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Abstract

Which computational intractability assumptions are inherent to cryptography? We present
a broad framework to pose and investigate this question.

We first aim to understand the “cryptographic complexity” of various tasks, independent of
any computational assumptions. In our framework the cryptographic tasks are modeled as multi-
party computation functionalities. We consider a universally composable secure protocol for one
task given access to another task as the most natural complexity reduction between the two tasks.
Some of these cryptographic complexity reductions are unconditional, others are unconditionally
impossible, but the vast majority appear to depend on computational assumptions; it is this
relationship with computational assumptions that we study.

In our detailed investigation of large classes of 2-party functionalities, we find that every
reduction we are able to classify turns out to be unconditionally true or false, or else equivalent
to the existence of one-way functions (OWF) or of semi-honest (equivalently, standalone-secure)
oblivious transfer protocols (sh-OT). This leads us to conjecture that there are only a small finite
number of distinct computational assumptions that are inherent among the infinite number of
different cryptographic reductions in our framework.

If indeed only a few computational intractability assumptions manifest in this framework, we
propose that they are of an extraordinarily fundamental nature, since the framework contains a
large variety of cryptographic tasks, and was formulated without regard to any of the prevalent
computational intractability assumptions.
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1 Introduction

Are the intractability assumptions employed in modern cryptography a historical accident? His-
torically, computational intractability assumptions are often developed along with cryptographic
schemes to give security assurances to those schemes. To better understand the role of intractability
in cryptography, and to place the theory in a firmer footing, specific intractability assumptions are
abstracted into “general assumptions” that attempt to capture fundamental cryptographic proper-
ties. A few of these assumptions — most notably the existence of one-way functions — have turned
out to be truly fundamental, in that they are necessary and sufficient for the possibility of many
basic cryptographic tasks [il89].

Our work continues along this line, trying to identify intractability assumptions that are intrinsic
to cryptographic tasks. But rather than considering only a few familiar tasks, we propose a frame-
work that incorporates all the different multi-party computation functionalities, which embody
various ways in which controlled access to information manifests.1 Our work has two motivations:
first, to understand the cryptographic content of the various functionalities themselves, and second,
to understand — and potentially discover — fundamental intractability assumptions intrinsic to
cryptographic tasks.

Complexity of Multiparty Computation Functionalities. The seminal work of Goldreich,
Micali and Wigderson [gmw87] on secure multi-party computation (MPC) introduced an ideal-
ization of cryptographic tasks in terms of a trusted party, or an ideal functionality. An ideal
functionality is an arbitrary program (possibly stateful, possibly randomized), to be executed pri-
vately by an external entity that can be trusted by all parties. This provides an extremely versatile
language for capturing a great variety of kinds of controlled access to information, by simply defin-
ing various behaviors for the trusted entity — i.e., various functionalities. Further, this idealization
of the cryptographic task is orthogonal to computational complexity considerations (instead, the
security definition simply demands that a protocol be indistinguishable from this idealization). The
later, more refined treatments, like Canetti’s Universal Composition framework [can01] follow the
same pattern.

To study the cryptographic content of these tasks, then, is to study the complexity of these
ideal functionalities. Here, it is not the computational complexity of the ideal functionalities (time
or space required by the ideal functionality) that is of interest. Rather, we will be interested in
various qualitatively different types of functionalities. To develop a formal notion of complexity, we
apply reductions that capture the relevant cryptographic aspects. The natural notion of reduction
among functionalities (without involving any computational complexity aspects) is the following.
A functionality F is said to reduce to G (denoted by F v G), if there exists a protocol that
securely realizes F using access to G. Here, the stricter the definition of secure realization used,
the tighter the notion of reduction will be.2 We shall use the strong security definition of the
Universal Composition framework [can01], against active (malicious) adversaries, but in a static
(non-adaptive) corruption model. We write F vppt G to specify that security need to hold only in

1Indeed, cryptography could be defined as the study of controlling access to information: here access control
should be understood as involving a possibly complex combination of allowing only certain information to be learned,
and allowing information to be influenced only in certain ways.

2Studying the landscape of functionalities using a strict reduction can be compared to zooming into a map to
distinguish between different elements in the map; but if one zooms in too close – uses too strict a reduction – then
virtually each element appears isolated.
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a probabilistic polynomial time setting.

Seeking New Worlds in Impagliazzo’s Multiverse. Impagliazzo [imp95] considered various
complexity scenarios in terms of intractability and the cryptographic landscape in each of these
worlds. In our current work, we study the cryptographic landscape given by the relative complexities
of multiparty functionalities as described above.

The first of Impagliazzo’s worlds (called Algorithmica) corresponds to the scenario P = NP. For
our purposes we shall consider a slightly different formulation: we define a world called Informatica
where P = PSPACE.3 Prior work [mpr09b] has drawn a fairly detailed map of the landscape
of 2-party functionalities in Informatica, delineating various complexity classes and showing that
many functionalities do not unconditionally reduce to others. Further [mpr09a] shows that mov-
ing on to Minicrypt, a few of the relative distinctions among functionalities disappear, and more
importantly, in Cryptomania (for our purposes, a world in which semi-honest Oblivious Transfer
protocols exist) all the distinctions among functionalities disappear, except for ones that must
remain unconditionally [ckl03, pr08a].

But these worlds in Impagliazzo’s multiverse may not be the only cryptographically interesting
ones. In particular, one can imagine an intermediate world “strictly” between Minicrypt and
Cryptomania, where the map of complexity classes of functionalities may look different from that
in either world. To discover or rule out such worlds, we need a formal framework for the space of
relevant computational assumptions.

A Framework for Assumptions. For any pair of (finite memory) functionalities F and G, we
consider the existence of a reduction F vppt G as a complexity assumption itself. Importantly, this
convention defines a (potentially infinite) space of assumptions, independent of specific construc-
tions, but directly based on cryptographic goals or functionalities. By systematically exploring this
space of assumptions we hope to uncover not only new interesting assumptions that could be “black-
box separated” from currently used ones, but also identify interesting cryptographic properties that
give rise to them.

For some pairs of functionalities (F ,G), the “assumption” F vppt G is unconditionally true, with
the security of the reduction holding even in the statistical setting (denoted by F vstat G). Further,
some of these assumptions are unconditionally false, no matter what computational assumption is
made, due to the strong demands of the UC security definition; the pairs (F ,G) for which this
happens have an explicit characterization [ckl03, pr08a]. But most of the assumptions of the
form F vppt G are unresolved, and these are the subject of our study.

In initiating this exploration, we pose several questions.

Maximal and Minimal Assumptions. The first question is whether there is a “maximal” or
“minimal” one among these (unresolved) assumptions. That is, among these assumptions, is there:

• (a maximal assumption) an assumption F∗ vppt G∗ such that it implies F vppt G for all such
pairs (F ,G)?

• (a minimal assumption) an assumption F̂ vppt Ĝ such that (F vppt G ∧ F 6vstat G) =⇒
F̂ vppt Ĝ?

3In cryptographic language, this is a world where the adversaries may be considered to have unbounded compu-
tational resources. In this world, the only kind of security possible for efficient protocols is information theoretic
security. Hence the name Informatica.
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The first of these questions was recently answered in [mpr09a], where it was shown that indeed
such pairs do exist. Interestingly, the maximal assumptions in this framework are exactly equiv-
alent to the familiar assumption that there exists a stand-alone secure oblivious-transfer protocol
(sh-OT assumption). In other words, the sh-OT assumption is a maximal assumption in our frame-
work; there are no additional cryptographic worlds beyond Cryptomania in our framework.

However, the question of the minimal assumption remains open. We conjecture that a minimal
assumption exists and that it in fact corresponds the existence of one-way functions. Some of the
results below represent support for this conjecture. In particular we show that for several interesting
pairs (F ,G), F vppt G is indeed exactly equivalent to the existence of one-way functions (OWF).

Intermediate Assumptions. Assuming OWF assumption is indeed the minimal assumption of
the form F vppt G, one can ask if there are “intermediate” assumptions between OWF assumption
and sh-OT assumption. Here, by an assumption being intermediate, we mean that there exists a
black-box separation in the sense of [ir89, gkm+00], that separates it from both OWF assumption
and sh-OT assumption.

Indeed, [gkm+00] shows that the existence of a secret communication protocol is an interme-
diate assumption. It is easy to see that their result extends to the UC secure reduction of a secret
communication functionality to a public communication functionality. In our framework we find it
convenient to work with functionalities which do not communicate with the adversary when all the
parties are honest (called regular functionalities in [pr08a]). So this particular reduction appears
only when we consider multi-party functionalities with three or more parties. For the case of 2-party
(finite-memory, regular) functionalities, we conjecture that all assumptions of the form F vppt G
are in fact equivalent to either OWF assumption or sh-OT assumption (or are unconditionally true
or false). This conjecture is supported by all the results derived in this work.

Moving to 3-party functionalities already provides us one such intermediate assumption. But
our understanding of multi-party functionalities with 3 or more parties is very limited. (Note that
our map in Figure 1 is only for 2-party functionalities.) We consider it highly likely that several
other intermediate assumptions can be discovered in our framework among functionalities with
more than two parties.

Our Results. Our main results can be interpreted as evidence that the worlds Minicrypt and
Cryptomania (the latter appropriately interpreted) are indeed very special. We classify a substantial
number of reductions F v G (for 2-party functionalities F and G) and find that, surprisingly, every
one that we are able to classify is exactly equivalent to either the existence of one-way functions,
or the existence of a semi-honest protocol for oblivious transfer. Put another way, if we defined
worlds in Impagliazzo’s multiverse corresponding to the various complexity classes among 2-party
functionalities changing their boundaries, then we seem to obtain only two worlds (in addition to
Informatica), namely Minicrypt and Cryptomania.

The new technical results here are of the form that various reductions of the form F vppt G
imply either sh-OT assumption or OWF assumption. This is complemented by our recent results
[mpr09a] showing that either sh-OT assumption or OWF assumption imply F vppt G for all
functionalities F and G in our framework. Together, these results establish the equivalence between
assumptions of the form F vppt G and either sh-OT assumption or OWF assumption.

Our results can be summarized as follows, and should be considered as support for our main
conjectures:

3



• Simultaneity can be extended only in Cryptomania. Some 2-party functionalities, like
evaluating a boolean xor, provide no information hiding, but only enforce simultaneity or input
independence.4 Such a functionality can be used to securely realize another functionality with
“less” simultaneity and no information hiding even in Informatica, using a simple protocol. But we
show that such a functionality can be used to securely realize another functionality with “more”
simultaneity, or another functionality that hides information, only in Cryptomania (i.e., if and only
if there exists a semi-honest OT protocol). As a concrete example, it is possible to securely evaluate
a boolean xor on strings of two bits given ideal access to a single-bit xor functionality if and only
if there is a semi-honest OT protocol (or equivalently, if and only if a single-bit xor functionality
can be used to realize every other functionality). Here, the “if” clauses follow from [mpr09a].
• Other reductions possible in Minicrypt. Many interesting functionalities can be securely

realized against passive adversaries in Informatica. We call them “passive trivial” functionalities.
Among such functionalities, those which perform some information hiding (thus excluding the func-
tionalities like xor considered above) can be used to realize any other passive trivial functionality
in Minicrypt. (This follows from results in [mpr09a].) We show that many of those reductions are
in fact equivalent to the OWF assumption.

A more detailed overview of our results and conjectures is presented in Section 3.

Related Works. Until recently, most work in secure multi-party computation focused on the
extremes of complexity; namely, classifying the functionalities that are trivially realizable (using
only a communication channel) and those which are complete. Such classifications have been found
for a wide variety of security models (i.e., reduction strengths) and subclasses of functionalities
[gmw87, bgw88, kil88, ccd88, ck89, bea89, kus89, kil91, kil00, ckl03, pr08a, kmq08,
ips08].

Beimel et al. [bmm99] address a similar question as here, relating cryptographic complexity of
MPC functionalities and computational complexity assumptions. But they consider computational
complexity assumptions only of the form that a functionality is standalone-trivial. Restricted to a
special class of SFE functionalities, they show that there is only one such assumption (other than
being unconditionally true), namely the sh-OT assumption.

Recently [mpr09b] demonstrated infinitely many distinct, intermediate levels of cryptographic
complexity under computationally unbounded UC security reductions (or, in our current lexicon,
reductions in Informatica). On the contrary, assuming sh-OT assumption, the state of affairs is
totally different — [mpr09a] show that in this setting, every (deterministic, finite) functionality
is either trivial or complete. In independent work, [dno09] show that under sh-OT assumption,
the “common random string” functionality (or in our framework of finite functionalities, the coin-
tossing functionality Fcoin) is complete.

Impagliazzo and Luby [il89] showed that several important cryptographic primitives are equiv-
alent to the OWF assumption. Following the approach there, we also rely on the fact that a weaker
primitive called distributionally one-way functions yield OWFs. In [dg03], Damg̊ard and Groth
showed that if Fcom vppt Fcoin then the sh-OT assumption holds. This is subsumed by our results
regarding exchange-like functionalities (Theorem 1), but in fact contains one of the ideas that is
used in (the simpler of) our constructions.

4Here simultaneity only refers to the input independence — Alice should not be able to choose her input based
on Bob’s input, and vice versa — and not to any notion of fairness.
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In considering the existence of OWF, key-agreement and sh-OT as distinct computational as-
sumptions, we rely on the black-box separation results from [ir89, gkm+00]. We refer to such
separations in our conjectures, which predict more such distinct computational assumptions com-
ing out of our framework. However, for the formal statement of our results (which merely show that
various reductions are equivalent to one of these assumptions), such a separation is not essential.

2 Technical Preliminaries

We write [k] to denote the set {1, . . . , k}. We say that a function µ : N → R is negligible if it
approaches zero faster than any inverse polynomial. That is, if for all c > 0, µ(n) < n−c for
sufficiently large n. We say that a quantity ν is noticeable if ν(n) = Ω(n−c) for some constant
c > 0. We say that a probability p is overwhelming if 1− p(n) is negligible.

2.1 Security Model

We use security in the Universal Composition (UC) framework of Canetti [can01]. The framework
follows the paradigm introduced by Goldreich, Micali and Wigderson [gmw87] of defining security
by comparing a real world (in which the parties execute a protocol) to an ideal world (in which
the task is carried out by a trusted functionality). We assume the reader has a slight familiarity
with the UC framework, and now present an overview of the conventions we use in this paper,
emphasizing that very few specifics of the model are critical for our results.

We write F v G if there is a protocol that securely realizes F in the “G-hybrid model;” see
[can01] for a formal definition. Informally, a protocol is secure if for every adversary attacking
the protocol (in the real world), there is a simulator interacting with F (in the ideal world) that
achieves an indistinguishable effect in all contexts (environments). In the G-hybrid model, the
parties in the protocol can interact with any number of (asynchronous) copies of G, and can access
G in any “role”. The parties are also given free access to a communication channel.

We consider only efficient protocols, but make a notational distinction between unconditionally
(statistically) secure protocols (denoted by vstat) and protocols whose security may depend on a
computational assumption (denoted by vppt). As is standard, we require security against active
(i.e., malicious) adversaries. All results in this work are restricted to static corruption (where the
adversary has to corrupt any parties before the protocol begins).

2.2 Functionalities

Although the UC framework allows a functionality to be an arbitrary interactive program, we
consider in this work only finite functionalities — namely, functionalities that have finite memory
and use finite input and output alphabets. (See Section 6 for a brief discussion.)

Many of our results do apply to arbitrary reactive functionalities, which take input and give
output repeatedly throughout several rounds of interaction (see Appendix B for formal definitions
of this class of functionalities). However, for clarity most of our results in the main body are stated
for the class of symmetric SFE functionalities, defined below:

Definition 1. A functionality is a secure function evaluation (SFE) functionality if it waits for
inputs x ∈ X from Alice and y ∈ Y from Bob (for some finite sets X and Y ) and then sends fA(x, y)
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to Alice and fB(x, y) to Bob. If either party is corrupt, the output for that party is delivered first;
then if the adversary allows, the output to the other party is also delivered.

We say that the functionality is symmetric SFE (SSFE) if fA = fB.

SSFE functionalities, starting with the original Millionaire’s Problem proposed by Yao [yao82],
are perhaps the most well-studied class of two-party functionalities. We can completely specify an
SSFE by giving its function table, a matrix whose (i, j) entry contains fA(i, j) = fB(i, j). Each
row corresponds to a possible input for Alice, and each column corresponds to a possible input for
Bob. For instance, the boolean xor functionality may be written as 0 1

1 0
.

Note that if neither party is corrupt, the functionality does not interact with the adversary.
(Such functionalities were called regular functionalities in [pr08a].)

Definition 2. We say that two SFE functionalities are isomorphic if one can be obtained from
the other by repeatedly adding/removing redundant inputs, permuting a party’s inputs, relabeling a
party’s outputs for one of its inputs, and reversing the roles of Alice and Bob.

By redundant input, we mean (in the case of Alice) an input x such that fB(x, ·) = fB(x′, ·) for
some x′, and (x′, fA(x′, y)) uniquely determines fA(x, y) for all y.

Several specific functionalities play important roles in our results:

Fot: Standard 1-out-of-2 oblivious transfer (OT) functionality. Alice has inputs x0, x1 ∈ {0, 1}
and Bob has input b ∈ {0, 1}. Alice receives no output, and Bob receives output xb.

Fcom: Standard bit-commitment functionality. Alice gives input (commit, x), where x ∈ {0, 1},
and Bob receives output committed. Later, when Alice sends input reveal, Bob receives
input (reveal, x), where x was the input given in Alice’s first commit command.

Fcoin: Standard coin-tossing functionality. After receiving input from both parties, samples a
random coin r ← {0, 1} and gives it to both parties.

Fcc: A simple “cut-and-choose” functionality. It is an SSFE functionality defined as 0 2
1 2

. In
Fcc, Alice provides a bit, and Bob can choose whether or not to learn it. The output also
reveals Bob’s choice to Alice. Fcc is the simplest non-trivial functionality that hides some
information about the inputs.

F i×j
exch: An exchange function: the SSFE functionality in which Alice gives input x ∈ [i], Bob gives

input y ∈ [j], and both parties learn (x, y). The cryptographic non-triviality of an exchange
function is that it enforces inputs to be chosen independently (though we make no requirement
for fairness in learning the output). The special case F2×2

exch is isomorphic to the boolean-xor
SSFE functionality.

2.3 Intractability Assumptions

We consider two important computational intractability assumptions in this work:

sh-OT assumption: There exists a protocol for Fot secure against semi-honest, PPT adversaries.
It is possible to express this assumption using the definition of UC security restricted to semi-honest
adversaries (in both the real and the ideal executions). However, we point out that the traditional
(standalone) security definition is equivalent to the UC security definition, since the simulation
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(unclassified)

passive trivial
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standalone
trivial

UC trivial

Figure 1: A map of various cryptographic complexity classes (of 2-party SSFE functionalities)

required by semi-honest security does not, and need not, extract the inputs of the corrupt players;
it simply uses the input given by the environment.

The sh-OT assumption is known to imply the existence of one-way functions [il89, hai08].
As such, a protocol for OT secure against semi-honest adversaries implies such a protocol secure
against malicious (standalone) adversaries, using the compiler of [gmw87].

OWF assumption: This is the standard assumption that one-way functions exist. In [il89], it is
shown that the OWF assumption is implied by the much weaker assumption that distributionally
one-way functions exist. Thus if OWFs do not exist, then no function is distributionally one-way:
for every efficient function f and polynomial p, there is an efficient algorithm that on input y
samples close to uniformly (within 1/p statistical difference) from the set f−1(y).

2.4 Cryptographic Complexity Landscape Overview

In this section we provide some useful classifications of functionalities, many of which are natural
“complexity classes” in our complexity-theoretic view of MPC functionalities. A visual overview
is also given in Figure 1. For each class, we describe its relevance to our framework and give an
overview of some of its important known properties.

The classes listed below, except the first two, are natural in our framework in the sense that
they are “downward closed” with respect to vstat. That is, if G is a functionality in a class and
F vstat G then F also falls in the same class. (The first one is “upward closed.”) Additionally,
all of these classes can be defined in terms of the vstat reduction, which is the most restrictive
reduction in our framework.

Complete Functionalities. These are SSFE functionalities that are unconditionally “complete.”
That is, for all G in this class, and all functionalities F , F vstat G. Based on the completeness of the
oblivious transfer functionality [kil88] (which remains true with respect to the UC-secure reduction
vstat as well [kil89, ips08]), Kilian [kil91] gave a complete combinatorial characterization for these
functionalities, as the evaluation of functions that contain a 2 × 2 minor of the form a b

b b
, where
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a 6= b. Later, Kraschewski and Müller-Quade [kmq08] extended Kilian’s characterization to the
stronger vstat reduction.

Unclassified Functionalities. Among incomplete SSFE functionalities, we leave a set of function-
alities as “unclassified.” These are functionalities which are neither complete, nor passive-trivial (see

next class). We know that this class is not empty: the “spiral” SSFE functionality
1 1 2
4 0 2
4 3 3

is known

to fall into this category [bea89, kus89, kkmo00]. These functions do have a combinatorial char-
acterization in terms of minors that immediately follows from the combinatorial characterizations
of complete functionalities and passive-trivial functionalities (below) [bea89, kus89]. However, we
call these functionalities unclassified as very little is known about their cryptographic properties,
or different sub-classes within the class.

Passive-Trivial Functionalities. These are functionalities securely realizable against a passive
(a.k.a., honest-but-curious, or semi-honest) adversary in a computationally unbounded environ-
ment. For SSFE functionalities, such functions have an explicit combinatorial characterization,
namely that they are evaluations of what are called “decomposable” functions:

Definition 3 (Decomposable [kus89, bea89]). An SSFE functionality F : X × Y → Z is row
decomposable if there exists a partition X = X1 ∪ · · · ∪Xk (Xi 6= ∅), k ≥ 2, such that the following
hold for all i ≤ k:

• for all y ∈ Y , x ∈ Xi, x′ ∈ (X \Xi), we have F(x, y) 6= F(x′y); and

• F
∣∣
Xi×Y

is either a constant function or column decomposable, where F
∣∣
Xi×Y

denotes the
restriction of F to the domain Xi × Y .

We define being column decomposable symmetrically with respect to X and Y . We say that F is
simply decomposable if it is either constant, row decomposable, or column decomposable.

Kushilevitz [kus89] and Beaver [bea89] independently proved that an SSFE functionality
is decomposable if and only if it has a perfectly secure protocol. Later, this characterization
was extended to the more natural case where the protocol is allowed to be only statistically se-
cure [mpr09b, kmqr09].

If F is decomposable, then a canonical protocol for F is a deterministic protocol defined induc-
tively as follows [kus89]:

• If F is a constant function, both parties output the output value of F , without interaction.

• If F is row decomposable as X = X1 ∪ · · · ∪Xk, then party 1 announces the unique i such
that its input x ∈ Xi. Then both parties run a canonical protocol for F

∣∣
Xi×Y

.

• If F is column decomposable as Y = Y1 ∪ · · · ∪ Yk, then party 2 announces the unique i such
that its input y ∈ Yi. Then both parties run a canonical protocol for F

∣∣
X×Yi

.

It is a simple exercise to see that a canonical protocol is a perfectly secure protocol for F against
passive adversaries.

An important example in this class (though not an SFE functionality) is the commitment
functionality Fcom. Interestingly, this class has a natural alternate definition in terms of the
vstat reduction. If F is an SFE functionality, then F is passive-trivial if and only if F vstat

Fcom [mpr09b].
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Exchange-Like Functionalities. We introduce an important sub-class of passive-trivial function-
alities called exchange-like functionalities. A simple way to define this class is the functionalities F
such that F vstat F i×i

exch for some i. Intuitively, these are the functionalities that can be realized
using simultaneity alone (recall that the only cryptographic non-triviality of an exchange function
F i×i

exch is in its independence of inputs).
Among SSFE functionalities, exchange-like functionalities are exactly those that are isomorphic

to F i×j
exch for some integers i and j. For reactive functionalities, a similar complete characterization

can be made, and we do so in Appendix B.

Exchange-Free Functionalities. In contrast to exchange-like functionalities, we can define the
class of exchange-free functionalities as those which contain no simultaneity. More formally, G is
in this class if and only if F2×2

exch 6vstat G. All standalone-trivial functionalities (see the next class)
are of this kind. But there are other functionalities too: for instance, 1 1 2

3 4 3
(not standalone-trivial)

and
1 1 2
4 0 2
4 3 3

(an unclassified functionality) can be shown to be exchange-free.

A useful combinatorial property of exchange-free functionalities is the following: Every exchange-
free and passive-trivial functionality has a unique (up to simple renaming of the steps) decompo-
sition (Definition 3) [mpr09b]. However, being uniquely decomposable does not necessarily mean

that the SFE is exchange-free — consider the SSFE function
1 1 2
5 0 2
4 3 3

.

Standalone-Trivial Functionalities. These are functionalities securely realizable against compu-
tationally unbounded adversaries in a stand-alone (i.e., isolated) environment. SSFE functionalities
in this class were combinatorially characterized in [kmqr09, mpr09b] as a strict subclass of the
passive-trivial functionalities. Since F2×2

exch is not in this class, every functionality in this class is
exchange-free. The Fcc functionality defined earlier is an important example in this class, and is
in fact the simplest non-trivial one.

Trivial Functionalities. These are the functionalities UC-securely realizable against a general
adversary in a computationally unbounded environment, using protocols which only rely on (pri-
vate) communication channels.5 In the case of SSFE functionalities, these are the functionalities
that have a decomposition of depth 1, or equivalently, the functionalities that are isomorphic to
F1×k

exch for some k [ckl03, pr08a]. A secure protocol for a trivial SSFE is a simple one in which
one party simply sends a function of its input to the other party.

Characterizations of triviality are also known for the case of reactive functionalities [pr08a,
mpr09a]. A deterministic, finite functionality is trivial if and only if it is both exchange-like and
exchange-free. (This characterization is not true for randomized functionalities: Fcoin is both
exchange-like and exchange-free).

3 Intractability Framework and Our Results

Recall that our interest is in “intractability assumptions” of the form F vppt G, where F and G are
arbitrary deterministic finite functionalities. Among two-party functionalities, all the reductions we
are able to definitively classify fall into one of four kinds (others which are only partially classified
are also consistent with these four categories):

5Recall that in our model functionalities — including communication channels — interact only with the parties.
A channel with an eavesdropper is modeled as a 3-party functionality.
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1. Reductions that are unconditionally true.

2. Reductions equivalent to the OWF assumption.

3. Reductions equivalent to the sh-OT assumption.

4. Reductions that are unconditionally false.

If F is non-trivial and G is trivial (as defined in Section 2.4), then F vppt G is unconditionally
false, no matter what computational complexity results may hold. (This is a consequence of the
unconditional impossibility results in [ckl03, pr08a].)

Recent results in a companion paper [mpr09a] show that all other assumptions (i.e., those that
are not known to be unconditionally false) of the form F vppt G are implied by the sh-OT assumption.
Thus the remaining question is to determine which “standard” intractability assumption is neces-
sary for F vppt G. Note that the space of functionalities we consider is infinite, and a priori one
might expect a large number of, if not infinitely many, “distinct” assumptions (distinct in the sense
of [ir89]). Indeed, such a phenomenon is not without precedence: in [gkm+00] for instance, an in-
finite hierarchy of complexity assumptions related to cryptographic protocols is derived. However,
the assumptions in such an infinite hierarchy tend to have quantitative differences, and may not
relate to conceptual differences. Indeed, the hierarchy of assumptions in [gkm+00] is based on the
number of rounds in a protocol that is assumed to exist. On the other hand, the above assumptions
(the OWF assumption and the sh-OT assumption) are conceptually different. Indeed, our frame-
work formalizes a way to avoid such quantitative distinctions (since our notion of reduction ignores
such differences).

In the following conjectures we refer to two assumptions being distinct. As mentioned above,
this can be formalized as in [ir89, gkm+00], by considering oracles given which one assumption
holds but not the other. Since none of our results need this concept of distinct assumptions, we do
not present the formalization here, but instead refer the readers to [ir89, gkm+00].

Conjecture 1 (Quantization of Computational Assumptions.). For every m, there are only finitely
many distinct assumptions of the form F vppt G, where F and G are finite m-party functionalities
functionalities.

We believe that there are several such new assumptions to be discovered. But we conjecture that
we need to look beyond the more familiar case of deterministic 2-party functionalities to discover
them. For instance, assumptions appear in our framework for 3-party functionalities that we believe
do not appear for 2-party functionalities (see below), and we anticipate that more assumptions exist
corresponding to complicated security requirements among many parties.

Conjecture 2. Assumptions of the form F vppt G, where F and G are deterministic finite two-
party functionalities fall into one of the four classes listed above.

We present significant progress towards affirming the above conjecture. Note that we are looking
to prove that assumptions F vppt G are equivalent to the OWF assumption or the sh-OT assumption,
unless they can be shown to be unconditionally true or false. One part of showing the equivalence
is to show that the OWF assumption or the sh-OT assumption is sufficient for such a reduction,
presumably by giving explicit protocols. This was carried out in [mpr09a]:

Proposition 1 (Based on results in [mpr09a].). The assumption F vppt G is:
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• unconditionally true (i.e., F vstat G) if G is complete or if F is trivial;

• unconditionally false, if G is trivial and F is non-trivial;

• equivalent to the sh-OT assumption if G is complete and F is passive-trivial;

• implied by the sh-OT assumption if G is non-trivial;

• implied by the OWF assumption if G is not exchange-like and F is passive-trivial.

In this work, the focus is on showing the converse, that either the OWF assumption or sh-OT assumption
is necessary for F vppt G.

Reductions equivalent to the sh-OT assumption

We show a large class of functionalities to be equivalent to the sh-OT assumption:

Theorem 1. Let G be a non-trivial exchange-like functionality. Then for all F , either F vstat G
or F vppt G is equivalent to the sh-OT assumption.

Further, we characterize precisely when F vstat G, when G is exchange-like. Recall that the
non-triviality of exchange-like functionalities is due solely to their simultaneity (independence) of
inputs. If F is exchange-like and has a higher “bandwidth” of simultaneity (i.e., its dimensions are
larger than G’s), or if F is not exchange-like (i.e., it performs some hiding of the parties’ inputs),
then F 6vstat G. Intuitively, simultaneity cannot be amplified or used for information hiding, except
in Cryptomania.

Theorem 1 extends to the case of reactive exchange-like functionalities as well. Analysis of
arbitrary reactive functionalities was introduced in [mpr09a], and we build on the analysis there,
to characterize exchange-like reactive functionalities.

Reductions equivalent to the OWF assumption

Given Proposition 1 and Theorem 1, Conjecture 2 would be settled for the class of passive-trivial
functionalities if the following conjecture is true:

Conjecture 3. For any two functionalities F and G, either F vstat G, or F vppt G implies the
OWF assumption.

That is, we would like to prove that the OWF assumption is indeed minimal for conditional
reductions. While this may sound obvious, proving such a conjecture turns out to be difficult.
Essentially, assuming that the OWF assumption does not hold, one must show attacks on any
protocol purportedly carrying out such a reduction. We obtain the following results, to partially
confirm the above conjecture.

Theorem 2. For every non-exchange-like, passive-trivial SFE functionality G, there are infinitely
many standalone-trivial SFE functionalities F such that F vppt G is equivalent to the OWF assumption.

Theorem 3. Let F and G be passive-trivial but not UC-trivial. If F is not standalone-trivial and
G is standalone-trivial, then F vppt G is equivalent to the OWF assumption.

11



3.1 Beyond 2-Party Functionalities

The class of two-party functionalities that we considered is quite rich, but still omits some very
important and familiar kinds of cryptographic tasks. In particular, the classical task of secret com-
munication, is modeled as a functionality with three parties, Alice, Bob and Eve, and is not captured
by any of the two-party functionalities.6 Let us denote the 3-party private channel functionality (in
which the third party learns only that the channel was invoked, when the first party sends a message
to the second party) by Fpvt. In contrast, let Fpub be the a 3-party public-channel functionality,
in which the message from the first party is received by both the other parties (though if the first
party is corrupt, it is allowed to send different messages to the two others). The assumption in
question is Fpvt vppt Fpub.

A key-agreement protocol, as considered in [ir89, gkm+00], yields such a reduction. This
assumption, corresponding to secrecy against third-party eavesdroppers, seems to be of a differ-
ent flavor than any assumption arising out of cryptographic complexity of 2-party functionalities
(wherein there is no external adversary).

Conjecture 4. For any pair of two-party functionalities F ,G, the assumption F vppt G can be
black-box separated (à la [ir89, gkm+00]) from the assumption Fpvt vppt Fpub.

A first step to studying the assumptions arising of 3-party functionalities would be to understand
various cryptographic complexity classes (based on statistical reductions). However, even the class
of trivial SFE functions is not well-understood in this case. [pr08b, Appendix. B] includes a few
“trivial” 3-party functionalities, which are securely realizable using protocols that involve more
than a single message (as with protocols for trivial 2-party functionalities).

Given the variety of cryptographic functionalities that exist in the 3-party scenario, we con-
jecture that there is at least one “undiscovered assumption” corresponding to a reduction among
3-party functionalities.

Conjecture 5. There exist 3-party functionalities F , G, such that the assumption F vppt G
can be black-box separated (a la [ir89, gkm+00]) from OWF assumption, sh-OT assumption and
Fpvt vppt Fpub.

4 Reductions Equivalent to the sh-OT Assumption

In this section we introduce a natural subclass of SFE functionalities and completely characterize
vppt reductions involving this class. In Appendix B we greatly generalize the definition and results
to reactive functionalities which need not give identical output to Alice and Bob; however, the
results for SFE functionalities capture the major intuitions.

4.1 Exchange-Like Functionalities

Definition 4. Let F be an SFE functionality. We say that F is exchange-like if F = F i×j
exch for

some i, j.
6Recall that our functionalities do not communicate with the adversary when all parties are honest. This conven-

tion requires modeling corrupt parties explicitly, in the protocol and in the functionality. Hence secret communication
corresponds to a 3-party functionality.
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The cryptographic non-triviality of an exchange-like functionality is in its independence of
inputs. Exchange-like functionalities ultimately hide nothing about the parties’ inputs, but enforce
that the two parties’ inputs are chosen independently.

Lemma 1 ([mpr09a]). If F is not exchange-like, then either Fot vstat F or Fcc vstat F .

Proof sketch. The proof is a simple combinatorial characterization, and we sketch the main ideas
here. Kraschewski and Müller-Quade [kmq08] show (strengthening a result of Kilian [kil91]) that
if F contains a 2 × 2 minor of the form a b

b b
, where a 6= b (called a generalized-or minor, then

Fot vstat F . Otherwise, if F contains no generalized-or minor, but contains a minor of the form
a b
c b

or a c
b b

, where a, b, c are distinct (called a generalized-cc minor), then it is straight-forward to
see that the protocol in which both parties simply restrict their inputs to that 2 × 2 minor of F
is an unconditionally UC-secure protocol for Fcc (see [mpr09a]). Note that in general, restricting
inputs to a minor of an SFE is not a secure protocol, since malicious parties may send different
inputs to F .

Thus, if Fot 6vstat F and Fcc 6vstat F , then F cannot have any generalized-cc or generalized-
or minors. Every 2 × 2 minor of F must have be of one of the forms a a

b b
, a b

a b
, or a b

c d
, where

a, b, c, d are all distinct. It is easy to see that F is therefore an exchange function (possibly with
duplicate inputs).

4.2 Reductions Involving Exchange-Like Functionalities

Our main classification involving exchange-like functionalities is the following:

Theorem 1 (restated). If G is exchange-like and non-trivial, then either F vstat G, or F vppt G
is equivalent to the sh-OT assumption.

Proof. From [mpr09a], we have that G is vppt-complete under the sh-OT assumption, since it is
non-trivial. Thus F vppt G under the sh-OT assumption.

For the other direction, we break the proof into two parts, depending on the status of F . These
are carried out in the following two lemmas.

Lemma 2. If F is not exchange-like, and G is exchange-like and non-trivial, then F vppt G implies
the sh-OT assumption.

Proof. Given that F vppt G, we directly construct a passive secure protocol for Fot. From
Lemma 1, we have that either Fot vstat F or Fcc vstat F . Thus either Fot vppt G or Fcc vppt G
by the universal composition theorem.

In the first case, Fot has the property that any UC-secure protocol for Fot (even in a hybrid
world) is also itself a semi-honest-secure protocol [pr08a]. G also has a semi-honest-secure protocol
(namely, its canonical protocol since it is decomposable). Composing these two protocols yields a
semi-honest (plain) protocol for Fot and we are done.

In the other case, suppose π is the secure protocol for Fcc in the G-hybrid world. Recall that
Fcc has a function table 0 2

1 2
, which we interpret as Alice sending a bit (top row or bottom row),

Bob choosing whether or not to receive it (left column or right column), and Alice learning Bob’s
choice (whether or not the output was 2). We directly use π to construct a semi-honest Fot protocol
as follows, with Alice acting as the OT sender (with inputs x0, x1) and Bob the receiver (with input
b):
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• The parties instantiate two parallel instances of π, with Alice acting as the sender in both.
Since there is no access to an external G, Bob will simulate Alice’s interface with instances of
G— that is, Alice will send her G-inputs directly to Bob, and he will give simulated responses
on behalf of these simulated instances of G. Alice uses x0 and x1 as her respective inputs to
the two instances of protocol π, and runs the protocol honestly.

• In protocol instance (1− b), Bob carries out the simulation of G-instances and the π protocol
completely honestly. He runs the π protocol on the input that does not reveal Alice’s input
(i.e., he chooses the “right column” input to Fcc).

• In protocol instance b, Bob honestly runs the UC simulator for π, treating Alice as the adver-
sary (including simulating Alice’s interface with G-instances). At some point, the simulator
extracts Alice’s bit xb which would normally be sent to Fcc. Bob continues running the
simulator as if Fcc responded with output 2. When the interaction completes, Bob outputs
xb.

By the UC security of π, Alice’s view is computationally independent of b (i.e., she cannot distin-
guish an interaction with π’s simulator from an interaction in which the receiver and G are honest).
By the soundness of the simulator, we also see that Bob correctly learns xb; we must argue that he
has no advantage guessing x1−b. If all G-instances were external to the (1− b) interaction (instead
of Bob simulating them), then the security of π would imply that Bob has no advantage in guessing
x1−b, since the protocol’s output is 2. Being an exchange function, however, G has the property
that Bob always learns all of Alice’s inputs anyway. Thus Alice can send her G-inputs directly to
Bob, without any affect on the security of the protocol. This is exactly what happens in the (1− b)
interaction.

We note that the technique of running two protocol instances, one honestly and the other using
the simulator, to obtain a semi-honest OT protocol was also used by Damg̊ard and Groth [dg03],
though in the context of a protocol for Fcom instead of Fcc, and considering a common random
string instead of an arbitrary exchange-like G. This theme also occurs in our constructions of semi-
honest OT protocols throughout this section, although we greatly generalize the technique and the
corresponding analysis.

For the case where F is also exchange-like, it is no longer true that F vppt G is equivalent to
sh-OT assumption for all F and G. For some F and G, it can be easily seen that F vstat G. We
completely characterize when each case holds.

Theorem 4. Let F and G be exchange-like, so without loss of generality, F = F i×j
exch and G = F i′×j′

exch .
Then if i ≤ i′ and j ≤ j′, or if i ≤ j′ and j ≤ i′, then F vstat G. Otherwise, F vppt G is implies
the sh-OT assumption.

Put differently, if an i× j rectangle can fit inside an i′ × j′ rectangle (in either of its two axis-
aligned orientations), then F i×j

exch vstat F i′×j′
exch ; otherwise, F i×j

exch vppt F i′×j′
exch is equivalent to the

sh-OT assumption. Since i and j represent the “bandwidth” (in the two directions) of an exchange-
like functionality, a simple way to interpret this theorem is that increasing the bandwidth of an
exchange-like functionality is equivalent to the sh-OT assumption, while decreasing the bandwidth
is cryptographically trivial.
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Main Ideas. The protocol that demonstrates F vstat G is elementary. To perform an i × j
exchange using G, simply send inputs directly to G (with Alice and Bob exchanged if necessary).
Each party aborts if the other party provided an input to the i′ × j′ exchange which was out of
bounds for an i× j exchange. The security of this protocol is straight-forward.

We first sketch the main ideas behind proving the other direction As an illustrative, example
suppose that F = F i×i

exch and G = F (i−1)×(i−1)
exch , and that we have a protocol π demonstrating

F vppt G. The role of the simulator for π is to first extract the input of a corrupt party, send it to
F in the ideal world, and then continues to simulate π consistently given the output from F .

Again for the benefit of this simplified overview, suppose that the simulator for a passively
corrupt Alice always extracts during round rA.7 Since the simulator does not contact G throughout
the first rA − 1 rounds of the simulation, Alice’s view is independent of Bob’s input during these
rounds. If Bob’s input is random (uniform in [i]), then after round rA, Alice still cannot guess
Bob’s input with probability greater than ζ = (i−1)/i, since there are only i−1 possible responses
from the simulated G that the simulator can give to complete the simulation of round rA. By the
soundness of the simulation, an honest Alice cannot predict Bob’s input with probability greater
than ζ +negl(k) after rA rounds of an honest interaction with Bob. Similarly, if the simulator for a
passively corrupt Bob always extracts during round rB, then an honest Bob cannot predict Alice’s
random input with probability greater than ζ + negl(k) after rB rounds of an honest interaction
with Alice.

By symmetry, suppose that rA ≤ rB. Then we can obtain a semi-honest protocol for a weak
variant of OT as follows. As in the proof of Lemma 2, the parties run two instances of π, with
Alice providing random inputs to both instances. In one instance Bob runs the simulator, and in
the other instance Bob runs the protocol and simulates G honestly. Both instances are truncated
after rA rounds. Using the same reasoning as before, Alice cannot distinguish which interaction
was honest and which used the simulator; Bob learns one of Alice’s inputs since the simulator
extracts in round rA, but cannot predict Alice’s other input with probability better than (i− 1)/i,
since rA ≤ rB. This slight uncertainty can be easily amplified to obtain a full-fledged protocol for
oblivious transfer (see Appendix C for information on amplifying weak OT protocols).

The main proof is more involved in several ways. First, rA and rB need not be fixed rounds,
but may be random variables. In this case, the parties must essentially guess min{rA, rB}. Still,
we can obtain a weak OT protocol in which Bob has noticeable uncertainty about one of Alice’s
inputs, and which is therefore amenable to amplification. Second, the case where the dimensions
of F and G are incomparable requires a much more careful analysis.

Weak Oblivious Transfer & Amplification. As mentioned above, we will construct a protocol
for a weak variant of OT which can then be amplified into full-fledged OT protocol. Similar to the
definition of (p, q)-OT used in [dks99], we define the following weak OT security:

Definition 5 (q-weak-OT). A q-weak-OT is a protocol between a sender and receiver that satisfies
the following conditions:

• The sender has inputs (x0, x1) ∈ Z2
N . The receiver has input b ∈ {0, 1} and correctly receives

output xb with overwhelming probability.
7If a round begins with a call to the external functionality G, then the round concludes when the parties receive

their output from this external functionality. Extracting during round r means that the simulator extracts after
seeing the adversary’s input to the external functionality, and before delivering the corresponding output.
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• A passively corrupt sender has only negligible advantage in guessing the bit b.

• No passively corrupt receiver can guess x1−b with probability noticeably greater than q, when
the sender’s inputs are random.

Thus, 1
N -weak-OT corresponds to the standard definition of OT, when the sender’s input domain

is ZN . Note that this definition considers only simple indistinguishability-based security properties
of (weak) OT protocols, while the formal definition of the sh-OT assumption demands an efficiently
simulatable OT protocol for semi-honest adversaries. However, if an OT protocol is 1/N -weak as
above, then it is an efficient and sound simulation to simulate the honest protocol with any input for
the honest party that is consistent with the required output. Thus this indistinguishability-based
definition is equivalent to the more succinct simulation-based definition.

In Appendix C, we show that any (1− 1
poly)-weak OT protocol can be amplified into a full-fledged

OT protocol.

The Construction As an introduction to how we deal with a simulator that may extract in an
unpredictable round, we show the following simpler result:

Lemma 3. Let Fcoin be the ideal coin-tossing functionality. Then F2×2
exch v Fcoin is equivalent to

the sh-OT assumption.

Proof. Let π be a secure protocol for F2×2
exch in the Fcoin-hybrid model. We will transform π to

obtain a protocol for Fot secure against semi-honest adversaries.
Let sB be the random variable denoting the round in which the simulator extracts from a

passively corrupt Alice and sends her input to F2×2
exch. Suppose Bob’s input is chosen at random.

Then fix any passive adversarial strategy for Alice which outputs a guess of Bob’s input at each
step of the protocol, and define tA as the random variable denoting the round when this guess is
correct with probability at least ζ = 3/4 (where the probability is over the randomness independent
of Alice’s view), when interacting with the simulator. By the soundness of the simulation, Alice’s
view is completely independent of Bob’s input through the first sB rounds. Thus tA ≥ sB + 1, and
in particular, E[tA] ≥ E[sB] + 1.

Now consider running this passive adversarial strategy for Alice against an honest Bob in the
actual protocol execution, instead of against the simulator. We define uA to be the random variable
denoting the first round in which Alice’s guess of Bob’s random input is correct with probability at
least ζ. By the security of π, the two interactions must be indistinguishable to this Alice strategy,
thus |E[uA] − E[tA]| < ε/ζ = ε′, where ε is the negligible simulation error of the protocol. Thus
E[uA] ≥ E[sB] + 1− ε′.

Similarly we can define uB and sA with the roles of Alice and Bob reversed, and conclude that
E[uB] ≥ E[sA] + 1− ε′. Then, either E[uA] ≥ E[sA] + 1− ε′, or E[uB] ≥ E[sB] + 1− ε′; otherwise
we would get that E[uA] < E[sA] + 1 − ε′ ≤ E[uB] < E[sB] + 1 − ε′, contradicting a previous
conclusion.

By symmetry, we assume that E[uB] ≥ E[sB] + 1 − ε′. In other words, in an interaction with
an honest Alice, the simulator will, on average, extract Alice’s input earlier than any passive Bob
could guess Alice’s input with probability at least ζ.

Now consider the protocol given in Figure 2. First, since Alice cannot distinguish a simulated
instance of π from an honest execution of π, Alice has no advantage in predicting Bob’s bit b. Thus
the protocol gives complete privacy for Bob.
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Protocol for a weak variant of Fot. Alice has randomly chosen inputs x0, x1 ∈ {0, 1}, and Bob
has input b ∈ {0, 1}. Protocol π is given as a UC-secure protocol for F2×2

exch in the Fcoin-hybrid
model.

1. Alice honestly runs two instances of the protocol π with Bob, using inputs x0 and x1,
respectively.

2. Bob picks a random r ∈ [r(κ)], where r(κ) is a polynomial bound on the number of
rounds in π and κ is the global security parameter.

3. In the bth instance of π, Bob runs the simulator for π against Alice (including simulating
her interface with instances of Fcoin), and halts the interaction after the rth round of π.

4. In the (1 − b) instance of π, Bob runs the π protocol honestly with Alice on a fixed
input (say, 0), and also honestly simulates all instances of Fcoin for Alice. Bob halts the
interaction after the rth round of π.

5. If the simulator has extracted xb, then Bob outputs it. Otherwise, he asks Alice for
(x0, x1), and she sends it to him.

Figure 2: Weak oblivious transfer protocol, assuming F2×2
exch vppt Fcoin.

A passively corrupt Bob in this weak-OT protocol can guess Alice’s input x1−b correctly with
probability at most

Pr[sB ≤ r < uB]ζ + (1− Pr[sB ≤ r < uB])
= 1− (1− ζ) Pr[sB ≤ r < uB]
≤ 1− (1− ζ)E[uB − sB]/r(κ)
≤ 1− (1− ζ)(1− ε′)/r(κ)

by the definition of uB. Or, in other words, Bob’s guess must be incorrect with probability at least
(1− ζ)(1− ε′)/r(κ), which is an inverse polynomial in the security parameter. In Appendix C, we
show how a weak Fot protocol with this security property can be amplified to give a full-fledged
(semi-honest) Fot protocol.

We now prove Theorem 4 for the following special case:

Lemma 4. Let i ≥ 3. Then F i×i
exch vppt F (i−1)×(i−1)

exch implies the sh-OT assumption.

This special case illustrates most of the non-trivial ideas used to show Theorem 4, although
slightly more involved arguments are required for exchange functions of arbitrary sizes. The full
details of all the cases are given in Appendix A.

Proof. The main difference between this proof and the one of Lemma 3 is that we must now
consider information about the parties’ inputs that can be exchanged via access to ideal functionality
F (i−1)×(i−1)

exch .
Note that in the proof of the Lemma 3, we would obtain a suitable weak OT protocol (i.e.,

amenable to amplification) even if ζ is defined to be any constant (in fact, even if ζ is at most
1− 1

poly in the security parameter).
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As before, we let sB be the round during which the simulator extracts from a passively corrupt
Alice. Clearly Alice’s view is independent of Bob’s input throughout the first sB − 1 rounds of
interaction. If sB is not a round in which the parties access F (i−1)×(i−1)

exch , then Alice’s view is
independent of Bob’s input through sB rounds as well. Otherwise, if sB is a round in which Alice
sends an input to her interface of F (i−1)×(i−1)

exch , then the simulator can send the extracted input
to F i×i

exch, receive the output (i.e., Bob’s input), and then complete the round by simulating the
response of the simulated F (i−1)×(i−1)

exch functionality to Alice. This response from F (i−1)×(i−1)
exch is an

element of [i− 1] and is the only part of Alice’s view that can depend on Bob’s input. Thus, Alice
cannot guess Bob’s input with probability greater than (i− 1)/i after sB rounds (see Lemma 6).

If we define ζ to be any constant greater than (i−1)/i, and define tB as the first point at which
Alice can guess Bob’s input with probability at least ζ, then we have tB ≥ sA + 1. Similarly, we
can reverse the roles of Alice and Bob and obtain tA ≥ sB + 1. The rest of the proof is identical to
that of Lemma 3, with a different (but still constant) value of ζ.

4.3 Extension to Reactive Functionalities

In Appendix B, we extend all of the results in this section to a large class of reactive functionalities
— namely, those functionalities which can be modeled as a finite state machine. We note that this
class of functionalities also includes those which do not give identical outputs to the two parties.

New techniques for understanding and using arbitrary reactive functionalities for cryptographic
purposes were introduced in [mpr09a]. Our definition and analysis of exchange-like reactive func-
tionalities here closely follows many of the same approaches as [mpr09a]. For completeness, we
include all of the relevant details in Appendix B.

Intuitively, a reactive functionality is exchange-like if it never hides information. Note that there
are two fundamentally different ways in which a reactive functionality can hide information: it can
hide information in a single round of interaction (as a non-exchange-like SFE hides information),
or it can hide information in its internal memory. Formalizing this second requirement is somewhat
involved, and requires an automata-theoretic analysis of reactive functionalities.

If a reactive functionality is exchange-like, then we show that it is equivalent (under vstat

reductions) to a “bundle” of exchange functions of different sizes. Such a bundle is simply a
functionality in which one party publicly selects one of the component exchange functions and then
the two parties evaluate it. As such, Theorem 4, our result about amplifying the “bandwidth” of
an exchange-like functionality, carries over naturally to the case of reactive functionalities.

For the other case, when F is non-exchange-like and G is exchange-like, we first observe that F
can fail to be exchange-like for only two reasons. If F hides information in a single round, then F
can easily be used to obtain a non-exchange-like SFE function and so the proof of Lemma 2 goes
through essentially unaltered. On the other hand, if F hides information between rounds, we show
that this hiding can be exploited to show Fcom vstat F . Intuitively, Fcom is the canonical example
of a functionality that hides information between rounds (between the commit phase and reveal
phase). Then, by using a similar technique as in the proof of Lemma 2, we can easily construct a
semi-honest protocol for OT. The parties run two instances of the commit phase of the protocol for
Fcom. The receiver plays honestly in one instance, and uses the simulator to extract in the other
instance. In fact, this is essentially the semi-honest OT protocol from Damg̊ard and Groth [dg03],
except that we consider it in the context of an arbitrary exchange-like ideal functionality, instead
of a common random string.
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Thus, Theorem 1 applies for all deterministic, finite, reactive functionalities.

5 Reductions Equivalent to the OWF Assumption

Our results in this section build on the technique in [mpr09b] that was used to derive the following
separation in cryptographic complexity.

Lemma 5 ([mpr09b]). Let F and G be SSFE functionalities. If F has unique decomposition depth
n and G has decomposition depth m < n, then F 6vstat G.

In [mpr09b], Lemma 5 is proven by attacking any purported protocol π for F in the G-hybrid
world.

First, they show (for plain protocols, not in any hybrid world) that for every adversary A that
attacks the canonical protocol for F , there is a corresponding adversary A′ that attacks π, achieving
the same effect in all environments. (Indeed, any functionality whose decomposition depth is at
least 2 has a simple attack against its canonical protocol that violates security in the UC sense.)
Intuitively, the protocol π must reveal information in the same order as the canonical protocol.
More formally, at every point during the canonical protocol (say, a partial transcript t), there is
a corresponding “frontier” in π — a maximal set of partial transcripts of π. If two inputs both
induce transcript t in the canonical protocol (recall that it is a deterministic protocol), then they
also induce statistically indistinguishable distributions on partial transcripts at the frontier. But
if the two inputs do not both induce transcript t in the canonical protocol, then at the frontier
they induce distributions on partial transcripts that have statistical distance almost 1. Then the
adversary A′ runs the protocol π honestly, except for occasionally “swapping” its effective input at
one of these frontiers. The properties of the frontiers assure that such a swap will only negligibly
affect the outcome of the interaction.

Next, to attack a protocol π in the G-hybrid world, they imagine a plain protocol π̂ which is
π composed with the canonical protocol for G. The plain protocol π̂ has frontiers for each step
of the canonical protocol (equivalently, step of the decomposition). In our setting, there are more
frontiers in π̂ than there are rounds in the canonical protocol for G, so not all the frontiers can be
contained entirely within the G-subprotocols. Thus an adversary attacking π can behave honestly
in all interactions with the ideal G, and still encounter a frontier at which to “swap” its effective
input (i.e., outside of the G-subprotocols in π̂). Indeed, there is an attack against F in which an
adversary need only encounter one such frontier, so the protocol π is not secure.

Leveraging one-way functions. While these frontier-based attacks from [mpr09b] are formu-
lated for computationally unbounded adversaries, we show below that they can in fact be carried
out under the assumption that one-way functions do not exist. In other words, that if a reduction
exists between particular functions, then the OWF assumption is true.

These frontier-based attacks require unbounded computation because computing the frontier
involves computing global statistical properties about the protocol — namely, the probability that
the protocol assigns to various partial transcripts on different inputs. The attacks are otherwise
efficient, so given access to an oracle that can compute these probabilities, the attack can be easily
effected. In fact, these quantities need not be computed exactly for the attacks to violate security.
Thus we will describe how to compute the appropriate quantities given that OWFs do not exist.
We use the guarantee of no distributionally one-way functions (Section 2.3; [il89]). We define a
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function related to the given protocol, and use the ability to approximately sample its preimage
distribution to obtain a good estimate of the desired probabilities.

Theorem 2 (restated). For every non-exchange-like, passive-trivial SFE functionality G, there
are infinitely many standalone-trivial SFE functionalities F such that F vppt G is equivalent to
the OWF assumption.

Proof. First, if G is non-exchange-like, then Fcom vppt G under the OWF assumption, by the
protocol construction in [mpr09a]. Then, F vstat Fcom since F is passive-trivial [mpr09b]. The
non-trivial direction is to show that F vppt G implies OWF assumption for infinitely many such F .

Let k be the round complexity of a semi-honest protocol for G, since G is passive-trivial. Then
let F be any standalone-trivial functionality whose decomposition depth is strictly greater than k.
In the complete characterization of standalone-triviality [mpr09b], there are SFE functionalities
with arbitrarily high decomposition depth, so there are infinite number of such F satisfying this
condition.

Now F and G satisfy the conditions of Lemma 5, so it suffices to show that the frontier-based
attack from [mpr09b] can be carried out under the assumption that (distributionally) one-way
functions do not exist. As described above, the attack against a protocol π for F in the G-hybrid
model is based on frontiers in the protocol. For a partial transcript u and inputs x for Alice and y
for Bob, the probability that the protocol generates u as the prefix of its transcript can be expressed
as α(u, x)β(u, y), where each of the two terms depends on only one party’s input (see, for example,
[bea89]).

The frontiers used in the attack are then all defined in terms of the following quantity:

η(u, x0, x1) =
α(u, x0)− α(u, x1)
α(u, x0) + α(u, x1)

or the symmetric quantity with respect to the roles of Alice & Bob. Intuitively, η(u, x0, x1) measures
how correlated the transcript u is to Alice’s input being x0 versus x1. In fact, the entire frontier-
based attack can be carried out in polynomial time given an oracle that answers questions of the
form “Is η(u, x0, x1) ≥ 1−ν(k)?”, where ν is a certain negligible function in the security parameter.
If instead the oracle can answer questions of this form where ν(k) = 1/kc for a chosen constant
c, then the adversary’s attack may fail with at most an extra 1/poly factor. All the attacks from
[mpr09b] demonstrate that the real and ideal worlds can be distinguished with constant bias,
so they can indeed tolerate this additional 1/poly slack factor. Thus it suffices to show how to
implement such an oracle.

We compute η(u, x0, x1) as follows: First, consider the function f(x, rA, y, rB, i) = (τ, x), where
τ is the first i bits of the transcript produced by the protocol when executed honestly on inputs
(x, y), where rA and rB are the random tapes of Alice and Bob, respectively. We use the guarantee of
no distributionally one-way functions to sample from f−1(u, x0) and f−1(u, x1). If both preimages
are empty, then the protocol never generates u as a partial transcript on inputs x0 or x1. If only
one is empty, then η(u, x0, x1) = 1.

Otherwise, assume u is indeed a possible partial transcript for both x0 and x1 (i.e., the protocol
assigns positive probability to u when Alice has inputs x0 or x1). Our previous sampling of f−1 has
yielded an input y∗ such that u is a possible partial transcript when executing π on inputs (x0, y

∗).
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Thus u is also a possible partial transcript on inputs (x1, y
∗). Now define:

g(x, rA, y, rB, i) =

{
(τ, y) if x ∈ {x0, x1}
⊥ otherwise

We now sample n times from g−1(u, y∗). Let ni be the number of times the sampled preimage
included xi as the first component. Then (n0 − n1)/n is an estimate of η(u, x0, x1). By setting n
to be a sufficiently large polynomial in the security parameter, we can ensure that the estimate is
within an additive factor 1/kc of the actual value, with high probability.

Theorem 3 (restated). Let F and G be passive-trivial but not UC-trivial. If F is not standalone-
trivial and G is standalone-trivial, then F vppt G is equivalent to the OWF assumption.

Proof. The fact that F vppt G under the OWF assumption is by the same argument as in the
previous proof.

For the other direction, suppose π is a secure protocol for F in the G-hybrid world. Standalone
secure protocols for SFE functionalities are closed under composition. Thus we have a standalone-
secure protocol π′ for F without any trusted party.

Being passive-trivial, F is surely decomposable, and we consider two cases. When F is uniquely
decomposable, then [mpr09b] showed that in the unbounded setting, for every adversaryA attacking
the canonical protocol, there is an adversary A′ attacking π′ such that no environment can distin-
guish between the two interactions. When F is uniquely decomposable but not standalone-trivial,
there is a simple attack against the canonical protocol for F that violates standalone security with
constant probability. Thus translating this attack into an efficient (assuming that OWF assumption
is false) attack on π′ using the techniques described in the previous proof, we see that π′ is not
standalone-secure; a contradiction.

On the other hand, if F is not uniquely decomposable, then Fxor vstat F via a simple protocol.
As such, by composing several protocols, we obtain a standalone-secure protocol π for Fxor. Con-
sider an interaction using π in which the honest party chooses an input at random. In [mgmo+09],
a frontier-based attack on Fxor is described (for unbounded adversaries), which we outline below.
We show here that the attack can be carried out assuming that the OWF assumption is false, to
bias the honest party’s output towards 0 by a noticeable amount:

At each partial transcript u, compute an estimate of |η(u, 0, 1)| (which measures the transcript’s
bias towards Alice’s input 0 or 1, defined in the previous proof) At the beginning of the protocol,
the value of this function is 0, and at the end of the protocol, it is 1 with overwhelming probability
since the protocol results in Bob correctly learning Alice’s input.

Similarly, define η′(u, 0, 1) as a transcript’s bias towards Bob’s input. By symmetry, with prob-
ability at least 1/2, the partial transcript achieves |η(u, 0, 1)| > 1/2 before it achieves |η′(u, 0, 1)| >
1/2. Thus an attack for Bob is to discover via the sampling procedure described above the first
point at which |η(u, 0, 1)| > 1/2 but |η′(u, 0, 1)| ≤ 1/2. At that point, Bob switches his input to
match Alice’s, in order to bias the output towards 0. Bob reaches such a point with probability at
least 1/2, Since |η′(u, 0, 1)| ≤ 1/2, the correctness of the protocol implies that Bob’s output will be
0 with overwhelming probability. Thus this attack successfully biases the output towards 0 with
bias 1/4 minus some inverse polynomial in the security parameter.
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6 Expanding the Framework

The framework that we have presented is quite general thanks to the general nature of function-
alities. However, there are several dimensions in which this framework can be extended, leading
to possibly further computational complexity assumptions to appear. We mention a few such
extensions below.

Using Infinite Domain/Memory Functionalities. In this paper, we have confined ourselves
to “finite” functionalities (which are finite state machines with finite input/output alphabets).
One could instead consider the more general class, with infinite alphabets and/or infinite state
space. On the positive side, this allows modeling “object-oriented” cryptography which involves
such concepts as encryption and signatures (as opposed to “service-oriented” cryptography which is
more natural in the setting of multi-party computation). Note that currently, the sh-OT assumption
and the assumption that a key-agreement protocol exists, do not specify the number of rounds of
these protocols. Indeed a 2-round key-agreement protocol is a public-key encryption scheme and a
2-round sh-OT protocol is a computational version of the so-called dual-mode encryption scheme.8

On the other hand, this considerably complicates things: for instance, Proposition 1 does not
hold any more. [mpr09a] points out an (infinite domain) functionality G such that G is not trivial,
but say Fot vppt G does not hold under the sh-OT assumption. It is likely that several intermediate
assumptions, like in the hierarchy of assumptions presented in [gkm+00] will manifest in this
framework. A similar complication was encountered in [hnrr06]. We leave it is an interesting
challenge to extend the framework to include infinite functionalities, but without sacrificing the
economy and conceptual clarity of the set of complexity assumptions produced by the framework.

Using Alternate Reductions. If we use a different notion of reduction in place of vppt, the
assumption F vppt G will change its meaning. While it is not clear if any reasonable notion of
reduction will give a larger set of assumptions when all pairs (F ,G) are considered, it certainly is true
that for specific pairs (F ,G) the assumption becomes different. The variants one could consider
weaker notions of security like security against passive (semi-honest) or standalone adversaries,
or stronger notions of security like simultaneous security against passive and active adversaries,
or against adaptive adversaries. One could also consider tighter non-standard reduction notions
derived by imposing constraints on the protocols carrying out the reductions, like constant round
complexity, for instance. Another example is to restrict to protocols which use a given functionality
in only one direction (with say, Alice and Bob in the protocol playing fixed roles, say sender and
receiver respectively, when interacting with the given functionality).

It will indeed be interesting if a computational complexity assumption manifests when using
some other (meaningful) notions of reduction, but not the one we use.

More Functionalities. In this work, we restricted ourselves to a large, but restricted class of
functionalities. In particular, our functionalities are not “fair”: they allow the adversary to learn
the output and then decide whether to deliver the output or not, to the other party. Another class

8Here, a dual-mode encryption scheme is a public-key encryption scheme, in which there is an alternate mode
to generate a public-key (which remains indistinguishable from a key generated in the normal mode) such that
the semantic security of the encryption is retained even given the randomness used in key generation. Dual mode
encryption introduced in [pvw08, kn08] is stronger in that the alternate mode is required to result in a public-key
such that a ciphertext produced using that key is statistically independent of the message.
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we considered only briefly is that of randomized functionalities. These classes of functionalities are
understood only in bits and pieces. A systematic study of their cryptographic complexities remains
an open problem.

Special Pairs. Finally, we mention that when considering some of the above extensions, it
might be interesting to consider (only) special pairs of functionalities, where the reduction may
have extra meaning. For instance, when restricting protocols to use a given 2-party functionality
F in only one direction, it is particularly interesting to consider reducing the functionality F−1

which reverses the roles of its parties. Another interesting question is of “parallel repetition” which
considers reducing F t, a synchronous repetition of t copies of F , to the functionality F (wherein
the protocol is allowed to use multiple asynchronous copies of F). For instance, F t

coin reduces to
Fcoin unconditionally, but by Theorem 1 we know that a parallel repetition of F2,2

exch reduces to
F2,2

exch if and only if the sh-OT assumption holds.
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[ccd88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally
secure protocols. In Proc. 20th STOC, pages 11–19. ACM, 1988.

[ck89] Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy (extended
abstract). In STOC, pages 62–72. ACM, 1989.

[ckl03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally
composable two-party computation without set-up assumptions. In Eli Biham, editor,
EUROCRYPT, volume 2656 of Lecture Notes in Computer Science. Springer, 2003.

[dg03] Ivan Damg̊ard and Jens Groth. Non-interactive and reusable non-malleable commit-
ment schemes. In Proc. 35th STOC, pages 426–437. ACM, 2003.

23



[dks99] Ivan Damg̊ard, Joe Kilian, and Louis Salvail. On the (im)possibility of basing obliv-
ious transfer and bit commitment on weakened security assumptions. In Jacques
Stern, editor, EUROCRYPT, volume 1592 of Lecture Notes in Computer Science,
pages 56–73. Springer, 1999.

[dno09] Ivan Damg̊ard, Jesper Buus Nielsen, and Claudio Orlandi. On the necessary and suffi-
cient assumptions for uc computation. Cryptology ePrint Archive: Report 2009/247,
2009.

[gkm+00] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh
Viswanathan. The relationship between public key encryption and oblivious transfer.
In FOCS, pages 325–335, 2000.

[gmw87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play ANY mental game.
In ACM, editor, Proc. 19th STOC, pages 218–229. ACM, 1987. See [gol04, Chap. 7]
for more details.

[gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications. Cambridge Uni-
versity Press, 2004.

[hai08] Iftach Haitner. Semi-honest to malicious oblivious transfer - the black-box way. In
Ran Canetti, editor, TCC, volume 4948 of Lecture Notes in Computer Science, pages
412–426. Springer, 2008.

[hnrr06] Danny Harnik, Moni Naor, Omer Reingold, and Alon Rosen. Completeness in two-
party secure computation: A computational view. J. Cryptology, 19(4):521–552,
2006.

[il89] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity
based cryptography (extended abstract). In Proc. 30th FOCS, pages 230–235. IEEE,
1989.

[imp95] Russell Impagliazzo. A personal view of average-case complexity. In Structure in
Complexity Theory Conference, pages 134–147, 1995.

[ips08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivi-
ous transfer - efficiently. In David Wagner, editor, CRYPTO, volume 5157 of Lecture
Notes in Computer Science, pages 572–591. Springer, 2008.

[ir89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of
one-way permutations. In STOC, pages 44–61. ACM, 1989.

[kil88] Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31.
ACM, 1988.

[kil89] Joe Kilian. Uses of Randomness in Algorithms and Protocols. PhD thesis, Depart-
ment of Electrical Engineering and Computer Science, Mas sachusetts Institute of
Technology, 1989.

[kil91] Joe Kilian. A general completeness theorem for two-party games. In STOC, pages
553–560. ACM, 1991.

24



[kil00] Joe Kilian. More general completeness theorems for secure two-party computation.
In Proc. 32th STOC, pages 316–324. ACM, 2000.

[kkmo00] Joe Kilian, Eyal Kushilevitz, Silvio Micali, and Rafail Ostrovsky. Reducibility and
completeness in private computations. SIAM J. Comput., 29(4):1189–1208, 2000.

[kmq08] Daniel Kraschewski and Jörn Müller-Quade. Completeness theorems with construc-
tive proofs for symmetric, asymmetric and general 2-party-functions, 2008. Unpub-
lished Manuscript, 2008. http://iks.ira.uka.de/eiss/completeness.

[kmqr09] Robin Künzler, Jörn Müller-Quade, and Dominik Raub. Secure computability of
functions in the it setting with dishonest majority and applications to long-term
security, 2009.

[kn08] Gillat Kol and Moni Naor. Cryptography and game theory: Designing protocols for
exchanging information. In Ran Canetti, editor, TCC, volume 4948 of Lecture Notes
in Computer Science, pages 320–339. Springer, 2008.

[kus89] Eyal Kushilevitz. Privacy and communication complexity. In FOCS, pages 416–421.
IEEE, 1989.

[mgmo+09] Mohammad Mahmoody-Ghidary, Hemanta K. Maji, Pichayoot Ouppaphan, Manoj
Prabhakaran, and Mike Rosulek. Exploring the limits of random oracles and trusted
coins using frontier analysis of protocols. Manuscript, 2009.

[mpr09a] Hemanta Maji, Manoj Prabhakaran, and Mike Rosulek. A zero-one law for deter-
ministic 2-party secure computation. Manuscript. Results from preliminary version
appear in [ros09], 2009.

[mpr09b] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Complexity of multi-party
computation problems: The case of 2-party symmetric secure function evaluation. In
Omer Reingold, editor, TCC, volume 5444 of Lecture Notes in Computer Science,
pages 256–273. Springer, 2009.

[pr08a] Manoj Prabhakaran and Mike Rosulek. Cryptographic complexity of multi-party
computation problems: Classifications and separations. In David Wagner, edi-
tor, CRYPTO, volume 5157 of Lecture Notes in Computer Science, pages 262–279.
Springer, 2008.

[pr08b] Manoj Prabhakaran and Mike Rosulek. Cryptographic complexity of multi-party
computation problems: Classifications and separations. Electronic Colloquium on
Computational Complexity (ECCC), 15(50), 2008.

[pvw08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In David Wagner, editor, CRYPTO, volume 5157
of Lecture Notes in Computer Science, pages 554–571. Springer, 2008.

[ros09] Mike Rosulek. The Structure of Secure Multi-Party Computation. PhD thesis, De-
partment of Computer Science, University of Illinois at Urbana-Champaign, 2009.

25



[yao82] Andrew Chi-Chih Yao. Protocols for secure computation. In Proc. 23rd FOCS, pages
160–164. IEEE, 1982.

A Complete Proof of Theorem 1

We first establish a convenient technical lemma:

Lemma 6. For each j ∈ [i], let Dj be a probability distribution over the elements {m1, . . . ,mi−1}.
Now consider the following experiment: Choose j ∈ [i] uniformly at random, and then output a
sample according to Dj.

The probability of correctly predicting j given only the output of this procedure is at most (i−1)/i.

Proof. Let pu,v be the probability of sampling message mv when using Du. So, we have:

i−1∑
v=1

pu,v = 1 for all u ∈ [i]

Let qv,u be the probability of outputting u after seeing message v. So, we have:

i∑
u=1

qv,u = 1 for all v ∈ [i− 1]

The probability of being correct is:

ζ =
∑i

u=1

∑i−1
v=1 pu,vqv,u

i

This is maximized if qv,u = αupu,v. Therefore, ζ ≤
Pi

u=1 αv
Pi−1

v=1 p2
u,v

i ≤
Pi−1

u=1 αu

i = i−1
i

Finally we prove our general result.

Lemma 7. Let i, j, i′, j′ be such that (i > i′ or j > j′) and (i > j′ or j > i′). Then F i×j
exch vppt

F i′×j′
exch implies the sh-OT assumption.

Proof. The proof is very similar to that of Lemma 4 Note that in the proofs of Lemma 4 and
Lemma 3, we would obtain a suitable weak OT protocol (i.e., amenable to amplification) even if
ζ is 1 − 1

poly in the security parameter, and one of {E[tB − sB], E[tA − sA]} is at least 1
poly in the

security parameter.

Case 1: (max{i, j} > max{i′, j′}): Suppose by symmetry that i ≥ j and i > i′ ≥ j′, and that
Bob feeds input from [i] into the ideal functionality. We define ζ to be any constant greater than
i−1

i , and define sB and tA as earlier. Similar to the argument in , we get that tA ≥ sB + 1
(because i − 1 ≥ i′ ≥ j′). It is always the case that tB ≥ sA. So, we get the condition that
tA ≥ sB + 1 and tB ≥ sA.

In general we can say that:

(tA ≥ sB and tB ≥ sA + 1), or
(tB ≥ sA and tA ≥ sB + 1)

26



These conditions imply that:

E[uA] ≥ E[sA] +
(

1
2
− ε′

)
, or

E[uB] ≥ E[sB] +
(

1
2
− ε′

)
Observe that in our weak OT construction, all we needed was that one of {E[uA − sA], E[uB −

sB]} is at least 1
poly in the security parameter. So the construction in Lemma 4 yields a suitable

weak-OT protocol.

Case 2: (min{i′, j′} < i, j ≤ max{i′, j′}): Observe that even if for some polynomial λ(·) we have:(
E[tA] ≥ E[sB] and E[tB] ≥ E[sA] +

1
λ(κ)

)
, or(

E[tB] ≥ E[sA] and E[tA] ≥ E[sB] +
1

λ(κ)

)
we can use the approach mentioned above to get the weak OT protocol. So, we only need to consider
the remaining case, when E[tB] ∈

[
E[sA], E[sA] + 1

λ(κ)

)
and E[tA] ∈

[
E[sB], E[sB] + 1

λ(κ)

)
, where

λ(·) is a suitably chosen large polynomial.
In this case, we will prove that:

1. One of {Pr(tB ≥ sB + 1),Pr(tA ≥ sA + 1)} is at least 1
5

2. Both |Pr(uA = r)− Pr(tA = r)| and |Pr(uB = r)− Pr(tB = r)| are at most 1
ρ(κ) for any poly-

nomial ρ

These will imply that we obtain a suitable weak-OT protocol in this case as well.
Now, we show that the above mentioned properties hold. If E[tB] ∈

[
E[sA], E[sA] + 1

λ(κ)

)
and

E[tA] ∈
[
E[sB], E[sB] + 1

λ(κ)

)
, then with probability ≥ 1− 2

λ(κ)n , where n is the maximum number
of rounds in the protocol, we will have the event that tB = sA and tA = sB. Consider the set of
rounds S where tA = sB is possible. Similarly define T to be the set of rounds where tB = sA is
possible. Without loss of generality, we can assume that Alice uses i′ side of F i′×j′

exch only in even
rounds and the j′ side of the F i′×j′

exch only in odd rounds. So, we conclude that the sets S and T are
disjoint.

Let xS(r) be the probability of the event tA = sB ≤ r. Similarly define xT (r) as the probability
of the event tB = sA ≤ r. At the extremes, xS(0) = xT (0) = 0 and xS(n) = xT (n) = 1 − 2

λ(κ)n .

So look at the smallest r such that max{xS(r), xT (r)} ≥ 1
2

(
1− 2

λ(κ)n

)
. Observe that at any given

round r only xS(r) or xT (r) changes. By symmetry, assume that xS(r) reaches the threshold first.
Then since yS(r) could not have changed at this round, we get that yS(r) ≤ 1

2

(
1− 2

λ(κ)n

)
. Then

for sufficiently large values of κ, we see that with probability at least(
1
2
− 1

λ(κ)n

)2

≥ 1
4
− 2

λ(κ)n
≥ 1

5
,

the event sB ≤ tB − 1 is true.
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Now, all we need to show is that Pr(uB = r) and Pr(tB = r) are within 1/poly(κ). We pick a
suitable polynomial ρ. We run an honest execution of the protocol against a simulator for Alice.
We can estimate Pr(tB = r) within 1

ρ additive error in polynomial time. Similarly, we run an honest
execution of the protocol against honest Alice. We can estimate Pr(uB = r) within 1

ρ additive error
in polynomial time.

If |Pr(tB = r)− Pr(uB = r)| > 3
ρ , then we can create a polynomial time distinguisher which

distinguishes between the real and ideal world. So, for every round r, |Pr(tB = r)− Pr(uB = r)| ≤
3
ρ .

Given the guarantee that, for all r, |Pr(tB = r)− Pr(uB = r)| ≤ 3
ρ and Pr(sB ≤ tB − 1) ≥ 1

5 ,
the construction given earlier gives us a weak OT.

B Reactive Exchange-Like Functionalities

In this section we extend the results of Section 4 to a large class of reactive functionalities. Namely,
the following:

Definition 6. A deterministic finite functionality (DFF) is a functionality with a finite set of
internal states Q, whose behavior is as follows:

1. Set the internal state q to the distinguished start state q0 ∈ Q.

2. Wait for inputs x ∈ X from Alice and y ∈ Y from Bob, where X, Y are finite input sets.

3. If δ(q, x, y) is defined, then send “delayed outputs” fA(q, x, y) to Alice and fB(q, x, y) to Bob,
where δ, fA, fB are deterministic functions.

4. Set q ← δ(q, x, y) and repeat from step 2.

To reason about the behavior of reactive functionalities, we follow [mpr09a, ros09] and develop
a way of saying that one input x “achieves the same effect” as another input x′, in the context
of a reactive functionality. Intuitively, this happens when every behavior that can be induced by
sending x at a certain point can also be induced by sending x′ instead, and thereafter appropriately
translating subsequent inputs and outputs. We can define this formally in terms of the UC security
definition:

Definition 7 (Dominating Inputs). Let F be a DFF, and let x, x′ ∈ X be inputs for Alice. We
say that x dominates x′ in the first round of F , and write x ≥A x′, if there is a secure protocol for
F in the F-hybrid setting, where the protocol for Bob is to run the dummy protocol (as Bob), and
the protocol for Alice has the property that whenever the environment provides input x′ for Alice in
the first round, the protocol instead sends x to the functionality in the first round.

We define domination for Bob inputs analogously, with the roles of Alice and Bob reversed.
Note that the definition requires that any behavior of F that is possible when Alice uses x′ as her
first input can also be induced in an online fashion by using x as her first input (and subsequently
translating inputs/outputs according to some strategy). Domination is reflexive and transitive.

Definition 8 (Exchange States). Let F be a DFF, and let q be one of its states. We define F [q]
as the functionality obtained by modifying F so that its start state is q.

We say that q is an exchange state if:
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• The input/output behavior of F at state q — (fA(q, ·, ·), fB(q, ·, ·)) — is (isomorphic to) an
exchange function; and

• For all Alice inputs x, x′ ∈ X such that fB(q, x, ·) ≡ fB(q, x′, ·), there exists an Alice input
x∗ ∈ X such that x∗ ≥A x and x∗ ≥A x′ in F [q]; and

• For all Bob inputs y, y′ ∈ Y such that fA(q, ·, y) ≡ fA(q, ·, y′), there exists a Bob input y∗ ∈ Y
such that y∗ ≥B y and y∗ ≥B y′ in F [q].

Suppose q is an exchange state. Then we can define x
q∼ x′ if fB(q, x, ·) ≡ fB(q, x′, ·). The

relation
q∼ induces equivalence classes over X. When q is an exchange state, then within each such

equivalence class, there exists at least one input x∗ which dominates all other members of its class.
For each equivalence class, we arbitrarily pick a single such input x∗ and call it a master input for
state q. Similarly we define master inputs for Bob by exchanging the roles of Alice and Bob.

Definition 9. Let F be a DFF, We say that a transition is safe if it leaves an exchange state q on
inputs (x, y), where x and y are both master inputs for state q.

B.1 Exchange-Like Definition

Our generalization of exchange-like functionalities is in terms of these automata-theoretic proper-
ties.

Definition 10 (Exchange-like). We say that a DFF F is exchange-like if no non-exchange state
in F is reachable via a sequence of safe transitions from F ’s start state.

We justify the use of the term “exchange-like” in the following lemma. Namely, exchange-like
functionalities are equivalent to a collection of several (non-reactive) exchange functions.

Lemma 8. Let 〈F1, . . . ,Fn〉 be a DFF which in the first round accepts input k ∈ [n] from Alice,
outputs k to Bob, and then simulates Fk.

If a DFF G is exchange-like, then G is equivalent (under vstat reductions) to some 〈F i1×j1
exch , . . . ,F in×jn

exch 〉.

Proof sketch. Given G, we first define a related functionality R(G) which is simply G with all non-
safe transitions deleted. Then using an argument almost identical to [mpr09a], we have that
G v R(G) v G (see the following lemmas). Intuitively, for these functionalities, the parties can be
made to use only “master” inputs without loss of generality.

Now for each reachable state q in R(G), its input/output function at that state is an iq × jq

exchange function. Let F = 〈F iq×jq
exch | q ∈ Q〉; then the protocol for R(G) using access to F is

for both parties to do the following: Maintain the current state q, and in each round, instantiate
a new instance of F and ensure that Alice sends input q to F (Bob aborts otherwise). Then use
F again to perform the input/output function of G. The output of F uniquely determines both
party’s inputs, and thus the next value of G’s internal state q, so we repeat.

To show that F v R(G), for each reachable state q in R(G), let (x1, y1), . . . , (xn, yn) be a
sequence of inputs that leaves R(G) in state q. The protocol for F is to have Alice first send her
input q to Bob. Then both parties send the corresponding input sequence to R(G) to place it in
state q. Either party can determine from its view whether the other party has input the correct
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sequence. If this is not the case, then the parties abort. Otherwise, they send their next round inputs
to R(G) directly and use the output as their own output (after normalizing the inputs/outputs to
[iq]× [jq]).

To complete the proof sketched above, we now describe the construction of a “normalized”
version R(F) of an exchange-like functionality F . We first define an intermediate functionality:

Definition 11. We define r(F) to be the functionality which runs F , except that in the first round
only, it allows only safe transitions to be taken (i.e., transitions on master inputs only). r(F) can
be written as a copy of F plus a new start state. The new start state of r(F) duplicates all the safe
transitions of F ’s start state.

Observation 5. If a safe transition was just taken in F , then Alice (resp. Bob) can uniquely
determine Bob’s (resp. Alice’s) input in the previous round and the current state of F , given only
the previous state of F and Alice’s (resp. Bob’s) input and output in the previous round.

Proof. We will show that Alice has no uncertainty about which master input Bob used, thus no
uncertainty about the resulting state of F . If a safe transition was just taken from q, then q was an
exchange state and its associated SFE (fA(q, ·, ·), fB(q, ·, ·)) is isomorphic to an exchange function.
Note that our definition of dominating inputs subsumes the definition of redundant inputs in the
context of function isomorphism.

Thus if y, y′ are distinct master inputs for Bob, then fA(q, ·, y) 6≡ fA(q, ·, y′). As such, for any
master input x for Alice, fA(q, x, y) 6= fA(q, x, y′). Alice has no uncertainty about which master
input Bob used. This argument is symmetric for Bob as well.

Lemma 9. If the start state of F is an exchange state, then r(F) v F v r(F). Furthermore, if q
is reachable from the start state of F via a safe transition, then F [q] v F .

Proof. The protocol for r(F) v F is the dummy protocol, since r(F) implements simply a subset of
the behavior of F . Simulation is trivial unless in the first round, the corrupt party (say, Alice) sends
an input x to F which is not a master input for q0. The simulator must send the corresponding
master input x∗ (from the

q0∼ equivalence class of x) in the ideal world, and then it uses the
translation protocol guaranteed by the definition of x∗ ≥A x to provide a consistent view to Alice
and induce correct outputs for Bob.

Similarly, the protocol for F v r(F) is simply the dual of the above protocol. On input x in
the first round, Alice sends x∗ to r(F), where x∗ is the master input from the

q0∼-equivalence class
of x. Thereafter, Alice runs the protocol guaranteed by the fact that x∗ ≥A x. Bob’s protocol is
analogous. Simulation is a trivial dummy simulation, since any valid sequence of inputs to r(F) in
the real world also produces the same outcome in the F-ideal world (r(F) implements a subset of
the behavior of F).

Note that in r(F), the added start state has no incoming transitions; thus (r(F))[q] = F [q] if
q is a state in F . So to show F [q] v F , it suffices to show that (r(F))[q] v r(F). Suppose q is
reachable in F from the start state via safe transition on master inputs x∗, y∗. The protocol for
F [q] is for Alice and Bob to send x∗ and y∗ to r(F), respectively, as a “preamble”. Each party
can determine with certainty, given their input and output in this preamble, whether r(F) is in
state q (since only safe transitions can be taken from the start state of r(F)). If the functionality
is not in q, then the parties abort. Otherwise, the functionality is r(F) in state q as desired, so
the parties thereafter run the dummy protocol. Simulation is trivial – the simulator aborts if the
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corrupt party does not send its specified input (x∗ or y∗) in the preamble; otherwise it runs a
dummy simulation.

The claim used in the proof of Lemma 8 is the following:

Lemma 10. Let R(F) be F with all non-safe transitions removed. Then F v R(F) v F .

Proof. First we show that F v R(F). We prove a stronger claim; namely that if q is safely reachable
(i.e., reachable from the start state by a sequence of safe transitions) in F , then F [q] v (R(F))[q].
To prove this stronger claim, we construct a family of protocols π̂q, for every such q.

First, let πq denote the protocol guaranteed by F [q] v r(F [q]) (Lemma 9). Then the protocol
π̂q is as follows:

1. Run πq to interact with the functionality.

2. After the first round, we will have sent an input to the functionality and received an out-
put. Assuming that the functionality was (R(F))[q], use the first round’s input/output to
determine the next state q′ (Observation 5)

3. Continue running πq, but hereafter, instead of letting it interact directly with the functionality,
we recursively instantiate π̂q′ . We let our πq instance interface with π̂q′ , which we let interact
directly with the functionality.

The protocol is recursive, and after k rounds, must maintain a stack depth of size k. We prove by
induction on k that π̂q is a secure protocol for F [q] using (R(F))[q], against environments that run
the protocol for k ≥ 0 steps. The claim is trivially true for k = 0.

Note that simulation is trivial if either party is corrupt. Such an adversary is running the
protocol interacting with (R(F))[q], which is a subset of the functionality F [q]. Thus the simulator
is a dummy simulator. It suffices to show that the output of the protocol is correct (indistinguishable
from the ideal interaction) when both parties are honest.

In the first round, both parties are running πq, interacting with (R(F))[q]. Although πq is
designed to interact with r(F [q]), the behavior of both these functionalities is identical in the first
round (including the next-state function). Thus the first round of outputs is correct, by the security
of πq. For the same reason, step 2 of π̂q correctly identifies the next state q′ of (R(F))[q]. Clearly
(R(F))[q][q′] = (R(F))[q′], so after step 1 of the protocol, the functionality is identical to a fresh
instantiation of (R(F))[q′]. At the same time, we also instantiate a fresh instance of π̂q′ to interact
with this functionality. By the inductive hypothesis, hereafter πq is interacting with an interface
that is indistinguishable from an ideal interaction with F [q′]. However, an external functionality
which behaves like R(F)[q] in the first round, then after transitioning to state q′ behaves like F [q′],
is simply the functionality r(F [q]). In other words, the entire protocol π̂q is indistinguishable from
running πq on r(F [q]). By definition of πq, this is indistinguishable from an ideal interaction with
F [q] itself.

The protocol for R(F) v F is the dual of the above protocol. The protocol is the dummy
protocol, and the simulator recursively uses the protocols πq as above.

31



B.2 Main Classification

We now prove the main result regarding exchange-like functionalities, that is:

Theorem 6. Let F and G be DFFs. If G is exchange-like and non trivial, then either F vstat G,
or F v G is equivalent to the SHOT assumption.

We split the proof into two parts, depending on whether F itself is also exchange-like.

When F is exchange-like For the case where both F and G are exchange-like, we prove a simple
combinatorial characterization for when F v G, which generalizes our result for SFE functionalities.
Namely, F vstat G if and only if every exchange contained in F can “fit inside” an exchange
contained in G. Otherwise, the existence of a secure protocol is equivalent to the sh-OT assumption.
More formally:

Lemma 11. Let S and T be finite subsets of Z2. Say that S ≤ T if for every (i, j) ∈ S, there exists
(i′, j′) ∈ T such that i ≤ i′ ∧ j ≤ j′ or i ≤ j′ ∧ j ≤ i′.

Let F = 〈F i×j
exch | (i, j) ∈ S〉 and G = 〈F i×j

exch | (i, j) ∈ T 〉. Then if S ≤ T , then F vstat G, and
if S 6≤ T , then F v G is equivalent to the sh-OT assumption.

The proof is a straight-forward generalization of our characterization for SFE. Since every
exchange-like DFF is equivalent to such a collection of exchanges, this establishes the main result
for DFFs as well.

When F is not exchange-like. We describe how any non-exchange-like functionality can be
used to unconditionally realize Fcom. The argument here is reproduced directly from [mpr09a,
ros09] with minimal modification (corresponding to our definition of exchange states which is a
relaxation of the definition of “simple states” there).

In [mpr09a, ros09], the following property about dominating inputs is given:

Lemma 12 ([mpr09a, ros09]). Let F be a DFF. Then there is an environment Z0 with the
following properties:

• Z0 sends a constant number of inputs to F ,

• Z0 chooses inputs for both parties at random,

• Z0 always outputs 1 when interacting with two parties running the dummy protocol on an
instance of F ,

• For every x, x′ ∈ X, if x 6≥A x′, then Z0 has a constant probability of outputting 0 when
interacting with an Alice protocol that sends x instead of x′ in the first round.

Using this fact, we obtain the following claim, used in the proof of main theorem:

Lemma 13. If a non-exchange state in F is reachable via a sequence of safe transitions from F ’s
start state, then either Fcom v F or Fot v F or Fcc v F .
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Proof. Without loss of generality (by Lemma 9) we assume that the start state of F is a non-
exchange state.

First, suppose the start state q0 of F is a non-exchange state because its input/output behavior
in the first round is not an exchange function. Then in the F-hybrid setting we can easily securely
realize the SFE functionality G = (fA(q0, ·, ·), fB(q0, ·, ·)), by the simple dummy protocol. Even
though F may keep in its memory arbitrary information about the first-round inputs, the informa-
tion can never be accessed since honest parties never send inputs to F after its first round, and F
waits for inputs from both parties before giving any output. Thus G v F . By Lemma 1, we have
that either Fot v F or Fcc v F in this case.

Otherwise, assume that the input/output behavior in the first round is an exchange function
SFE, and that q0 is a non-exchange state for one of the other reasons in the definition of exchange
states. The two cases are symmetric, and we present the case where Alice can commit to Bob.
Suppose there are Alice inputs x∗0, x

∗
1 ∈ X such that fB(q0, x

∗
0, ·) ≡ fB(q0, x

∗
1, ·), but for all x ∈ X,

either x 6≥A x∗0 or x 6≥A x∗1. Intuitively, this means that F binds Alice to her choice between inputs
x∗0 and x∗1 — there are behaviors of F possible when her first input is x∗b , which are not possible
when her first input is x∗1−b. We formalize this intuition by using the first input round of F to let
Alice commit a bit to Bob.

Recall the “universal” environment Z0 from Lemma 12, and suppose it runs for m rounds and
has a distinguishing probability p > 0. Our protocol for Fcom is to instantiate N = 2dlog1−p 0.5eκ =
Θ(κ) independent instances of F , where κ is the security parameter. We will write Fi to refer to
the ith instance of F . The protocol is as follows:

1. (Commit phase, on Alice input (commit, b), where b ∈ {0, 1}) Alice sends x∗b to each Fi. For
each i, Bob sends a random yi1 ∈ Y to Fi and waits for output fB(q0, yi1, x

∗
0) = fB(q0, yi1, x

∗
1).

If he receives a different input, he aborts. Otherwise, he outputs committed.

2. (Reveal phase, on Alice input reveal) Alice sends b to Bob. For each i, Alice sends her
input/output view of Fi to Bob (x∗b and the first-round response from Fi). If any of these
reported views involve Alice sending something other than x∗b to Fi, then Bob aborts. Oth-
erwise, Bob sets xi1 = x∗b for all i.

3. For j = 2 to m:

(a) Bob sends Alice a randomly chosen xij ∈ X. Alice sends xij to Fi.

(b) Bob sends a randomly chosen input yij ∈ Y to Fi.

(c) For each i, Alice reports to Bob her output from Fi in this round.

4. If for any i, Alice’s reported view or Bob’s outputs from Fi does not match the (deterministic)
behavior of F on input sequence (xi1, yi1), (xi2, yi2), . . ., then Bob aborts. Otherwise, he
outputs (reveal, b).

When Bob is corrupt, the simulation is to do the following for each i: When Bob sends yi1 to F in
the commit phase, simulate Fi’s response as fB(q0, x

∗
0, yi1) = fB(q0, x

∗
1, yi1). In the reveal phase,

to open to a bit b, simulate that Alice sent Bob x∗b and the view that is consistent with that input:
fA(q0, x

∗
b , yi1). Maintain the corresponding state qi of Fi after seeing inputs (x∗b , yi1). Then when

Bob sends xij to Alice and yij to Fi, simulate that Fi gave the correct output to Bob and that Alice
reported back the correct output from Fi that is consistent with F receiving inputs xij , yij in state
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qi. Each time, also update the state qi according to those inputs. It is clear that the simulation is
perfect.

When Alice is corrupt, the simulation is as follows: The simulator faithfully simulates each
instance of F and the behavior of an honest Bob. If at any point, the simulated Bob aborts, then
the simulation aborts. Suppose Alice sends x̃i1 to each Fi in the commit phase, and that the
simulation has not aborted at the end of the commit phase. If the majority of x̃i1 values satisfy
x̃i1 ≥A x∗0, then the simulator sends (commit, 0) to Fcom; otherwise it sends (commit, 1). Note
that by the properties of F , each x̃i1 cannot dominate both x∗0 and x∗1. Let b be the bit that the
simulator sent to Fcom.

If the simulated Bob ever outputs (reveal, b), then the simulator sends reveal to Fcom. The
simulation is perfect except for the case where the simulated Bob outputs (reveal, 1− b) (in this
case, the real world interaction ends with Bob outputting (reveal, 1 − b), while the ideal world
interaction aborts). We show that this event happens with negligible probability, and thus our
overall simulation is statistically sound.

Suppose Alice sends b′ = 1− b at the beginning of the reveal phase. Say that an instance Fi is
bad if x̃i1 6≥A x∗1−b. Note that at least half of the instances of Fi are bad. When an instance Fi is
bad, Z0 can distinguish with probability at least p between the cases of F receiving first input x̃i1

and x∗1−b from Alice. However, in each instance of Fi, Bob is sending random inputs to Alice (who
sent x̃i1 as the first input to Fi), sending random inputs himself to Fi, obtaining his own output
and Alice’s reported output from Fi in an on-line fashion, and comparing the result to the known
behavior of F (when x∗1−b is the first input of Alice). This is exactly what Z0 does in the definition
of x̃i1 ≥A x∗1−b, so Bob will detect an error with probability p in each bad instance. In the real
world, Bob would accept in this reveal phase with probability at most (1− p)−N/2 ≤ 2−κ, which is
negligible as desired.

Lemma 14. If G is exchange-like and non-trivial, and F is not exchange-like, then F v G is
equivalent to the sh-OT assumption.

Proof. From [mpr09a], we have that G is v-complete given the sh-OT assumption, and thus F v G.
The main challenge is proving that F v G implies the sh-OT assumption.

Since F is not exchange-like, then either Fot v F , Fcc v F , or Fcom v F . Thus, by the
universal composition theorem we assume that we have a secure protocol for either Fcc, Fot, or
Fcom using G. The cases involving Fcc and Fot have been addressed already in the proof of the
characterization for non-reactive exchange-like functionalities.

Thus we describe the case where Fcom v G via protocol π. It is similar to the proof of the
case involving Fcc for non-reactive functionalities. Without loss of generality, we assume that G is
simply a collection of exchange functions, as in Lemma 8. The semi-honest protocol for Fot is as
follows, with Alice the sender (having inputs x0, x1) and Bob the receiver (having input b):

• The parties instantiate two parallel instances of π, with Alice acting as the sender. Since
there is no access to an external G, Bob will simulate Alice’s interface with instances of G—
that is, Alice will send her G inputs directly to Bob, and he will give simulated responses from
instances of G. Alice commits to bit x0 in the first instance, and x1 in the second instance.
Alice honestly runs π and halts after the commitment phase finishes.

• In protocol instance (1− b), Bob carries out the simulation of G-instances and the π protocol
completely honestly.
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• In protocol instance b, Bob honestly runs the UC simulator for π, treating Alice as the adver-
sary (including simulating Alice’s interface with G-instances). At the end of the commitment
phase, the simulator extracts Alice’s bit xb, which Bob outputs.

By the UC security of π, Alice’s view is computationally independent of b (i.e., she cannot dis-
tinguish an interaction with π’s simulator from an interaction in which the receiver and G are
honest). Bob correctly learns xb, and we must argue that he has no advantage guessing x1−b. If
all G-instances were external to the (1− b) interaction as ideal functionalities, then the security of
π would imply that Bob has no advantage in guessing x1−b after the commitment phase. Being a
collection of exchange functions, G has the property that Bob always learns all of Alice’s inputs.
Thus Alice can send her G-inputs directly to Bob, without loss of generality. This is exactly what
happens in the (1− b) interaction.

C Oblivious Transfer Amplification

We first establish the following convenient technical lemma:

Lemma 15 (Noisy Channel Bounds). Consider a noisy channel C, which either forwards an input
element x ∈ ZN unchanged with probability q, or replaces it with a uniformly chosen element from
ZN \ {x}.

Suppose a string s = s1 . . . sk ∈ Zk
N is passed through C, and t = t1 . . . tk is the result. Then the

probability that
∑k

i=1 ti =
∑k

i=1 si is at most

1
N

+ exp
(
− 1

N
− (1− q)k

(N − 1)

)
.

Proof. Without loss of generality, suppose that
∑k

i=1 si = 0. Consider the following polynomial:

f(x) =
(

q +
1− q

N − 1
x + . . .

1− q

N − 1
xN−1

)k

Observe that the probability that
∑k

i=1 ti = 0 is given by the following expression:∑
λ∈Z

[xλN ]f(x) =
∑n−1

i=0 f(ωi)
N

,

where 1, ω, . . . , ωN−1 are distinct roots of zN = 1. We can evaluate the expression in the following
manner:

1
N

N−1∑
i=0

f(ωi) =
1
N

N−1∑
i=0

Nq − 1
N − 1

+
1− q

N − 1

N−1∑
j=0

ωij

k

=
1
N

+
(N − 1)

(
Nq−1
N−1

)k

N

=
1
N

+
(

1− 1
N

) (
1− 1− q

N − 1

)k

≤ 1
N

+ exp
(
− 1

N
− (1− q)k

(N − 1)

)
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We can amplify a q-weak-OT using an algorithm taken from [dks99].

Definition 12 (R-Reduce). R-Reduce(k,W) is defined as the following protocol, where W is a
weak-OT.

1. Let (x0, x1) ∈ Z2
N be the input of the sender; and b ∈ {0, 1} be the input of the receiver.

2. The sender generates random (x0i, x1i) ∈ Z2
N , for i ∈ [k]. Let r0 =

∑k
i=1 x0i and r1 =∑k

i=1 x1i. The sender sends z0 = x0 + r0 and z1 = x1 + r1 to the receiver

3. Both parties execute W, k times with input (x0i, x1i) ∈ Z2
N for the sender and input b for the

receiver.

4. The receiver outputs xb = zb − (
∑k

i=1 xb,i).

Lemma 16. If W is a q-weak-OT, then R-Reduce(k,W) is a ( 1
N + ν(q, k))-weak-OT, where:

ν(q, k) ≤ exp
(
− 1

N
− (1− q)k

(N − 1)

)
Proof. We consider the probability that the receiver can successfully guess x1−b. Let s = s1 . . . sk ∈
Zk

N be chosen uniformly at random.Suppose we are given a string t1 . . . tk ∈ Zk
N which has the

property that ti = si with probability q. Observe that if ti is wrong, it adds an error si − ti which
is uniformly random over ZN . So, in general with probability q it either adds 0 error; or adds a
random error from the set ZN \ {0} with probability (1− q)/(N − 1). Then, using Lemma 15, the
probability that

∑k
i=1 si =

∑k
i=1 ti is at most:

1
N

+ exp
(
− 1

N
− (1− q)k

(N − 1)

)
Thus, if q ≤ 1− 1

poly(κ) , then R-Reduce(κ/(1− q),W) is a full-fledged 1-out-of-2 OT protocol.
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