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Abstract

We give the first sub-exponential time deterministic polynomial identity testing
algorithm for depth-4 multilinear circuits with a small top fan-in. More accurately,
our algorithm works for depth-4 circuits with a plus gate at the top (also known as
ΣΠΣΠ circuits) and has a running time of exp(poly(log(n), log(s), k)) where n is the
number of variables, s is the size of the circuit and k is the fan-in of the top gate. In
particular, when the circuit is of polynomial (or quasi-polynomial) size, our algorithm
runs in quasi-polynomial time. In [AV08], it was shown that derandomizing polynomial
identity testing for general ΣΠΣΠ circuits implies a derandomization of polynomial
identity testing in general arithmetic circuits. Prior to this work sub-exponential time
deterministic algorithms were known for depth-3 circuits with small top fan-in and for
very restricted versions of depth-4 circuits.

The main ingredient in our proof is a new structural theorem for multilinear
ΣΠΣΠ(k) circuits. Roughly, this theorem shows that any nonzero multilinear ΣΠΣΠ(k)
circuit contains an ‘embedded’ nonzero multilinear ΣΠΣ(k) circuit. Using ideas from
previous works on identity testing of sums of read-once formulas and of depth-3 mul-
tilinear circuits, we are able to exploit this structure and obtain an identity testing
algorithm for multilinear ΣΠΣΠ(k) circuits.
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1 Introduction

Polynomial Identity Testing (PIT) is one of the central problems in algebraic complexity
theory: Given an arithmetic circuit C over a field F with input variables x1, x2, · · · , xn, can
we check efficiently whether C computes the identically zero polynomial in the polynomial
ring F[x1, x2, · · · , xn]? The same question can be asked in the black-box model too. In
the black-box model, C is accessed by a black-box where we are allowed to substitute field
elements ai ∈ F for xi and the black-box returns the value of C(a1, a2, · · · , an).

A randomized polynomial-time algorithm (more precisely a coRP algorithm) for this
problem is known due to the Schwartz-Zippel Lemma [Sch80, Zip79]. Over the years PIT
has played a significant role in our understanding of important complexity theoretic and
algorithmic problems. Well-known examples are the randomized NC algorithms for the
matching problem in graphs [Lov79, MVV87], and the AKS primality test [AKS04]. The PIT
problem has also played an indirect role in important complexity results such as IP = PSPACE
[LFKN92, Sha90] and the old proof of PCP theorem [ALM+98].

The main open problem is to come up with a deterministic polynomial-time (or at least
subexponential-time) algorithm for PIT. In 2003, Kabanets and Impagliazzo [KI03] show that
giving a deterministic polynomial-time (even subexponential-time) identity testing algorithm
means either NEXP 6⊂ P/poly or that the integer Permanent has no polynomial size arithmetic
circuit. Considering the black-box derandomization of PIT, Agrawal further strengthen the
connection of PIT with proving circuit lower bounds [Agr05]. More precisely, he shows that
the black-box derandomization of PIT implies that an explicit multilinear polynomial has no
subexponential size arithmetic circuit.

The results of [KI03] and [Agr05] have triggered a large amount of research for PIT deran-
domization. So far, most of the derandomization results are known for depth-3 ΣΠΣ(k, d)
circuits when the top Σ gate is of bounded fan-in k (d is the fan-in of the Π gates which
can be unbounded) [DS06, KS07, KS08, SS09, KS09]. In an important discovery, Agrawal
and Vinay [AV08] justified the lack of progress beyond depth-3. What they show is that
the black-box derandomization of PIT for only depth-4 ΣΠΣΠ circuits is almost as hard as
that for general arithmetic circuits. Their result is based on a depth reduction technique
[VSBR83, AJMV98] that converts any arithmetic circuits C to a depth-4 circuit C ′ such
that C and C ′ compute the same polynomial. Thus, their reduction is suitable for black-box
PIT derandomization. This connection makes the problem of black-box derandomization of
PIT for depth-4 circuits an intriguing open problem.

So far all the black-box derandomization algorithms for depth-3 ΣΠΣ(k, d) circuits [DS06,
KS08, SS09, KS09] exploit one common theme: The subspace spanned by the linear forms
of an identically zero ΣΠΣ circuit (viewing each linear form as a vector in Fn) is of low
dimension. More precisely, over a finite field, the current best known bound for the dimension
is O(k3 log d) [SS09] and over the field Q of rational numbers, the bound is 2O(k log k) which
is still a constant for a constant k [KS09]. For multilinear ΣΠΣ(k, d) circuits, over any
characteristic, the dimension is bounded by O(k3 log(k)) [DS06, SS09]. Yet, the algorithm
with the best running time [SV09] was obtained using a different approach. For depth-
4 circuits, the situation is very different. It seems unlikely that the method of black-box
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derandomization for ΣΠΣ circuits can be adopted/extended for depth-4 circuits. The main
difficulty is that there seems to be no notion of a linear space, spanned by the circuit
components, that can be used.

In this paper, we study the black-box PIT problem for multilinear depth-4 circuits with
bounded fan-in at the top Σ gate. We give new techniques and come up with an efficient
black-box algorithm which runs in time quasi-polynomial in the input size. We first formally
define a depth-4 circuit. A depth-4 ΣΠΣΠ circuit has four layers of alternating Σ and Π gates.
The top gate is a Σ gate (at level one).1 The circuit computes a polynomial C(x1, x2, · · · , xn)
of the form C(x1, x2, · · · , xn) =

∑k
i=1

∏di

j=1 Pij, where k is the fan-in of the top Σ gate and
di are the fan-in’s of the Π gates at the second level. Pij-s are the polynomials computed
at the third level of the circuit (which is a ΣΠ component). It is clear that the number
of monomials in each Pij is bounded by the fan-in of the Σ gates at the third level, and in
particular, bounded by the circuit size s. In the rest of the paper, we refer to the polynomials
Pij as s-sparse polynomials where the sparsity should be understood as a parameter of the
circuit size. Also for notational convenience, we denote depth-4 circuits whose top Σ fan-in
is at most k by ΣΠΣΠ(k) circuits.

We consider the identity testing problem of ΣΠΣΠ(k) circuits when each multiplication
gate

∏di

j=1 Pij computes a multilinear polynomial and the fan-in of the top Σ gate is a constant
k. We call such circuits depth-4 multilinear ΣΠΣΠ circuits. We give a deterministic black-
box PIT algorithm for this model with a running time exp(poly(log(n), log(s), k)) (s is the
size of the circuit) which is quasi-polynomial in the input size. More formally, we prove the
following theorem.

Theorem 1. Let k, n, s be integers. There is an explicit set H of size nO(k6 log(k) log2 s), that can
be constructed in time nO(k6 log(k) log2 s) such that the following holds. Let P ∈ F[x1, x2, . . . , xn]
be a non-zero polynomial computed by a multilinear ΣΠΣΠ(k) circuit of size s on n variables.
Then there is some ᾱ ∈ H such that P (ᾱ) 6= 0.

To the best of our knowledge, prior to our work, efficient deterministic algorithm were
known only in the non black-box setting for very restricted classes of depth-4 circuits [AM07,
Sax08, SV09]. For higher depths, efficient black-box algorithms are known only for read-
once formulas [SV08, SV09]. Designing efficient PIT algorithms for multilinear circuits is an
important problem and our result makes the first step for the important class of depth-4
circuits.

1.1 Overview of Our Algorithm and Proof Technique

To start with, we briefly define the notion of generators and hitting sets for arithmetic circuits
which are important for our algorithm. Intuitively, a generator G for a class of polynomials
M, is a function that stretches q independent variables into n >> q dependent variables
that can be plugged into any polynomial P ∈ M without vanishing it. A set H ⊆ Fn is

1One can consider ΠΣΠΣ circuits, however, for identity testing purposes the interesting case is the ΣΠΣΠ
model.
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a hitting set for a class of polynomials M, if for every nonzero polynomial P ∈ M, there
exists ā ∈ H, such that P (ā) 6= 0. In identity testing, the role of generators and hitting sets
are equivalent. The image of a generator for a class of circuits always contains a hitting set
for the same class of circuits. Conversely, given a hitting set for a class of arithmetic circuits,
it is fairly easy to construct a generator.

In our algorithm, we use a recursive technique (on the fan-in k of the top Σ gate) to
find a generator for ΣΠΣΠ(k) circuits and in every stage of the recursion we also construct
a hitting set. Recall that the sparsity of the polynomials Pij is bounded by the circuit size
s. For k = 1, we need to build a generator for product of s-sparse polynomials. It is easy
to see that a generator for a single s-sparse polynomial is also a generator for a product of
s-sparse polynomials and the construction of a generator for a s-sparse polynomial is well
known [KS01].

For k > 1, we construct the generator via the following procedure: Let P be a non-zero
n-variate polynomial computed by a ΣΠΣΠ(k) circuit C of size s and let Gk−1 be a generator
for ΣΠΣΠ(k−1) circuits of size s. We prove that there exist a set U ⊆ [n] of size poly(log s)
such that a substitution of the generator Gk−1 to the variables (indexed by) [n]\U leads to a
non-zero polynomial. By going over all possible sets of choice for U , we can produce a small
size hitting set for ΣΠΣΠ(k) circuits, which in turn is transformed into a generator using
the techniques of [SV09]. Notice that the number of choices for U is bounded by npoly(log s),
which is quasi-polynomial in s. Now we justify the existence of U which is enough to jus-
tify the correctness of our algorithm. We describe the construction of U in two different cases.

Case I: Assume that there exists some large constant r such that for each i, j, the
polynomial Pij depends on at most n/r variables. We show that there exists a subset of the
variables V ⊆ [n] of size roughly r/k such that every Pij has at most one variable x` such
that ` ∈ V . Now, let Gk−1 be a generator for ΣΠΣΠ(k− 1) circuits. Then by suitably fixing
the variables whose indices are in [n] \V from the image set of Gk−1, we obtain a multilinear
depth-3 ΣΠΣ(k) circuit 2. Using a structural theorem of identically zero depth-3 circuits
from [DS06, SS09], our fixing ensures that the resulting depth-3 circuit computes a nonzero
polynomial.

Case II: We prove that for any ΣΠΣΠ(k) circuit there exists a set W ⊆ [n] of size poly(log s)
(recall that s is the size of the given circuit) such that the following property holds: For a
set S ⊆ [n], let m(S) be the multilinear monomial

∏
i∈S xi. Express the polynomial P as

P =
∑

S⊆W

m(S)PS where each polynomial PS is over x[n]\W . We prove that there exists a

subset S such that PS can be computed by a ΣΠΣΠ(k) circuit C ′ and each polynomial P ′
ij

computed in the third level of C ′ depends only on a small fraction of the total number of
variables (which gives a reduction to the first stage). We now explain how to find the set W .
Fix r suitably. Let C be the given ΣΠΣΠ(k) circuit. Write C as C =

∑k
i=1 Ni · Ai where

Ni =
∏

j Pij such that each Pij depends on at most n/r variables. Similarly, let Ai be the

2Notice that after the substitution, at most one variable remains alive in each Pij .
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product of the rest of the polynomials under the i-th Π gate. So by definition, each Pij in Ai

depends on at least n/r variables. Hence, by multilinearity, each Ai is a product of at most
r many Pij-s. We eliminate Ai-s by the following process: Consider a variable appearing in
some Ai. By either setting the variable to zero or taking a partial derivative with respect
to it, we can get rid of at least half of the monomials in Ai. Moreover, we show that such
a variable exists with the additional property that both the choices (either setting to zero
or taking partial derivative) will result in a non-zero polynomial. Repeating this process at
most O(log s) times, we can eliminate all such Ai.

The final set U that our algorithm considers is defined as U
∆
= W ∪ V (the union of the

sets found at the first and second stages).

1.2 Organization

We start by giving the required definitions in Sections 2 and 3. We prove our main theorem
(Theorem 4.11) in Section 4, showing a construction of a generator for ΣΠΣΠ(k) circuits.
In Section 4.5 we give as an easy corollary a hitting set for ΣΠΣΠ(k) circuits.

2 Preliminaries

For a positive integer n denote [n] = {1, . . . , n}. Let F be a field and F̄ be its algebraic
closure. For a polynomial P (x1, . . . , xn), a variable xi, and α ∈ F, P |xi=α is the polynomial
resulting after substituting α to the variable xi. The following definitions are for polynomials
P, Q ∈ F[x1, x2, . . . , xn]. We say that P depends on xi if there exist ā ∈ F̄n and b ∈ F̄ such
that:

P (a1, a2, . . . , ai−1, ai, ai+1, . . . , an) 6= P (a1, a2, . . . , ai−1, b, ai+1, . . . , an).

We denote var(P )
∆
= {xi | P depends on xi}. Intuitively, P depends on xi if xi appears

when P is listed as a sum of monomials. Given a subset I ⊆ [n] and an assignment ā ∈ Fn

we define P |xI=āI
to be the polynomial resulting from substituting ai to the variable xi for

every i ∈ I. Let P, Q be two non-constant polynomials. We say that P and Q are similar
and denote P ∼ Q if there exist α, β ∈ F \ {0} such that α · P = β ·Q. Let Di(P, Q) be the
polynomial defined as follows:

Di(P, Q)(x̄)
∆
=

∣∣∣∣( P P |xi=0

Q Q|xi=0

)∣∣∣∣ (x̄) = (P ·Q|xi=0 − P |xi=0 ·Q)(x̄)

over F. The following is an easy observation.

Observation 2.1. Let P, Q ∈ F[x1, x2, . . . , xn] be two multilinear polynomials such that
xi ∈ var(P ) ∩ var(Q) then P ∼ Q iff Di(P, Q) ≡ 0.
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2.1 Mappings and Generators for arithmetic circuits

In this section, we formally define the notion of generators and hitting sets for polynomials
and describe a few useful properties.

A mapping G = (G1, . . . ,Gn) : Fq → Fn, is a generator for the circuit class M if for every
non-zero n-variate polynomial P ∈ M, it holds that P (G) 6≡ 0. The image of the map G is
denoted as Im (G) = G(F̄q). Ideally, q should be very small compared to n. A set H ⊆ Fn

is a hitting set for a circuit class M, if for every nonzero polynomial P ∈ M, there exists
ā ∈ H, such that P (ā) 6= 0. A generator can also be viewed as a mapping containing a
hitting set for M in its image. That is, for every nonzero P ∈ M there exists ā ∈ Im (G)
such that P (ā) 6= 0. In [SV09] an efficient method of constructing a generator from a hitting
set, for a (relatively) small q, is given.

Lemma 2.2 (Lemma 4.8 in [SV09]). Let |F| > n. Given a hitting set H ⊆ Fn for a circuit
class M there is an algorithm that in time poly(|H| , n) constructs a mapping L(ȳ) : Fq → Fn,

which is a generator for M with q
∆
= dlog n |H|e and the individual degrees of Li are bounded

by n− 1.

The following is an immediate and important property of a generator:

Observation 2.3. Let P = P1 ·P2, ·... ·Pk be a product of non-zero polynomials Pi ∈M and
let G be a generator for M. Then P (G) 6≡ 0.

At times we would like to use only a partial substitution generator to a polynomial.
Given a subset I ⊆ [n] we define the mapping: GI as (GI)i = Gi when i ∈ I and (GI)i = xi

when i 6∈ I. In addition, we define P |xI=GI to be the polynomial resulting from substituting
the function Gi to the variable xi for each i ∈ I. The following is an immediate observation:

Observation 2.4. Let M be a class of polynomials and let G be a generator for n-variate
polynomials in M. Let I ⊆ [n] and P ∈ M be a non-zero polynomial. Then P |xI=GI 6≡ 0.
Moreover, there exists ā ∈ Im

(
GI
)

such that P (ā) 6= 0.

2.2 Partial Derivatives

Discrete partial derivatives will play an important role in the analysis of our algorithms.

Definition 2.5. Let P be an n-variate polynomial over a field F. We define the discrete
partial derivative of P with respect to xi as ∂P

∂xi
= P |xi=1 − P |xi=0. For a non-empty subset

I ⊆ [n], I =
{
i1, . . . , i|I|

}
, we define the iterated partial derivative with respect to I in the

following way:

∂IP
∆
=

∂|I|P

∂xi1∂xi2∂x
i3
· · · ∂xi|I|

.

Notice that if P is a multilinear polynomial then this definition coincides with the “an-
alytical” one when F = R or F = C. We now state some easy facts about discrete partial
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derivatives that can be easily verified. Let P ∈ F[x̄] be a multilinear polynomial. Then, P
depends on xi if and only if ∂P

∂xi
6≡ 0. For every i and j, ∂2P

∂xi∂xj
= ∂

∂xi
( ∂P

∂xj
) = ∂2P

∂xj∂xi
. For two

different variables xi, xj, derivative and substitution commutes: ∂P
∂xi
|xj=a = ∂

∂xi
(P |xj=a).

2.3 Known Results

In this section, we recall some known results about sparse polynomials and depth-3 ΣΠΣ
circuits which play an important role in the design of our algorithm. A m-sparse polynomial is
a polynomial with at most m non-zero monomials. Equivalently, it is a polynomial computed
by a depth-2 circuit with top fan-in m. Using a result of [KS01], we can construct an efficient
generator for sparse polynomials.

Lemma 2.6 (Theorem 10 of [KS01]). In time polynomial in m, n, d and log |F|, one can
output a hitting set H of cardinality |H| = poly(n, m, d) for n-variate m-sparse polynomials
of degree d over a field F. If F = R then each element of each vector in the set has bit-length
at most O(log(nd)). If F is a finite field with less than (nd)6 elements, then the elements
of the vectors lie in the smallest extension of F with at least (nd)6 elements; otherwise, the
vectors contain just elements of F.

Using Lemma 2.2, we can construct a generator from the hitting set output by the above
result.

Lemma 2.7. There exists a generator Sm
∆
= (S1

m,S2
m, . . . ,Sn

m) : Fq → Fn for m-sparse
multilinear polynomials with the individual degrees of each S i

m are bounded by n − 1 and
q(n, m) = O(log nm).

Proof. Since the degree of a multilinear polynomial is bounded by n, we apply Lemma 2.2
on the hitting set H output by Lemma 2.6. Note that as |H| = poly(n, m), we obtain that
q(n,m) = O(log nm).

The proof technique of our main result involves a reduction from identity testing of a class
of depth-4 circuits to depth-3 circuits. Here, we define depth-3 circuits formally and recall
some of their relevant properties. A depth-3 ΣΠΣ(k, d) circuit C computes a polynomial of
the form

C(x̄) =
k∑

i=1

Fi(x̄) =
k∑

i=1

di∏
j=1

Lij(x̄)

where the Lij(x̄)-s are linear functions Lij(x̄) =
∑

` aij`x` + aij0 with aij` ∈ F, and di ≤ d.
We refer to the Fm-s as the multiplication gates of the circuit. A subcircuit of C is defined

as a sum of a subset of the multiplication gates in C. Let gcd(C)
∆
= gcd (F1, F2, . . . , Fk).

We say that a circuit is simple if gcd(C) = 1. We say that a circuit is minimal if no proper
subcircuit of C computes the zero polynomial. Define the rank of C, denoted by rank(C),
as the rank of its linear functions, viewed as (n + 1)-dimensional vectors over Fn+1. That is,

rank(C)
∆
= dim (span{Lij}).
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A multilinear ΣΠΣ(k, d) circuit has the additional requirement that each Fi is a mul-
tilinear polynomial. We require an important structural theorem regarding the rank of an
identically zero ΣΠΣ(k, d) multilinear circuit.

Theorem 2.8. [DS06, SS09] There exists an increasing integer function R(k) upper bounded
by O(k3 log(k)) with the following property: Let C be an n-variate multilinear, simple and
minimal ΣΠΣ(k, d) circuit computing the zero polynomial. Then rank(C) < R(k).

We conclude this section with a well-known lemma concerning polynomials, giving a
trivial (yet possibly large) hitting set. A proof can be found in [Alo99].

Lemma 2.9. Let P ∈ F[x1, x2, . . . , xn] be a polynomial. Suppose that for every i ∈ [n] the
individual degree of xi is bounded by di, and let Si ⊆ F be such that |Si| > di. We denote
S = S1 × S2 × · · · × Sn then P ≡ 0 iff P |S ≡ 0.

3 Depth-4 Multilinear Circuits

In this section, we recall the model of depth-4 multilinear circuits and present a simple
structural property of such circuits which is useful for our main result.

Definition 3.1. A multilinear depth-4 ΣΠΣΠ(k) circuit C has four layers of alternating Σ
and Π gates (the top Σ gate is at level one) and it computes a polynomial of the form

C(x̄) =
k∑

i=1

Fi(x̄) =
k∑

i=1

di∏
j=1

Pij(x̄)

where the Pij(x̄)-s are multilinear polynomials computed by the last two layers of ΣΠ gates
of the circuit and are the inputs to the Π gates at the second level. Each multiplication gate
Fi computes a multilinear polynomial.

Note that the requirement that the Fi-s compute multilinear polynomials implies that
for each i the polynomials {Pij}j∈[di]

are variable-disjoint. It is clear that if the circuit size

is s, then the number of monomials in Pij (i.e. its sparsity) is bounded by s. In this paper,
we often refer to the polynomials Pij as s-sparse where the sparsity should be understood in
terms of the circuit size s. Similar to the case of depth-3 circuits, a (proper) subcircuit of
C is defined as the sum of a (proper) subset of multiplication gates of C. Also, a ΣΠΣΠ(k)
circuit is simple when no Pij appears in all the multiplication gates at the second level.

Namely, gcd(C)
∆
= gcd(F1, . . . , Fk) = 1. When C is not simple we define its simplification to

be
sim(C)

∆
= C/ gcd(C) .

Note that sim(C) is a simple ΣΠΣΠ(k) circuit.
Our identity testing algorithm builds on a reduction from identity testing of multilin-

ear ΣΠΣΠ(k) circuits to identity testing of a special type of such circuits where for every
i, j, |var(Pij)| ≤ n/r. We call such circuits r-compressed circuits. Now we prove an easy
structural property of r-compressed circuits which is useful for our algorithm design.
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Lemma 3.2. Let P ∈ F[x1, x2, . . . , xn] be computed by a ΣΠΣΠ(k) multilinear r-compressed

circuit C =
k∑

i=1

di∏
j=1

Pij(x̄). Then there exists a set V ⊆ [n] of size |V | ≥ r/k such that for

each i, j: |V ∩ var(Pij)| ≤ 1.

Proof. The first element of V can be arbitrarily set to x1. Let T1 ⊆ [n] be the set of variables
that appear in some Pij along with x1. As |var(Pij)| ≤ n/r, we get that |T1| ≤ k · (n

r
− 1).

Hence, the set W = [n]\ (T1∪{x1}) is non empty. We pick one arbitrarily (say, the one with
lowest index) from W and construct a set analogical to T1 for it. Due to the size restriction
of T1 (and the other T ’s), we can continue this process at least r/k times. The set V is the
set of these (at least) r/k chosen indices.

4 Black-Box PIT

In this section we give an efficient black-box PIT algorithm for multilinear ΣΠΣΠ(k) circuits.
We construct a generator for such circuits, which gives us a small hitting set. We start by
describing the construction of a polynomial map which we eventually use as our generator.

4.1 The Construction and Some Easy Properties

In this section we construct a map from F2t to Fn with the following property: Its image
contains all vectors ā ∈ Fn with at most t non-zero entries. This map will later be put to use
in the construction of the generator for depth-4 circuits. We assume that |F| > n as we are
allowed to use elements from an appropriate extension field. Throughout the entire section
we fix a set A = {α1, α2, . . . , αn} ⊆ F of n distinct elements.

Definition 4.1. For every i ∈ [n] let ui(w) : F → F be the i-th Lagrange Interpolation
polynomial for the set A. That is, each ui(w) is polynomial of degree n−1 satisfying ui(αj) =
1 if i = j and zero otherwise. For every i ∈ [n] and t ≥ 1 we define Gi

t(y1, . . . , yt, z1, . . . , zt) :
F2t → F as

Gi
t(y1, . . . , yt, z1, . . . , zt)

∆
=

t∑
j=1

ui(yj) · zj .

Finally, let Gt(y1, . . . , yt, z1, . . . , zt) : F2t → Fn be defined as

Gt(y1, . . . , yt, z1, . . . , zt)
∆
=
(
G1

t , G
2
t , . . . , G

n
t

)
=(

t∑
j=1

u1(yj) · zj,

t∑
j=1

u2(yj) · zj, . . . ,

t∑
j=1

un(yj) · zj

)
.

We will use the following immediate observations:

Observation 4.2. For every t ≥ 1, it holds Gt(ȳ, 0̄) ≡ 0.
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Observation 4.3. Denote with ēi ∈ {0, 1}n the vector that has 1 in the i-th coordinate and
0 elsewhere. Then

Gt+1 = Gt +
n∑

i=1

ui(yt+1) · zt+1 · ēi .

Hence, for every t ≥ 1 and αm ∈ A we have that

Gt+1|yt+1= αm = Gt + zt+1 · ēm .

We now state a simple but crucial property of the generator G that follows from the above
observations. (Recall the notation above Observation 2.4).

Observation 4.4. Let `, t ∈ N, I ⊆ [n] and |I| ≤ t. Then, it holds that

Im
(
G

[n]\I
`

)
⊆ Im (G`+t) .

4.2 A Restricted Case: r-compressed ΣΠΣΠ(k) Circuits

In this section we consider a restricted class of ΣΠΣΠ(k) circuits: For a fixed r, we assume
that the polynomial is computed by a simple r-compressed ΣΠΣΠ(k) circuit of size s. Using
a generator that works for sparse polynomials as well as for ΣΠΣΠ(k − 1) circuits of size s,
we construct a generator for r-compressed ΣΠΣΠ(k) circuits of size s. To do so, the key idea
is to use the set V ⊆ [n] that we obtain from Lemma 3.2. Recall that V has the following
property: The size of V is at least r/k and for every Pij in C, |V ∩ var(Pij)| ≤ 1. Let Gk−1

be a generator for ΣΠΣΠ(k − 1) circuits and for sparse polynomials of suitable sparsity. In
the following lemma we show that if r = R(k) · k then when we restrict the variables in
[n] \ V to Gk−1, we obtain a non-zero polynomial.

Lemma 4.5. Let k ≥ 2 and 0 6≡ P ∈ F[x1, x2, . . . , xn] be computed by a simple, multilinear,
k · R(k)-compressed ΣΠΣΠ(k) circuit of size s. In addition, let Gk−1 be a generator for
ΣΠΣΠ(k − 1) circuits of size s and (2s2)-sparse polynomials.3 Then there exists a subset
V ⊆ var(P ) of size |V | ≤ R(k) such that

P |
xvar(P )\V =Gvar(P )\V

k−1
= P ◦ Gvar(P )\V

k−1 6≡ 0 .

Proof. Let C =
k∑

i=1

di∏
j=1

Pij(x̄) be a simple, multilinear, and (k · R(k))-compressed ΣΠΣΠ(k)

circuit of size s, computing P . If C is not minimal, then P can be computed by a ΣΠΣΠ(k−1)
circuit of size s and we are done (set V = ∅). Assume w.l.o.g. that C is minimal. Let V
be a set promised by Lemma 3.2. We can assume w.l.o.g that |V | = k · R(k)/k = R(k) by
keeping R(k) arbitrary indices. Define the set T as T = [n] \ V .

We now describe a way to find an assignment for xT such that the resulting polynomial
is non-zero. We do so via a reduction to depth-3 circuits. Let C1, . . . , C2k−2 be the proper

3Namely, Gk−1 is a generator for both models.

9



subcircuits of C (excluding the empty circuit). Clearly they are all ΣΠΣΠ(k − 1) circuits
of size s. For any Pi1j1 and Pi2j2 appearing in C, and a variable x` such that var(Pi1j1) ∩
var(Pi2j2)∩ V = {x`}, define the polynomial Q as D`(Pi1j1 , Pi2j2) (recall D` and its property
from Observation 2.1). Let Q be the set of all non-zero such Q’s. The following lemma gives
a sufficient condition that a given partial assignment for xT results in a simple, minimal and
nonzero depth-3 circuit.

Lemma 4.6. Let

ϕ =
2k−1∏
i=1

Ci ·
∏
Q∈Q

Q.

Let ā ∈ F̄n be such that ϕ|xT =āT
6≡ 0. Then C|xT =āT

is a simple, minimal multilinear ΣΠΣ(k)
circuit.

Proof. The minimality of C|xT =āT
is clear since all of the subcircuits of C are factors of ϕ.

If one of them is zero, then so is ϕ|xT =āT
. Notice that due to the same reason, no Pij is

reduced to zero. In order to prove that C|xT =āT
is simple, notice two following simples facts.

First, by the definition of V , for every i, j it holds that |var(Pij|xT =āT
)| ≤ 1. Second, consider

i1 6= i2 and j1, j2 such that Pi1ji1
� Pi2ji2

. If var(Pi1ji1
|xT =āT

) 6= var(Pi2ji2
|xT =āT

) then we still
have Pi1ji1

|xT =āT
� Pi2ji2

|xT =āT
. If, on the other hand, var(Pi1ji1

|xT =āT
) = var(Pi2ji2

|xT =āT
) =

{x`}, then D`(Pi1ji1
, Pi2ji2

) is a factor of ϕ and so

D`(Pi1ji1
, Pi2ji2

)|xT =āT
= D`(Pi1ji1

|xT =āT
, Pi2ji2

|xT =āT
) 6≡ 0 .

Hence, by Observation 2.1, Pi1ji1
|xT =āT

� Pi2ji2
|xT =āT

. Since C is itself a simple circuit, the
claim follows from those two facts.

Now we return to the proof of Lemma 4.5. The polynomial ϕ is a product of (2s2)-
sparse polynomials and ΣΠΣΠ(k − 1) circuits of size s. By Observations 2.3 and 2.4 we get
that ϕ|xT =GT

k−1
6≡ 0. It follows that there exists some ā ∈ Im (Gk−1) for which C|xT =āT

is a

simple, minimal, and multilinear ΣΠΣ(k) circuit. Notice now that C|xT =āT
contains R(k)

variables (the previous proof shows that all the variables in V ‘survived’) and any linear
function appearing in it contains only one variable. Hence, the rank of C|xT =āT

is R(k).
By the definition of R(k) (Theorem 2.8) it cannot be a zero circuit. We thus proved that
P |xT =GT

k−1
6≡ 0.

4.3 A Reduction to r-compressed Multilinear ΣΠΣΠ(k) Circuits

In this section we prove a structural theorem for multilinear ΣΠΣΠ(k) circuits. This theorem
enables us to reduce the identity testing of multilinear ΣΠΣΠ(k) circuits to the identity
testing of r-compressed multilinear ΣΠΣΠ(k) circuits for any r > 0. Roughly, the theorem
says that there exists a small set of variables W with the following property. Let P =∑
T⊆W

m(T )FT , where FT are polynomials defined over the variables [n] \ W and m(T ) =∏
i∈T xi. Then there exists T such that FT can be computed by an r-compressed ΣΠΣΠ(k)

circuit of size s. Now we state the theorem formally.
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Theorem 4.7. Let P be an n-variate polynomial computable by a ΣΠΣΠ(k) circuit of size
s. Let r > 0 be a parameter. Then there exists a set W of size |W | ≤ 2 log n · log s · kr for
which the following holds: Write

P =
∑
T⊆W

m(T )FT

where the FT ’s are polynomials independent of the variables in W . Then there exists at least
one set T ⊆ W for which FT = Q ·H where Q is a product of s-sparse polynomials and H
is computable by a simple, r-compressed ΣΠΣΠ(k) circuit of size s.

An alternative view of the theorem states that there exist two sets I, J of the following
properties: If we set the variables of J to zero and take a partial derivative w.r.t. I (i.e.
compute ∂IP |xJ=0̄J

) then we get an r-compressed ΣΠΣΠ(k) circuit of size s, multiplied by
s-sparse polynomials. The set I corresponds to the variables in the monomial (i.e. T ) and
J to the variables of W outside the monomial (i.e. W \ T ). We find this alternative view
more convenient for the purpose of proving the theorem.

Lemma 4.8. Let n, s, r, k > 1 be integers. Let P 6≡ 0 be an n variate polynomial computable
by a multilinear ΣΠΣΠ(k) circuit C of size s. Then there exist disjoint subsets I, J ⊆ [n] such
that |I|+ |J | ≤ 2kr log(s) and ∂IP |xJ=0̄J

is a non-zero polynomial computed by a ΣΠΣΠ(k)
circuit CIJ with at least one of the following properties:

• var (sim(CIJ)) < var (sim(C)) /2 (recall the definition of sim(C) from Section 3).

• sim(CIJ) is an r-compressed ΣΠΣΠ(k) circuit of size s.

Proof. Assume that C itself does not meet any of the needed conditions. Let sim(C) =
k∑

j=1

Mj

where each Mj is a multiplication gate of a ΣΠΣΠ(k) circuit of size s. Write Mj = Nj · Aj

where Nj is a product of s-sparse polynomials which are defined on at most |var(sim(C))| /2r
variables and Aj = Mj/Nj. Clearly, Aj is a product of s-sparse polynomials, each defined
on at least |var(sim(C))| /2r variables. Hence, due to the multilinearity of Mj, Aj must be

s2r-sparse. Let mon (A) denote the number of monomials in a polynomial A. Let Φ(C)
∆
=

k∑
j=1

log (mon (Aj)) be a potential function that will aid us during the proof. We assume

w.l.o.g. that Φ(C) is minimal w.r.t. all possible ΣΠΣΠ(k) circuits of size s computing P .
Notice that Φ(C) ≤ 2kr log(s).

Let I0 = J0 = ∅, P0 = P and Aj,0 = Aj for each j ∈ [k]. We now describe an algorithm
that produces the required sets I, J . The algorithm is composed of enumerated steps, starting
from 1. At each step, we add a single element either to I or J . Denote by I` and J` the sets
at the end of step `. Correspondingly, define P` = ∂I`

P |xJ`
=0̄J`

. Also, define

C` = gcd(C`) · sim(C`) = gcd(C`) ·
k∑

j=1

Nj,`Aj,`

11



where the Nj,`’s are s-sparse polynomials that rely on at most |var(sim(C))| /2r variables

(notice that we used C and not C`) and C` ≡ P`. Let ΦC(C`)
∆
=

k∑
j=1

log (mon (Aj,`)).
4 Define

C` as the circuit achieving the minimal ΦC among all size s ΣΠΣΠ(k) circuits computing
P`.

We now describe the process of adding a single variable to I or J . The idea is to take a
variable appearing in some Aj,` and add it to a set that will result in a maximal reduction
to the monomials of Aj,`. One of the choices must reduce the number of monomials by a
factor of 2 and thus reduce the ΦC function by at least 1. This is since adding the variable
to I means keeping only monomials in which it appears and adding it to J means keeping
only the monomials in which it does not appear. The problem is to ensure that the resulting
circuit computes a non-zero polynomial. The following lemma guarantees the existence of a
variable for which neither action would result in a non-zero polynomial.

Lemma 4.9. Let ` ≥ 0. Assume that P` 6≡ 0 and that C` does not meet the conditions of
Lemma 4.8. Then there exist some i ∈ [n] and j ∈ [k] such that Aj,` and P` depend on xi

and xi is not a factor of P`.

Proof. Assume that the claim is false. We have one of the following cases:
case 1: For some i, j, Aj,` depends on xi and P` does not. We can replace Aj,` with Aj,`|xi=0

and result in a circuit C ′ computing the same polynomial P with a Φ(C ′) < Φ(C`). This is
a contradiction to the minimality of C`.

case 2: All the Aj,`’s are constant. That is: C` = gcd(C`) ·
k∑

j=1

Nj,`. In this case, either

var (sim(C`)) < var (sim(C)) /2 or sim(C`) is an r-compressed ΣΠΣΠ(k) circuit of size s.
Either way this is a contradiction.

case 3: There exists a variable xi in A` that divides P`. Let C ′ ∆
= C|xi=1 · xi. Then P` ≡ C ′

and ΦC(C ′) < ΦC(C`). This is a contradiction to the minimality of C` w.r.t. ΦC .

We return to the proof of lemma 4.8. Due to the lemma, there exist some xi that
appears in some Aj,` where both ∂P`

∂xi
and P`|xi=0 are non-zero polynomials. Clearly, one of

these choices for P`+1 results in a non-zero polynomial for which ΦC(C`+1) ≤ ΦC(C`) − 1.
Since ΦC is always non-negative, after at most 2kr log(s) (the initial value for Φ) steps, we
get the required circuit.

By repeating Lemma 4.8 at most log n times, we get Theorem 4.7 (indeed, in each step
if we do not have the conclusion of 4.7 then |var(sim(C`))| is reduced by a factor of 2).

4.4 Rounding the Components Together

In the previous sections we found that there exists a small set of variables W and an ad-
ditional disjoint small set of variables V with the following properties: When picking the

4We use a different notation (ΦC and not Φ) as var(sim(C)) affects the definition of the Aj,`-s.
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variables outside of W and V from a generator for ΣΠΣΠ(k−1) circuits and for (2s2)-sparse
polynomials, we get a non-zero polynomial. The following is the formal claim:

Lemma 4.10. Let k ≥ 2 and P 6≡ 0 ∈ F[x1, x2, . . . , xn] be computed by a multilinear
ΣΠΣΠ(k) circuit of size s. In addition, let Gk−1 be a generator for ΣΠΣΠ(k− 1) circuits of
size s and (2s2)-sparse polynomials. Then there exists a subset U ⊆ [n], depending only on
P (i.e. U does not depend on the generator), of size |U | ≤ 3k2R(k) log(s) log(n) such that
P |

x[n]\U=G[n]\U
k−1

6≡ 0 for any such generator.

Proof. Let T0 and W be the sets guaranteed by Theorem 4.7. Namely, when writing P =∑
T⊆W

m(T )FT , we have that FT0 = Q ·H where Q is a product of s-sparse polynomials and

H can be computed by a simple, multilinear (k · R(k))-compressed ΣΠΣΠ(k) circuit. Note
that Q, H are defined on [n] \W (that is var(Q) ∪ var(H) ⊆ [n] \W ). By Lemma 4.5 there
exists a subset V ⊆ var(H) of size |V | ≤ R(k) such that

H|
xvar(H)\V =Gvar(H)\V

k−1
6≡ 0 .

Let U
∆
= V ∪W . It holds that

H|
x[n]\U=G[n]\U

k−1
6≡ 0 .

As Q is a product of s-sparse polynomials we get, by Observations 2.3 and 2.4, that

Q|
x[n]\U=G[n]\U

k−1
6≡ 0 .

It follows that under the restriction x[n]\U = G [n]\U
k−1 , FT0 is a non-zero polynomial. As we did

not substitute anything to the variables in W the claim clearly follows.

We now establish the generator for ΣΠΣΠ(k) circuits. This is our main theorem and
it guarantees that we get the requires black-box algorithm. In particular Theorem 1 is an
immediate corollary.

Theorem 4.11 (Main). Let P ∈ F[x1, x2, . . . , xn] be a non-zero polynomial computed by a
multilinear ΣΠΣΠ(k) circuit of size s. Then for every ` ≥ 3k3R(k) log(s) log(n) it holds that
P (G`(ȳ, z̄) + S2s2(w̄)) 6≡ 0, where ȳ, z̄ and w̄ are new sets of variables.

Proof. We prove the claim by induction on k. For k = 1 we note that P is a product of
(2s2)-sparse polynomials. By definition of S2s2 (recall Lemma 2.7), and Observations 2.3
and 4.2, we get that P (G` + S2s2) 6≡ 0 and the claim follows. Assume that k ≥ 2. Let
U ⊆ [n] be the subset guaranteed by Lemma 4.10. By the induction hypothesis, we get
that for v = d3(k − 1)3R(k − 1) log(s) log(n)e the mapping Gv(ȳ, z̄) +S2s2(w̄) is a generator
for both ΣΠΣΠ(k − 1) circuits and for (2s2)-sparse polynomials. ¿From Lemma 4.10 and

Observation 2.4 it follows that Im
(
G

[n]\U
v + S [n]\U

2s2

)
contains a point ā for which P (ā) 6= 0.

Since |U | ≤ 3k2R(k) log(s) log(n) ≤ `− v, Observation 4.4 gives

Im
(
G[n]\U

v + S [n]\U
2s2

)
⊆ Im

(
G[n]\U

v + S2s2

)
⊆ Im (G` + S2s2)

and thus ā ∈ Im (G`(ȳ, z̄) + S2s2(w̄)) and the claim holds.
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4.5 An explicit hitting set

The hitting set for ΣΠΣΠ(k) circuit is an immediate corollary of Theorem 4.11. Ba-
sically, as G`(ȳ, z̄) + S2s2(w̄) are (relatively) low degree polynomials defined on m =
O(k3R(k) log(s) log(n)) many variables, we can simply evaluate P ◦ (G`(ȳ, z̄) + S2s2(w̄))
on all inputs from Em where E ⊆ F is a set of size poly(n). Algorithm 1 follows exactly this
intuition and produces the hitting set.

Input: n, k, s ∈ N.
Output: A set H
Let W ⊆ F be of size |W | = n2;

Let `
∆
= d3k3R(k) log(s) log(n)e where R(k) is defined in Theorem 2.8;

Let q
∆
= q(n, 2s2) as defined in Lemma 2.7;

Initialize H = ∅;
foreach ā, b̄ ∈ W ` and c̄ ∈ W q do

Evaluate G`(ā, b̄) + S2s2(c̄) and add it to H.
end

Algorithm 1: Construction of a hitting set for ΣΠΣΠ(k) circuits

Theorem 4.12. Let n, s, k > 0. Algorithm 1, given n, s, k as input runs in nO(k3R(k) log2 s) =
nO(k6 log(k) log2 s) time. The set H it produces is of size nO(k3R(k) log2 s) = nO(k6 log(k) log2 s) and is
a hitting set for n-variate polynomials that can be computed by a ΣΠΣΠ(k) circuit of size s.

Proof. Let P ∈ F[x1, x2, . . . , xn] be a polynomial computed by a multilinear ΣΠΣΠ(k) circuit
of size s. Let H be the set given by Algorithm 1. We claim that P ≡ 0 if and only if P |H ≡ 0.
If P ≡ 0 then the claim is trivial. If P 6≡ 0, by Theorem 4.11 we get that P (G` + S2s2) 6≡ 0.
According to their definition, the degrees of all the output variables of G` and S2s2 are at most
n− 1. Therefore, the degrees of the variables in P (G` +S2s2) are bounded by (n− 1)n < n2.
Since P (G` + S2s2) 6≡ 0, Lemma 2.9 implies that P |H 6≡ 0.

We now bound the size of H and the time required to construct it. From their definition,
G` depends on 2` variables and S2s2 depends on O(logn s) variables. Hence,

|H| ≤ n4`+2q(n,2s2) = nO(k3R(k) log s log n·logn s) = nO(k3R(k) log2 s) .

The time required to construct S2s2 and G` is polynomial in n, s. The time to evaluate
(G` + S2s2) on a point from W 2`+q(n,2s2) is polynomial in n. Hence, the time to construct H
is |H| · (ns)O(1) = nO(k3R(k) log2 s).

5 Conclusion

Derandomizing the Polynomial Identity Testing problem for depth-4 arithmetic circuits is
an outstanding open problem in complexity theory [AV08]. Any efficient derandomized
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algorithm for depth-4 circuits will imply strong lower bounds [KI03, Agr05]. So far, the
progress in depth-4 identity testing is very limited [AM07, Sax08, SV09]. In this paper, we
improve the situation by giving a quasi-polynomial time black-box identity testing algorithm
for depth-4 multilinear circuits with bounded fan in top gate. Our algorithm is based on
new structural theorems about such circuits.

In identity testing and explicit lower bound proofs, multilinear circuits have already re-
ceived significant attention from the community [DS06, KS08, SV08, SV09, Raz04a, Raz04b,
RSY08, RY08]. In [Raz04a], Raz asked whether one could design efficient identity testing
algorithms for multilinear formulas. The best algorithms today are for sums of read-once
formulas [SV09] and for set-multilinear depth 3 formulas (non black-box) [RS05]. For depth-
4 multilinear circuits with bounded fan in top gate, our result gives the first efficient identity
testing algorithm.

It will be very interesting to generalize our result for non-multilinear circuits with
bounded fan in top gate. Another problem is to give a deterministic polynomial time identity
testing algorithm for such circuits in non black-box model.
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