
Almost Optimal Bounds for Direct Product

Threshold Theorem

Charanjit S. Jutla

IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

Abstract. We consider weakly-verifiable puzzles which are challenge-
response puzzles such that the responder may not be able to verify for
itself whether it answered the challenge correctly. We consider k-wise
direct product of such puzzles, where now the responder has to solve k

puzzles chosen independently in parallel. Canetti et al have earlier shown
that such direct product puzzles have a hardness which rises exponen-
tially with k. In the threshold case addressed in Impagliazzo et al, the
responder is required to answer correctly a fraction of challenges above a
threshold. The bound on hardness of this threshold parallel version was
shown to be similar to Chernoff bound, but the constants in the expo-
nent are rather weak. Namely, Impagliazzo et al show that for a puzzle
for which probability of failure is δ, the probability of failing on less than

(1−γ)δk out of k puzzles, for any parallel strategy, is at most e−γ2δk/40.
In this paper, we develop new techniques to bound this probability, and
show that it is arbitrarily close to Chernoff bound. To be precise, the

bound is e−γ2(1−γd)δk/2, where d can be arbitrary positive integer. We
show that given any responder that solves k parallel puzzles with a good
threshold, there is a uniformized parallel solver who has the same thresh-
old of solving k parallel puzzles, while being oblivious to the permutation
of the puzzles. This enhances the analysis considerably, and may be of
independent interest.

1 Introduction

Consider challenge-response puzzles where the responder may not be able to
determine if its answer is a correct response or not, either because the chal-
lenge may have multiple correct responses (and the challenger seeks a particular
one of those), or because the responder is computationally constrained, e.g. in
CAPTCHA puzzles [8]. Such puzzles are called weakly-verifiable puzzles [2].

In cryptography, and other applications, the challenge-response puzzles are
often used to distinguish between a real and fake responder, where the differenti-
ation is obtained by the probability of their solving a randomly chosen challenge.
For example, the authentic party may have a probability α of solving the chal-
lenge correctly, whereas non-authentic parties may have a probability only β
(< α) of solving the puzzles correctly. However, if the gap is not large then
direct product, or (parallel) repetition of such puzzles may be sought. Ideally,
one would like that if k puzzles are chosen independently in parallel, then the

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 120 (2009)

probability of the non-authentic party solving all puzzles correctly is at most
βk [2]. Unfortunately, this also makes the success probability of the authentic
party go down (if α < 1).

In [4], the authors observe that the authentic party is on average expected
to solve αk puzzles, and if a Chernoff-like bound holds, then the probability
of fake parties solving αk puzzles may go down exponentially. They show that
their intuition is correct, and indeed give an exponential bound. However, the
bound they obtain has a weak constant in the exponent. In particular they show
that (setting δ = 1 − β) the probability of the non-authentic party responding
incorrectly to less than (1 − γ)δk puzzles (out of k parallel puzzles) is at most

e−γ
2δk/40. For real problems like CAPTCHA, the 1/40 factor in the exponent

is debilitating, and the authors mention it as an open problem to improve this
constant.

As is to be expected, the result in [4] is proved by reducing a single puz-
zle instance to a (simulated) direct product puzzle instance. However, multiple
simulations are required to get a good reduction. The complication in analyz-
ing the reduction then stems from the fact that the given single puzzle instance
must be embedded in all simulated direct product puzzle instances, and hence
they are not independent. In [4], the authors use a nice duality property of good
(bi-partite graph based) samplers to analyze the dependent simulations.

In this paper we develop further new techniques to analyze this probability
and show that one can indeed bound the probability arbitrarily close to as in
Chernoff bound. In particular we upper bound the above probability by about

e−γ
2(1−γd)δk/2

where d can be chosen to be any positive integer.

We show that a uniformized parallel solver, which first permutes its given k-
puzzles randomly, solves them as before, and permutes the results back, has the
same probability of success as before. However, this uniformized solver is much
easier to analyze. While this in itself, when plugged into the “trust reduction”
strategy of [4] gives better bounds than before, to get the bounds similar to
Chernoff bound we need further new techniques. In particular, while a count of
other simulated puzzles being answered incorrectly gives a good guess of whether
the given puzzle may be answered incorrectly, a linearly weighted metric we
consider leads to more optimal bounds.

While the idea of uniformized parallel solver also applies to Raz’s Theo-
rem [7], in particular because of Holenstein’s observation that the two provers
can use shared randomness [3], it is to be seen if it leads to improved analysis.

The rest of the paper is organized as follows. In Section 2 we describe a
result about samplers which we employ, as well as give definitions of threshold
weakly-verifiable puzzles. In section 3 we consider uniformized parallel solvers
and give the main technical lemmas. In section 4 we give the main theorem and
its proof. In section 5 we describe the pre-processing phase.

2 Preliminaries

2.1 Basics

Lemma1. [Chernoff Bound [1]] Let X = (X1 +X2 + ...+Xn)/n, where the Xi

are mutually independent indicator random variables, each with mean µ. Then,
for β ≥ 0,

Pr[X ≥ (1 + β)µ] < (eβ(1 + β)−1−β)µn

Pr[X < (1 − β)µ] < e−β
2µn/2

2.2 Samplers

Consider bipartite graphs F = G(L ∪ R,E). We allow graphs with multiple
edges. For a vertex v of G, we denote by NG(v) the multi-set of its neighbours
in G. When the graph G is clear from context, we will drop the subscript G, and
simply write N(v). We say that G is bi-regular if the degree of each vertex in L
is same, and the degree of each vertex in R is same.

LetG = G(L∪R,E) be any bi-regular bipartite graph. For a function λ : [0, 1]
× [0, 1] → [0, 1], we say that G is a λ-sampler [4] if, for every function F : L →
[0, 1] with the average value Ex∈L[F (x)] ≥ µ and any 0 < ν < 1, there are at
most λ(µ, ν) · |R| vertices r ∈ R such that Ey∈N(r)[F (y)] ≤ (1 − ν)µ.

We will employ the following lemma from [5, 4]. It says that for any two large
vertex subsets W and F of a sampler, the fraction of edges between W and F
is close to the product of the densities of W and F .

Lemma2. [5, 4] Suppose G = G(L ∪ R,E) is a λ-sampler. Let W ⊆ R be any
set of measure at least τ , and let V ⊆ L be any set of measure at least β. Then,
for all 0 < ν < 1 and λ0 = λ(β, ν), we have

Pr
x∈L,y∈N(x)

[x ∈ V & y ∈ W] ≥ β(1 − ν)(τ − λ0)

where the probability is over first picking x uniformly from L, and then picking
y uniformly from N(x).

We will also need the following observation from [4], which shows that the
direct product is an extremely good sampler. Consider the following bipartite
graph G = G(L∪R,L): the set of left vertices is the set of n-bit strings {0, 1}n;
the right verticesR are a pair 〈r, c〉, where r range over all k-tuples of n-bit strings
{0, 1}nk, and c range over m-bit strings {0, 1}m; for every y = 〈(r1, r2, ..., rk), c〉
∈ R, there are k edges (y, r1), (y, r2),...,(y, rk) in E.

Lemma3. [4] The graph G defined above is a λ-sampler for λ(µ, ν) = e−ν
2µk/2.

2.3 Weakly-Verifiable Puzzles

Definition 1. [2] A weakly-verifiable puzzle P = (C,R, d(n)), with security
parameter n, consists of a polynomial time computable function C, a polynomial
time computable predicate R, and a polynomial d(n). For any functions t(n) and
c(n), the (t(n), c(n))-value (failure value) of the puzzle is

val(P , t, c) := min
X

Pr
r∈Ud(n),s∈Uc(n)

[¬R(r,X(s, C(r)))]

where the minimization is over t(n)-computable randomized algorithms X using
c(n) bits of randomness.

For a parameter δ, 0 ≤ δ ≤ 1, we say that a puzzle P is (δ, t(n), c(n))-hard
if the (t(n), c(n))-value of P is at least δ. In other words, every algorithm X
running in time t(n), and using c(n) bits of randomness, has probability at least
δ of answering the puzzle wrong.

Definition 2. The k-wise direct product Pk of a weakly-verifiable puzzle P =
(C,R, d(n)) is the weakly-verifiable puzzle (Ck, Rk, kd(n)), where Ck(〈r1, ..., rk〉)
is defined to be (C(r1),..., C(rk)), and

Rk(〈r1, ..., rk〉, 〈x1, ..., xk〉) :=
k
∧

i=1

R(ri, xi)

For any parameters ν and δ, 0 ≤ ν, δ ≤ 1, and any functions t(n), c(n), the puzzle
Pk is said to be ν-approximate (δ, t(n), c(n))-hard if the following minimum
probability

min
X

Pr
r∈Uk

d(n)
,s∈Uc(n)

[

|{i ∈ [1..k] : ¬R(ri, Xi(s, C
k(r)))}| > νk

]

is at least δ, where the minimization is over all randomized algorithmsX running
in time t(n) and using c(n) bits of randomness. Note that X here takes k puzzles
and returns k answers, 〈X1, ..., Xk〉. Such an algorithm X will be referred to as
a k-parallel solver.

3 Uniformized Parallel Solvers

Given a k-parallel solver X , we consider its uniformized version X, which first
randomly permutes its given k puzzles, solves them using X , and permutes back
the results. In other words, for all i = 1..k,

X i(〈s, π〉, 〈C(r1), ..., C(rk)〉) := Xπ−1(i)(s, 〈C(rπ(1)), ..., C(rπ(k))〉)

where π is any permutation of [1..k].

It is easy to see that the “failure value” of the uniformized parallel solver
remains the same, as the following shows.

Pr
r1,...,rk

Pr
s,π

[

|{i ∈ [1..k] : ¬R(ri, X i(〈s, π〉, 〈C(r1), ..., C(rk)〉))}| > νk
]

= Pr
r1,...,rk

Pr
s,π

[

|{i : ¬R(ri, Xπ−1(i)(s, 〈C(rπ(1)), ..., C(rπ(k))〉))}| > νk
]

= Pr
r1,...,rk

Pr
s,π

[

|{j = π−1(i) : ¬R(rπ(j), Xj(s, 〈C(rπ(1)), ..., C(rπ(k))〉))}| > νk
]

= Pr
r1,...,rk

Pr
s

[

|{j : ¬R(rj , Xj(s, 〈C(r1), ..., C(rk)〉))}| > νk
]

where the last equality follows because r1,...,rk are chosen independently and
identically. Thus, without loss of generality, we can consider only uniformized
parallel solvers.
Notation.

Let us fix a parallel solver X , and its uniformized parallel solver X. We will use
the following shorthands to denote some useful quantities and predicates. Let
Ck(r, π) denote 〈C(rπ(1)), ..., C(rπ(k))〉. Thus, Ck(r,1) (where 1 is the identity
permutation) just denotes 〈C(r1), ..., C(rk)〉. Given the randomness r1, ...rk to
generate the k puzzles, and the randomness 〈s, π〉 used by X, define random

variables

– total(X) := |{i ∈ [1..k] : ¬R(ri, Xi(〈s, π〉, C
k(r,1)))}|

– F(X) (short for first) := ¬R(r1, X1(〈s, π〉, C
k(r,1)))

– others(X) := |{i ∈ [2..k] : ¬R(ri, X i(〈s, π〉, C
k(r,1)))}|

– others(X, j) := |{i ∈ [1..j − 1, j + 1..k] : ¬R(ri, Xi(〈s, π〉, C
k(r,1)))}|

– for Γ ⊆ [1..k], (failure-) pattern(X, Γ) denotes

∧

i∈Γ

R
(

ri, Xi(〈s, π〉, C
k(r,1))

)

∧
∧

i6∈Γ

¬R
(

ri, Xi(〈s, π〉, C
k(r,1))

)

From now on, unless otherwise stated, all probabilities will be over r1, ..., rk
each chosen uniformly and independently from Ud(n), s chosen uniformly (and
independently) from Uc(n), and π chosen uniformly (and independently) from all
permutations of [1..k]. Further, define

– For any t, 0 ≤ t ≤ k, let pt denote Pr[total(X) = t].
– Let τ = (1 − γ)δk.
– Define P =

∑

t≤τ pt.
– In the following, we use a positive integer d which we will fix later. This d is

clearly unrelated to the polynomial d(n) above in the definition of weakly-
verifiable puzzles.

– For j ≥ 0, let ψj = γδ(1 − γd) + j · (γd/k). Let α = 1/(1 − τ/k − ψ0).

Lemma4. For any integer t, 0 ≤ t ≤ k,

Pr[F(X) | total(X) = t] =
t

k

Proof. We first show that for any t, 0 ≤ t ≤ k, and any subset Γ of [1..k] of size
t, the probability of pattern(X , Γ) is a function only of t, and is independent of
the subset Γ .

Indeed, consider Γ , and another subset Γ ′ of size t, and let σ be any permu-
tation of [1..k], such that Γ ′ = σ(Γ) (a permutation applied to a subset Γ just
yields the set which is the range of the permutation with domain Γ). It is clear
that such a permutation exists. Then,

Pr[pattern(X, Γ ′)]

= Pr
[

∧

i∈Γ ′

R
(

ri, Xπ−1(i)(s, C
k(r, π))

)

∧

i6∈Γ ′

¬R
(

ri, Xπ−1(i)(s, C
k(r, π))

)]

= Pr
[

∧

i∈σ(Γ)

R
(

ri, Xπ−1(i)(s, C
k(r, π))

)

∧

i6∈σ(Γ)

¬R
(

ri, Xπ−1(i)(s, C
k(r, π))

)]

= Pr
[

∧

j∈Γ

R
(

rσ(j), Xπ−1(σ(j))(s, C
k(r, π))

)

∧

∧

j 6∈Γ

¬R
(

rσ(j), Xπ−1(σ(j))(s, C
k(r, π))

)]

Now, denote rσ(j) by wj . Then, the above becomes (with probability now over
wσ−1(1),..., wσ−1(k), s, π)

Pr
[

∧

j∈Γ

R
(

wj , Xπ−1(σ(j))(s, C
k(w, σ−1π))

)

∧

∧

j 6∈Γ

¬R
(

wj , Xπ−1(σ(j))(s, C
k(w, σ−1π))

)]

Now, π−1σ = (σ−1π)−1. Denote σ−1π by π̂. Since permutations form a group,
π̂ is independent of σ, with π chosen uniformly and independently of σ. Then,
the above probability can be written as (with probability now over wσ−1(1),
...,wσ−1(k), s, π̂)

Pr
[

∧

j∈Γ

R
(

wj , Xπ̂−1(j)(s, C
k(w, π̂))

)

∧

j 6∈Γ

¬R
(

wj , Xπ̂−1((j)(s, C
k(w, π̂))

)]

Since, w1, ..., wk are chosen identically and independently, the above remains
same even when the probability is considered over w1, ...wk, s, π̂. This proves that
the above probability is a function only of t, and independent of the particular
subset Γ . Now,

Pr[F(X) | total(X) = t]

=
∑

Γ :|Γ |=t

Pr[F(X) ∧ pattern(X , Γ) | total(X) = t]

=
∑

Γ :|Γ |=t,1∈Γ

Pr[pattern(X, Γ) | total(X) = t]

=

∑

Γ :|Γ |=t,1∈Γ Pr[pattern(X, Γ)]

Pr[total(X) = t]

=

∑

Γ :|Γ |=t,1∈Γ Pr[pattern(X, Γ)]
∑

Γ :|Γ |=t Pr[pattern(X, Γ)]

=

(

k − 1

t− 1

)

/

(

k

t

)

= t/k

ut

Lemma5. For t < k,

Pr[F(X) | others(X) ≤ t] =

∑

t′≤t+1(t
′/k)pt′

∑

t′≤t pt′ + ((t+ 1)/k)pt+1

Proof. First note that, for t < k

Pr[others(X) = t]

= Pr[F(X) ∧ others(X) = t] + Pr[¬F(X) ∧ others(X) = t]

= Pr[F(X) ∧ total(X) = t+ 1] + Pr[¬F(X) ∧ total(X) = t]

=
t+ 1

k
pt+1 +

k − t

k
pt (by Lemma 4)

The lemma follows easily from this observation. ut

Lemma6. For any i > 0, suppose for all j, 0 ≤ j < i

Pr[F(X) | others(X) ≤ τ + j] >
τ

k
+ ψj

then

pτ+i > ψ0P ·
kα

τ + i
·

∏

0<j<i

(

1 + (ψj −
j

k
)(

kα

τ + j
)
)

(1)

Proof. For any j, j < i, we first note that Lemma 5, along with the hypothesis
of the lemma for j, yields (by simple manipulation)

pτ+j+1 >
kα

τ + j + 1
·
(

ψjP +
∑

0<j′≤j

pτ+j′(ψj −
j′

k
)
)

(2)

The base case, i.e. i = 1, follows immediately from this by considering j = 0.
Now suppose the induction hypothesis holds for i, and we will prove the lemma
for i+1. The antecedent for i+1 completely yields the antecedent for i′ < i+1.
Thus, inequality (1) holds for all such i′.

Let Ψ(j) stand for (ψj −
j
k)(kα

τ+j).

Then by inequality (2), and plugging in inequality (1) for each pτ+j (j <
i+ 1), while noting that ψj is an increasing function of j, we get that pτ+i+1 is
greater than

ψ0Pkα

τ + i+ 1
·
(

1 +
∑

0<j≤i

Ψ(j)
∏

0<j′<j

(

1 + Ψ(j′)
)

)

=
ψ0Pkα

τ + i+ 1
·
(

1 +
∑

0<j≤i

(

1 + Ψ(j) − 1
)

∏

0<j′<j

(

1 + Ψ(j′)
)

)

=
ψ0Pkα

τ + i+ 1
·
(

1 +
∑

0<j≤i

∏

0<j′≤j

(

1 + Ψ(j′)
)

−
∑

0<j≤i

∏

0<j′<j

(

1 + Ψ(j′)
)

)

=
ψ0Pkα

τ + i+ 1
·
(

1 +
∏

0<j′≤i

(

1 + Ψ(j′)
)

−
∏

0<j′<1

(

1 + Ψ(j′)
)

)

=
ψ0Pkα

τ + i+ 1
·

∏

0<j′<i+1

(

1 + Ψ(j′)
)

ut

Lemma7. For γ < 1, and for any positive integer t < γδk (= M),

t
∏

j=1

τ + ψjk

τ + j
> eγ(1−γd)(1− t

2M
)t−O(1/(δk))

Proof. From the definition of ψj , the product can be written as

t
∏

j=1

δk − γd+1δk + γdj

δk − γδk + j
= γdt

t
∏

j=1

(δ/γd)k − γδk + j

δk − γδk + j

Using the gamma function, which for x > 0 satisfies Γ (x+1) = xΓ (x), the above
can be written as

γdt ·
Γ ((δ/γd)k − γδk + t+ 1) Γ (δk − γδk + 1)

Γ ((δ/γd)k − γδk + 1) Γ (δk − γδk + t+ 1)

Now, using Stirling’s approximation for gamma function [6]

Γ (z + 1) =

√

2π

z

(z

e

)z

eO(1/z)

the above is greater than

γdte−O(1/δk) ·
((δ/γd)k − γδk + t)(δ/γ

d)k−γδk+t · (δk − γδk)δk−γδk

((δ/γd)k − γδk)(δ/γd)k−γδk · (δk − γδk + t)δk−γδk+t

Taking just the product of γdt and the big fraction, and factoring out δk from
all terms, we get

(1 − γd+1 + γdt/(δk))(δ/γ
d)k−γδk+t · (1 − γ)δk−γδk

(1 − γd+1)(δ/γd)k−γδk · (1 − γ + t/(δk))δk−γδk+t
(3)

Now, we use the following series expansion (convergent for z < 1)

− ln (1 − z) =
∑

i≥1

zi

i

Recalling that M = γδk, and denoting (1 − t/M) by θ, the log of the above
fraction (3) is sum of four terms I1, I2, I3 and I4, where

I1 = −M(1/γd+1 − 1 + t/M)
∑ (γd+1θ)i

i

I2 = −M(1/γ − 1)
∑ γi

i

I3 = M(1/γd+1 − 1)
∑ γ(d+1)i

i

I4 = M(1/γ − 1 + t/M)
∑ (γθ)i

i

where all the sums have i ranging from 1 to infinity. Now, a little manipulation
shows that

I2 + I3 = M ·
∑

i≥2

(1

i− 1
−

1

i

)(

γi−1 − γ(d+1)(i−1)
)

Similarly, I1 + I4 is

−M ·
∑

i≥2

(θi−1

i− 1
−
θi

i

)(

γi−1 − γ(d+1)(i−1)
)

+ t ·
∑

i≥1

((γθ)i

i
−

(γd+1θ)i

i

)

Thus, all four terms together sum up to

M ·
∑

i≥2

(1

i− 1
(1 − θi−1) −

1

i
(1 − θi)

)(

γi−1 − γ(d+1)(i−1)
)

+ t ·
∑

i≥1

((γθ)i

i
−

(γd+1θ)i

i

)

Now,
(

1
i−1 (1 − θi−1) − 1

i (1 − θi)
)

is non-negative for all i, as long as θ ≤ 1: it
is positive at θ = 0, is non-negative at θ = 1, and the derivative (w.r.t. θ) is
non-zero everywhere except at θ = 1.

Thus, we will only take the term corresponding to i = 2 from the first sum,
and the term corresponding to i = 1 from the second sum. This leads to a lower
bound of

t(γθ − γd+1θ) +M(γ − γd+1)(1/2 − θ + θ2/2)

Since θ = 1 − t/M , the above simplifies to γ(1 − γd)(1 − t
2M)t. ut

Finally, we need the following simple calculation. Define

qτ+i = ψ0 ·
k

τ + i
·
i−1
∏

j=1

τ + ψjk

τ + j

Lemma8. Let M = dγδke, and suppose δk ≥ 1.

1. For any i, 0 ≤ i < M , and for any χ ≥ 1,

qτ+i·χ·
4

γ(1 − γ)
·e−γ

2(1−γd)δk/2−e−(1−γd)(δ−τ/k−ψi)k/2 >
χ

e
·e−γ

2(1−γd)δk/2

2. qτ+M · 4
γ(1−γ) · e

−γ2(1−γd)δk/2 > 1

The detailed calculations can be found in Appendix A.

4 The Main Theorem

Theorem9. Let P = (C,R, d(n)) be a weakly-verifiable puzzle that is (δ, t(n),
c(n))-hard. Let k be any positive integer such that δk ≥ 1, and γ (1 > γ > 0) be
arbitrary. Further, let ε0 be any arbitrary positive real, d be an arbitrary positive
integer, and let

ε ≥
4

γ(1 − γ)
· e(1−γ

d)(−γ2δ+ε0)k/2.

Then the direct product puzzle Pk is (1 − γ)δ-approximate ((1 − ε), t′(n), c′(n))-
hard with t′(n) = t(n) · poly(ε, γd, 1/n, 1/(γδk), 1/ ln (1/ε0)), and c′(n) = c(n) ·
poly(ε, γd, 1/(γδk), 1/ ln (1/ε0)).

In the following let ε1 = ε2 = ε3 = ε0/6. Recall the definitions of τ , P , and ψj
from Section 3.

Consider, for contradiction sake, a k-parallel solver X which for the k-wise
direct product Pk has (1 − γ)δ-approximate (failure) value less than 1 − ε, i.e

P = Pr
r∈Uk

d(n)
,s∈Uc(n)

[

|{i ∈ [1..k] : ¬R(ri, Xi(s, C
k(r)))}| ≤ τ

]

> ε

As explained earlier in Section 3, we consider its uniformized version X ,
which has the same failure value (1 − P). Using X as an oracle, we will give
an algorithm Y to solve the underlying puzzle P with failure value less than δ,
leading to a contradiction.

The algorithm Y will have a pre-processing phase (i.e. independent of the
given target puzzle instance x, and function of security parameter n), where it
runs some statistical tests using X to determine the appropriate algorithm C[i]
to run, where C[0], ..., C[M − 1] are M (= dγδke) algorithms as follows:

C[i]: On input x, run C′[i] below on x. If the value returned is different from
⊥, then return that value; otherwise repeat by calling C′[i] on x again, for
a total of at most T iterations (T = 8e

εγd+1(1−γ)
ln (1/ε1)). If no output is

produced in these T iterations, return ⊥.

C′[i]: On input x, choose k − 1 random tapes α2, ..., αk uniformly and inde-
pendently from {0, 1}d(n). Let x2, ..., xk be the corresponding puzzles, i.e.
xl = C(αl), for l = 2..k. Set x̄ = 〈x, x2, ..., xk〉. Run X on x̄. Check if others

≤ τ + i, and if so return X1(x̄); otherwise return ⊥.

The pre-processing phase η returns η(X,n, δ, γ, k), a value between 0 and
M − 1. When it is clear from context, we just call the value η. Thus, 0 ≤ η ≤
M − 1. As mentioned above, Y runs C[η] on x.
The event valid stands for the following being satisfied by the returned η:

1. For all i < η, Pr[F(X) | others(X) ≤ τ + i] > τ
k + ψi, and

2. Pr[F(X) | others(X) ≤ τ + η] ≤ τ
k + ψη + ε2.

We will later bound the probability of valid not happening by ε3 (lemma 12);
i.e. after we describe how the pre-processing works. In rest of this section, we
condition on the event valid being true, and we will not mention it explicitly in
the probabilities.

We first need to bound the probability of C[η] timing out, i.e. returning ⊥.
Note that, C′[η] returns something other than ⊥ if (others ≤ τ + η). As in
Lemma 5, it is easy to see that the probability of this happening is at least P
which is at least ε (by hypothesis of the theorem). However, multiple calls to
C′[η] are not independent, as they all include the query x. However, as shown
in [4], the corresponding graph is a good sampler, and that helps us analyze
the probability of C[η] timing out. Of course, we require Lemma 6, and the idea
therein of a linearly increasing ψj , to obtain better bounds.

To this end, we consider a (k-colored) bipartite graph G = G(L ∪ R,E);
the set of left vertices is the set of d(n)-bit strings {0, 1}d(n); the right vertices
are triples 〈ᾱ, s, π〉, where ᾱ ranges over all k-tuples of d(n)-bit strings, and s
ranges over c(n) bit strings, and π ranges over permutations of [k]; for every
y = 〈(α1, ..., αk), s, π〉 ∈ R there are k edges (y, α1), ..., (y, αk) in E, colored 1..k
respectively.

By lemma 3, this graph is a λ-sampler for λ(µ, ν) = e−ν
2µk/2.

Corresponding to each (α1, ..., αk) are puzzles (x1, ..., xk). Now, define Goodη
to be the subset of R (the right vertices) such that X when run on input
(x1, ..., xk), with randomness s and π, has the following property

|{i ∈ [1..k] : ¬R(αi, X i(〈s, π〉, 〈x1, ..., xk〉))}| ≤ τ + η

In other words, total(X) ≤ τ + η. Let the density of Goodη in R be gη. We now

define Hη ⊆ L to be all those vertices α such that α has less than (ε · γ
d+1(1−γ)

8e)
fraction of its neighbours in the set Goodη. We will later see in Lemma 11 how
Hη is relevant, even though C′[η] embeds α (or it’s x) only in the first position.
We can bound the size of Hη, just as in [4], by employing Lemma 2.

Lemma10. Hη has density at most δ − τ/k − ψη − ε0.

Proof. Suppose to the contrary, the density of Hη is greater than β = δ− τ/k−
ψη−ε0. LetH ′ ⊆ Hη be any subset of density exactly β. Now, by definition ofHη,

we have Prα∈L,w∈N(α)[α ∈ H ′ & w ∈ Goodη] < βεγd+1(1 − γ)/8e. On the other
hand, by Lemma 2, we get that the same probability is at least β(gη−λ0)(1− ν̄)

for λ0 = λ(β, ν̄), for any 0 ≤ ν̄ ≤ 1. We set ν̄ =
√

1 − γd.
Now, note that gη = Pr[total(X) ≤ τ + η]. If η = 0, then gη = P > ε.

Otherwise, since event valid is true, we can use Lemma 6 to lower bound pτ+η.
Next, noting that in Lemma 6, α is greater than one, we can use Lemma 7 to
get an explicit lower bound for pτ+η, and hence for gη.

Then, using Lemma 8.1, and noting that 1 − ν̄ > γd/2, it can be seen by
a simple calculation that β(gη − λ0)(1 − ν̄) is more than βεγd+1(1 − γ)/8e, a
contradiction. ut

Lemma11. For every α 6∈ Hη and the puzzle x corresponding to that random
α, we have Pr[C[η](x) = ⊥] ≤ ε1, where the probability is over the random coins
of C[η] (including those of Xand X).

Proof. We consider a variation of C[i], where instead of calling C′[i], it calls the
following C′′[i] instead.

C′′[i]: On input x, choose k − 1 random tapes α1, ..., αk−1 uniformly and in-
dependently from {0, 1}d(n). Let x1, ..., xk−1 be the corresponding puzzles,
i.e. xl = C(αl), for l = 1..k − 1. Pick j ∈ [1..k] at random and set x̄ =
〈x1, ..., xj−1, x, xj , ..., xk−1〉. Run X on x̄. Check if others(X, j) ≤ τ + i,
and if so return Xj(x̄); otherwise return ⊥.

For each fixed α, the behaviour of C′[i] and C′′[i] is statistically identical,
because placing x in the random j-th place is just a permutation of placing x in
the first place, and that the permutations form a group.

Further, picking a color j ∈ [1..k] at random, and then picking α1, ..., αk−1 at
random and placing α in the j-th place to form ᾱ is same as picking a random
neighbour of α (random element of NG(α), and note that NG(α) is defined to
be a multi-set)1.

Now, C′′[η] returns something other than ⊥ if the neighbour satisfies others

(X, j) ≤ τ + η, which is implied by total ≤ τ + η. But, for α 6∈ Hη, the density
of neighbours satisfying total ≤ τ + η is more than εγd+1(1 − γ)/8e. Hence for
such α, the probability of C′′[η] returning something other than ⊥ is more than
εγd+1(1 − γ)/8e.

But, the probability of C[η](x), using C′, returning ⊥ is same as probability

of C, using C′′, returning ⊥, which is at most (1 − (ε · γ
d+1(1−γ)

8e))T = ε1. ut

Proof of Main Theorem: Now we are ready to prove the main theorem. Since
there are a potential T attempts by C[η] on x, we call the values returned in the
q-th attempt by C′[η]q (1 ≤ q ≤ T). Now, the input x was set by choosing α
uniformly from {0, 1}d(n). Thus,

Pr
α

[C[η](x) is wrong] ≤ Pr
α

[α ∈ Hη] + Pr
α

[C[η](x) is wrong & α 6∈ Hη]

1 This follows formally by noting that
∑k

j=1
j
(

k
j

)

(A − 1)k−j = kAk−1, for any A

The first term on the right-hand side is at most δ− τ/k−ψη− ε0 by Lemma 10.
We now focus on the second term.

Pr[C[η](x) is wrong & α 6∈ Hη]

≤ Pr[C[η](x) = ⊥ & α 6∈ Hη] + Pr[C[η](x) is wrong & C[η](x) 6= ⊥ & α 6∈ Hη]

≤ ε1 + Pr[C[η](x) is wrong & C[η](x) 6= ⊥] (by Lemma 11)

≤ ε1 + Pr[C[η](x) is wrong | C[η](x) 6= ⊥]

= ε1 + Pr[C′[η]q(x) is wrong | ∃q : C′[η]q(x) 6= ⊥]

= ε1 + Pr[F (X) | others(X) ≤ τ + η]

≤ ε1 +
τ

k
+ ψη + ε2 (by event valid)

Thus,

Pr
α

[C[η](x) is wrong] = δ + ε1 − ε0 + ε2.

Finally, by Lemma 12 (of the following section), the probability of η being not
valid is at most ε3, and this leads to a contradiction as ε0 > ε1 + ε2 + ε3. 2

5 Pre-Processing and Hypothesis Testing

As mentioned in Section 4, the algorithm Y first does some pre-processing using
algorithm η, and usingX as an oracle. The inputs to η are the security parameter
n, k, as well as γ and δ. It returns a value η, 0 ≤ η ≤M − 1 (M = dγδke).

Before we describe this pre-processing algorithm, we remark that it is in-
tended to compute the smallest j < M , such that Pr[F(X) | others(X) ≤ τ + j]
≤ τ

k + ψj . Now, we had assumed that P > ε, and the hypothesis of Theorem 9
assumes a lower bound on ε. Then, by Lemmas 6, 7 and 8.2, it follows that
if such a j does not exist, then pτ+M > 1, an impossibility. So, let η̄ be that
smallest 0 ≤ j < M .

The algorithm η(X,n, δ, γ, k) does the following:

η : For each i = 1..M − 1, compute the following statistics

ti =
#(F (X) & others(X) ≤ τ + i)

1 + #(others(X) ≤ τ + i)

where the count is over running X on random and independent ᾱ (each in
{0, 1}d(n)k), for a total of N times (N to be determined below). Set η to be
the smallest i such that ti < τ/k + ψi + ε2/2. If no such η exists then set
η = M − 1. Return η.

Lemma12. There is a polynomial φ, independent of n, such that with N =
φ(γδk, ln (1/ε2), ln (1/ε3)),

Pr[not valid] < ε3

Proof. Clearly, for i = η̄, the actual conditional probability of F is is no more
than τ/k + ψi. Hence, ti > τ/k + ψi + ε2/2 is an exponentially low probability
event by Chernoff bound. Now, for some smaller i, if conditional probability of
F is greater than τ/k+ ψi + ε2, then again ti being less than τ/k +ψi + ε2/2 is
an exponentially low probability event. ut

References

1. N. Alon, J. Spencer, “The Probabilistic Method”, John Wiley and Sons, 1992.
2. R. Canetti, S. Halevi, M. Steiner, “Hardness Amplification of Weakly-Verifiable

Puzzles”, Proc. TCC 2005, pp 17-33.
3. T. Holenstein, “Parallel Repetition: Simplifications and the No-Signalling Case”,

Proc. ACM STOC 2007.
4. R. Impagliazzo, R. Jaiswal, V. Kabanets, “Chernoff-Type Direct Product Theo-

rem”, J. Cryptology, (2009) 22:75-93.
5. R. Impagliazzo, R. Jaiswal, V. Kabanets, A. Wigderson, “Uniform direct-product

theorems: Simplified, optimized, and de-randomized”, Proc. ACM STOC 2008.
6. D. Knuth , “Art of Computer Programming, Vol 1.”, Addison Wesley 1973.
7. R. Raz, “A Parallel Repetition Theorem”. SIAM J. of Computing, 27(3):763-803.
8. L. von Ahn, M. Blum, N.J. Hopper, J. Langford, “ CAPTCHA: Using hard AI

problems for security”, in Proc. Eurocrypt 2003.

Appendix A.

Recall,

qτ+i = ψ0 ·
k

τ + i
·

i−1
∏

j=1

τ + ψjk

τ + j

Lemma 8: Let M = dγδke, and suppose δk ≥ 1.

1. For any i, 0 ≤ i < M , and for any χ ≥ 1,

qτ+i ·χ·
4

γ(1 − γ)
·e−γ

2(1−γd)δk/2−e−(1−γd)(δ−τ/k−ψi)k/2 >
χ

e
·e−γ

2(1−γ)δk/2

2. qτ+M · 4
γ(1−γ) · e

−γ2(1−γd)δk/2 > 1

Proof. For the first item in the lemma, we have

δ − τ/k − ψi = δ − (1 − γ)δ − γ(1 − γ)δ − i · (γ/k)

= γ2δ − γ · (i/k)

Now, by Lemma 7,

qτ+i >
γδ(1 − γ)k

τ + i
· eγ(1−γd)(1− i−1

2M
)(i−1) −O(1/(δk))

But, τ + i < δk, and further, e−γ(1−γd) > 1/e. Thus,

qτ+i · χ ·
4

γ(1 − γ)
· e−γ

2(1−γd)δk/2 − e−(1−γd)(δ−τ/k−ψi)k/2

>
4

e
· χ · e−γ

2(1−γd)δk/2+γ(1−γd)(1− i−1
2M

)i − eγ(1−γd)(i/2)−γ2(1−γd)δk/2

= e−γ
2(1−γd)δk/2+γ(1−γd)(i/2) · (

4

e
· χ · eγ(1−γd)(1

2−
i−1
2M

)i − 1)

> e−γ
2(1−γd)δk/2 ·

χ

e

We have ignored the e−O(1/δk) factor, since the constant in the exponent is
known to be a small fraction (i.e. in Sterling’s formula), and hence this factor is
more than compensated by δk

τ+i which we ignored.
For the second item in the lemma, again using Lemma 7 we have

qτ+M ·
4

γ
· e−γ

2(1−γd)δk/2

>
4

e
· e−γ

2(1−γ)δk/2+γ(1−γd)(1−M−1
2M

)M

>
4

e
· e−γ

2(1−γ)δk/2+γ(1−γd)γδk/2

ut

This article was processed using the LATEX macro package with LLNCS style

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

