
Circuit Lower Bounds, Help Functions, and the Remote Point

Problem

V. Arvind and Srikanth Srinivasan
Institute of Mathematical Sciences

C.I.T Campus,Chennai 600 113, India
{arvind,srikanth}@imsc.res.in

November 23, 2009

Abstract

We investigate the power of Algebraic Branching Programs (ABPs) augmented with
help polynomials, and constant-depth Boolean circuits augmented with help functions. We
relate the problem of proving explicit lower bounds in both these models to the Remote
Point Problem (introduced in [3]). More precisely, proving lower bounds for ABPs with
help polynomials is related to the Remote Point Problem w.r.t. the rank metric, and
for constant-depth circuits with help functions it is related to the Remote Point Problem
w.r.t. the Hamming metric. For algebraic branching programs with help polynomials with
some degree restrictions we show exponential size lower bounds for explicit polynomials.

1 Introduction

The goal of circuit complexity, which is central to computational complexity, is proving lower
bounds for explicit functions. The area has made several advances in the last three decades
mainly for restricted circuit models. Some of the major results relating to circuit size lower
bounds are the following: Exponential size lower bounds for constant-depth Boolean circuits
[7, 12, 6] and for monotone Boolean circuits [2, 11] computing certain explicit Boolean func-
tions; in the arithmetic circuit complexity setting, exponential size lower bounds for mono-
tone arithmetic circuits [8] computing certain explicit polynomials, and exponential size lower
bounds for explicit polynomials in the case of noncommutative algebraic branching programs
[9]. More recently, [10] has shown superpolynomial lower bounds for multilinear arithmetic
circuits. We can say that these restricted models of computation have been sufficiently well
understood to show the nontrivial explicit lower bounds.

However, most of the central problems in the area continue to remain open. For example,
we do not know how to prove superlinear size lower bounds for logarithmic depth Boolean
circuits. We do not have superpolynomial size lower bounds for depth-3 arithmetic circuits
over rationals.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 122 (2009)

The aim of this paper is to explore circuit complexity by augmenting the power of some
of these restricted models by allowing help functions (in the arithmetic circuit case, help
polynomials). In this paper we consider two specific problems.

1. Proving size lower bounds for constant depth Boolean circuits augmented with help
functions. More precisely, given any set {h1, h2, · · · , hm} of help Boolean functions
where

hi : {0, 1}n −→ {0, 1},

and m is (quasi)polynomial in n, we want to find an explicit Boolean function f :
{0, 1}n −→ {0, 1} that requires superpolynomial size constant depth circuits C that
takes as input x1, · · · , xn, h1, · · · , hm. The function f should be explicit in the sense
that it is computable in 2n

O(1)
time.

2. Proving size lower bounds for noncommutative algebraic branching programs augmented
with help polynomials. More precisely, given any set {h1, h2, · · · , hm} of help polyno-
mials in the noncommuting variables {x1, x2, · · · , xn} over a field F, we consider alge-
braic branching programs whose edges are labeled by F-linear combinations of the hi.
The problem is to prove superpolynomial lower bounds for some explicit polynomial in
x1, · · · , xn over F.

We formally define explicit Boolean functions and explicit polynomials.

We say that a family of Boolean functions {fn}n>0, where fn : {0, 1}n −→ {0, 1} for each
n, is explicit if there is a uniform 2n

O(1)
time algorithm that takes x ∈ {0, 1}n as input and

computes fn(x).

We say that a family of multilinear polynomials {Pn}n>0 where Pn(x) ∈ F[x1, · · · , xn] is
explicit if there is a uniform 2n

O(1)
time algorithm that takes as input (m, 0n) for a multi-

linear monomial m (on indeterminates x1, x2, . . . , xn) and outputs the coefficient of m in the
polynomial Pn.

Contributions of this paper

For constant-depth circuits and noncommutative ABPs, augmented with help func-
tions/polynomials respectively, proving lower bounds appears to be nontrivial.

1. We show that both the above lower bound problems are related to the Remote Point
Problem studied by Alon et al [3]. For constant-depth circuits we show a connection to
the Remote Point Problem in the Hamming metric studied in [3]. For noncommutative
ABPs the problem is connected to the Remote Point Problem in the rank metric which
is defined as the rank distance between matrices.

2. We also study the Remote Point Problem in the Rank metric, and we build on ideas
from Alon et al’s work (for the Hamming metric version) in [3] to give a deterministic

2

polynomial-time algorithm for certain parameters. However, these parameters are not
sufficient to prove lower bounds for ABPs augmented with help polynomials. Similarly,
the parameters achieved by the algorithm in [3] for the Hamming metric are not sufficient
to prove explicit lower bounds for constant-depth circuits with help functions.

3. On the positive side, when the degrees of the help polynomials are somewhat restricted,
using our solution to the Remote Point Problem w.r.t. the rank metric, we show expo-
nential size lower bounds for noncommutative ABPs computing certain explicit poly-
nomials (e.g. Theorem 14).

2 Constant Depth Circuits with Help Functions

In this section, we address the problem of proving lower bounds for constant depth circuits
of polynomial size that have access to help functions {h1, h2, · · · , hm} at the input level. Our
goal is to show how the problem is related to the Remote Point Problem w.r.t. the Hamming
metric.

Notice that we can consider the circuit inputs x1, x2, · · · , xn to be included in the set of
help functions. Thus, we can assume that we consider constant depth circuits with input
h1, h2, · · · , hm and our goal is to prove superpolynomial lower bounds for such circuits. Notice
that we cannot predetermine a hard Boolean function as the hard function chosen will depend
on h1, h2, · · · , hm.

It is well known that constant depth circuits can be well approximated by polylogarithmic
degree polynomials, for different notions of approximation. We state the results of Tarui [13]
(also see [4]) in the form that we require. In what follows, the field we work in will be F2,
but our results can be stated over any constant sized field, and over the rationals.

A polynomial p(x1, x2, · · · , xn, r1, · · · , rk) is called a probabilistic polynomial if it has as input
the standard input bits x1, x2, . . . , xn and, in addition, random input bits r1, r2, . . . , rk. We
say that the polynomial p represents a Boolean function f : {0, 1}n −→ {0, 1} with error ε if

Prob[p(x1, · · · , xn, r1, · · · , rk) = f(x1, · · · ,xn)]
≥1− ε,

where the probability is over random choices of bits rj .

Theorem 1. [13, 4] There is a probabilistic polynomial p(x1, x2, · · · , xn, r1, · · · , rk) of degree
O(log(1/ε) log2 n) with O(log(1/ε) log2 n) random bits that represents OR(x1, · · · , xn) with
error ε. Furthermore, AND(x1, · · · , xn) can be similarly represented.

Building on the above, the following well-known theorem is shown in [13, 4].

Theorem 2. [13, 4] Every function f computed by a boolean circuit of depth d and
size s is represented by a probabilistic polynomial p(x1, x2, · · · , xn, r1, · · · , rk) of degree
O(log(1/ε) log2 n)d that represents f(x1, · · · , xn) with error sε. †

†Tarui’s construction yields a probabilistic polynomial q with integer coefficients. We can obtain the desired
polynomial p over F2 from q by reducing the coefficients modulo 2.

3

Now, consider Boolean functions computed by constant-depth circuits with help func-
tions. More precisely, let H = {h1, h2, · · · , hm} denote a set of Boolean help functions
hi : {0, 1}n −→ {0, 1}. For s, d ∈ N, we define SizeDepthH(s, d) to be the set of Boolean
functions f : {0, 1}n −→ {0, 1} such that there is a depth d circuit C of size at most s such
that

f(x) = C(h1(x), h2(x), · · · , hm(x)),

where x denotes the n-tuple (x1, x2, · · · , xn). The lower bound problem is to construct, for
each fixed d, and for any given set of help functions H and s ∈ N, an explicit Boolean function
g such that g is not in SizeDepthH(s, d).

We do not have a solution to this problem. However, we show that this lower bound problem
is connected to the Remote Point Problem (RPP) introduced by Alon et al [3]. An interesting
deterministic algorithm for RPP is presented in [3]. A deterministic algorithm with somewhat
stronger parameters would solve our lower bound question. We now explain this connection.

The Remote Point Problem (RPP) [3]. Given a k-dimensional subspace V ⊆ FN2 the
problem is to find a vector v ∈ FN2 such that the Hamming distance d(u, v) ≥ r for every
u ∈ V if it exists,. We will call an efficient algorithm that does this an (N, k, r)-solution to
the problem.

The challenge is to give an efficient deterministic algorithm for RPP. A randomized algorithm
that simply picks v at random would be a good solution with high probability (for most
parameters k and r of interest). Alon et al in [3] give an (N, k, r) solution for r = O

(
N log k
k

)
,

where their deterministic algorithm runs in time polynomial in N . We now state and prove
the connection between RPP and our lower bound question.

Theorem 3. Let N = 2n. For any constant d ∈ N, and any constants c0 > c1 > c2 > 0
such that c0 > (c1 + 2c2)d+ c2, if the Remote Point Problem with parameters (N, k, r) – for
k = 2(logn)c0 and r = N

2(logn)c1 – can be solved in time 2n
O(1)

, then, for any given set of help
functions H such that |H| = 2(logn)c2 and s = cnc, there is an explicit Boolean function that
does not belong to SizeDepthH(s, d) for large enough n (depending on c).

Proof. The proof is an easy application of Theorem 2. Let H = {h1, h2, . . . , hm}. Con-
sider a circuit C corresponding to the class SizeDepthH(s, d). To wit, the function it com-
putes is C(h1(x), h2(x), · · · , hm(x)), where C is depth-d, unbounded fanin and of size cmc.
Now, for x picked uniformly at random from {0, 1}n suppose the probability distribution
of (h1(x), h2(x), · · · , hm(x)) on the set {0, 1}m is µ. By Theorem 2 there is a probabilis-
tic polynomial p(y1, y2, · · · , ym, r1, r2, · · · , rt) of degree O(log(1/ε) log2m)d that represents
C(y1, y2, · · · , ym) with error cmcε. By a standard averaging argument it follows that we can
fix the random bits r1, r2, · · · , rt to get

Prob
µ

[p(y1, y2, · · · ,ym, r1, r2, · · · , rt) =

C(y1, y2, · · · , ym)] ≥ 1− cmcε,

4

where (y1, y2, · · · , ym) is picked according to distribution µ. But that is equivalent to

Prob[p(h1(x), · · · , hm(x), r1, r2, · · · , rt) =
C(h1(x), h2(x), · · · , hm(x))] ≥ 1− cmcε,

(1)

where x is picked uniformly at random from {0, 1}n.

Choose c′0 < c0 − c2 and c′1 > c1(> c2) such that c′0 = (c′1 + 2c2)d. Let ε = 1

2(logn)
c′1

. Then the

degree of p above is O(log n)c
′
0 . We will consider Boolean functions on n bits as vectors in FN2 .

Let V be the subspace in FN2 spanned by all monomials (i.e, products of help functions) of

degree at most O(log n)c
′
0 . Then the dimension k of V is mO(logn)c

′
0 < 2(logn)c0 . By Inequality

(1), it follows that finding a vector v ∈ FN2 that is r-far from V for r = N
2(logn)c1 > cNmcε in

time 2n
O(1)

would give us an explicit Boolean function that is not in SizeDepthH(s, d).

Remark 4. We recall a nice related result of Jin-Yi Cai: He has shown in [5] an expo-
nential lower bound for the size of constant-depth circuits that computes m specific parities
in the presence of (any) m − 1 help functions, where m ≤ n1/5. His proof is essentially
based on Smolensky’s dimension argument [12]. However, in our setting where we allow for
polynomially many help functions Smolensky’s argument [12] does not work.

We now state an interesting connection between explicit lower bounds against
SizeDepthH(nc, d) and lower bounds against the polynomial time many-one closure of AC0.
The proof proceeds by a simple diagonalization argument. For any complexity class C, let
Rpm(C) denote the polynomial-time many-one closure of C, i.e, the class of languages that can
be reduced in polynomial time to a language in C.

Theorem 5. Suppose, for every fixed d ∈ N, there is a 2n
O(1)

time algorithm A that takes
as input a set of help functions H = {hi : {0, 1}n → {0, 1} | i ∈ [m]} where m ≤ nlogn ‡

(where each hi is given by its truth-table), and A outputs the truth-table of a Boolean function
g : {0, 1}n → {0, 1} such that for any c > 0, g /∈ SizeDepthH(nc, d) for almost all n. Then
EXP * Rpm(AC0).

Proof. For any d ∈ N, let AC0
d denote the class of languages that are accepted by polynomial-

sized circuit families of polynomial size and depth d.

Note that to prove that EXP * Rpm(AC0), it suffices to prove that EXP * Rpm(AC0
d) for each

fixed d ∈ N, since EXP contains problems that are complete for it under polynomial-time
many-one reductions. We will now describe, for any fixed d ∈ N, an EXP machine that
accepts a language Ld /∈ Rpm(AC0

d).

We proceed by diagonalization. Let R1, R2, R3, . . . be any standard enumeration of all
polynomial-time many-one reductions such that each reduction appears infinitely often in

‡Here, log n can be replaced by any function f : N→ N such that f(n) is 2n
O(1)

-time computable, f(n) =
ω(1), and f(n) ≤ nO(1).

5

the list. Fix n ∈ N and let m = maxy∈{0,1}n |Rn(y)|. On an input x ∈ {0, 1}n, the EXP ma-
chine does the following: for each y ∈ {0, 1}n, it runs Rn for nlogn time and computes Rn(y)
(if Rn does not halt in time nlogn, the machine outputs 0 and halts). It can thus produce the
truth tables of functions hi : {0, 1}n → {0, 1} (i ∈ [m]) such that for each y ∈ {0, 1}n, hi(y) is
the ith bit of Rn(y) if |Rn(y)| ≥ i and 0 otherwise. Now, by assumption, in time 2n

O(1)
, the

EXP machine can compute the truth table of a function gn : {0, 1}n → {0, 1} such that, for
any c > 0, gn /∈ SizeDepth{h1,...,hm}(n

c, d) for large enough n. Having computed gn, the EXP
machine just outputs gn(x).

It is clear, by a standard argument, that Ld cannot be polynomial-time many-one reduced to
any language in AC0

d.

3 Noncommutative Algebraic Branching Programs

Let X = {x1, x2, · · · , xn} be a set of n noncommuting variables, and F〈X〉 denote the non-
commutative ring of polynomials over X with coefficients from the field F. For f ∈ F〈X〉,
let d(f) denote the degree of f . Let Mond(X) be the set of degree d monomials over X. For
a polynomial f and a monomial m over X, let f(m) denote the coefficient of m in f . A
nonempty subset H ⊆ F〈X〉 is homogeneous if there is a d ∈ N such that all the polynomials
in H are homogeneous of degree d.

Let G = (V,E) be a directed acyclic graph. For u, v ∈ V , let Pu,v be the set of paths from u
to v, where a path in Pu,v is a tuple of the form ((u0, u1), (u1, u2), . . . , (ul−1, ul)) where u0 = u
and ul = v.

Definition 6. Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym} be disjoint variable sets.
Let H = {h1, h2, . . . , hm} ⊆ F〈X〉. An Algebraic Branching Program (ABP) with help
polynomials H is a layered directed acyclic graph A with a source s and a sink t. Every edge
e of A is labeled by a linear form L(e) in variables X ∪ Y . If L(e) =

∑
i αixi +

∑
j βjyj, the

polynomial L′(e) associated with edge e is obtained by substituting hj for yj, 1 ≤ j ≤ m, in
L(e). I.e. L′(e) =

∑
i αixi +

∑
j βjhj. The size of A is the number of vertices in A.

Given a path γ = (e1, e2, . . . , el) in A, define the polynomial fγ = L′(e1) · L′(e2) · . . . · L′(et)
(note that the order of multiplication is important). For vertices u and v of A, we define the
polynomial fu,v =

∑
γ∈Pu,v fγ . The ABP A computes the polynomial fs,t.

Suppose L(e) =
∑

i αixi+
∑

j βjyj . We say that the edge e is homogeneously labeled if all the
polynomials in the set {xi | αi 6= 0} ∪ {hj | βj 6= 0} are homogeneous and of the same degree
d(e). If the above set is empty, we let d(e) = 0. Now, suppose all edges of an ABP A are
homogeneously labeled; then, for a path γ = (e1, e2, . . . , et) in A let d(γ) =

∑t
i=1 d(ei). The

ABP A with help polynomials H is homogeneous if:

• all the edges in A are homogeneously labeled,

• For all u, v in A and γ1, γ2 ∈ Pu,v, d(γ1) = d(γ2).

6

For a homogeneous ABP A with help polynomials and any pair of vertices u, v in A, the
polynomial computed from u to v is homogeneous.

In the absence of help polynomials, this gives the standard Algebraic Branching Programs as
defined in, e.g. Nisan [9]. Nisan [9] has shown explicit lower bounds, e.g. for the Permanent
and Determinant, for this model of computation. Our aim is to prove lower bounds for ABPs
with help polynomials.

We show that any ABP with arbitrary help polynomials computing a homogeneous polynomial
can be transformed into an equivalent homogeneous ABP with homogeneous help polynomials
with only a small increase in size. Thus, it suffices to prove lower bounds against homogeneous
ABPs with help polynomials. Fix the help polynomial set H ⊆ F〈X〉. Let m = |H| and
d(H) = maxh∈H d(h). Also, fix some d ∈ N.

Given f ∈ F〈X〉 and i ∈ N, let f (i) denote the ith homogeneous part of h. For 2 ≤ i ≤ d,
let H̃i =

{
h(i) ∈ F〈X〉

∣∣ h ∈ H}; let H̃ =
⋃

2≤i H̃i. Let m̃i denote |H̃i| for each i, and let m̃
denote |H̃| =

∑
i m̃i. We show the following homogenization theorem.

Theorem 7. Given any ABP A using the help polynomials H computing a homogeneous
polynomial f of degree d ≥ 1, there is a homogeneous ABP Ã using the help polynomials H̃
that computes the same polynomial as A, where the size of Ã is at most S(d + 1), where S
denotes the size of A.

Proof. The following construction is fairly standard. Let s and t be the designated source
and sink, respectively, of the ABP. We will use the notation of Section 3.

We now define Ã. Ã will use the variables X∪Ỹ , where Ỹ =
{
y

(j)
i

∣∣∣ 1 ≤ i ≤ m, 2 ≤ j ≤ d(hi)
}

.

The vertices of Ã are tuples (u, i), where u is a vertex of A and i ∈ N is a number between 0
and d. The source of Ã will be (s, 0) and the sink (t, d). We will define the set of edges of Ã
in two stages. We will first construct an ABP on the set of vertices of Ã which will include
edges with weights from F (i.e, edges e such that L(e) is a non-zero degree 0 polynomial),
and we will then show how to remove these edges from the ABP. Consider any edge e in the
ABP A; let the label L(e) of e be

∑n
i=1 αixi +

∑m
j=1 βjyj and 0 ≤ k ≤ d, define the linear

form L(e)k – which captures the kth homogeneous part of L′(e), the polynomial computed
by edge e – as follows:

• If k = 0, define L(e)k to be the field element
∑m

j=1 βjh
(0)
j .

• If k = 1, define L(e)k to be
∑n

i=1 αixi +
∑m

j=1 βjh
(1)
j .

• If k > 1, define L(e)k to be
∑m

j=1 βjy
(k)
j

Fix any vertex (v, k) of Ã. Let {u1, u2, . . . , ul} be the predecessors of v in A and let ei denote
the edge (ui, v). Then, it is easy to see that

f (k)
s,v =

l∑
i=1

k∑
j=0

f (j)
s,uiL

′(ei)(k−j)

7

Hence, we define edges ei,j in Ã from vertices (ui, j) to (v, k) with label L(ei,j) = L(ei)k−j .
(Note that the label L(ei,k) is just a field element. We will change this presently.) This
concludes the first stage. Note that, since we only add edges from (u, i) to (v, j) when (u, v)
is an edge in A, the graph of Ã is acyclic. Also note that an edge e is labeled by a field
element if and only if it connects vertices of the form (u, k) and (v, k), for some u, v, and k.
Finally, it is easily seen from the definition of Ã that the polynomial computed from (s, 0) to
(u, i) is the polynomial f (i)

s,u for any s, u, and i.

In the second stage, we will get rid of those edges in Ã such that L(e) ∈ F. We do this in
two passes. Fix some topological ordering of the vertices of Ã, and order the edges (ũ, ṽ)
of Ã lexicographically. As long as there is an edge e = (ũ, ṽ) of Ã such that ṽ is not the
designated sink (t, d) and L(e) ∈ F, we let e be the least such edge and do the following: we
remove the edge e, and for each edge e′ = (ṽ, w̃) of Ã going out of v, we change the label of
the edge e′′ = (ũ, w̃) to L(e′′) + L(e) · L(e′) (if no such edge e′′ exists, we add this edge to
the ABP and give it the label L(e) · L(e′)). It should be clear that the homogeneity of the
ABP is preserved. After at most O((sd)2) many such modifications, all edges in Ã that are
labeled by field elements are of the form (ũ, (t, d)). Moreover, by the above construction, it
is clear that ũ = (u, d) for some vertex u 6= t of A. Since d ≥ 1, we know that ũ 6= (s, 0),
the designated source node. We also know that there are no edges into ũ which are labeled
by a field element. We now do the following: for each edge e = (ũ, (t, d)) labeled by a field
element, we remove the vertex ũ and for each edge e′ = (ṽ, ũ), we remove e′ and change the
label of e′′ = (ṽ, (t, d)) to L(e′′) + L(e′) · L(e) (if no such e′′ exists, we add such an edge e′′

and set its label to L(e′) · L(e)). This concludes the construction.

It is easy to prove inductively that after every modification of Ã, the polynomial computed
from (s, 0) to (t, d) remains f (d)

s,t . Hence, the ABP Ã computes exactly the polynomial f
computed by A. Also, by construction, the edges of Ã are all homogeneously labeled; finally,
it can also be seen that given a path γ from vertex (u, i) to vertex (v, j) in Ã, d(γ) = j − i:
hence, the ABP is indeed homogeneous, and we are done.

4 Decomposition of Communication Matrices

We now generalize the key lemma of Nisan [9] that connects the size of noncommutative ABPs
for an f ∈ F〈X〉 to the ranks of certain communication matrices Mk(f). The generalization
is for noncommutative ABPs with help polynomials, and it gives a more complicated connec-
tion between the size of ABPs to the ranks of certain matrices. For usual noncommutative
ABPs considered in [9], Nisan’s lemma directly yields the lower bounds. In our case, this
generalization allows us to formulate the lower bound problem as a Remote Point Problem
for the rank metric.

We will assume that the explicit polynomial for which we will be proving lower bounds
is homogeneous. Thus, by Theorem 7 we can assume that each help polynomial in H =
{h1, h2, . . . , hm} is homogeneous and of degree at least 2.

We first fix some notation. Let d ∈ N be an even number. Let d(H) = maxh∈H d(h). Also,

8

for 2 ≤ i ≤ d(H), let Hi = {h ∈ H | d(h) = i}.

Suppose f ∈ F〈X〉 is homogeneous of even degree d ≥ 2, and k ∈ N such that 0 ≤ k ≤ d. We
define the nk × nd−k matrix Mk(f) (as in [9]): Each row is labeled by a distinct monomial
in Monk(X) and each column by a distinct monomial in Mond−k(X). Given monomials
m1 ∈ Monk(X) and m2 ∈ Mond−k(X), the (m1,m2)th entry of Mk(f) is the coefficient of the
monomial m1m2 in f and is denoted by Mk(f)(m1,m2).

Call M an (l,m)-matrix if M is an nl × nm matrix with entries from F, where the rows of
M are labeled by monomials in Monl(X) and columns by monomials in Monm(X). Suppose
0 ≤ l ≤ k and 0 ≤ m ≤ d − k. Let M1 be an (l,m)-matrix and M2 a (k − l, (d − k) −m)-
matrix. We define the (k, d−k)-matrix M = M1⊗kl,mM2 as follows: Suppose m1 ∈ Monk(X)
and m2 ∈ Mond−k(X) are monomials such that m1 = m11m12 with m11 ∈ Monk−l(X) and
m12 ∈ Monl(X) and m2 = m21m22 with m21 ∈ Monm(X) and m22 ∈ Mon(d−k)−m(X). Then
the (m1,m2)th entry of M is defined as

M(m1,m2) = M1(m12,m21) ·M2(m11,m22).

Let A be a homogeneous ABP with help polynomials H computing a polynomial f of degree
d. Let u, v and w be vertices in the ABP A, and γ1 ∈ Pu,v and γ2 ∈ Pv,w be paths. We
denote by γ1 ◦ γ2 ∈ Pu,w the concatenation of γ1 and γ2.

Since A is homogeneous, each of the polynomials fu,v for vertices u, v of A is homogeneous.
For 1 ≤ k ≤ d/2, define the k-cut of A, Ck ⊆ V (A) ∪ E(A), as follows: A vertex v ∈ V (A) is
in Ck iff d(fs,v) = k, and an edge e = (u, v) ∈ E(A) is in Ck iff d(fs,u) < k and d(fs,v) > k.
For each x ∈ Ck, let Px denote the set of s-t paths passing through x. Clearly, the sets
{Px | x ∈ Ck} partition Ps,t, the set of all paths from s to t. Thus, we have

f =
∑
x∈Ck

∑
γ∈Px

fγ

=
∑

v∈Ck∩V (A)

∑
γ∈Pv

fγ +
∑

e∈Ck∩E(A)

∑
γ∈Pe

fγ .

(2)

We now analyze Equation 2. For v ∈ Ck ∩ V (A), Pv = {γ1 ◦ γ2 | γ1 ∈ Ps,v, γ2 ∈ Pv,t}. Hence,
for any v ∈ Ck ∩ V (A): ∑

γ∈Pv

fγ =
∑

γ1∈Ps,v
γ2∈Pv,t

fγ1◦γ2 =
∑

γ1∈Ps,v
γ2∈Pv,t

fγ1 · fγ2

= fs,vfv,t.

(3)

Similarly, for any edge e = (u, v) ∈ Ck ∩ E(A), Pe = {γ1 ◦ (e) ◦ γ2 | γ1 ∈ Ps,u, γ2 ∈ Pv,t},

9

where (e) denotes the path containing just the edge e. Thus,∑
γ∈Pe

fγ =
∑

γ1∈Ps,u
γ2∈Pv,t

fγ1◦(e)◦γ2 (4)

=
∑

γ1∈Ps,v
γ2∈Pv,t

fγ1 · L′(e) · fγ2

= fs,uL
′(e)fv,t.

(5)

From Equations 2, 3, and 4, we get

f =
∑

v∈Ck∩V (A)

fs,vfv,t +

∑
e=(u,v)∈Ck∩E(A)

fs,uL
′(e)fv,t.

As A is homogeneous of degree d, each polynomial in the sums above is homogeneous of
degree d. Hence

Mk(f) =
∑

v∈Ck∩V (A)

Mk(fs,vfv,t) +

∑
e=(u,v)∈Ck∩E(A)

Mk(fs,uL′(e)fv,t).

(6)

For any v ∈ Ck ∩ V (A), fs,v and fv,t are homogeneous degree k and d − k polynomials
respectively. We denote by Mv the matrix Mk(fs,vfv,t). Notice that for m1 ∈ Monk(X) and
m2 ∈ Mond−k(X), the (m1,m2)th entry of the matrix Mv = Mk(fs,vfv,t) is fs,v(m1)fv,t(m2).
Thus, Mv is an outer product of two column vectors and is hence a matrix of rank at most
1. Therefore, the first summation in Equation 6 is a matrix of rank at most |Ck ∩ V (A)|.

For e = (u, v) ∈ Ck ∩ E(A), we know that d(fs,u) < k and d(fs,v) > k and thus, d(e) ≥ 2.
Hence, L′(e) =

∑
h∈Hd(e) βe,hh, for βe,h ∈ F. Therefore, expanding the second summation in

Equation 6, we get ∑
e=(u,v)∈
Ck∩E(A)

Mk(fs,uL′(e)fv,t) =

∑
e=(u,v)∈
Ck∩E(A)

∑
h∈Hd(e)

βe,hMk(fs,u · h · fv,t)

(7)

Consider a term of the form Mk(fs,uhfv,t). For the rest of the proof let d(w) denote d(fs,w),
for any vertex w of A. Given monomials m11 ∈ Mond(u)(X), m12 ∈ Monk−d(u)(X), m21 ∈

10

Mond(h)−(k−d(u))(X), and m22 ∈ Mond−d(v)(X), the entry Mk(fs,uhfv,t)(m11m12,m21m22) =
h(m12m21)fs,u(m11)fv,t(m22), since all polynomials involved are homogeneous. Hence, the
matrix Mk(fs,uhfv,t) is precisely Mk−d(u)(h)⊗kk−d(u),d(h)−(k−d(u)) Me, where Me(m11,m22) =
fs,u(m11)fv,t(m22), for m11 ∈ Mond(u)(X),m22 ∈ Mond−d(v)(X). Clearly, Me is a matrix of
rank at most 1, for any e ∈ Ck ∩E(A) and h ∈ Hd(e). Continuing with the above calculation,
we get ∑

e=(u,v)∈
Ck∩E(A)

Mk(fs,uL′(e)fv,t)

=
∑

e=(u,v)∈
Ck∩E(A)

∑
h∈Hd(e)

βe,hMle(h)⊗kle,me Me

=
∑
h∈H

d2(h)∑
i=d1(h)

Mi(h)⊗ki,d(h)−i ·
∑

e=(u,v)∈Ck:
d(e)=d(h)
d(u)=k−i

βe,hMe,

where d1(h) = max{1, d(h) − (d − k)}, d2(h) = min{d(h) − 1, k}, le = k − d(u), and me =
d(h)− (k − d(u)).

Plugging the above observations into Equation 6, we have

Mk(f) =

 ∑
v∈Ck∩V (A)

Mv

︸ ︷︷ ︸

M ′

+

∑
h∈H

d2(h)∑
i=d1(h)

Mi(h)⊗ki,d(h)−i

∑

e=(u,v)∈Ck:
d(e)=d(h)
d(u)=k−i

βe,hMe

︸ ︷︷ ︸

M ′i,h

Notice that M ′ above has rank at most |V (A)|, and M ′i,h has rank at most |E(A)| ≤ |V (A)|2
for any h ∈ H and d1(h) ≤ i ≤ d2(h). Hence, we have proved the following result:

Theorem 8. Let A be a homogeneous ABP of size S computing a (homogeneous) polynomial
f of degree d using the help polynomials H. Then, for any k ∈ {0, 1, . . . , d}, we can write
Mk(f) as:

Mk(f) = M ′+
∑
h∈H

d2(h)∑
i=d1(h)

Mi(h)⊗ki,d(h)−iM
′
i,h,

where d1(h) = max{1, d(h)− (d− k)} and d2(h) = min{d(h)− 1, k} such that rank(M ′) ≤ S
and rank(M ′i,h) ≤ S2 for each h ∈ H, and i ∈ {max{1, d(h)− (d− k)} . . . ,min{d(h)− 1, k}}.

11

5 Remote Point Problem for the rank metric

We now introduce an algorithmic problem that will help us prove lower bounds on the sizes
of ABPs computing explicit polynomials using a (given) set of help polynomials H. This
problem is actually the Remote Point Problem for matrices in the rank metric that we denote
RMP. This problem is analogous to the Remote Point Problem (RPP), which we discussed
in Section 2.

Given two matrices P,Q ∈ Fa×b, the Rank distance between P and Q is defined to be rank(P−
Q). It is known that this defines a metric, known as the rank metric on the set of all a × b
matrices over F.

The RMP problem. Given as input a set of N × N matrices P1, P2, . . . , Pk over a field
F and r ∈ N, the problem is to compute an N × N matrix P such that for any matrix
P ′ =

∑k
i=1 αiPi in the subspace generated by P1, P2, . . . , Pk, the rank distance between P

and P ′ is at least r.

In the problem N is taken as the input size, and k and r are usually functions of N . We say
that the RMP problem has an (N, k, r)-solution over F if there is a deterministic algorithm
that runs in time polynomial in N and computes a matrix P that is at rank distance at least
r from the subspace generated by the P1, P2, . . . , Pk.

Remark 9. How does a solution to RMP give us an explicit noncommutative polynomial f for
which we can show lower bounds for the sizes of noncommutative ABPs with help polynomials?
We now explain the connection.

Let A be a homogeneous ABP of size S computing a polynomial f of degree d. Let d1(h)
denote max{1, d(h)− d/2} and d2(h) denote min{d/2, d(h)− 1}. For a, b, p, q ∈ N such that
p ∈ [na] and q ∈ [nb], let Ep,qa,b be the na×nb elementary matrix with 1 as (p, q)th entry, and 0

elsewhere. The matrices
{
Ep,qa,b

∣∣∣ p ∈ [na], q ∈ [nb]
}

span all matrices in Fna×nb. By Theorem
8

Md/2(f) = M ′ +
∑
h∈H

d2(h)∑
i=d1(h)

Mi(h)⊗d/2i,d(h)−iM
′
i,h,

where rank(M ′) ≤ S. For h ∈ H and i ∈ {d1(h), . . . , d2(h)}, the matrix M ′i,h is an nd/2−i ×
nd/2−d(h)+i dimension matrix. We can write M ′i,h as a linear combination of the elementary
matrices in {Ep,qd/2−i,d/2−d(h)+i | p ∈ [nd/2−i], q ∈ [nd/2−d(h)+i]}.

Let A be the set of matrices of the form Mi(h) ⊗d/2i,d(h)−i E
p,q
d/2−i,d/2−d(h)+i, where h ∈ H,

i ∈ {d1(h), . . . , d2(h)}, and p ∈ [nd/2−i], q ∈ [nd/2−d(h)+i]. Each matrix in A is an nd/2×nd/2
matrix, with its rows and columns labeled by monomials in Mond/2(X). Every matrix of the

form Mi(h) ⊗d/2i,d(h)−i M
′
i,h is a linear combination of matrices in A. Crucially, note that A

depends only on the set of help polynomials and the parameter d, and it does not depend on
the ABP A.

By substitution for M ′i,h we obtain the following expression for Md/2(f) in terms of linear

12

combination of matrices in A.

Md/2(f) = M ′ +
∑
M∈A

αMM,

where αM ∈ F. Since, M ′ has rank at most S, it implies that Md/2(f) is at rank distance at
most S from the subspace generated by the matrices in A. Thus, if we can compute a matrix
M̂ in deterministic time polynomial in nd that has rank distance S = 2O(n) from the subspace
generated by A we would obtain an explicit homogeneous degree d polynomial f with lower
bound 2Ω(n) by setting M̂ = Md/2(f). This is the approach that we will take for proving lower
bounds.

We present the following simple algorithm, which suffices for our lower bound application.

Theorem 10. For any k, the RMP has an (N, k, bN/k + 1c)-solution over any field F such
that field operations in F and Gaussian elimination over F can be performed in polynomial
time.

Proof. We assume that k < N ; otherwise the problem is trivial. Let r denote bN/k + 1c.
Choose the first r column vectors in each of the matrices P1, P2, . . . , Pk. Let v1, v2, . . . , vrk ∈
FN be these vectors in some order. As rk ≤ N − r, using Gaussian elimination, we can
efficiently choose vrk+1, vrk+2, . . . , vr(k+1) ∈ FN with the following property: for every i ∈
[k + 1], vrk+i is linearly independent of v1, v2, . . . , vrk+(i−1). Let P be any matrix that has
vrk+1, vrk+2, . . . , vr(k+1) as its first r columns. It is not too difficult to see that given any
matrix P ′ in the subspace generated by P1, P2, . . . , Pk, the first r columns of P − P ′ remain
independent, i.e rank(P − P ′) ≥ r.

Remark 11. The Remote Point Problem is fascinating as an algorithmic question. In [3]
Alon et al provide a nontrivial algorithm for RPP in the Hamming metric (over F2). We use
similar methods to provide an improved solution to RMP for small prime fields. The result is
proved in Section 7. Unfortunately, the improvement in parameters over the trivial solution
above is not enough to translate into an appreciably better lower bound.

6 Lower bounds for ABPs with Help Polynomials

In this section, we prove some lower bounds for ABPs computing some explicit polynomials
using a set of given help polynomials H. Here, ‘explicit’ means that the coefficients of the
polynomial can be written down in time polynomial in the number of coefficients of the input
(the help polynomials H) and the output (the hard to compute polynomial).

Throughout this section, F will be a field over which field operations and Gaussian elimination
can be performed efficiently. Let the set of help polynomials be H = {h1, h2, . . . , hm}; let
d(H) = maxh∈H d(h).

We will first consider the case of homogeneous ABPs using the help polynomials H; H is,
in this case, assumed to be a set of homogeneous polynomials. We will then derive a lower
bound for general ABPs and a general set of help polynomials using Theorem 7.

13

6.1 The homogeneous case

Let H be a set of homogeneous polynomials in this section. Our aim is to produce, for any
degree d ∈ N, an explicit homogeneous polynomial Fd of degree d that cannot be computed
by homogeneous ABPs. To avoid some trivialities, we will assume that d is even.

We first observe that, to compute homogeneous polynomials of degree d, a homogeneous ABP
cannot meaningfully use help polynomials of degree greater than d:

Lemma 12. Let A be a homogeneous ABP using the help polynomials H to compute a
polynomial f of degree d. Then, there is a homogeneous ABP A′, of size at most the size of
A, such that A′ computes f and furthermore, for every edge e ∈ E(A′), d(e) ≤ d.

Proof. Simply take A and throw away all edges e ∈ E(A) such that d(e) > d; call the resulting
homogeneous ABP A′. Since A is homogeneous, no path from source to sink in A can contain
an edge e that was removed above. Hence, the polynomial computed remains the same.

Hence, to prove a lower bound for an explicit homogeneous polynomial of degree d, it suffices
to prove a lower bound on the sizes of ABPs computing this polynomial using the help
polynomials H≤d = {h ∈ H | d(h) ≤ d}. As above, let d(H≤d) = maxh∈H≤d d(h).

We begin with a simple explicit lower bound. Call a homogeneous polynomial F ∈ F〈X〉 of
degree d d-full-rank if rank(Md/2(F)) = nd/2. Full-rank polynomials are easily constructed;
here is a simple example of one: F (X) =

∑
m∈Mond/2(X)m ·m. It follows easily from Nisan’s

result [9] that, without any help polynomials, homogeneous ABPs computing any d-full-rank
polynomial are of size at least nd/2.

Theorem 13. Assume that d(H≤d) ≤ d(1− ε), for a fixed constant ε > 0 and let F ∈ F〈X〉
be a d-full-rank polynomial. Then, any homogeneous ABP A computing F has size at least(
n
εd
4 /
√

2md
)

.

Proof. Consider a homogeneous ABP A computing F using the help polynomials H. By the
above lemma, we may assume that A uses only the polynomials H≤d. Let S denote the size of
A. For any h ∈ H≤d, let d1(h) denote max{1, d(h)−d/2} and d2(h) denote min{d/2, d(h)−1}.
By Theorem 8, we know that

Md/2(F) = M ′ +
∑

h∈H≤d

d2(h)∑
i=d1(h)

Mi(h)⊗d/2i,d(h)−iM
′
i,h

where rank(M ′) ≤ S and rank(M ′i,h) ≤ S2, for each h ∈ H≤d and i ∈ {d1(h), . . . , d2(h)}. For
any h and any i such that 0 ≤ i ≤ d(h), rank(Mi(h)) ≤ min{ni, nd(h)−i}, which is at most
nd(h)/2 ≤ nd(H≤d)/2. By our assumption on d(H≤d), we see that rank(Mi(h)) ≤ n(1−ε)d/2.
By the definition of ⊗d/2i,d(h)−i, this implies that rank(Mi(h) ⊗d/2i,d(h)−i M

′
i,h) ≤ rank(Mi(h)) ·

14

rank(M ′i,h), which is at most n(1−ε)d/2S2. Thus, we see that

rank(Md/2(F)) ≤ S +
∑

h∈H≤d

d2(h)∑
i=d1(h)

n(1−ε)d/2S2

≤ S + |H≤d|dn(1−ε)d/2S2

≤ 2mdS2n(1−ε)d/2

As F is d-full-rank, this implies that

2mdS2n(1−ε)d/2 ≥ nd/2

∴ S ≥ n
εd
4

√
2md

The above theorem tells us that as long as the help polynomials are not too many in number
(m = no(d) will do), and of degree at most (1 − ε)d, then any full rank polynomial remains
hard to compute for ABPs with these help polynomials.

We now consider the case when d(H≤d) can be as large as d. In this case, we are unable to
come up with an unconditional explicit lower bound. A strong solution to the RMP introduced
in Section 5 would give us such a bound. However, with the suboptimal solution of Theorem
10, we are able to come up with explicit lower bounds in a special case. Let δ(H) denote
minh∈H d(h). By assuming some lower bounds on δ(H), we are able to compute an explicit
hard function.

Theorem 14. Assume δ(H) ≥ (1
2 + ε)d, for a fixed constant ε > 0. Then, there exists an

explicit homogeneous polynomial F ∈ F〈X〉 of degree d such that any homogeneous ABP A

computing F using the help polynomials H has size at least bn
εd
2 /2mdc.

Proof. Let A be a homogeneous ABP A of size S computing a polynomial f of degree d.
Let d1(h) denote max{1, d(h) − d/2} and d2(h) denote min{d/2, d(h) − 1}. As explained in
Remark 9, let Ep,qa,b denote the na × nb-sized elementary matrix with 1 in the (p, q)th entry

and 0s elsewhere. The matrices
{
Ep,qa,b

∣∣∣ p ∈ [na], q ∈ [nb]
}

span all na × nb matrices.

By Theorem 8

Md/2(f) = M ′ +
∑

h∈H≤d

d2(h)∑
i=d1(h)

Mi(h)⊗d/2i,d(h)−iM
′
i,h

where rank(M ′) ≤ S. As explained in Remark 9, M ′i,h is an nd/2−i × nd/2−d(h)+i dimension
matrix and is in the span of {Ep,qd/2−i,d/2−d(h)+i}, where p ∈ [nd/2−i], q ∈ [nd/2−d(h)+i].

Let A denote the set of nd/2 × nd/2 matrices of the form Mi(h) ⊗d/2i,d(h)−i E
p,q
d/2−i,d/2−d(h)+i,

where h ∈ H≤d, i ∈ {d1(h), . . . , d2(h)}, and p ∈ [nd/2−i], q ∈ [nd/2−d(h)+i]. Then we obtain

Md/2(f) = M ′ +
∑
M∈A

αMM, (8)

15

where αM ∈ F. Since M ′ is a matrix of rank at most S, this implies that M is at rank distance
at most S from the subspace generated by the matrices in A.

Let k = |A|. For each h ∈ H and i ∈ {d1(h), . . . , d2(h)}, we have added precisely nd−d(h)

many matrices of the form Mi(h)⊗d/2i,d(h)−i E, where E is an elementary matrix of dimension

nd/2−i × nd/2−d(h)+i. Since d(h) ≥ d(1
2 + ε) for each h ∈ H≤d ⊆ H, this implies that k ≤

mdn
d
2

(1−ε). Let N denote nd/2; A consists of k ≤ mdN1−ε N ×N matrices. By Theorem 10,
we can, in time poly(N), come up with an N ×N matrix M0 that is at rank distance at least
b N
k+1c from the subspace generated by the matrices in A. We label the rows and columns of
M0 by monomials from Mond/2(X), in the same way as the matrices in A are labeled. Using
M0, we define the homogeneous degree d polynomial F ∈ F〈X〉 to be the unique polynomial
such that Md/2(F) = M0; that is, given any monomial m ∈ Mond(X) such that m = m1 ·m2

for m1,m2 ∈ Mond/2(X), F (m) is defined to be M0(m1,m2).

Let A be a homogeneous ABP of size S computing F using the help polynomials H. Then,
by Equation 8 we have

Md/2(F) = M ′ +
∑
M∈A

αMM

where αM ∈ F, and rank(M ′) ≤ S. Since Md/2(F) is M0, which is at rank distance at least
bN/(k+1)c from the subspace generate by A, we see that S ≥ rank(M ′) ≥ bN/(k+1)c. This
implies that,

S ≥
⌊

N

mdN1−ε + 1

⌋
≥
⌊
N ε

2md

⌋
=

⌊
n
εd
2

2md

⌋

Remark 15. The rather unnatural condition on δ(H) above can be removed with better solu-
tions to the RMP problem. Specifically, one can show along the above lines that if the RMP
has an (N, k,N/k1/2−ε)-solution for k = N2δ, then for any H, there is an explicit polynomial
that cannot be computed by any ABP A using H of size at most nΩ(εd)/(md)O(1). Here, ε and
δ are arbitrary constants in (0, 1).

6.2 The inhomogeneous case

Let H̃ denote the set of all homogeneous parts of degree at least 2 obtained from polynomials
in H, i.e H̃ =

{
h

(i)
j

∣∣∣ j ∈ [m], 2 ≤ i ≤ d(hj)
}

. For 2 ≤ i ≤ d(H), let H̃i =
{
h ∈ H̃

∣∣∣ d(h) = i
}

.

Note that H̃ =
⋃

2≤i≤d(H) H̃i.

As in the previous subsection, we construct explicit hard polynomials for even d ∈ N. Let
H̃≤d denote

⋃
2≤i≤d H̃i if d ≤ d(H), and H̃ otherwise.

Corollary 16. Assume d(H̃≤d) ≤ d(1 − ε), for a fixed constant ε > 0. Then, there is an
explicit homogeneous polynomial F of degree d such that any ABP that computes F using the

help polynomials H has size at least n
εd
4√

2md(d+1)
.

16

Proof. Let F be a d-full-rank polynomial, as defined in Section 6.1. Consider any ABP A
computing F using H. By Theorem 7, there exists a homogeneous ABP Ã computing F using
H̃, where the size of Ã is at most S(d+1). By Lemma 12, we may assume that Ã uses only the
help polynomials in H̃≤d. Since |H̃≤d| ≤ md, Theorem 13 tells us that S(d+1) ≥ n

εd
4 /
√

2md2,
which implies the result.

Corollary 17. Let δ(H̃) = minh∈H̃ d(h), and assume δ(H̃) ≥ (1
2 + ε)d for a fixed constant

ε > 0. Then, there exists an explicit homogeneous polynomial F ∈ F〈X〉 of degree d such that

any ABP A computing F using the help polynomials H has size at least 1
d+1

⌊
n
εd
2

2md2

⌋
.

Proof. By Theorem 7, given any ABP A of size S computing a homogeneous polynomial of
degree d, there is a homogeneous ABP Ã of size at most S(d + 1) that computes the same
polynomial as A using the help polynomials H̃. By Lemma 12, we may assume that Ã only
uses the help polynomials H̃≤d. Now, let F be the explicit polynomial from Theorem 14, with
H̃≤d taking on the role of H in the statement of the theorem; since |H̃≤d| ≤ md, Theorem 14
tells us that S(d+ 1) ≥ bn

εd
2 /2md2c, which implies the result.

7 A better solution to the RMP

Following the approach of Alon et al [3], who provide a nontrivial algorithm for RPP in the
Hamming metric (over F2), we improve on the parameters of Theorem 10 for the RMP over
small prime fields. It is interesting to note that in our solution we get similar parameters as
[3]. As mentioned earlier, the improvement in parameters over the simple solution of Theorem
10 is too little to give us a much better lower bound.

Throughout this section, F will denote a constant-sized field. The main result is stated below.

Theorem 18. For any fixed constant c > 0, the RMP has an (N, `N, r)-solution over any
constant-sized field F and for any `, r > 0 such that ` · r < c logN .

In proving the above theorem, we will follow the algorithm of [3]. We need the following
lemma, implicit in [3]:

Lemma 19. Fix any field F such that Gaussian elimination over F can be performed in
polynomial time. There is a poly(M,m, |F|) time algorithm for the following problem: Given
subspaces V1, V2, . . . , Vm of FM such that

∑m
i=1 |Vi| < |F|M , find a point u ∈ FM such that

u /∈
⋃
i Vi.

Proof. The algorithm will fix the coordinates of u one by one. Assuming that the values
u1, u2, . . . , ui have been fixed for 0 ≤ i ≤ n, let Ui =

{
w ∈ FM

∣∣ wj = uj for 1 ≤ j ≤ i
}

. The
algorithm will fix the coordinates of u, ensuring that the following is true: For each i such
that 1 ≤ i ≤M ,

∑m
j=1 |Vj∩Ui| < |Ui| = |F|M−i. Note that, since U0 is just FM , the inequality

is satisfied at i = 0 by the assumption on the size of the subspaces V1, V2, . . . , Vm; also note
that the inequality is satisfied at i = M if and only if u /∈

⋃
i Vi.

17

Assuming u1, u2, . . . , ui have been fixed for i < M , we define, for every α ∈ F, the set Ui,α =
{w ∈ Ui | wi+1 = α}. Clearly, the sets {Ui,α}α partition Ui. Hence, we see that

∑m
j=1 |Vj ∩

Ui| =
∑

α∈F
∑m

j=1 |Vj ∩Ui,α| and thus, there is some α ∈ F such that
∑m

j=1 |Vj ∩Ui,α| <
|Ui|
|F| =

|FM−i−1|.

Here is the algorithm:

• While u1, u2, . . . , ui have been determined for i < M , do the following:

– As mentioned above, the following invariant is maintained:
∑k

j=1 |Vj∩Ui| < |Ui| =
|F|M−i.

– Find α ∈ F such that
∑k

j=1 |Vj ∩ Ui,α| <
|Ui|
|F| = |FM−i−1|. By the reasoning in the

paragraph above, such an α exists and surely, it can be found in poly(M,k, |F|)
time using Gaussian elimination.

– Set ui+1 to α.

The correctness of the algorithm is clear from the reasoning above.

We now briefly describe the improved algorithm for the RMP. Let P1, P2, . . . , Pk be the input
matrices. We denote by L the subspace of FN×N spanned by these matrices. Also, let Br
denote the matrices of rank at most r. The idea of the algorithm is to “cover” the set L+Br
by a union of subspaces V1, V2, . . . , Vm such that

∑
i |Vi| < |F|N

2
. We then use the algorithm

from Lemma 19 to find a matrix P that is not in
⋃
i Vi; by the way we have picked the

subspaces, it is clear that M will then be at rank distance at least r from the subspace L.

What follows is an important definition.

Definition 20. Fix positive integers (d1, d2). Given T , a collection of subspaces of FN , we
say that T is (d1, d2)-good if:

• dim(U) ≤ N − d1 for each U ∈ T .

• Each A ⊆ FN of size d2 is contained in some U ∈ T .

The following claim illustrates the importance of (d1, d2)-good subspaces of FN .

Claim 21. There is an algorithm that, when given as input T , a (d1, d2)-good collection of
subspaces of FN , produces a collection S of subspaces of FN×N of cardinality at most |T |, with
the following properties:

• dim(V) ≤ N2 − d1N for each V ∈ S.

• Bd2 ⊆
⋃
V ∈S V

Moreover, the algorithm runs in time poly(|T |, N).

18

Proof. For each U ∈ T , let V (U) denote the subspace of FN×N generated by all vectors of
the form uvT, where u ∈ U and v ∈ FN . The collection S is the collection of all such vector
spaces V (U), for U ∈ T . Clearly, the cardinality of S is bounded by |T |.

Note that a basis for V (U) can be constructed by picking only uvT where u and v range over
bases for U and FN respectively. This shows that dim(V (U)) ≤ N2 − d1N and that V (U)
can be constructed efficiently.

Finally, given any matrix Q of rank at most d2, it can be written as a sum of matrices
Q1 +Q2 + . . .+Qd2 , where each Qi is a matrix of rank at most 1 and hence can be written
as uivT

i , where ui, vi ∈ FN . Let A = {u1, u2, . . . , ud2}. Since T is (d1, d2)-good, there is some
U ∈ T such that A ⊆ U . This implies that uivT

i ∈ V (U) for each i ∈ [d2]. As V (U) is a
subspace, it must contain their sum Q. This concludes the proof.

It is easily seen that a random collection of subspaces of FN of appropriate dimension is
(d1, d2)-good for the values of d1 and d2 that are of interest to us. We now assert the existence
of an explicit collection of subspaces with this property.

Claim 22. Fix any constant c ≥ 1. For any `, r ∈ N such that ` · r < c logN , there is an
algorithm that runs in time NO(c) and produces an (`, r)-good collection of subspaces of FN .

We prove the above claim in the next section. Assuming the claim, we can prove Theorem
18.

Proof of Theorem 18. We will describe an algorithm for the problem. Without loss of gener-
ality, assume that c ≥ 1. Let L be the input subspace of dimension at most `N . We would
like to find a matrix P that is at rank distance at least r from L.

We first use the algorithm referred to in Claim 22 to construct an (` + 1, r)-good collection
of subspaces T of FN in time NO(c). Clearly, |T | = NO(c). Then, we use the algorithm of
Claim 21 to construct a collection of subspaces S of FN×N of size NO(c) with the following
properties:

• dim(V) ≤ N2 − (`+ 1)N for each V ∈ S.

• Br ⊆
⋃
V ∈S V

Consider the collection of subspaces S ′ = {L + V | V ∈ S}. Clearly, L + Br ⊆
⋃
V ∈S′ V .

Moreover, the dimension of each subspace in S ′ is at most `N + N2 − (` + 1)N ≤ N2 − N .
Hence, each subspace in S ′ is of cardinality at most |F|N2−N . Since |S ′| = NO(c), for large
enough N , we have

∑
V ∈S′ |V | < |F|N

2
. Hence, using the algorithm described in Lemma 19,

we can, in time NO(c), find a matrix P /∈
⋃
V ∈S′ V . By construction, this matrix P is at rank

distance greater than r from the subspace L. The entire algorithm runs in time NO(c).

19

7.1 Proof of Claim 22

We give two different constructions: one for the case that ` ≥ r and the other for the case
that ` ≤ r.

The following notation will be useful. For each i ∈ [N], let ei ∈ FN denote the vector that
has a 1 in coordinate i and is 0 elsewhere. For any vector x ∈ FN and S ⊆ [N], we denote by
x|S the vector in F|S| that is the projection of x to the coordinates indexed by S.

7.1.1 Case 1: ` ≥ r

For each A ⊆ F2` of cardinality r, let VA be the subspace generated by
{
x ∈ FN

∣∣ x|[2`] ∈ A}.
It is easily seen that dim(VA) ≤ N − 2` + r ≤ N − `. Moreover, given any A1 ⊆ FN of size
r, A1 ⊆ VA where A is any subset of F2` of size r containing

{
x|[2`]

∣∣ x ∈ A1

}
. Hence, the

collection T =
{
VA
∣∣A ⊆ F2`, |A| = r

}
is an (`, r)-good collection of subspaces.

The cardinality of T is
(|F|2`

r

)
≤ |F|2`r = NO(c). Surely, T can be constructed in time NO(c).

7.1.2 Case 2: ` ≤ r

Given a set A ⊆ Fm for some m ∈ N, we denote by rank(A) the size of any maximal set of
linearly independent vectors from A; we denote by corank(A) the value (|A| − rank(A)).

Fix a set A ⊆ Fm for some m ∈ N. Given d, d′ ∈ N, we say that A is d-wise corank d′ if each
B ⊆ A such that |B| = d satisfies corank(B) ≤ d′; A is said to be d-wise linearly independent
if it is d-wise corank 0. Sets that are d-wise linearly independent have been studied before: see
[1, Proposition 6.5], where matrices whose columns form a d-wise linearly independent set of
vectors are used to construct d-wise independent sample spaces. The following claim follows
from this result and from the lower bound on the size of any d-wise independent sample space
proved in [1, Proposition 6.4].

Claim 23 (implicit in [1]). Consider a set A ⊆ Fm of cardinality t. If A is d-wise linearly
independent with d ≤ 2

√
t, then m ≥ d log|F| t

5 , for large enough d, t.

Using the above claim, we prove the following lower bound on the size of sets that are d-wise
corank d′ for suitable d, d′.

Claim 24. Consider a set A ⊆ Fr of cardinality t. There is an absolute constant c0 such that
the following holds. Let A be d-wise corank d′ for positive integers d, d′ with c0d

′ ≤ d ≤ 2
√
t.

Then, r ≥ d log|F| t

12d′ if t, d, d′ are large enough.

Proof. Denote by d′′ the value bd/2d′c. We construct a sequence of sets A0, A1, . . . as follows:
A0 is the set A; for any i ≥ 0, if Ai has been constructed and is d′′-wise linearly independent,
we stop; otherwise, there is a B ⊆ Ai of cardinality d′′ that is not linearly independent – in

20

this case, we set Ai+1 = Ai \B; we stop at i = d′. It is easy to see that the cardinality ti of Ai
is t− id′′. It can also be checked that if Ai is di-wise corank d′i, then Ai+1, if constructed, is
(di−d′′)-wise corank d′i−1; it therefore follows that the set Si, if constructed, is (d− id′′)-wise
corank d′ − i, for any i ≥ 0 – in particular, Sd′ is d/2-wise linearly independent.

We base our analysis on when the above process stops. Let i0 be the largest i so that Ai is
constructed. Its size ti0 is at least t− d′d′′ ≥ t− d/2 ≥ t/2 for large enough t. If i0 = d′, then
Ai0 is a set of size at least t/2 that is d/2-wise linearly independent – by Claim 23, we get
r ≥ d log|F| t

12 for large enough d, t. Otherwise, i0 < d′ and we must have Ai0 is d′′-wise linearly

independent – in this case, by Claim 23, we get r ≥ d′′ log|F| t

5 ≥ d log|F| t

12d′ if c0 is large enough.
Thus, in either case, our claim holds.

Now, we apply the above lemma with t = |F|d
20
c0

√
c logNe and d = c0d

√
c logNe. We obtain

the following corollary:

Corollary 25. Let t, d be as defined above. For large enough N , given any A ⊆ Fr of size t,
there is a subset B of A of cardinality d such that corank(B) ≥ `.

Proof. Assume that A is d-wise corank d′ for some d′. We will show that d′ ≥ `. For large
enough N , by Claim 24, we have d′ ≥ min{ dc0 ,

d log|F| t

12r }. It remains to be shown that this
quantity is at least `.

Note that, since ` ≤ r, `2 ≤ `r ≤ c logN . Hence, ` ≤
√
c logN . Thus, by the choice of d, we

see that d/c0 ≥ `. Moreover,
d log|F| t

12r
≥ 20c logN

12r
> `

Hence, we see that d′ ≥ `.

We now define the (`, r)-good collection of subspaces. For each S ⊆ [t] of cardi-
nality d, and each A ⊆ Fd of size d − `, let VS,A be the subspace generated by{
x ∈ FN

∣∣ x|S = u for some u ∈ A
}

. It can be seen that dim(VS,A) ≤ N − d+ d− ` = N − `
for each S,A.

Given any A1 ⊆ FN of cardinality r, let P ∈ Fr×N be the matrix the rows of which are the
elements of A1. Let A2 denote the set of the first t columns of P . By Corollary 25, there is
a B ⊆ A2 of size d such that corank(B) ≥ `. Let S ⊆ [t] index the columns of B in P . It
can be seen that A1 ⊆ VS,A′ for any A′ of size d− ` containing a set that spans {v|S | v ∈ A1}
(such an A′ exists since corank(B) ≥ `).

Thus, we can take for our collection T of (`, r)-good subspaces the collection of all VS,A,
where S ⊆ [t] with |S| = d, and A ⊆ Fd of size d − `. The size of T is bounded by(
t
d

)(|F|d
d−`
)
≤ td|F|d2 = NO(c), by our choice of d and t. Clearly, T can be constructed in time

NO(c).

Acknowledgments. We are grateful to Jaikumar Radhakrishnan for discussions. We also
thank the anonymous referee for useful comments and suggestions.

21

References

[1] Noga Alon, László Babai, Alon Itai: “A Fast and Simple Randomized Parallel Algorithm
for the Maximal Independent Set Problem”, Journal of Algorithms 7(4): 567-583 (1986).

[2] Noga Alon, Ravi B. Boppana: “The monotone circuit complexity of Boolean functions”,
Combinatorica 7(1): 1-22 (1987).

[3] Noga Alon, Rina Panigrahy, Sergey Yekhanin: “Deterministic Approximation Algorithms
for the Nearest Codeword Problem”, Electronic Colloquium on Computational Complex-
ity (ECCC) 15(065): (2008).

[4] Richard Beigel, Nick Reingold, Daniel A. Spielman: “PP Is Closed under Intersection”,
J. Comput. Syst. Sci. 50(2): 191-202 (1995).

[5] Jin-yi Cai: “Lower Bounds for Constant-Depth Circuits in the Presence of Help Bits”,
Inf. Process. Lett. 36(2): 79-83 (1990).

[6] Merrick L. Furst, James B. Saxe, Michael Sipser: “Parity, Circuits, and the Polynomial-
Time Hierarchy”, Mathematical Systems Theory 17(1): 13-27 (1984).

[7] Johan H̊astad: “Almost Optimal Lower Bounds for Small Depth Circuits”, in Randomness
and Computation, Advances in Computing Reasearch, Vol 5, ed. S. Micali, 1989, JAI Press
Inc, pp 143-170.

[8] Mark Jerrum, Marc Snir: “Some Exact Complexity Results for Straight-Line Computa-
tions over Semirings”, J. ACM 29(3): 874-897 (1982).

[9] Noam Nisan: “Lower Bounds for Non-Commutative Computation” (Extended Abstract),
STOC 1991: 410-418.

[10] Ran Raz: “Separation of Multilinear Circuit and Formula Size”. Theory of Computing
2(1): 121-135 (2006).

[11] Alexander Razborov: “Lower bounds on the monotone complexity of some Boolean
functions”, Soviet Math. Doklady, 31:354-357, 1985.

[12] Roman Smolensky: “Algebraic Methods in the Theory of Lower Bounds for Boolean
Circuit Complexity”, STOC 1987: 77-82.

[13] Jun Tarui: “Probablistic Polynomials, AC0 Functions, and the Polynomial-Time Hier-
archy”, Theor. Comput. Sci. 113(1): 167-183 (1993).

[14] Ran Raz, Amir Yehudayoff: “Multilinear Formulas, Maximal-Partition Discrepancy and
Mixed-Sources Extractors”, FOCS 2008: 273-282.

22

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

