l different
functions Bi, by the union bound, the probability that the Tester accepts f is at most 1/50 < 1/3.

26

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

