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Abstract

In this paper we will be concerned with a large class of packing and covering problems which includes V C and
I S. Typically, for NP-hard problems among them, one can write an LP relaxation and then round the solution.
For instance, for V C one can obtain a 2-approximation via this approach. On the other hand, Khot and Regev
[KR08] proved that, assuming the Unique Games Conjecture (UGC), it is NP-hard to approximate V C to within a
factor better than 2 − ε for any constant ε > 0. From their, and subsequent proofs of this result, it was not clear why this LP
relaxation should be optimal.

The situation was akin to M C, where a natural SDP relaxation for it was proved by Khot et al. [KKMO07] to
be optimal assuming the UGC. A beautiful result of Raghavendra [Rag08] explains why the SDP is optimal (assuming the
UGC). Moreover, his result generalizes to a large class of constraint satisfaction problems (CSPs). Unfortunately, we do not
know how to extend his framework so that it applies for problems such as V C where the constraints are strict.

In this paper, we explain why the simple LP-based rounding algorithm for the V C problem is optimal assuming
the UGC. Complementing Raghavendra’s result, our result generalizes to a larger class of strict, covering/packing type CSPs.
We first write down a natural LP relaxation for this class of problems and present a simple rounding algorithm for it. The key
ingredient, then, is a dictatorship test, which is parametrized by a rounding-gap example for this LP, whose completeness and
soundness are the LP-value and the rounded value respectively.

To the best of our knowledge, ours is the first result which proves the optimality of LP-based rounding algorithms system-
atically.
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1 Introduction
In this paper we will be interested in a fairly large class of packing and covering problems. We will show that, assuming
the Unique Games Conjecture, a natural linear programming relaxation for such a problem, along with a simple rounding
scheme, is the best one can hope for algorithmically. We start with a classic covering problem that falls in this class: the
minimum vertex cover problem (V C). The equivalent packing problem is the maximum independent set problem
(I S).

Vertex Cover. In the V C problem, one is given a graph G(V, E) with non-negative weights {wv}v∈V for the vertices
and the goal is to find a subset of minimum weight such that every edge has at least one end point in this set. We may assume
that
∑
v∈V wv = 1. This problem is NP-hard and there is a very simple 2-approximation algorithm known for it. One way

to obtain this approximation, which will be relevant to our work, is to solve the following natural linear programming (LP)
relaxation.

lpvc(G) def
= minimize

∑
v∈V

wvxv

subject to ∀e=uv∈E xu + xv ≥ 1
∀v∈V xv ≥ 0

Figure 1: LP for V C

Given an optimal solution to this LP, the rounding scheme selects vertices whose variables have value at least 1/2. This makes
sure that the picked set is a vertex cover and the cost is no more than twice lpvc(G).

On the inapproximability side, Dinur and Safra proved that V C is NP-hard to approximate to within a factor of
1.36. Khot and Regev [KR08] gave some evidence that factor 2 might be the best possible approximation for V C
by showing that if there is an algorithm for V C which achieves a factor better than 2, then the Unique Games
Conjecture (UGC) is false. However, it is not clear from their hardness reduction why this simple minded LP is the best one.

One can think of V C as a strict version of a constraint satisfaction problem (CSP). While in a CSP, the
objective is to satisfy as many constraints as possible, in V C, the objective is to find a solution satisfying all
constraints while minimizing a different objective. Although the difference seems superficial, the algorithmic implications
for the two class of problems are quite different. Let us take the example of M C, the simplest and one of the most
interesting CSP. Given a graph G(V, E), the M C problem asks for a partition (S , S̄ ) of the vertices maximizing the
number of edges going across the cut. For the M C problem, the natural LP relaxation is known to give a strictly
weaker approximation than a simple semidefinite programming (SDP) relaxation [GW95]. Further, the factor obtained by
the SDP is optimal assuming the UGC as was shown in Khot et al. [KKMO07]. A beautiful result of Raghavendra [Rag08]
manages to generalize the M C result of [KKMO07] to a very general class of constraint satisfaction problems. In
particular, he considers a generic way to write a SDP relaxation, and shows that the approximation ratio achived by the SDP
is optimal assuming the UGC.

However, Raghavendra’s result does not seem to apply for V C even though it is possible to think of V
C as a CSP in the following way: consider an instance G = (V, E) of V C. We have boolean variables xv for
each v ∈ V. For each vertex v, we have a constraint Φv(xv) which is 1 if xv is 1 (which corresponds to vertex v being picked
in the vertex cover), and 0 otherwise. For each edge e = uv, we have a constraint Ψe(xu, xv) which is 0 if at least one of xu

or xv is 1, and 1 otherwise. The goal is to minimize the weighted sum
∑
v wvΦv(xv) + 2 ·

∑
e=uv∈E(wu + wv) · Ψe(xu, xv). It is

easy to argue that any optimal solution x? to this CSP must satisfy Ψe(x?u , x
?
v ) = 0 for all edges uv ∈ E. Hence, any optimal

solution to this CSP also yields an optimal vertex cover solution. Given this reduction from V C to a weighted CSP,
one can imagine using the techniques of Raghavendra [Rag08] to come up with a similar hardness result for V C.
However, such an argument fails to work for the following reason: the CSP corresponding to V C has a very special
relation between the edge constraints and the vertex constraints – the weight of each edge constraint is more than the sum
of the weights of the corresponding vertex constraints. The reduction from UGC to such a CSP (which has vertex and edge
constraints as defined above) will construct hard instances of such CSPs which may not preserve the required relationship
between the weights of vertex and edge constraints. This problem seems to remain whenever we have CSPs where some
constraints are strict, i.e., they cannot be violated. This leaves the understanding of problems with strict constraints as the
V C problem somewhat unsettled.
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1.1 Our Work
In this paper, assuming UGC, we present an optimal LP-based algorithm for a class of packing and covering problems. First,
we describe the class of covering problems we will study.

Strict Monotone Constraint Satisfaction Problem. A problem Π is said to be a k-strict and monotone CSP (k-sm-CSP) if
it consists of a set of vertices V with non-negative weights {wv}v∈V on them, a set of hyperedges of size at most k and for every
hyperedge e ∈ E, a constraint Ae. These constraints have the following two properties natural for {0, 1}-covering problems.1

1. The constraints are strict: the constraint corresponding to every hyperedge has to be satisfied.

2. The constraints are monotone: given a feasible solution (a subset of vertices), adding more vertices to the solution keeps
it feasible.

The objective is to find a boolean assignment to the vertices so as to satisfy all the hyperedge constraints and minimize the
weight of vertices set to 1 (selected). We denote by ΠA1,...,At a problem in the class k-sm-CSP if, for every instance of ΠA1,...,At

and every hyperedge e of this instance, Ae is one of the constraints {A1, . . . , At}. It is easy to observe that V C is a
special 2-sm-CSP.

An LP for a k-sm-CSP problem. One can define the following LP relaxation for any problem in the class k-sm-CSP. As
written, it may not be immediately clear that it is an LP. We will prove this in Section 2.1 and for the benefit of the reader,
we also show in the appendix (Section 6.1) how the standard V C LP can be equivalently written in this form. This
relaxation is inspired by the Sherali-Adams [SA90] relaxation and plays a crucial role in our result.

lp(I) def
= minimize

∑
v∈V

wvxv (1)

subject to ∀e=(v1,v2,...,vl)∈E (xv1 , xv2 , . . . , xvl ) ∈ ConvexHull(Ae) (2)
∀v∈V 0 ≤ xv ≤ 1 (3)

Figure 2: LP for k-sm-CSP

Here, for a hyperedge e = {v1, . . . , vl}, ConvexHull(Ae) denotes the convex hull of all assignments σ ∈ {0, 1}l which satisfy
the constraint Ae. For an instance I, let lp(I) denote the optimum of the LP of Figure 2 for I. Also, let opt(I) denote the value
of the optimal integral solution for I.

Main Result. The main contribution of this paper is to integrate (a large class of) covering and packing problems in the
same conceptual framework as done by Raghavendra for CSPs [Rag08]. We give a rounding algorithm called ROUND (see
Figure 3) for the LP of Figure 2. For an instance I of Π we first compute x?, the optimal LP-solution for I. For a parameter
ε > 0, which should be ignored for this discussion, let round(I, x?, ε) denote the value of ROUND. We then show how to
start with an instance I of Π and give a U G-based reduction for Π whose soundness and completeness are roughly
lp(I) and round(I, x?, ε) respectively. We also show that ROUND (unconditonally) achieves an approximation ratio equal to
the integrality gap, up to an arbitrarily small additive constant, of the LP relaxation. We assume throughout that k = O(1) as
our reductions are polynomial-sized when k is a constant.

Theorem 1.1. Let Π be a k-sm-CSP, ε > 0 for k = O(1), and I be an instance of Π. Then for every δ > 0, assuming the
UGC, it is NP-hard to distinguish instances of Π with optimal less than lp(I) + ε + δ from those with optimal more than
round(I, x?, ε) − δ. Here x? is the optimal LP solution for I.
As a corollary we can deduce the following: we set δ def

= ε and note that for any instance I, round(I, x?, ε) is at most opt(I).
Corollary 1.2. Let Π be in the class k-sm-CSPand I be an instance of Π. Then for every δ > 0, assuming the UGC, it is
NP-hard to distinguish instances of Π with optimal less than lp(I) + 2δ from those with optimal more than opt(I) − δ.

The class k-sm-CSP falls under the class of covering problems. One can also define a similar class of problems for
packing problems, namely Packing-k-sm-CSP. The only differences would be (1) we would be interested in maximizing the
total weight of vertices set to 1, and (2) the constraints would be downward monotone, i.e., removing some vertices from the
solution would still keep it feasible. All our results translate to the setting of packing problems in the natural manner. A more
detailed description of Packing-k-sm-CSP and the rounding algorithm for this class appears in the Appendix (Section 6.6).

1Our results readily generalize for problems over larger but constant-sized alphabets. We restrict ourselves to the alphabet {0, 1} in this paper.
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1.2 Overview and Techniques
In this section we outline the proof of Theorem 1.1. We explain the main ideas with the canonical example of V C.
Unlike previous work, we will be interested in instances where ROUND fails i.e., where the value round(I, x∗, ε) is much
larger than lp(I). Note that this is a weaker condition than the instance being an integrality gap instance (as considered
previously for CSPs), where the value opt(I) is much larger than lp(I).

In particular, for V C, ROUND performs poorly on a graph with a single edge, which is not an integrality gap
instance because the integer optimum and the LP optimum are both equal to 1. One optimal LP solution is to set a value of 1/2
for both the end points, and thus, satisfying the constraint corresponding to this edge. ROUND would then end up choosing
both the end points in the cover, thus, being off by a factor 2 in the objective. We show a reduction from U G that
uses this instance to obtain a factor 2− ε hardness for V C. The reduction produces the Khot-Regev graph although
our analysis is conceptually simpler and uses the, by now standard, invariance principle. Note that the inapproximability
obtained is at least as good as the integrality gap of the LP because the optimal solution is at least as good as the one output
by ROUND.

Given an instance of V C along with an LP solution, we prove that the best rounding scheme, assuming the
UGC, is one which sets the variables to 1 or 0 by solely looking at the value of the variables. We do so by picking a U
G instance and replacing each vertex of the unique game with several blocks of vertices, one for every distinct value the
LP solution takes (one can think of having one block for every variable in the LP, but we will later need to identify variables
taking the same value). We then introduce constraints across the blocks inspired by the LP solution such that if the U
G instance has a good labeling, then there is a way to choose a fraction of each of the blocks such that all the edges are
covered. Further, the fraction selected in each block has measure exactly equal to the total value of the corresponding variables
in the LP solution.

Next, we show that if the U G instance has no good solution, then any solution can be converted to a solution
that either completely chooses a block or ignores it completely while losing only a small additive error in the objective. We
use the invariance principle and gaussian stability estimates to prove that if a particular block is partially selected, then, there
are a bunch of constraints that are completely contained in the unselected part. Thus, given that the solution satisfies every
constraint (covers all edges), the partially selected blocks might as well have been completely unselected without violating
any constraint. If we think of selecting a block as setting the corresponding variable to 1 and not selecting as setting it to 0,
this naturally corresponds to a rounding of the LP solution solely based on the value of each variable: exactly the space of
solutions ROUND searches over.

As it is, this does not say much since the LP value could assign completely distinct values to all the variables. However, we
can always convert such an LP solution to one that takes only a constant ( 1/ε) number of distinct values while losing a small
additive error (ε) in the objective. This naturally gives a rounding scheme, which as the first step discretizes the LP solution to
have a small number of distinct values before trying out every possible rounding of the values. The rounding scheme remains
exactly the same for the general version: solve the linear program, fix the solution to one with a small number of distinct
values and then exhaustively search over all possible roundings of the values.

1.3 Further Discussion and Related Work
LP inspired hardness results. There are several problems for which the best known inapproximability results have been ob-
tained as follows: first construct integrality gap instances for the standard LP relaxations for these problems and then use these
instances as guides for constructing hardness reductions based on standard complexity theoretic assumptions. These reductions
yield inapproximability ratios quite close to the actual integrality gaps. Examples include A k-[CGH+04],
G S T[HK03] and A F-  P M[GK07]. Assuming UGC, our result proves hard-
ness of a large class of problems in a similar spirit. However, instead of explicitly constructing integrality gap examples for
such problems, we give a more direct and intuitive proof that the integrality gap is close to the actual hardness of such prob-
lems. We note that the only other result for LPs similar in flavor as ours, though unrelated, is that of [MNRS08] for M-W
C.

Unique Games Conjecture. Since its inception, the UGC of Khot [Kho02] has been used to obtain a host of inapprox-
imability results [Kho02, KV05, CKK+06, KKMO07, KR08, MNRS08, GMR08, Rag08, CGM09] and, it implies optimal
hardness of approximation results for problems such as M C [KKMO07] and V C [KR08, BK09].

Very recently, for the problem of V C, a similar analysis using the invariance principle was also proved by
Austrin, Khot and Safra [AKS09]. They were motivated by the problem of proving hardness of approximating V C
on bounded degree graphs where as the goal of this paper is to establish the optimality of LP-based algorithms for problems
similar to V C.
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1.4 Rest of the paper.
In Section 2, we give a detailed outline of the proof of Theorem 1.1. In Section 2.1 we formally define the class of problems we
shall be interested in. In Section 2.2, we outline the properties of the dictatorship test which leads to the proof of Theorem 1.1.
We describe the rounding algorithm and prove its optimality in Section 3. We give all the details of the construction and the
properties of the dictatorship test in Section 4. This requires us to prove some properties of a feasible solution to the LP, which
we describe in Section 4.1. The actual reduction from UGC to a problem in the class k-sm-CSP builds on the construction
of the dictatorship function in a standard manner – we describe this in the appendix (Section 6.5). Finally, we describe our
framework for packing problems in Section 6.6 in the appendix.

2 Proof of Theorem 1.1
In this section we will reduce the task of proving Theorem 1.1 to constructing a dictatorship test. Once we have stated the
claim for the dictatorship test, it would be standard to convert it into a UGC-based hardness result and deduce Theorem 1.1.
The soundness of this dictatorship test, in turn, relies on the rounding algorithm ROUND of Figure 3 which is described in
Section 3. We start with some necessary preliminaries to describe the problems and the LP we will consider for them.

2.1 Preliminiaries
Given distinct x, y ∈ {0, 1}k, we say y � x, if for every i ∈ [k], yi ≥ xi. Further, a subset A ⊆ {0, 1}k is said to be upward
monotone if for every x ∈ A, and every y such that y � x, it follows that y ∈ A.

Definition 2.1 (The class k-sm-CSP). Let k be a positive integer. An instance of type k-sm-CSP is given by

I = (V, E, {Ae}{e∈E}, {wv}v∈V ) where :

– V = {v1, v2, . . . , vn} denotes a set of variables/vertices taking values over {0, 1} along with non-negative weights such
that
∑
v∈V wv = 1.

– E denotes a collection of hyperedges, each on at most k vertices. For each hyperedge e ∈ E, there is a constraint Ae

which is an upward monotone set denoting the set of accepted configurations of the vertices in e.

The objective is to find an assignment Λ : V → {0, 1} for the vertices in V that minimizes
∑
v∈V wvΛ(v) such that for each

e = (v1, v2, . . . , vl), (Λ(v1), . . . ,Λ(vl)) ∈ Ae. A k-sm-CSP Π is given by upward monotone sets {A1, . . . , At}. Every instance of
Π is supposed to have its constraints for the hyperedges to be one of {A1, . . . , At}. For simplicity, we will assume that the size
of each hyperedge is exactly k. Our proofs also hold when hyperedges have size at most k.

Definition 2.2. For a set A ⊆ {0, 1}k, define ConvexHull(A) as the convex hull of elements in A. Note that any element
x ∈ ConvexHull(A) can be expressed as

∑
σ∈A λσ · σ, where λσ can be thought of as giving a probability distribution over

elements of A.

The LP relaxation for k-sm-CSP appears in Figure 2. On an instance I and a feasible solution x to LP(I), we will let val(I, x)
to denote the objective of LP(I). We now show that this indeed is an LP by explicitly writing the constraints (2) as linear
constraints. Consider an edge e = (u1, . . . , uk) ∈ E. We define variables λe

σ, where σ ∈ {0, 1}k and it varies over all elements
of Ae. The constraint (2) can now be written as

(xu1 , xu2 , . . . , xuk ) =
∑
σ∈Ae

λe
σσ

∀σ∈Ae λ
e
σ ≥ 0∑

σ∈Ae

λe
σ = 1.

In the appendix (Section 6.1), we show that for the V C and H V C problems, this LP is at
least as strong as the standard LP relaxations for these problems.
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2.2 Dictatorship Function
We now describe the properties of the dictatorship test. In fact, we prefer to refer to it as a dictatorship function as it takes
some inputs and has an output rather than an acceptance predicate.

Our dictatorship function DΠ
I,x,m(r, δ) takes as input an instance I of a problem Π, a solution x to the LP relaxation

(Figure 2) for this instance, and parameters m, r and δ. r would be the label set size of the U G instance we combine
this dictatorship function with to get the actual reduction for Theorem 1.1 and can be ignored for now. m is an upper bound
on the number of distinct values the entries in the vector x are allowed to take. We will often refer to ε as 1/m−1. δ is a
smoothening parameter, essential for the application of the invariance principle, and can be ignored for now. The dictatorship
function outputs another instanceD of Π. The vertex set V(D) of this instance would be [m]× {0, 1}r and we defer the precise
description of the output instance for Section 4.2. Recall that round(I, x, ε) denotes the value of the rounding algorithm
ROUND(I, x, ε). Even though we will describe the algorithm in the next section, for now, it is sufficient to know that the
algorithm produces an integral solution for I from a feasible solution x to LP(I) after it has perturbed x and made sure that
its variables take at most m distinct values. In particular, round(I, x, ε) ≤ opt(I). Now, we can state the main claim regarding
our dictatorship function.

Lemma 2.3. (Informal Version) The dictatorship function DΠ
I,x,m(r, δ) has the following properties:

1. Completeness: There are r “dictator” assignments to V(D) each of which satisfy all the constraints of D and each
costs at most val(I, x) + δ.

2. Soundness: Every assignment which is “far from being a dictator” assignment and satisfies all the constraints in D
must have cost at least round(I, x, ε) − δ.

We leave the precise definition of “dictator” and “far from being a dictator” for Section 4.2. The proof of this lemma also
appears in Section 4.2. For a fixed instance I, to maximize the gap between val(I, x) and round(I, x, ε) one should use
x = x?, the optimal solution to LP(I). The problem is that, then, we are not guaranteed that the variables in x? takes at most
m distinct values. But this is easy: since the variables take value between 0 and 1, one can just bucket them into bins of width
ε and lose only an additional ε in the completeness in the lemma above. Hence, we can obtain the following corollary.

Corollary 2.4. The dictatorship function DΠ
I,x?,m(r, δ) has the following properties:

1. Completeness: There are r dictator assignments to V(D) each of which satisfy all the constraints of D and each costs
at most lp(I) + ε + δ.

2. Soundness: Every assignment which is “far from being a dictator” assignment and satisfies all the constraints in D
must have cost at least round(I, x?, ε) − δ.

Here x? is the optimal LP solution for I.

The corollary above can be converted to a U G-based hardness result for Π. The following is just a reformulation of
Theorem 1.1 and will be proved formally in Section 6.5.

Theorem 2.5. Let Π be a k-sm-CSP, ε > 0 for k = O(1), and I be an instance of Π. Then for every δ > 0, given an input
instance J of Π, assuming the UGC, it is NP-hard to distinguish between the following:

1. Completeness: opt(J) ≤ lp(I) + ε + δ.

2. Soundness: opt(J) ≥ round(I, x?, ε) − δ.

Here x? is the optimal LP solution for I.

3 The Rounding Algorithm and its Optimality
In this section we describe our rounding algorithm ROUND and prove that it achieves the integrality gap unconditionally.
Theorem 1.1 implies that it is not possible to beat this integrality gap assuming the UGC. Hence, this algorithm is optimal.
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The algorithm. The algorithm will use a parameter ε. We assume without loss of generality that 1/ε is an integer. We first
define a way of perturbing a solution x to LP(I) (Figure 2) such that the number of distinct values the variables of x take is at
most 1/ε + 1.

Definition 3.1. Given an x such that 0 ≤ xu ≤ 1 for all u ∈ V, and a parameter ε > 0, define xε as follows – for each u ∈ V , let
ku be the integer satisfying kuε < xu ≤ (ku + 1)ε, then xεu

def
= (ku + 1)ε (if xu = 0, we define xεu to be 0 as well).

In other words, xε is obtained from x by rounding up each coordinate to the nearest integral multiple of ε (note that this value
will not exceed 1 because 1/ε is an integer). First we observe the following simple fact.

Fact 3.2. Let x be a feasible solution to LP(I). Then

1. xε is feasible for LP(I).

2. val(I, xε) ≤ val(I, x) + ε.

The proof this fact appears in the appendix (Section 6.2).
The algorithm ROUND is described in Figure 3. This algorithm takes as input an instance I, a feasible solution x to LP(I)

and a parameter ε > 0. We denote round(I, x, ε) as the value of the integral solution returned by ROUND(I, x, ε). First, the
algorithm perturbs x to xε to make sure that the number of distinct values taken by the variables in xε is at most m = O(1/ε),
which is to be thought of as a (large) constant. Thus, the variables fall into m buckets and now, the rounding algorithm goes
over all possible assignments to these constantly many buckets and outputs the assignment with the least cost.

The optimality of the rounding algorithm. We quickly observe that ROUND achieves the integrality gap.

Lemma 3.3. Let γ∗(Π) be the worst-case approximation ratio (integrality gap) achieved by the LP relaxation for the problem
Π, i.e., γ∗(Π) def

= supI(opt(I)/lp(I)), where the supremum is taken over all instances I of Π. Then, for any given instance J ,
optimal LP solution x and ε > 0, round(J , x, ε) ≤ γ∗(Π) · (opt(J) + ε).

Proof. Consider an input (J , x, ε) to the algorithm ROUND. We define a new instanceJ ′ of Π as follows: the set of variables
V ′ = {0, . . . , 1/ε + 1} and hyperedge set E′ = {(i1, . . . , ik) | (v1, . . . , vk) ∈ E and xεu j

= i j · ε for all j ∈ [k]}. We take the weight wi

of i ∈ V ′ to be
∑

xεv=iε wv and take constraint Ae′ for an edge e′ ∈ E′ to be the same as Ae for the corresponding edge in e ∈ E.
Then, since ROUND(J , x, ε) searches over all feasible assignments to variables in J ′, we get that round(J , x, ε) = opt(J ′).
Hence, we get

round(J , x, ε) = opt(J ′) ≤ γ∗(Π) · lp(J ′)
Fact 3.2−(2)
≤ γ∗(Π) · (lp(J) + ε) ≤ γ∗(Π) · (opt(J) + ε).

�

I: An instance I = (V, E, {Ae}e∈E , {wv}v∈V ) of a problem in k-sm-CSP, a feasible solution x to LP(I) and a parameter
ε > 0. Let m := 1/ε.

O: A labeling Λ : V → {0, 1}.

1. Construct the solution xε.

2. For every z ∈ {0, 1}m, construct a 0-1 solution Λz as follows : Λz
u

def
= z j if xεu = jε.

3. Output the solution Λz∗ which has the smallest objective value among all feasible solutions in {Λz|z ∈ {0, 1}m}.

Figure 3: Algorithm ROUND
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Deducing the Khot-Regev result. As an application of Theorem 1.1, we prove the result of Khot and Regev [KR08] which
states that assuming UGC, it is NP-hard to get (k − ε)-approximation algorithm for the k-H V C problem
for any constant ε > 0. Consider the following instance I of k-H V C– we are given a set V of size k, and
there is only one hyperedge in E, namely, the set of all vertices in V . The weight of every vertex is 1/k. Consider the solution x
which assigns value 1/k to all variables xu. It is easy to check that it is feasible to our LP relaxation. The value of the solution
x is 1/k. . Let us now see how the algorithm ROUND(I, x, ε), where ε < 1/k, rounds the solution x. All entries in xε will still be
same. Hence, the rounding algorithm will consider only two options – either pick all vertices in V , or do not pick any vertex.
Since the latter case yields an infeasible solution, it will output the set V , which has value 1. Theorem 1.1 now implies that
assuming UGC, it is NP-hard to distinguish between instances of k-H V C where the optimal value is at
most 1/k − 2ε from those where the optimal value is more than 1 − ε. Note that the integrality gap of LP(I) is 1. Still we are
able to argue hardness of k-H V C problem starting from such an instance because the algorithm ROUND
performs poorly on this instance. In this sense, the statement of Theorem 1.1 is stronger than that of Corollary 1.2.

4 Dictatorship Function
In this section we give details of the dictatorship function. The dictatorship function takes as input an instance I of the
problem, a feasible solution x to lp(I) and parameters m, δ and r. The entries in the solution x take at most m distinct values.
The parameter r is related to the label size in the U G instance that is used for the reduction, and can be assumed to
be an arbitrary quantity for this discussion. The output of the dictatorship function is another instanceD of the same problem.
The vertex set of this instance is [m]×{0, 1}r, which we can think of as m blocks. The hyperedges inD are constructed roughly
as follows – for every hyperedge e in the input instance I, we pick r hyperedges from the set Ae by a randomized process.
We use these r hyperedges to construct one hyperedge in D which spans across k suitably chosen blocks in D. The set of
hyperedges inD consist of hyperedges which can be obtained in this manner with strictly positive probability. Note that even
though these probabilities are not explicitly required for the description of D, they are still useful for the soundness analysis
of the dictatorship function.

Given a hyperedge e in the instance I, the probabilities with which we select r edges from Ae are obtained by using the fact
that x is a feasible solution to lp(I). This allows us to express x as a convex combination of elements in Ae and the coefficients
in this convex combination give us the requisite probabilities. The analysis of the dictatorship function uses the invariance
principle, which requires that the minimum non-zero probability of an element in Ae is not too small, and a suitably defined
“correlation graph” is connected. We achieve these two properties by using the parameter δ to “smoothen” the probabilties
obtained from the solution x. We now define these probability distributions and their smoothenings more formally below.

4.1 Probability Distribution from the LP solution
We define the notion of smoothening the distribution obtained by restricted x to a hyperedge e.

Definition 4.1. Let x be a feasible solution to LP(I). For a hyperedge e, let x|e be the vector obtained by restricting x to
only those vertices which belong to e. Px

e shall denote the probability distribution over the vectors in {0, 1}k corresponding
to elements of Ae that arises from the fact that x|e ∈ ConvexHull(Ae). For a parameter δ > 0, define a random function
f δ : {0, 1}k → {0, 1}k which satisfies the following property independently for each i :

f δ(x)i
def
=

{
xi with probability 1 − δ
1 with probability δ

Now define a distribution Mδ(Px
e) over {0, 1}k where

Mδ(Px
e)(z) def

= Ez′, f
[
f (z′) = z

]
,

where z′ is drawn according to distribution Px
e and f from the space of function from {0, 1}k to {0, 1}k as described above.

Remark 4.2. Note that for a hyperedge e, the support of Px
e is a subset of Ae. Since Ae is upward monotone, the same fact

holds for Mδ(Px
e) as well.

Definition 4.3. Let P be a distribution on {0, 1}k. Define margini(P), 1 ≤ i ≤ k as the following distribution on {0, 1}:

margini(P)(b) def
=

∑
b1,...,bi−1,bi+1,...,bk

P(b1, . . . , bi−1, b, bi+1, . . . , bk).
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The following fact, whose proof is easy to check, shows that the marginals of the distributions Px
e and Mδ(Px

e) on a single
coordinate can be easily expressed in terms of x.

Fact 4.4. Let e = (u1, . . . , uk) by a hyperedge in an instance I. Then, Emargini(P
x
e )(b) = xui , and Emargini(Mδ(Px

e ))(b) = (1−δ)xui +δ.

Fact 4.5. For a hyperedge e, let α denote minω{Px
e(ω) : Px

e(ω) > 0}. Then minω{Mδ(Px
e(ω)) : Mδ(Px

e(ω)) > 0} is at least δk · α.

A feasible solution x satisfies the property that (xu1 , . . . , xuk ) can be expressed a convex combination of vectors in Ae for
every e = (u1, . . . , uk) ∈ E. The following lemma shows that under some conditions on x, the non-zero coefficients of this
convex combination are large enough. This shall be useful in our application of the invariance principle. We defer the proof
to appendix (Section 6.3).

Lemma 4.6. Let A be a upward monotone subset of {0, 1}k and let (x1, x2, . . . xk) ∈ ConvexHull(A) such that each xu is an
integral multiple of ε (assume that 1/ε is an integer). Then, there is a distribution P over A such that the minimum probability
of any atom in P is at least ε2k! .

4.2 Description and Properties of the Dictatorship Function
In this section, we first describe the parameters of the dictatorship function and the output instance that it produces. Then we
give a more formal statement of Lemma 2.3 in Lemma 4.9 and Theorem 4.10. We then prove these and hence, complete the
proof of Lemma 2.3 and Corollary 2.4.

Parameters of DΠ
I,x,m(r, δ).

1. Starting Instance. An instance I = (V = {u1, . . . , un}, E, {Ae}e∈E , {wu}u∈V ) of Π.

2. Solution to LP(I). A vector x = (xu1 , . . . , xun ) which is a feasible solution to LP(I).

3. Multiplicity Parameter. m denotes the number of distinct values in the vector x and let p1, . . . , pm denote these distinct
values. Let B : V 7→ {1, 2, . . . ,m} such that B(u) := b whenever xu = pb for some b ∈ {1, . . . ,m}.

4. Smoothening Parameter. δ > 0. For a feasible solution x to LP(I) and for every edge e ∈ E, we use this parameter to
define the distribution Mδ(Px

e). The solution x shall satisfy the conditions of Lemma 4.6, and, hence, Fact 4.5 implies
that the minimum probability of an atom in Mδ(Px

e) is at least δ
kε

2k! .

5. Repetition Parameter. A positive integer r. (r would be the size of the label set of the U G instance to be
used in the hardness reduction.)

The Output Instance. DΠ
I,x,m(r, δ) outputs the following instanceD of Π

1. Vertex Set. The vertex set ofD is V(D) := [m] × {0, 1}r.

2. Weights on Vertices. Let qb
def
= pb(1 − δ) + δ for b ∈ {1, 2, . . . ,m}. The weight of a vertex (b, y) ∈ D,

wD((b, y)) def
= µqb (y)

∑
u∈V |xu=pb

wu.

Note that since,
∑

u∈V wu = 1,
∑
v∈V(D) wD(v) = 1.

3. Hyper-edges and Constraints. The set of constraints in D is the union of every constraint output with positive proba-
bility by the following procedure:

(a) Pick a random hyperedge e = (u1, u2, . . . , uk) from I and let Ae denote the constraint corresponding to it.

(b) Sample r independent copies (z j
u1 , z

j
u2 , . . . , z

j
uk )

r
j=1 from the distribution Mδ(Px

e).

(c) Let the corresponding hyperedge inD be((
B(u1), (z1

u1
, z2

u1
, . . . , zr

u1
)
)
,
(
B(u2), (z1

u2
, z2

u2
, . . . , zr

u2
)
)
, . . . ,

(
B(uk), (z1

uk
, z2

uk
, . . . , zr

uk
)
))

and the constraint corresponding to it be Ae.
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We now define the notions “dictator” and “far from being dictator”, and then give formal statements of Lemma 2.3.

Definition 4.7. A set S ⊆ [m] × {0, 1}r is said to be a dictator if there exists an i ∈ [r] such that S = {(b, z) : zi = 1}.

For a S ⊆ [m] × {0, 1}r, define S b
def
= S ∩ (b, {0, 1}r). Further, define functions f S

b : {0, 1}r 7→ {0, 1} to be the indicator function
of the complement of S b. We refer to a subset of vertices of D of the form (b, {0, 1}r) as the hypercube corresponding to b.
For 0 ≤ q ≤ 1, let z←µq denote a string drawn from the q-biased distribution on {0, 1}r. Given i ∈ [r], b ∈ [m], the degree
d-influence of the i-th coordinate of f S

b , Inf≤d
i ( f S

b ) with respect to the measure µq is defined in Section 6.4.1.

Definition 4.8. Given τ, d ≥ 0, a set S ⊆ [m]× {0, 1}r is said to be (τ, d)-pseudo-random if for every b ∈ [m] and every i ∈ [r],
Inf≤d

i ( f S
b ) ≤ τ.

Now we state the completeness and soundness properties of the dictatorship function.

Lemma 4.9. (Completeness.) Suppose S ⊆ [m] × {0, 1}r is a dictator. Then S satisfies all the constraints of D and wD(S ) ≤
val(I, x) + δ.

Observe that if we take the optimal solution x? of lp(I) and use the corresponding perturbed solution xε as input to the
dictatorship function, then Lemma 4.9 combined with Fact 3.2 implies the first statement in Corollary 2.4.

Theorem 4.10. (Soundness.) For every δ > 0, there exists a d, τ such that if S ⊆ [m]× {0, 1}r satisfies all the constraints ofD
and is (τ, d)-pseudo-random, then

wD(S ) ≥ round(I, x, ε) − δ.

The construction of the dictatorship function can be extended to give a reduction from U G to a problem in the
class k-sm-CSP. The completeness and soundness of the dictatorship function translate to that for the reduction, which allows
us to prove Theorem 2.5. We describe this reduction in the appendix (Section 6.5).

Proofs of Completeness and Soundness Properties Now we give proofs of Lemma 4.9 and Theorem 4.10.

Proof of Lemma 4.9. Let i be such that S = {(b, z) : zi = 1}. For any hyperedge e ∈ E, recall that the support of Mδ(Px
e)

is a subset of Ae. Hence, any (zu1 , zu2 , . . . , zuk ) ← Mδ(Px
e) always satisfies the constraint Ae. Thus, the set S satisfies every

constraint of the instanceD. The total weight of the set S is

wD(S ) =
∑

b∈[m]

∑
z|zi=1

µqb (z)
∑

u|xu=pb

wu =
∑

b∈[m]

qb

∑
u|xu=pb

wu =
∑

u

wuxu(1 − δ) + δ ≤ val(I, x) + δ.

�

We now prove the soundness of the dictatorship test. The crux of the proof is to show that given a subset S ⊆ [m] × {0, 1}r

satisfying all the constraints in D, one can find a subset J ⊆ [m] such that TJ
def
= ∪b∈J(b, {0, 1}r) satisfies all the constraints in

D and wD(TJ) ≤ wD(S ) + δ.
Proof of Theorem 4.10. Define

J def
=

{
b | E

z←µqb

f S
b (z) ≤ δ

}
.

Fix a particular hyperedge e = (u1, u2, . . . , uk) ∈ E of the instance I. Let

Re
def
= {ui ∈ e |B(ui) < J}.

We will deduce the following fact from the Invariance Principle of Mossel [Mos08]. We give a detailed description of
the invariance principle in the appendix (Section 6.4.1). The proof of the following fact is also deferred to the appendix
(Section 6.4).

Fact 4.11.
E
[
Πu∈Re f S

B(u)(z
(u))
]
> 0.
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In the expectation above, the argument z(u) of f S
B(u) is chosen with the qB(u)-biased measure on {0, 1}r independently for each

u ∈ Re. Since f S
b ∈ {0, 1} and, in particular non-negative, for each b ∈ [m], this fact implies that there is a hyperedge inD that

queries the hypercubes corresponding to (u1, u2, . . . , uk) at z(u1), . . . , z(uk) respectively such that for every u ∈ Re, f S
B(u)(z

(u)) = 1.
Since f S

b is the indicator of the complement of S b, this means that the constraint was satisfied solely by the hypercubes in J.
Thus, all the constraints ofD would also be satisfied by the set TJ . Note that since TJ selects hypercubes that are already 1− δ
fraction covered by S , wD(TJ) ≤ wD(S ) + δ.

Further, since TJ either completely chooses a particular hypercube or completely ignores it, this corresponds to one of
the assignments that the rounding algorithm iterates through on the input (I, x, ε). This implies that round(I, x, ε) is at most
wD(TJ). This completes the proof of the theorem. �
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6 Appendix

6.1 Comparison of our LP with standard LP’s for V C and H V C
We compare the LP relaxation of Figure 2 to the standard LP’s for the V C and k-H V C
problems. For the V C problem, the two LP’s are equivalent. Fix an instance I of the V C problem. For
an edge e = uv, the set Ae = {(0, 1), (1, 0), (1, 1)}. Hence, an element of ConvexHull(Ae) can be written as λ1(0, 1)+λ2(1, 0)+
λ3(1, 1) = (λ2 + λ3, λ1 + λ3), where λi ≥ 0 for i = 1, 2, 3 and

∑3
i=1 λi = 1. Now, xu = λ2 + λ3, xv = λ1 + λ3 implies that

xu + xv ≥ 1. Conversely, it is easy to check that given values xu, xv ≥ 0 such that xu + xv ≥ 1, one can find corresponding λi

values. Thus, the standard LP and our LP for V C problem are equivalent.
We now show that the LP of Figure 2 is stronger than the usual LP relaxation for k-H V C. An

instance of k-H V C is specified by a ground set V and a set E ⊆ Vk. Each vertex u ∈ V has weight wu

and the goal is to find a minimum weight subset of V which contains at least one element from each hyperedge in E. The
usual LP for k-H V C is written as follows :

minimize
∑
v∈V

wvxv (4)

subject to ∀e=u1,u2,...,uk∈E xu1 + · · · + xuk ≥ 1 (5)
∀v∈V xv ≥ 0 (6)

The set Ae for this problem contains all the elements of {0, 1}k except the all zero vector (0, . . . , 0). An element (xu1 , . . . , xuk ) ∈
Ae has the property that xu1 + · · · + xuk ≥ 1 and so the same holds for any element in ConvexHull(Ae). Hence, constraints (2)
imply constraints (5).

6.2 Details of Section 3
We prove Fact 3.2 which we restate below.

Fact 6.1. Let x be a feasible solution to LP(I). Then

1. xε is feasible for LP(I).

2. val(I, xε) ≤ val(I, x) + ε.

Proof. We first prove the first statement. It is enough to prove this for x′ where x′ differs from x on only one coordinate u. Fix
an edge e = (u1, . . . , uk) and without loss of generality assume that u = u1. Let λσ, σ ∈ Ae be the coefficients in the convex
combination of vectors in Ae which yield (xu1 , . . . , xuk ). Let A′e be the set of σ for which σ1 = 0.

For each σ ∈ A′e, define m(σ) as vector which is same as σ except that σ′1 = 1. Clearly, m(σ) ∈ Ae as well. Now consider
the vector

∑
σ<A′e λσσ +

∑
σ∈A′e λσm(σ). This is equal to (1, xu2 , . . . , xuk ). Thus, we have shown that the vector x′′ which is

identical to x except that x′′u = 1 is feasible to LP(I). Now note that x′ is a convex combination of x and x′′. Hence, the claim
follows.

We now prove the second statement. Since xεu ≤ xu + ε, we get that

val(I, xε) =
∑

u

wuxεu ≤
∑

u

wuxu + ε
∑

u

wu = val(I, x) + ε.

�
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6.3 Details of Section 4.1
We prove Lemma 4.6 which is restated below.

Lemma 6.2. Let A be a upward monotone subset of {0, 1}k and let (x1, x2, . . . xk) ∈ ConvexHull(A) such that each xu is an
integral multiple of ε (assume that 1/ε is an integer). Then, there is a distribution P over A such that the minimum probability
of any atom in P is at least ε2k! .

Proof. We define a variable λσ for every σ ∈ Ae. We want to find a solution to the following :

∀ j∈{1,...,k}

∑
σ∈Ae

λσσu j = xu j (7)∑
σ∈Ae

λσ = 1 (8)

∀σ∈Ae λσ ≥ 0 (9)

We know that there is a feasible solution to this set of constraints. A vertex solution corresponds to the unique solution
obtained by subset of the constraints (where inequality is replaced by equality). For a such a system of equations, A · λ = b,
we observe that all entries in A are 0-1 and all entries in b are integral multiples of ε. The determinant of A is at most 2k!. The
value of λσ (by Cramer’s rule) is the ratio of determinants of two matrices – the matrix A with one of the columns replaced
by b, and the matrix A. Since each entry of b is a multiple of ε, it is easy to check that the determinant of the former matrix is
either 0 or at least ε. This implies the lemma. �

6.4 Details of Dictatorship Function (Section 4.2)
We give a brief introduction to the invariance principle in this section. Then we complete the soundness analysis (Theo-
rem 4.10) of the dictatorship function by giving proof of Fact 4.11.

6.4.1 Gaussian Spaces and Mossel’s Invariance Principle

Measure Spaces. We will be concerned with real valued functions in two measures spaces.

1. p-biased measure space. For p ∈ [0, 1], the p-biased measure on {0, 1}r is denoted by µp where for x = (x1, . . . , xr) ∈

{0, 1}r, µp(x) def
= p|{i:xi=1}|(1−p)|{i:xi=0}|. For f , g : {0, 1} 7→ R, define the following inner product: 〈 f , g〉p := Ex←µp [ f (x)g(x)].

2. Gaussian measure space. We will denote by γ as the Gaussian measure on Rr with density γ(x) def
= (2π)−r/2e−‖x‖

2/2 for
x ∈ Rr. For a function f : Rr 7→ Rwe will denote by Eγ[ f ] def

=
∫
Rr f (x)γ(x)dx.We will restrict ourselves to f ∈ L2(Rr, γ),

i.e., f such that Eγ[ f 2] < ∞. For f , g : Rr 7→ R, define the following inner product: 〈 f , g〉γ := Ex←γ[ f (x)g(x)].

Gaussian stability. For ρ ∈ [−1, 1], we denote by Uρ the Ornstein-Uhlenbeck operator Uρ which acts on L2(Rr, γ) as

Uρ f (x) def
= Ey←γ[ f (ρx +

√
1 − ρ2y)]. It is easy to see that Eγ[Uρ f ] = Eγ[ f ]. For 0 ≤ µ ≤ 1, let Fµ : R 7→ {0, 1} denote the

function Fµ(x) = 1{x<t}, where t is chosen is a way such that Eγ[Fµ] = µ.

Definition 6.3. Given µ, ν ∈ [0, 1] and ρ ∈ [−1, 1] define

Γρ(µ, ν)
def
= 〈Fµ,Uρ(1 − F1−ν)〉γ.

For a vector (ρ1, ρ2, . . . , ρk−1) ∈ [−1, 1]k−1 and µ1, µ2, . . . , µk we recursively define

Γ(ρ1,ρ2,...,ρk−1)(µ1, µ2, . . . , µk) def
= Γρ1 (µ1,Γ(ρ2,...,ρk−1)(µ2, . . . , µk)).

When the ρi are all equal to ρ, and the µi are all equal to µ, we will use Γk
ρ(µ) to denote the term on left hand side above.

We will also need the following simple facts.

Fact 6.4. For every θ ∈ (0, 1) and ρ = 1 − λ ∈ (0, 1), Γρ(θ, θ) ≥ θ
1/λ.

We use the above fact iteratively to obtain the following bound.

Fact 6.5. For every θ ∈ (0, 1) and ρ = 1 − λ ∈ (0, 1), Γk
ρ(θ) ≥ θ

1/λk .
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Product Spaces and Influences. Let (Ω1, µ1), . . . , (Ωr, µr) be probability spaces and let (Ω, µ) denote the product space
(
∏r

i=1Ω
i,
∏r

i=1 µi). Let f = ( f1, . . . , fk) : Ω 7→ Rk. The influence of the i-th coordinate on f is defined as

Infi( f ) def
=
∑

1≤ j≤k

E
x=(x1,...,xr)←µ

[Varµi [ f j(x)|x1, . . . , xi−1, xi+1, . . . , xr]].

Here, fixing (x1, . . . , xi−1) and (x j+1, . . . , xr), f j(x) is just a function of xi, call it g. Hence, the variance Varµi [g]
def
= Eµi [g

2] −
(Eµi [g])

2. When Ω1 = · · · = Ωr and f is a boolean function, let { f̂S : S ⊆ {0, 1}r} denote the Fourier coefficients of f with
respect to the product measure µ. Define the degree-d influence of the i-th coordinate on f , Inf≤d

i ( f ), as
∑

S :i∈S ,|S |≤d f̂ 2
S .

Correlated Spaces. We now consider a correlated space P on Ω1× Ω2× · · · × Ωk with a probability measure µ. A function
f : Ω1× Ω2× · · · × Ωk 7→ R is in L2(P) if Ex←µ[ f 2(x)] < ∞.We consider L2(P) as a vector space over the reals of all functions

in L2(P) where addition of two functions is defined as point-wise addition. We denote by Varµ[ f ] def
= Eµ[ f 2] − (Eµ[ f ])2, and

Cov[ f , g] def
= Eµ[ fg] − Eµ[ f ] Eµ[g].

Definition 6.6. For any two linear subspaces A and B of L2(P), we define the correlation between A and B by

ρ(A, B; P) def
= sup{Cov[ f , g] : f ∈ A, g ∈ B,Var[ f ] = Var[g] = 1}.

Now we can define the correlation, ρ(P) of a correlated space P over Ω1× Ω2× · · · × Ωk.

Definition 6.7 (Correlation). The correlation ρ(P) of a space P over Ω1× Ω2× · · · × Ωk is defined as

ρ(P) def
=

k
max

j=1

{
ρ(Ω1 × · · · ×Ω j−1 ×Ω j+1 × · · · ×Ωk,Ω j; P)

}
.

We will use the following theorems in [Mos08].

Theorem 6.8 (Cheeger’s Inequality). [Mos08] Let (Ω1 × Ω2, P) be two correlated spaces such that the probability of the
smallest atom in Ω1 ×Ω2 is at least α > 0. Define a bipartite graph G = (Ω1,Ω2, E) where (a, b) ∈ Ω1 ×Ω2 satisfies (a, b) ∈ E
if P(a, b) > 0. Then if G is connected then

ρ(Ω1,Ω2; P) ≤ 1 − α2/2.

Theorem 6.9 (Invariance Principle). [Mos08] Let (
∏k

j=1Ω
j
i , Pi), 1 ≤ i ≤ r be a sequence of correlated probability spaces

such that for all 1 ≤ i ≤ r the minimum probability of any atom in
∏k

j=1Ω
j
i is at least α. Assume furthermore that there exists

ρ ∈ [0, 1]k−1 and 0 ≤ ρ0 < 1 such that ρ(Ω1
i , . . . ,Ω

k
i ; Pi) ≤ ρ0 and ρ(Ω{1,..., j}i ,Ω

{ j+1,...,k}
i ; Pi) ≤ ρ j for all i, j. Then for all η > 0

there exists τ > 0 such that if f j :
∏r

i=1Ω
j
i → [0, 1]. for 1 ≤ j ≤ k satisfy maxi, j(Infi( f j)) ≤ τ then

Γρ(E[ f1], . . . ,E[ fk]) − η ≤ E

 k∏
j=1

f j

 . (10)

One may take τ = ηO
(

log(1/η) log(1/α)
(1−ρ)η

)
.

6.4.2 Completing the soundness proof of dictatorship function

We now give the proof of Fact 4.11 which will complete the proof of Theorem 4.10. We first state the statement of this Fact
below.

Fact 6.10.
E
[
Πu∈Re f S

B(u)(z
(u))
]
> 0.

Proof. Let α def
= δkε

2k! and Qe
def
= Mδ(Px

e). We know that the minimum probability of any atom in Qe is at least α. Using
Lemma 6.11 proved below, we have that the correlated space induced by Qe on Re has correlation at most 1 − α2. Finally,
using Fact 6.5, we know that the quantity Γ(ρ,...,ρ)(δ, . . . , δ) is at least δ1/αk def

= β. Thus, using Theorem 6.9 with η = β/2, we
obtain τ = τ(η) and d = d(η) such that if for every i, Inf≤d

i ( f S
b ) ≤ τ, then

E
[
Πu∈Re f S

B(u)

]
≥ β − β/2 ≥ β/2 > 0.

�
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It remains to prove the following lemma.

Lemma 6.11. Consider an edge e = (u1, u2, . . . , uk) ∈ E. LetΩi denote the set {0, 1}, i = 1, . . . , k. Let S 1, S 2 be two non-empty
disjoint subsets of {u1, u2, . . . , uk}. Then the correlated space induced by Qe on (×i∈S 1Ω

i) × (×i′∈S 2Ω
i′ ) has correlation at most

1 −
(
δkε
2k!

)2
.

Proof. Let U denote the set S 1 ∪ S 2. Let QS 1
e ,Q

S 2
e ,QU

e be the distributions obtained by restricting Qe to S 1, S 2 and U
respectively. Let ΩS 1 denote the elements in × j∈S 1Ω

j with non-zero probabilites associated by QS 1
e . Define ΩS 2 similarly.

Construct a bipartite graph on ΩS 1 × ΩS 2 where we have an edge (a, b) if QU
e ((a, b)) > 0. We now argue that this graph is

connected. Indeed, let a ∈ ΩS 1 and b ∈ ΩS 2 . Since QS 1
e (a) > 0, (a, 1) is an edge in this graph, where 1 is the all 1 vector of the

appropriate dimension. Similarly, (1, b) and (1, 1) are edges in this graph. It follows that the vertices a and b are connected.
Note that for every edge (a, b) in this graph, QU

e ((a, b)) ≥ δ
kε

2k! . We now invoke Lemma 6.8 to finish the proof. �

6.5 The Reduction
In this section, we give the reduction from U G to a problem Π in the class k-sm-CSP. We first state the version of
UGC on which our results rely.

Definition 6.12 (U G). An instance U = (G(U, A), [r], {πe}e∈A,wt) of U G is defined as follows: G =
(U, A) is a bipartite graph with set of vertices U = Uleft ∪ Uright and a set of edges A. For every e = (v, w) ∈ E with v ∈ Uleft, w ∈
Uright, there is a bijection πe : [r] 7→ [r], and a weight wt(e) ∈ R≥0.We assume that

∑
e∈E wt(e) = 1. The goal is to assign one

label to every vertex of the graph from the set [r] which maximizes the weight of the edges satisfied. A labeling Λ : U 7→ [r]
satisfies an edge e = (v, w), if Λ(w) = πe(Λ(v)).

The following notations will be used in the hardness reduction and we state them here.

Notations.

1. For a vertex v ∈ U, Γ(v) is the set of edges incident to v.

2. For a vertex v ∈ U, define pv
def
=
∑

e∈Γ(v) wt(e). This gives a probability distribution over the vertices in Uleft (or Uright).

We now state the Strong -UGC which was shown by Khot and Regev [KR08] to be equivalent to the UGC [Kho02].

Conjecture 6.13 (Strong UGC). For every pair of constants η, ζ > 0, there exists a sufficiently large constant r := r(η, ζ),
such that it is NP-hard to distinguish between the following cases for an instance U = (G(U, A), [r], {πe}e∈A,wt) of U
G:

– YES: There is a labeling Λ and a set U0 ⊆ Uleft of vertices,
∑

u∈U0
pu ≥ (1 − η), such that Λ satisfies all edges incident

to U0.

– NO: There is no labeling which satisfies a set of edges of total weight value more than ζ.

Now we describe the reduction from U G instance to our problem. The reduction shall use the instance D of Π
produced by DΠ

I,x,m(r, δ). Here x is the ε-perturbed solution corresponding to an optimal solution x? to lp(I).
Input Instance : The input to the reduction is an instanceU = (G(U, A), [r], {πe}e∈A,wt) of U G problem as defined
in Definition 6.12. Recall that G is a bipartite graph with U = Uleft ∪ Uright, and the edge weights wt induce probability
distribution pv over vertices in Uleft.
Output Instance : The output instance F of Π is as follows :

1 Vertex Set V(F ) = Uleft ×V(D), i.e., we place a copy of V(D) at each vertex of Uleft. We shall index a vertex by (u, b, y)
where u ∈ Uleft and (b, y) ∈ V(D).

2 Vertex Weights The weight of a vertex (u, b, y) is

wF ((u, b, y)) = pu · wD((b, y)).

3 Hyper-edges For every hyperedge e =
(
(b1, y1), (b2, y2), . . . , (bk, yk)

)
inD, we add the following edges to F – for each

vertex u ∈ Uright and all sets of k neighbors, u1, . . . , uk (with repetition) of u, we add the hyperedge(
(u1, b1, y1 ◦ πu

(u,u1)), . . . , (u
k, bk, yk ◦ πu

(u,uk))
)

to F . The constraint for the these edges is the same as that for e.
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Completeness.

Theorem 6.14. Suppose there is a labeling λ for U and a subset U0 of Uleft,
∑
v∈U0

pv ≥ 1 − η, such that λ satisfies all
edges incident on U0. Then there is a subset of vertices in F which satisfy all the constraints in F and has weight at most
lp(I) + δ + ε + η.

Proof. Consider the labeling λ. We now show how to pick a set F of vertices from V(F ) which satisfies all the hyperedge
constraints. For each u ∈ U0, define Ju as {(u, b, y) ∈ V(F ) : yλu = 1}. For each u ∈ Uleft − U0, define J′u as the set
{(u′, b′, y′) ∈ V(F ) : u′ = u}. Now define F = ∪u∈U0 Ju

⋃
∪u∈Uleft−U0 J′u.

We now show that F satisfies all hyperedge constraints. Fix a hyperedge e =
(
(b1, y1), . . . , (bk, yk)

)
in D. Let u ∈ Uright

and u1, . . . , uk be k neighbors of u. Consider a corresponding edge f =
(
(u1, b1, y1 ◦ πu

(u,u1)), . . . , (u
k, bk, yk ◦ πu

(u,uk))
)

in F .
Lemma 4.9 shows that the set Ci = {(b, z) : zi = 1} satisfies the edge constraint for e for any i. Let us pick i = λu. It will be
enough to prove that if (bl, yl) satisfies yl

i = 1, then the vertex w = (ul, bl, yl ◦ πu
(u,ul)) is in F. But this is indeed the case because

if ul ∈ U0, then λu = π
u
(u,ul)(λul ). Therefore, yl ◦ πu

(u,ul) has coordinate λul equal to 1. Hence, w ∈ Jl
u. If ul ∈ Uleft − U0, then we

add w ∈ J′ul trivially. Thus, we have shown that F satsifies the edge constraint for the hyperedge f .
Let us now compute the weight of F. If u ∈ U0, then Lemma 4.9 and Fact 3.2 show that the weight of Ju is at most

pu · (lp(I) + ε + δ). If u < U0, then the weight of J′u is pu. Thus, the weight of F is at most

(lp(I) + δ + ε)
∑
u∈U0

pu +
∑
u<U0

pu ≤ lp(I) + δ + ε + η.

�

Soundness.

Theorem 6.15. Suppose there is a subset of vertices F which satisfies all the constraints in F and wF (F) < round(I, x?, ε)−
2δ. Then there is a constant ζ(ε, δ, k) such that there is a labeling forU for which the set of satisfied edges has weight at least
ζ(ε, δ, k).

Proof. Consider a set F satisfying the conditions of the theorem. Let IF(·) be the indicator function for F. For a vertex
u ∈ Uright, let N(u) ⊆ Uleft denote the neighbors of u. Recall that every vertex of F can be written as (w, z), where w ∈ Uleft and
z ∈ V(D). Since the distribution {pw}w∈Uleft is same as first picking a vertex u ∈ Uright with probability pu and then picking a
random neighbor of u (according to edge weights), we get

wF (F) = Eu∈Uright Ew∈N(u)Ez∈V(D)IF((w, z ◦ πu
(u,w))),

where z is picked according to vertex weights inD. For a vertex u ∈ Uright, let G(u) denote the quantity Ew∈N(u) Ez∈V(D) IF((w, z◦
πu

(u,w))).
We can therefore state the condition of the Theorem as Eu∈Uright G(u) < round(I, x?, ε)− 2δ. Call a vertex u ∈ Uright good if

G(u) < round(I, x?, ε) − δ. A simple averaging argument shows that the weight of good vertices is at least δ/2.
Fix a good vertex u. Let D(u) be a copy of the instance D. We construct a solution S (u) for D(u) as follows : for each

(b, y) ∈ V(D(u)), we pick a random neighbor ui of u according to edge weights wt in the instance U. If (ui, b, y ◦ πu
(u,ui)) ∈ F,

we add (b, y) to S (u).

Claim 6.16. S (u) satisfies all the constraints inD(u).

Proof. Let e =
(
(b1, y1), . . . , (bk, yk)

)
be a hyperedge inD(u). Suppose while constructing the set S (u), we decide to add (bi, yi)

to this set based on whether (ui, bi, yi ◦ πu
(u,ui)) ∈ F. Now observe that the instance F has the hyperedge(

(u1, b1, y1 ◦ πu
(u,u1)), . . . , (u

k, bk, yk ◦ πu
(u,uk))

)
. Since this hyperedge is satisfied by F, the claim follows. �

Note that E[S (u)] is exactly G(u), where the expectation is over the choice of random neighbors of u. For each vertex
w ∈ Uleft and b ∈ [m], define a 0-1 function f F,w

b on {0, 1}r as follows –

f F,w
b (y) def

=

{
1 if (w, b, y) < F
0 otherwise

15



Note that f F,w
b is the indicator function for complement of F for the set of vertices {(w, b, y) : y ∈ {0, 1}r}. For the vertex u, we

now define the function f F,u
b (y) which is the average of the corresponding functions for the neighbours of u.

f F,u
b (y) def

= E
w∈N(u)

f F,w
b

(
y ◦ πu

(u,w)

)
.

Observe that f F,u
b (y) = P[(u, b, y) < S (u)], where the probability is over the choice of S (u). Rest of the proof is very similar to

the proof of Theorem 4.10 – the goal would be to prove the following statement :

Lemma 6.17. There exist values b ∈ [m], i ∈ [r] and constants d, τ depending on δ and k only such that Inf≤d
i ( f F,u

b ) ≥ τ.

Proof. Let τ and d be as in the proof of Fact 4.11. Suppose, for the sake of contradiction, that the statement of the lemma
does not hold for these values of τ and d. Define

J(u) def
=

{
b | E

z←µqb

f F,u
b (z) ≤ δ

}
.

Let T (u)
J

def
= ∪b∈J(u) (b, {0, 1}r). Fix a particular hyperedge e = (a1, a2, . . . , ak) ∈ E of the instance I (which gets used in

DΠ
I,x,m(r, δ)). Let

R(u)
e

def
= {ai ∈ e |B(ai) < J(u)}.

The following fact can be deduced in the same manner as the proof of Theorem 4.11.

Fact 6.18.
EΠa∈R(u)

e
f F,u
B(a)(z

(a)) > 0,

where the expectation is over the choice of z(a) from qB(a)-biased measure on {0, 1}r.

Fact 6.18 implies that there exist neighbors ua ∈ N(u) for each a ∈ R(u)
e such that

EΠa∈R(u)
e

f F,ua

B(a) (z(a) ◦ πu
(u,ua)) > 0.

Therefore, there exist values {z(a) : a ∈ R(u)
e }, such that f F,ua

B(a) (z(a) ◦ πu
(u,ua)) = 1 for all a ∈ R(u)

e . But then consider the following
choice of S (u) : while considering (B(a), z(a)), we pick the neighbor ua of u. Therefore, the set S (u) does not contain any
element from the set {(B(a), z(a) : a ∈ R(u)

e }. The set S (u) still satisfies all the constraints in D(u) (Lemma 6.16). Hence, there
exists a hyperedge

(
(b1, z1), . . . , (bk, zk)

)
in Du corresponding to e which gets satisfied by T (u)

J only. Thus, all hyperedges in

D(u) are satisfied by T (u)
J . But wD(T (u)

j ) ≥ round(I, x?, ε). Further, we know that

EwD(S (u)) = G(u) ≥ wD(T (u)
J ) − δ.

This contradicts the fact that EwD(u) S (u) < round(I, x?, ε) − δ. Hence, the lemma is true. �

The rest of the argument to complete the theorem follows standard arguments, see e.g. [Rag08]. �

Choice of Parameters and Proof of Theorem 1.1 Given parameters ε and δ, and a constant value k, we first pick η according
to the proof of Fact 4.11 described in Section 6.4.2. The parameter η can be assumed to be much less than δ (otherwise we can
just set η to be δ). This yields the parameters τ and d as specified by Lemma 6.17. Then, as in [Rag08], ζ(ε, δ, k) mentioned
in the statement of Theorem 6.15 depends on τ, d, δ, and hence, on ε, δ and k only. Now we pick the label size r of the U
G instanceU to be large enough such that we get a gap of 1 − (η + ε + δ) versus ζ in the UGC. Theorems 6.14 and 6.15
now imply Theorem 1.1 if we pick the values δ and ε in the reduction to be half of the ones mentioned in the theorem.
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6.6 Strict Monotone Packing Constraint Satisfaction Problems
In this section, we show how our results can be framed in the setting of packing problems. We begin by defining the notion of
downward monotone sets, and then show how this can be used to define analogous packing problems.
Given distinct x, y ∈ {0, 1}k, we say y � x, if for every i ∈ [k], yi ≤ xi. Further, a subset A ⊆ {0, 1}k is said to be downward
monotone if for every x ∈ A, and every y such that y � x, it follows that y ∈ A.

Definition 6.19 (The class Packing-k-sm-CSP). Let k be a positive integer. An instance of type Packing-k-sm-CSP is given
by

I = (V, E, {Ae}{e∈E}, {wv}v∈V )

where:

– V = {v1, v2, . . . , vn} denotes a set of variables/vertices taking values over {0, 1} along with non-negative weights such
that
∑

i∈V wi = 1.

– E ⊆ Vk denotes a collection of hyperedges, each on at most k vertices. For each hyperedge e ∈ E, there is a constraint
Ae which is a downward monotone set denoting the set of accepted configurations of the vertices in e.

The objective is to find an assignment Λ : V → {0, 1} for the vertices in V that maximizes∑
v∈V

wvΛ(v)

such that for each e = (v1, v2, . . . , vk), (Λ(v1), . . . ,Λ(vk)) ∈ Ae.

Definition 6.20 (A Packing-k-sm-CSP Problem). A Packing-k-sm-CSP problem Π is given by downward monotone sets
{A1, . . . , At}. Every instance of Π is supposed to have its constraints for the hyperedges to be one of {A1, . . . , At}.

As in the case of k-sm-CSP, we can also define an analogous LP relaxation for any problem in the class Packing-k-sm-
CSP. The LP is given in Figure 4. As before, for an instance I, let lp(I) denote the optimum of the LP of Figure 4 for I. Also,

lp(I) def
= maximize

∑
v∈V

wvxv (11)

subject to ∀e=(v1,v2,...,vk)∈E (xv1 , xv2 , . . . , xvk ) ∈ ConvexHull(Ae) (12)
∀v∈V 0 ≤ xv ≤ 1 (13)

Figure 4: LP for Packing-k-sm-CSP

let opt(I) denote the value of the optimal integral solution for I. As we argued for the (covering) k-sm-CSP, the program
above can indeed be written as an LP. Also, for the I S and H I S problems, the LP above
happens to be at least as strong as the natural LP’s for these problems.

Main Theorem for Packing-k-sm-CSP. We now state the analogue of Theorem 1.1 for Packing-k-sm-CSP. We shall
describe a rounding algorithm, ROUND-PACK for the LP of Figure 4. For an instance I of Π we first compute x?, the
optimal LP-solution for I. For a Packing-k-sm-CSP Π and a parameter ε > 0, let ROUND-PACK(I, x?, ε) denote the value
of ROUND-PACK. The following theorem shows that, assuming the UGC, the rounding algorithm essentially gives the best
approximation algorithm for Π.

Theorem 6.21. Let Π be a Packing-k-sm-CSP, ε > 0, and I be an instance of Π. Then for every δ > 0, assuming the
UGC, it is NP-hard to distinguish instances of Π with optimal more than lp(I) − ε − δ from those with optimal less than
ROUND-PACK(I, x?, ε) + δ. Here x? is the optimal LP solution for I.
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The Rounding Algorithm We now describe the rounding algorithm ROUND-PACK. We first define the notion of discretiz-
ing a solution x as in Definition 3.1. We assume without loss of generality that the parameter ε satisfies the condition that 1/ε
is an integer.

Definition 6.22. Given a feasible solution x to LP(I) and a parameter ε > 0, define xε as follows – for each u ∈ V , let ku be
the integer satisfying kuε ≤ xu < (ku + 1)ε.

The rounding algorithm is described in Figure 5.

I: An instance I = (V, E, {Ae}e∈E , {wv}v∈V ) of a problem in Packing-k-sm-CSP, a feasible solution x to LP(I) and a
parameter ε > 0. Let m := 1/ε.

O: A labeling Λ : V → {0, 1}.

1. Construct the solution xε.

2. For every z ∈ {0, 1}m, construct a 0-1 solution Λz as follows : Λz
u

def
= z j if xεu = jε.

3. Output the solution Λz∗ which has the largest objective value among all feasible solutions in {Λz|z ∈ {0, 1}m}.

Figure 5: Algorithm ROUND-PACK
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