
Almost Optimal Bounds for Direct Product Threshold

Theorem∗

Charanjit S. Jutla

IBM T. J. Watson Research Center

Yorktown Heights, NY 10598

Abstract

We consider weakly-verifiable puzzles which are challenge-response puzzles
such that the responder may not be able to verify for itself whether it answered
the challenge correctly. We consider k-wise direct product of such puzzles,
where now the responder has to solve k puzzles chosen independently in parallel.
Canetti et al have earlier shown that such direct product puzzles have a hardness
which rises exponentially with k. In the threshold case addressed in Impagliazzo
et al, the responder is required to answer correctly a fraction of challenges above
a threshold. The bound on hardness of this threshold parallel version was shown
to be similar to Chernoff bound, but the constants in the exponent are rather
weak. Namely, Impagliazzo et al show that for a puzzle for which probability
of failure is δ, the probability of failing on less than (1− γ)δk out of k puzzles,

for any parallel strategy, is at most e−γ2δk/40.
In this paper, we develop new techniques to bound this probability, and

show that it is arbitrarily close to Chernoff bound. To be precise, the bound is
e−γ2(1−γ)δk/2. We show that given any responder that solves k parallel puzzles
with a good threshold, there is a uniformized parallel solver who has the same
threshold of solving k parallel puzzles, while being oblivious to the permuta-
tion of the puzzles. This enhances the analysis considerably, and may be of
independent interest.

∗To appear in Proc. Theory of Cryptography Conference, 2010

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 120 (2009)

1 Introduction

Consider challenge-response puzzles where the responder may not be able to deter-
mine if its answer is a correct response or not, either because the challenge may have
multiple correct responses (and the challenger seeks a particular one of those), or be-
cause the responder is computationally constrained, e.g. in CAPTCHA puzzles [8].
Such puzzles are called weakly-verifiable puzzles [2].

In cryptography, and other applications, the challenge-response puzzles are often
used to distinguish between a real and fake responder, where the differentiation
is obtained by the probability of their solving a randomly chosen challenge. For
example, the authentic party may have a probability α of solving the challenge
correctly, whereas non-authentic parties may have a probability only β (< α) of
solving the puzzles correctly. However, if the gap is not large then direct product,
or (parallel) repetition of such puzzles may be sought. Ideally, one would like that
if k puzzles are chosen independently in parallel, then the probability of the non-
authentic party solving all puzzles correctly is at most βk. Unfortunately, this also
makes the success probability of the authentic party go down (if α < 1).

In [4], the authors observe that the authentic party is on average expected to
solve αk puzzles, and if a Chernoff like bound holds, then the probability of fake
parties solving αk puzzles may go down exponentially. They show that their intu-
ition is correct, and indeed give an exponential bound. However, the bound they
obtain has a weak constant in the exponent. In particular they show that (setting
δ = 1 − β) the probability of the non-authentic party solving less than (1 − γ)δk
(out of k parallel puzzles) puzzles incorrectly is at most e−γ

2δk/40. For real problems
like CAPTCHA, the 1/40 factor in the exponent is debilitating, and the authors
mention it as an open problem to improve this constant.

The complication in reducing a single puzzle instance to a direct product puzzle
instance stems from the fact that the given single puzzle instance is required to
be embedded in all simulated direct product puzzle instances, and hence they are
not independent. In [4], the authors use a nice duality property of good (bi-partite
graph based) samplers to analyze the dependent simulations.

In this paper we develop further new techniques to analyze this probability and
indeed show that one can bound the probability arbitrarily close to as in Chernoff
bound. In particular we upper bound the above probability by about

e−γ
2(1−γ)δ/k

Since γ is usually tiny, the above is almost as good as can be expected. Further, the
techniques developed have potential to improve the bound further, e.g. replacing
(1 − γ) by (1 − γ2).

We show that a uniformized parallel solver, who first permutes his given k-
puzzles randomly, solves them as before, and permutes the results back, has the same
probability of success as before. However, this uniformized solver is much easier to
analyze. While this in itself, when plugged into the “trust reduction” strategy of [4]

1

gives better bounds than before, to get the bounds similar to Chernoff bound we
need further new techniques. In particular, while a count of other simulated puzzles
being answered incorrectly gives a good guess of whether the given puzzle may be
answered incorrectly, a linearly weighted metric we consider leads to more optimal
bounds.

While the idea of uniformized parallel solver also applies to Raz’s Theorem [7],
in particular because of Holenstein’s observation that the two provers can use shared
randomness [3], it is to be seen if it leads to improved analysis.

The rest of the section is organized as follows. In Section 2 we describe a result
about samplers which we employ, as well as give definitions of threshold weakly-
verifiable puzzles. In section 3 we consider uniformized parallel solvers and give the
main technical lemmas. In section 4 we give the main theorem and its proof. In
section 5 we describe the pre-processing phase.

2 Preliminaries

2.1 Basics

Lemma 1 [Chernoff Bound [1]] Let X = (X1 + X2 + ... + Xn)/n, where the Xi

are mutually independent indicator random variables, each with mean µ. Then, for
β ≥ 0,

Pr[X ≥ (1 + β)µ] < (eβ(1 + β)−1−β)µn

Pr[X < (1 − β)µ] < e−β
2µn/2

2.2 Samplers

Consider bipartite graphs F = G(L ∪ R,E). We allow graphs with multiple edges.
For a vertex v of G, we denote by NG(v) the multi-set of its neighbours in G. When
the graph G is clear from context, we will drop the subscript G, and simply write
N(v). We say that G is bi-regular if the degree of each vertex in L is same, and the
degree of each vertex in R is same.

Let G = G(L∪R,E) be any bi-regular bipartite graph. For a function λ : [0, 1]
× [0, 1] → [0, 1], we say that G is a λ-sampler [4] if, for every function F : L →
[0, 1] with the average value Ex∈L[F (x)] ≥ µ and any 0 < ν < 1, there are at most
λ(µ, ν) · |R| vertices r ∈ R such that Ey∈N(r)[F (y)] ≤ (1 − ν)µ.

We will employ the following lemma from [5, 4]. It says that for any two large
vertex subsets W and F of a sampler, the fraction of edges between W and F is
close to the product of the densities of W and F .

Lemma 2 [5, 4] Suppose G = G(L ∪R,E) is a λ-sampler. Let W ⊆ R be any set
of measure at least τ , and let V ⊆ L be any set of measure at least β. Then, for all

2

0 < ν < 1 and λ0 = λ(β, ν), we have

Pr
x∈L,y∈N(x)

[x ∈ V & y ∈W] ≥ β(1 − ν)(τ − λ0)

where the probability is over first picking x uniformly from L, and then picking y
uniformly from N(x).

We will also need the following observation from [4], which shows that the direct
product is an extremely good sampler. Consider the following bipartite graph G =
G(L ∪ R,L): the set of left vertices is the set of n-bit strings {0, 1}n; the right
vertices R are a pair 〈r, c〉, where r range over all k-tuples of n-bit strings {0, 1}nk ,
and c range over m-bit strings {0, 1}m; for every y = 〈(r1, r2, ..., rk), c〉 ∈ R, there
are k edges (y, r1), (y, r2),...,(y, rk) in E.

Lemma 3 [4] The graph G defined above is a λ-sampler for λ(µ, ν) = e−ν
2µk/2.

2.3 Weakly-Verifiable Puzzles

Definition 1. [2] A weakly-verifiable puzzle P = (C,R, d(n)), with security param-
eter n, consists of a polynomial time computable function C, a polynomial time
computable predicate R, and a polynomial d(n). For any functions t(n) and c(n),
the (t(n), c(n))-value (failure value) of the puzzle is

val(P, t, c) := min
X

Pr
r∈Ud(n),s∈Uc(n)

[¬R(r,X(s,C(r)))]

where the minimization is over t(n)-computable randomized algorithms X using
c(n) bits of randomness.

For a parameter δ, 0 ≤ δ ≤ 1, we say that a puzzle P is (δ, t(n), c(n))-hard if the
(t(n), c(n))-value of P is at most δ. In other words, every algorithm X running in
time t(n), and using c(n) bits of randomness, has probability at least δ of answering
the puzzle wrong.

Definition 2. The k-wise direct product Pk of a weakly-verifiable puzzle P =
(C,R, d(n)) is the weakly-verifiable puzzle (Ck, Rk, kd(n)), where Ck(〈r1, ..., rk〉) is
defined to be (C(r1), ..., C(rk)), and

Rk(〈r1, ..., rk〉, 〈x1, ..., xk〉) :=
k

∧

i=1

R(ri, xi)

For any parameters ν and δ, 0 ≤ ν, δ ≤ 1, and any functions t(n), c(n), the puzzle Pk

is said to be ν-approximate (δ, t(n), c(n))-hard if the following minimum probability

min
X

Pr
~r∈Uk

d(n)
,s∈Uc(n)

[

|{i ∈ [1..k] : ¬R(ri,Xi(s,C
k(~r)))}| > νk

]

is at least δ, where the minimization is over all randomized algorithms X running
in time t(n) and using c(n) bits of randomness. Note that X here takes k puzzles
and returns k answers, 〈X1, ...,Xk〉. Such an algorithm X will be referred to as a
k-parallel solver.

3

3 Uniformized Parallel Solvers

Given a k-parallel solver X, we consider its uniformized version X , which first
randomly permutes its given k puzzles, solves them using X, and permutes back the
results. In other words, for all i = 1..k,

X i(〈s, π〉, 〈C(r1), ..., C(rk)〉) := Xπ−1(i)(s, 〈C(rπ(1)), ..., C(rπ(k))〉)

where π is any permutation of [1..k].

It is easy to see that the “failure value” of the uniformized parallel solver remains
the same, as the following shows.

Pr
r1,...,rk

Pr
s,π

[

|{i ∈ [1..k] : ¬R(ri,X i(〈s, π〉, 〈C(r1), ..., C(rk)〉))}| > νk
]

= Pr
r1,...,rk

Pr
s,π

[

|{i : ¬R(ri,Xπ−1(i)(s, 〈C(rπ(1)), ..., C(rπ(k))〉))}| > νk
]

= Pr
r1,...,rk

Pr
s,π

[

|{j = π−1(i) : ¬R(rπ(j),Xj(s, 〈C(rπ(1)), ..., C(rπ(k))〉))}| > νk
]

= Pr
r1,...,rk

Pr
s

[

|{j : ¬R(rj,Xj(s, 〈C(r1), ..., C(rk)〉))}| > νk
]

where the last equality follows because r1,...,rk are chosen independently and iden-
tically. Thus, without loss of generality, we can consider only uniformized parallel
solvers.

Notation.

Let us fix a parallel solver X, and its uniformized parallel solver X. We will use the
following shorthands to denote some useful quantities and predicates. Let Ck(~r, π)
denote 〈C(rπ(1)), ..., C(rπ(k))〉. Thus, Ck(~r,1) (where 1 is the identity permutation)
just denotes 〈C(r1), ..., C(rk)〉. Given the randomness r1, ...rk to generate the k
puzzles, and the randomness 〈s, π〉 used by X, define random variables

• total(X) := |{i ∈ [1..k] : ¬R(ri,X i(〈s, π〉, Ck(~r,1)))}|

• F(X) (short for first) := ¬R(r1,X1(〈s, π〉, Ck(~r,1)))

• others(X) := |{i ∈ [2..k] : ¬R(ri,X i(〈s, π〉, Ck(~r,1)))}|

• others(X, j) := |{i ∈ [1..j − 1, j + 1..k] : ¬R(ri,X i(〈s, π〉, Ck(~r,1)))}|

• for Γ ⊆ [1..k], (failure-) pattern(X , Γ) denotes

∧

i∈Γ

R
(

ri,X i(〈s, π〉, Ck(~r,1))
)

∧

i6∈Γ

¬R
(

ri,X i(〈s, π〉, Ck(~r,1))
)

From now on, unless otherwise stated, all probabilities will be over r1, ..., rk each
chosen uniformly and independently from Ud(n), s chosen uniformly (and indepen-
dently) from Uc(n), and π chosen uniformly (and independently) from all permuta-
tions of [1..k]. Further, define

4

• For any t, 0 ≤ t ≤ k, let pt denote Pr[total(X) = t].

• Let τ = (1 − γ)δk.

• Define P =
∑

t≤τ pt.

• For j ≥ 0, let ψj = γδ(1 − γ) + j · (γ/k). Let α = 1/(1 − τ/k − ψ0).

Lemma 4 For any integer t, 0 ≤ t ≤ k,

Pr[F(X) | total(X) = t] =
t

k

Proof: We first show that for any t, 0 ≤ t ≤ k, and any subset Γ of [1..k] of size t,
the probability of pattern(X , Γ) is a function only of t, and is independent of the
subset Γ.

Indeed, consider Γ, and another subset Γ′ of size t, and let σ be any permutation
of [1..k], such that Γ′ = σ(Γ) (a permutation applied to a subset Γ just yields the
set which is the range of the permutation with domain Γ). It is clear that such a
permutation exists. Then,

Pr[pattern(X, Γ′)]

= Pr
[

∧

i∈Γ′

R
(

ri,Xπ−1(i)(s,C
k(~r, π))

)

∧

i6∈Γ′

¬R
(

ri,Xπ−1(i)(s,C
k(~r, π))

)]

= Pr
[

∧

i∈σ(Γ)

R
(

ri,Xπ−1(i)(s,C
k(~r, π))

)

∧

i6∈σ(Γ)

¬R
(

ri,Xπ−1(i)(s,C
k(~r, π))

)]

= Pr
[

∧

j∈Γ

R
(

rσ(j),Xπ−1(σ(j))(s,C
k(~r, π))

)

∧

j 6∈Γ

¬R
(

rσ(j),Xπ−1(σ(j))(s,C
k(~r, π))

)]

Now, denote rσ(j) by wj . Then, the above becomes (with probability now over
wσ−1(1), ..., wσ−1(k), s, π)

Pr
[

∧

j∈Γ

R
(

wj ,Xπ−1(σ(j))(s,C
k(~w, σ−1π))

)

∧

j 6∈Γ

¬R
(

wj ,Xπ−1(σ(j))(s,C
k(~w, σ−1π))

)]

Now, π−1σ = (σ−1π)−1. Denote σ−1π by π̂. Since permutations form a group, π̂ is
independent of σ, with π chosen uniformly and independently of σ. Then, the above
probability can be written as (with probability now over wσ−1(1), ..., wσ−1(k), s, π̂)

Pr
[

∧

j∈Γ

R
(

wj ,Xπ̂−1(j)(s,C
k(~w, π̂))

)

∧

j 6∈Γ

¬R
(

wj ,Xπ̂−1((j)(s,C
k(~w, π̂))

)]

Since, w1, ..., wk are chosen identically and independently, the above remains same
even when the probability is considered over w1, ...wk, s, π̂. This proves that the

5

above probability is a function only of t, and independent of the particular subset
Γ. Now,

Pr[F(X) | total(X) = t]

=
∑

Γ:|Γ|=t

Pr[F(X) ∧ pattern(X , Γ) | total(X) = t]

=
∑

Γ:|Γ|=t,1∈Γ

Pr[pattern(X , Γ) | total(X) = t]

=

∑

Γ:|Γ|=t,1∈Γ Pr[pattern(X , Γ)]

Pr[total(X) = t]

=

∑

Γ:|Γ|=t,1∈Γ Pr[pattern(X , Γ)]
∑

Γ:|Γ|=tPr[pattern(X , Γ)]

=

(

k − 1

t− 1

)

/

(

k

t

)

= t/k

Lemma 5 For t < k,

Pr[F(X) | others(X) ≤ t] =

∑

t′≤t+1(t
′/k)pt′

∑

t′≤t pt′ + ((t+ 1)/k)pt+1

Proof: First note that, for t < k

Pr[others(X) = t]

= Pr[F(X) ∧ others(X) = t] + Pr[¬F(X) ∧ others(X) = t]

= Pr[F(X) ∧ total(X) = t+ 1] + Pr[¬F(X) ∧ total(X) = t]

=
t+ 1

k
pt+1 +

k − t

k
pt (by Lemma 4)

The lemma follows easily from this observation. �

Lemma 6 For any i > 0, suppose for all j, 0 ≤ j < i

Pr[F(X) | others(X) ≤ τ + j] >
τ

k
+ ψj

then

pτ+i > ψ0P · kα

τ + i
·

∏

0<j<i

(

1 + (ψj −
j

k
)(

kα

τ + j
)
)

(1)

Proof: For any j, j < i, we first note that Lemma 5, along with the hypothesis of
the lemma for j, yields (by simple manipulation)

pτ+j+1 >
kα

τ + j + 1
·
(

ψjP +
∑

0<j′≤j

pτ+j′(ψj −
j′

k
)
)

(2)

6

The base case, i.e. i = 1, follows immediately from this by considering j = 0. Now
suppose the induction hypothesis holds for i, and we will prove the lemma for i+ 1.
The antecedent for i + 1 completely yields the antecedent for i′ < i + 1. Thus,
inequality (1) holds for all such i′.

Let Ψ(j) stand for (ψj − j
k)(

kα
τ+j).

Then by inequality (2), and plugging in inequality (1) for each pτ+j (j < i+ 1),
while noting that ψj is an increasing function of j, we get that pτ+i+1 is greater
than

ψ0Pkα

τ + i+ 1
·
(

1 +
∑

0<j≤i

Ψ(j)
∏

0<j′<j

(

1 + Ψ(j′)
)

)

=
ψ0Pkα

τ + i+ 1
·
(

1 +
∑

0<j≤i

(

1 + Ψ(j) − 1
)

∏

0<j′<j

(

1 + Ψ(j′)
)

)

=
ψ0Pkα

τ + i+ 1
·
(

1 +
∑

0<j≤i

∏

0<j′≤j

(

1 + Ψ(j′)
)

−
∑

0<j≤i

∏

0<j′<j

(

1 + Ψ(j′)
)

)

=
ψ0Pkα

τ + i+ 1
·
(

1 +
∏

0<j′≤i

(

1 + Ψ(j′)
)

−
∏

0<j′<1

(

1 + Ψ(j′)
)

)

=
ψ0Pkα

τ + i+ 1
·

∏

0<j′<i+1

(

1 + Ψ(j′)
)

Lemma 7 For γ < 1, and for any positive integer t < γδk (= M),

t
∏

j=1

τ + ψjk

τ + j
> (1 − γ2) · eγ(1−γ)(1− t

2M
)t− O(1/(δk))

Proof: From the definition of ψj, the product can be written as

t
∏

j=1

δk − γ2δk + γj

δk − γδk + j
= γt

t
∏

j=1

(δ/γ)k − γδk + j

δk − γδk + j

Using the gamma function, which for x > 0 satisfies Γ(x + 1) = xΓ(x), the above
can be written as

γt · Γ((δ/γ)k − γδk + t+ 1) Γ(δk − γδk + 1)

Γ((δ/γ)k − γδk + 1) Γ(δk − γδk + t+ 1)

Now, using Stirling’s approximation for gamma function [6]

Γ(z + 1) =

√

2π

z

(z

e

)z
eO(1/z)

the above is greater than

γt(1 − γ2)e−O(1/δk) · ((δ/γ)k − γδk + t)(δ/γ)k−γδk+t · (δk − γδk)δk−γδk

((δ/γ)k − γδk)(δ/γ)k−γδk · (δk − γδk + t)δk−γδk+t

7

Taking just the product of γt and the big fraction, and factoring out δk from all
terms, we get

(1 − γ2 + γt/(δk))(δ/γ)k−γδk+t · (1 − γ)δk−γδk

(1 − γ2)(δ/γ)k−γδk · (1 − γ + t/(δk))δk−γδk+t
(3)

Now, we use the following series expansion (convergent for z < 1)

− ln (1 − z) =
∑

i≥1

zi

i

Recalling that M = γδk, and denoting (1 − t/M) by θ, the log of the above frac-
tion (3) is sum of four terms I1, I2, I3 and I4, where

I1 = −M(1/γ2 − 1 + t/M)
∑ (γ2θ)i

i

I2 = −M(1/γ − 1)
∑ γi

i

I3 = M(1/γ2 − 1)
∑ γ2i

i

I4 = M(1/γ − 1 + t/M)
∑ (γθ)i

i

where all the sums have i ranging from 1 to infinity. Now, a little manipulation
shows that

I2 + I3 = M/γ ·
∑

i≥2

(1

i− 1
− 1

i

)(

γi − γ2i−1
)

Similarly, I1 + I4 is

−M/γ ·
∑

i≥2

(θi−1

i− 1
− θi

i

)(

γi − γ2i−1
)

+ t ·
∑

i≥1

((γθ)i

i
− (γ2θ)i

i

)

Thus, all four terms together sum up to

M/γ ·
∑

i≥2

(1

i− 1
(1 − θi−1) − 1

i
(1 − θi)

)(

γi − γ2i−1
)

+ t ·
∑

i≥1

((γθ)i

i
− (γ2θ)i

i

)

Now,
(

1
i−1(1 − θi−1) − 1

i (1 − θi)
)

is non-negative for all i, as long as θ ≤ 1: it is
positive at θ = 0, is non-negative at θ = 1, and the derivative (w.r.t. θ) is non-zero
everywhere except at θ = 1.

Thus, we will only take the term corresponding to i = 2 from the first sum, and
the term corresponding to i = 1 from the second sum. This leads to a lower bound
of

t(γθ − γ2θ) +M(γ − γ2)(1/2 − θ + θ2/2)

Since θ = 1 − t/M , the above simplifies to γ(1 − γ)(1 − t
2M)t.

8

Finally, we need the following simple calculation. Define

qτ+i = ψ0 ·
k

τ + i
·
i−1
∏

j=1

τ + ψjk

τ + j

Lemma 8 Let M = dγδke, and suppose δk ≥ 1.

1. For any i, 0 ≤ i < M , and for any χ ≥ 1,

qτ+i · χ · 2

γ(1 − γ)2
· e−γ2(1−γ)δk/2 − e−(1−γ)(δ−τ/k−ψi)k/2 >

χ

2
· e−γ2(1−γ)δk/2

2. qτ+M · 2
γ(1−γ)2

· e−γ2(1−γ)δk/2 > 1

The detailed calculations can be found in Appendix A.

4 The Main Theorem

Theorem 9 Let P = (C,R, d(n)) be a weakly-verifiable puzzle that is (δ, t(n), c(n))-
hard. Let k be any positive integer such that δk ≥ 1, and γ (1 > γ > 0) be arbitrary.
Further, let ε0 be any arbitrary positive real, and let

ε ≥ 2

γ(1 − γ)2
· e(1−γ)(−γ2δ+ε0)k/2.

Then the direct product puzzle Pk is (1− γ)δ-approximate ((1− ε), t′(n), c′(n))-hard
with t′(n) = t(n)·poly(ε, 1/n, 1/(γδk), 1/ ln (1/ε0)), and c′(n) = c(n)·poly(ε, 1/(γδk),
1/ ln (1/ε0)).

The case γ = 1 is handled in Appendix B.

In the following let ε1 = ε2 = ε3 = ε0/6. Recall the definitions of τ , P , and ψj from
Section 3.

Consider, for contradiction sake, a k-parallel solver X which for the k-wise direct
product Pk has (1 − γ)δ-approximate (failure) value less than 1 − ε, i.e

P = Pr
~r∈Uk

d(n)
,s∈Uc(n)

[

|{i ∈ [1..k] : ¬R(ri,Xi(s,C
k(~r)))}| ≤ τ

]

> ε

As explained earlier in Section 3, we consider its uniformized version X, which
has the same failure value (1− P). Using X as an oracle, we will give an algorithm
Y to solve the underlying puzzle P with failure value less than δ, leading to a
contradiction.

The algorithm Y will have a pre-processing phase (i.e. independent of the given
target puzzle instance x, and function of security parameter n), where it runs some
statistical tests using X to determine the appropriate algorithm C[i] to run, where
C[0], ..., C[M − 1] are M (= dγδke) algorithms as follows:

9

C[i]: On input x, run C′[i] below on x. If the value returned is different from ⊥,
then return that value; otherwise repeat by calling C′[i] on x again, for a total
of at most T iterations (T = 8

εγ2(1−γ)2 ln (1/ε1)). If no output is produced in

these T iterations, return ⊥.

C′[i]: On input x, choose k−1 random tapes α2, ..., αk uniformly and independently
from {0, 1}d(n). Let x2, ..., xk be the corresponding puzzles, i.e. xl = C(αl),
for l = 2..k. Set x̄ = 〈x, x2, ..., xk〉. Run X on x̄. Check if others ≤ τ + i, and
if so return X1(x̄); otherwise return ⊥.

The pre-processing phase η returns η(X,n, δ, γ, k), a value between 0 and M−1.
When it is clear from context, we just call the value η. Thus, 0 ≤ η ≤ M − 1. As
mentioned above, Y runs C[η] on x.

The event valid stands for the following being satisfied by the returned η:

1. For all i < η, Pr[F(X) | others(X) ≤ τ + i] > τ
k + ψi, and

2. Pr[F(X) | others(X) ≤ τ + η] ≤ τ
k + ψη + ε2.

We will later bound the probability of valid not happening by ε3 (lemma 12); i.e. af-
ter we describe how the pre-processing works. In rest of this section, we condition on
the event valid being true, and we will not mention it explicitly in the probabilities.

We first need to bound the probability of C[η] timing out, i.e. returning ⊥. Note
that, C′[η] returns something other than ⊥ if (others ≤ τ + η). As in Lemma 5, it is
easy to see that the probability of this happening is at least P which is at least ε (by
hypothesis of the theorem). However, multiple calls to C′[η] are not independent,
as they all include the query x. However, as shown in [4], the corresponding graph
is a good sampler, and that helps us analyze the probability of C[η] timing out. Of
course, we require Lemma 6, and the idea therein of a linearly increasing ψj , to
obtain better bounds.

To this end, we consider a (k-colored) bipartite graph G = G(L ∪R,E); the set
of left vertices is the set of d(n)-bit strings {0, 1}d(n); the right vertices are triples
〈ᾱ, s, π〉, where ᾱ ranges over all k-tuples of d(n)-bit strings, and s ranges over c(n)
bit strings, and π ranges over permutations of [k]; for every y = 〈(α1, ..., αk), s, π〉 ∈
R there are k edges (y, α1), ..., (y, αk) in E, colored 1..k respectively.

By lemma 3, this graph is a λ-sampler for λ(µ, ν) = e−ν
2µk/2.

Corresponding to each (α1, ..., αk) are puzzles (x1, ..., xk). Now, define Goodη to
be the subset of R (the right vertices) such that X when run on input (x1, ..., xk),
with randomness s and π, has the following property

|{i ∈ [1..k] : ¬R(αi,X i(〈s, π〉, 〈x1, ..., xk〉))}| ≤ τ + η

In other words, total(X) ≤ τ + η. Let the density of Goodη in R be gη. We now

define Hη ⊆ L to be all those vertices α such that α has less than (ε · γ2(1−γ)2

8)

10

fraction of its neighbours in the set Goodη. We will later see in Lemma 11 how Hη

is relevant, even though C′[η] embeds α (or it’s x) only in the first position. We can
bound the size of Hη, just as in [4], by employing Lemma 2.

Lemma 10 Hη has density at most δ − τ/k − ψη − ε0.

Proof: Suppose to the contrary, the density of Hη is greater than β = δ − τ/k −
ψη − ε0. Let H ′ ⊆ Hη be any subset of density exactly β. Now, by definition of
Hη, we have Prα∈L,w∈N(α)[α ∈ H ′ & w ∈ Goodη] < βεγ2(1 − γ)2/8. On the other
hand, by Lemma 2, we get that the same probability is at least β(gη − λ0)(1 − ν̄)
for λ0 = λ(β, ν̄), for any 0 ≤ ν̄ ≤ 1. We set ν̄ =

√
1 − γ.

Now, note that gη = Pr[total(X) ≤ τ+η]. If η = 0, then gη = P > ε. Otherwise,
since event valid is true, we can use Lemma 6 to lower bound pτ+η. Next, noting
that in Lemma 6, α is greater than one, we can use Lemma 7 to get an explicit
lower bound for pτ+η, and hence for gη.

Then, using Lemma 8, and noting that 1 − ν̄ > γ/2, it can be seen by a simple
calculation that β(gη − λ0)(1 − ν̄) is more than βεγ2(1 − γ)2/8, a contradiction. �

Lemma 11 For every α 6∈ Hη and the puzzle x corresponding to that random α,
we have Pr[C[η](x) = ⊥] ≤ ε1, where the probability is over the random coins of C[η]
(including those of Xand X).

Proof: We consider a variation of C[i], where instead of calling C ′[i], it calls the
following C′′[i] instead.

C′′[i]: On input x, choose k − 1 random tapes α1, ..., αk−1 uniformly and in-
dependently from {0, 1}d(n). Let x1, ..., xk−1 be the corresponding puzzles,
i.e. xl = C(αl), for l = 1..k − 1. Pick j ∈ [1..k] at random and set
x̄ = 〈x1, ..., xj−1, x, xj , ..., xk−1〉. Run X on x̄. Check if others(j) ≤ τ + i,
and if so return Xj(x̄); otherwise return ⊥.

For each fixed α, the behaviour of C′[i] and C′′[i] is statistically identical, because
placing x in the random j-th place is just a permutation of placing x in the first
place, and that the permutations form a group.

Further, picking a color j ∈ [1..k] at random, and then picking α1, ..., αk−1 at
random and placing α in the j-th place to form ᾱ is same as picking a random
neighbour of α (random element of NG(α), and note that NG(α) is defined to be a
multi-set)1.

Now, C′′[η] returns something other than ⊥ if the neighbour satisfies (others(j)
≤ τ + η), which is implied by (total ≤ τ + η). But, for α 6∈ Hη, the density of
neighbours satisfying (total ≤ τ + η) is more than εγ2(1− γ)2/8. Hence for such α,
the probability of C′′[η] returning something other than ⊥ is more than εγ2(1−γ)2/8.

1This follows formally by noting that
∑k

j=1 j
(

k

j

)

(A − 1)k−j = kAk−1, for any A

11

But, the probability of C[η](x), using C′, returning ⊥ is same as probability of

C, using C′′, returning ⊥, which is at most (1 − (ε · γ2(1−γ)2

8))T = ε1. �

Proof of Main Theorem: Now we are ready to prove the main theorem. Since
there are a potential T attempts by C[η] on x, we call the values returned in the q-th
attempt by C′[η]q (1 ≤ q ≤ T). Now, the input x was set by choosing α uniformly
from {0, 1}d(n). Thus,

Pr
α

[C[η](x) is wrong] ≤ Pr
α

[α ∈ Hη] + Pr
α

[C[η](x) is wrong & α 6∈ Hη]

The first term on the right-hand side is at most δ − τ/k − ψη − ε0 by Lemma 10.
We now focus on the second term.

Pr[C[η](x) is wrong & α 6∈ Hη]

≤ Pr[C[η](x) = ⊥ & α 6∈ Hη] + Pr[C[η](x) is wrong & C[η](x) 6= ⊥ & α 6∈ Hη]

≤ ε1 + Pr[C[η](x) is wrong & C[η](x) 6= ⊥] (by Lemma 11)

≤ ε1 + Pr[C[η](x) is wrong | C[η](x) 6= ⊥]

= ε1 + Pr[C′[η]q(x) is wrong | ∃q : C′[η]q(x) 6= ⊥]

= ε1 + Pr[F (X) | others(X) ≤ τ + η]

≤ ε1 +
τ

k
+ ψη + ε2 (by event valid)

Thus,
Pr
α

[C[η](x)is wrong] = δ + ε1 − ε0 + ε2

. Finally, by Lemma 12 (of the following section), the probability of η being not
valid is at most ε3, and this leads to a contradiction as ε0 > ε1 + ε2 + ε3. �

5 Pre-Processing and Hypothesis Testing

As mentioned in Section 4, the algorithm Y first does some pre-processing using
algorithm η, and using X as an oracle. The inputs to η are the security parameter
n, k, as well as γ and δ. It returns a value η, 0 ≤ η ≤M − 1 (M = dγδke).

Before we describe this pre-processing algorithm, we remark that it is intended
to compute the smallest j < M , such that Pr[F(X) | others(X) ≤ τ + j] ≤ τ

k +ψj .
Now, we had assumed that P > ε, and the hypothesis of Theorem 9 assumes a lower
bound on ε. Then, by Lemmas 6, 7 and 8.2, it follows that if such a j does not
exist, then pτ+M > 1, an impossibility. So, let η̄ be that smallest 0 ≤ j < M .

The algorithm η(X,n, δ, γ, k) does the following:

η : For each i = 1..M − 1, compute the following statistics

ti =
#(F (X) & others(X) ≤ τ + i)

1 + #(others(X) ≤ τ + i)

12

where the count is over runningX on random and independent ᾱ ∈ {0, 1}d(n)k ,
for a total of N times (N to be determined below). Set η to be the smallest i
such that ti < τ/k+ψi+ ε2/2. If no such η exists then set η = M − 1. Return
η.

Lemma 12 There is a polynomial φ, independent of n, such that with N = φ(γδk,
ln (1/ε2), ln (1/ε3)),

Pr[not valid] < ε3

Proof: Clearly, for i = η̄, the actual conditional probability of F is is no more than
τ/k + ψi. Hence, ti > τ/k + ψi + ε2/2 is an exponentially low probability event by
Chernoff bound. Now, for some smaller i, if conditional probability of F is greater
than τ/k+ψi + ε2, then again ti being less than τ/k+ψi + ε2/2 is an exponentially
low probability event. �

References

[1] N. Alon, J. Spencer, “The Probabilistic Method”, John Wiley and Sons, 1992.

[2] R. Canetti, S. Halevi, M. Steiner, “Hardness Amplification of Weakly-Verifiable
Puzzles”, TCC 2005, pp 17-33.

[3] T. Holenstein, “ Parallel Repetition: Simplifications and the No-Signalling
Case”, STOC 2007.

[4] R. Impagliazzo, R. Jaiswal, V. Kabanets, “Chernoff-Type Direct Product The-
orem”, J. Cryptology, (2009) 22:75-93.

[5] R. Impagliazzo, R. Jaiswal, V. Kabanets, A. Wigderson, “Uniform direct-
product theorems: Simplified, optimized, and de-randomized”, ACM STOC
2008.

[6] D. Knuth , “Art of Computer Programming, Vol 1.”, Addison Wesley 1973.

[7] R. Raz, “A parallel repetition theorem”. SIAM J. of Computing, 27(3):763-803.

[8] L. von Ahn, M. Blum, N.J. Hopper, J. Langford, “ CAPTCHA: Using hard AI
problems for security”, in Eurocrypt 2003.

13

Appendix A.

Recall,

qτ+i = ψ0 ·
k

τ + i
·
i−1
∏

j=1

τ + ψjk

τ + j

Lemma 8: Let M = dγδke, and suppose δk ≥ 1.

1. For any i, 0 ≤ i < M , and for any χ ≥ 1,

qτ+i · χ · 2

γ(1 − γ)2
· e−γ2(1−γ)δk/2 − e−(1−γ)(δ−τ/k−ψi)k/2 >

χ

2
· e−γ2(1−γ)δk/2

2. qτ+M · 2
γ(1−γ)2

· e−γ2(1−γ)δk/2 > 1

Proof: For the first item in the lemma, we have

δ − τ/k − ψi = δ − (1 − γ)δ − γ(1 − γ)δ − i · (γ/k)
= γ2δ − γ · (i/k)

Now, by Lemma 7,

qτ+i >
γδ(1 − γ)k

τ + i
· (1 − γ2) · eγ(1−γ)(1− i−1

2M
)(i−1) −O(1/(δk))

But, τ + i < δk, and (1− γ2)(1− γ) > (1− γ)2. Further, e−γ(1−γ) > 1− γ(1− γ) ≥
3/4. Thus,

qτ+i · χ · 2

γ(1 − γ)2
· e−γ2(1−γ)δk/2 − e−(1−γ)(δ−τ/k−ψi)k/2

>
3

2
· χ · e−γ2(1−γ)δk/2+γ(1−γ)(1− i−1

2M
)i − eγ(1−γ)(i/2)−γ

2(1−γ)δk/2

= e−γ
2(1−γ)δk/2+γ(1−γ)(i/2) · (3

2
· χ · eγ(1−γ)(1

2
− i−1

2M
)i − 1)

> e−γ
2(1−γ)δk/2 · χ

2

We have ignored the e−O(1/δk) factor, since the constant in the exponent is known
to be a small fraction (i.e. in Sterling’s formula), and hence this factor is more than
compensated by δk

τ+i which we ignored.

For the second item in the lemma, again using Lemma 7 we have

qτ+M · 2

γ(1 − γ)2
· e−γ2(1−γ)δk/2

>
3

2
· e−γ2(1−γ)δk/2+γ(1−γ)(1−M−1

2M
)M

>
3

2
· e−γ2(1−γ)δk/2+γ(1−γ)γδk/2

�

14

Appendix B.

In this appendix, we show that for γ = 1, as is to be expected, one can obtain
better bounds. First, note that τ = 0, and ψj = j/k. Then, an easy counterpart of
Lemma 6 states that if the conditional probability of F , given (others ≤ j), is more
than ψj for all j less than i, then

pi > αi · P = (1 − δ)−i · P

Further, a Lemma 10 variant follows by taking ν̄ =
√
δ. Thus, we get a bound of

approximately (1 − δ)k for the (non-failure)-value of the k-product puzzle.

15

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

