
O  O   C  LP- A ∗

Amit Kumar† Rajsekar Manokaran‡ Madhur Tulsiani§ Nisheeth K. Vishnoi ¶

Abstract

In this paper we will be concerned with a class of packing and covering problems which includes V
C and I S. Typically, one can write an LP relaxation and then round the solution. For
instance, for V C one can obtain a 2-approximation via this approach. On the other hand, Khot
and Regev [KR08] proved that, assuming the Unique Games Conjecture (UGC), it is NP-hard to approximate
V C to within a factor better than 2 − ε for any constant ε > 0. From their, and subsequent proofs of
this result, it was not clear why this LP relaxation should be optimal.

The situation was akin to M C, where a natural SDP relaxation for it was proved by Khot et al.
[KKMO07] to be optimal assuming the UGC. A beautiful result of Raghavendra [Rag08] explains why the
SDP is optimal (assuming the UGC). Moreover, his result generalizes to a large class of constraint satisfaction
problems (CSPs). Unfortunately, we do not know how to extend his framework so that it applies for problems
such as V C where the constraints are strict.

In this paper, we explain why the simple LP-based rounding algorithm for the V C problem is
optimal assuming the UGC. Complementing Raghavendra’s result, our result generalizes to a class of strict,
covering/packing type CSPs. We first write down a natural LP relaxation for this class of problems and present
a simple rounding algorithm for it. The key ingredient, then, is a dictatorship test, which is parametrized by a
rounding-gap example for this LP, whose completeness and soundness are the LP-value and the rounded value
respectively.

To the best of our knowledge, ours is the first result which proves the optimality of LP-based rounding
algorithms systematically.

∗This work was done while the authors were at Microsoft Research India, Bangalore
†Dept. of Computer Science and Engineering, IIT Delhi, New Delhi, email: amitk@cse.iitd.ac.in
‡Department of Computer Science, Princeton University, email: rajsekar@cs.princeton.edu. Supported by NSF grants 0830673,

0832797, 528414
§Institute for Advanced Study, Princeton, email: madhurt@cs.berkeley.edu. Supported by NSF grant 0832797 and IAS sub-contract

no. 00001583.
¶Microsoft Research India, Bangalore, email: nisheeth.vishnoi@gmail.com

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 124 (2009)

1 Introduction

In this paper we will be interested in a class of packing and covering problems. The class of covering problems
we study (packing problems can be defined similarly) contains the set of problems characterized by the following
integer program: given non-negative A ∈ Rm×n, b ∈ Rm, c ∈ Rn, the goal is to find a vector x ∈ {0, . . . , q − 1}n such
that Ax ≥ b which minimizes

∑
i cixi. In addition, each row of A has at most k non-zero entries and k and q are

assumed to be constants. We will show that, assuming the Unique Games Conjecture, a natural linear programming
relaxation (not the naive one) for such a problem, along with a simple rounding scheme, is the best one can hope
for algorithmically. We start with a classic covering problem that falls in this class: the minimum vertex cover
problem (V C). The equivalent packing problem is the maximum independent set problem (I
S).

Vertex Cover. In the V C problem, one is given a graph G(V, E) with non-negative weights {wv}v∈V for
the vertices and the goal is to find a subset of minimum weight such that every edge has at least one end point in
this set. We may assume that

∑
v∈V wv = 1. This problem is NP-hard and there is a very simple 2-approximation

algorithm known for it. One way to obtain this approximation, which will be relevant to our work, is to solve the
following natural linear programming (LP) relaxation.

lpvc(G) def
= minimize

∑
v∈V

wvxv

subject to ∀e=uv∈E xu + xv ≥ 1

∀v∈V xv ≥ 0

Figure 1: LP for V C

Given an optimal solution to this LP, the rounding scheme selects vertices whose variables have value at least 1/2.

This makes sure that the picked set is a vertex cover and the cost is no more than twice lpvc(G).
On the inapproximability side, Dinur and Safra proved that V C is NP-hard to approximate to within

a factor of 1.36.Khot and Regev [KR08] gave some evidence that factor 2 might be the best possible approximation
for V C by showing that if there is an algorithm for V C which achieves a factor better than
2, then the Unique Games Conjecture (UGC) is false. However, it is not clear from their hardness reduction why
this simple minded LP is the best one.

One can think of V C as a strict version of a constraint satisfaction problem (CSP). While in a CSP,
the objective is to satisfy as many constraints as possible, in V C , the objective is to find a solution
satisfying all constraints while minimizing a different objective. Although the difference seems superficial, the
algorithmic implications for the two class of problems are quite different. Let us take the example of M
C, the simplest and one of the most interesting CSP. Given a graph G(V, E), the M C problem asks
for a partition (S , S̄) of the vertices maximizing the number of edges going across the cut. For the M C
problem, the natural LP relaxation is known to give a strictly weaker approximation than a simple semidefinite
programming (SDP) relaxation [GW95]. Further, the factor obtained by the SDP is optimal assuming the UGC
as was shown in Khot et al. [KKMO07]. A beautiful result of Raghavendra [Rag08] manages to generalize the
M C result of [KKMO07] to a very general class of constraint satisfaction problems. In particular, he
considers a generic way to write a SDP relaxation, and shows that the approximation ratio achived by the SDP is
optimal assuming the UGC .

However, Raghavendra’s result does not seem to apply for V C even though it is possible to think
of V C as a CSP in the following way: consider an instance G = (V, E) of V C . We have

1

boolean variables xv for each v ∈ V. For each vertex v, we have a constraint Φv(xv) which is 1 if xv is 1 (which
corresponds to vertex v being picked in the vertex cover), and 0 otherwise. For each edge e = uv, we have a
constraint Ψe(xu, xv) which is 0 if at least one of xu or xv is 1, and 1 otherwise. The goal is to minimize the
weighted sum

∑
v wvΦv(xv) + 2 ·

∑
e=uv∈E(wu + wv) · Ψe(xu, xv). It is easy to argue that any optimal solution x? to

this CSP must satisfy Ψe(x?u , x
?
v) = 0 for all edges uv ∈ E. Hence, any optimal solution to this CSP also yields an

optimal vertex cover solution. Given this reduction from V C to a weighted CSP, one can imagine using
the techniques of Raghavendra [Rag08] to come up with a similar hardness result for V C . However,
such an argument fails to work for the following reason: the CSP corresponding to V C has a very
special relation between the edge constraints and the vertex constraints – the weight of each edge constraint is more
than the sum of the weights of the corresponding vertex constraints. The reduction from UGC to such a CSP
(which has vertex and edge constraints as defined above) will construct hard instances of such CSPs which may
not preserve the required relationship between the weights of vertex and edge constraints. This problem seems to
remain whenever we have CSPs where some constraints are strict, i.e., they cannot be violated. This leaves the
understanding of problems with strict constraints as the V C problem somewhat unsettled.

1.1 Our Work

In this paper, assuming UGC , we present an optimal LP-based algorithm for a class of packing and covering
problems. First, we describe the class of covering problems we will study. This description contains the problems
arising from the integer programming formulation described before. Here we describe the q = 2 case. 1

Strict Monotone Constraint Satisfaction Problem. A problem Π is said to be a k-strict and monotone CSP
(k-sm-CSP) if it consists of a set of vertices V with non-negative weights {wv}v∈V on them, a set of hyperedges of
size at most k and for every hyperedge e ∈ E, a constraint Ae. These constraints have the following two properties
natural for {0, 1}-covering problems.

1. The constraints are strict: the constraint corresponding to every hyperedge has to be satisfied.

2. The constraints are monotone: given a feasible solution (a subset of vertices), adding more vertices to the
solution keeps it feasible.

The objective is to find a boolean assignment to the vertices so as to satisfy all the hyperedge constraints and
minimize the weight of vertices set to 1 (selected). We denote by ΠA1,...,At a problem in the class k-sm-CSP if, for
every instance of ΠA1,...,At and every hyperedge e of this instance, Ae is one of the constraints {A1, . . . , At}. It is easy
to observe that V C is a special 2-sm-CSP.

An LP for a k-sm-CSP problem. One can define the following LP relaxation for any problem in the class k-
sm-CSP. As written, it may not be immediately clear that it is an LP. We will prove this in Section 2.1 and for
the benefit of the reader, we also show in the appendix (Section 6.1) how the standard V C LP can be
equivalently written in this form. This relaxation is inspired by the Sherali-Adams [SA90] relaxation and plays a
crucial role in our result.
Here, for a hyperedge e = {v1, . . . , vl}, ConvexHull(Ae) denotes the convex hull of all assignments σ ∈ {0, 1}l

which satisfy the constraint Ae. For an instance I, let lp(I) denote the optimum of the LP of Figure 2 for I. Also,
let opt(I) denote the value of the optimal integral solution for I.

1We note that for the {0, 1} case, H V C are all the problems one gets in this class. Though the q-ary case, for q > 2,
is more general, all important ideas in this paper are equally well captured by the binary case. Given this, for improved readability of this
paper, the presentation for most of this paper is chosen to be for the {0, 1} case. In Section 5, we outline our results in the general setting of
the q-ary alphabets.

2

lp(I) def
= minimize

∑
v∈V

wvxv (1)

subject to ∀e=(v1,v2,...,vl)∈E (xv1 , xv2 , . . . , xvl) ∈ ConvexHull(Ae) (2)

∀v∈V 0 ≤ xv ≤ 1 (3)

Figure 2: LP for k-sm-CSP

Main Result. The main contribution of this paper is to integrate a class of covering and packing problems in
the same conceptual framework as done by Raghavendra for CSPs [Rag08]. We give a rounding algorithm called
ROUND (see Figure 3) for the LP of Figure 2. For an instance I of Π we first compute x?, the optimal LP-solution
for I. For a parameter ε > 0, which should be ignored for this discussion, let round(I, x?, ε) denote the value
of ROUND. We then show how to start with an instance I of Π and give a U G-based reduction for Π

whose soundness and completeness are roughly lp(I) and round(I, x?, ε) respectively. We also show that ROUND
(unconditonally) achieves an approximation ratio equal to the integrality gap, up to an arbitrarily small additive
constant, of the LP relaxation. This can be seen as an analogue of the result of Raghavendra and Steurer [RS09].
We assume throughout that k = O(1) as our reductions are polynomial-sized when k is a constant.

Theorem 1.1. Let Π be a k-sm-CSP, ε > 0 for k = O(1), and I be an instance of Π. Then for every δ > 0,
assuming the UGC , it is NP-hard to distinguish instances of Π with optimal less than lp(I) + ε+ δ from those with
optimal more than round(I, x?, ε) − δ. Here x? is the optimal LP solution for I.

As a corollary we can deduce the following: we set δ def
= ε and note that for any instance I, round(I, x?, ε) is at

most opt(I).

Corollary 1.2. Let Π be in the class k-sm-CSP and I be an instance of Π. Then for every δ > 0, assuming the
UGC , it is NP-hard to distinguish instances of Π with optimal less than lp(I) + 2δ from those with optimal more
than opt(I) − δ.

The class k-sm-CSP falls under the class of covering problems. One can also define a similar class of problems
for packing problems, namely Packing-k-sm-CSP. The only differences would be (1) we would be interested
in maximizing the total weight of vertices set to 1, and (2) the constraints would be downward monotone, i.e.,
removing some vertices from the solution would still keep it feasible. All our results translate to the setting of
packing problems in the natural manner and we omit the details.

1.2 Overview and Techniques

In this section we outline the proof of Theorem 1.1. We explain the main ideas with the canonical example of
V C . Unlike previous work, we will be interested in instances where ROUND fails i.e., where the value
round(I, x?, ε) is much larger than lp(I). Note that this is a weaker condition than the instance being an integrality
gap instance (as considered previously for CSPs), where the value opt(I) is much larger than lp(I).

In particular, for V C , ROUND performs poorly on a graph with a single edge, which is not an
integrality gap instance because the integer optimum and the LP optimum are both equal to 1. One optimal LP
solution is to set a value of 1/2 for both the end points, and thus, satisfying the constraint corresponding to this edge.
ROUND would then end up choosing both the end points in the cover, thus, being off by a factor 2 in the objective.
We show a reduction from U G that uses this instance to obtain a factor 2− ε hardness for V C
. The reduction produces the Khot-Regev graph although our analysis is conceptually simpler and uses the, by now
standard, Invariance Principle. Note that the inapproximability obtained is at least as good as the integrality gap of
the LP because the optimal solution is at least as good as the one output by ROUND.

3

Given an instance of V C along with an LP solution, we prove that the best rounding scheme,
assuming the UGC, is one which sets the variables to 1 or 0 by solely looking at the value of the variables. We
do so by picking a U G instance and replacing each vertex of the unique game with several blocks of
vertices, one for every distinct value the LP solution takes (one can think of having one block for every variable in
the LP, but we will later need to identify variables taking the same value). We then introduce constraints across the
blocks inspired by the LP solution such that if the U G instance has a good labeling, then there is a way
to choose a fraction of each of the blocks such that all the edges are covered. Further, the fraction selected in each
block has measure exactly equal to the total value of the corresponding variables in the LP solution.

Next, we show that if the U G instance has no good solution, then any solution can be converted to
a solution that either completely chooses a block or ignores it completely while losing only a small additive error
in the objective. We use the Invariance Principle and gaussian stability estimates to prove that if a particular block
is partially selected, then, there are a bunch of constraints that are completely contained in the unselected part.
Thus, given that the solution satisfies every constraint (covers all edges), the partially selected blocks might as well
have been completely unselected without violating any constraint. If we think of selecting a block as setting the
corresponding variable to 1 and not selecting as setting it to 0, this naturally corresponds to a rounding of the LP
solution solely based on the value of each variable: exactly the space of solutions ROUND searches over.

As it is, this does not say much since the LP value could assign completely distinct values to all the variables.
However, we can always convert such an LP solution to one that takes only a constant (1/ε) number of distinct
values while losing a small additive error (ε) in the objective. This naturally gives a rounding scheme, which as
the first step discretizes the LP solution to have a small number of distinct values before trying out every possible
rounding of the values. The rounding scheme remains exactly the same for the general version: solve the linear
program, fix the solution to one with a small number of distinct values and then exhaustively search over all possible
roundings of the values.

1.3 Further Discussion and Related Work

LP inspired hardness results. There are several problems for which the best known inapproximability results
have been obtained as follows: first construct integrality gap instances for the standard LP relaxations for these
problems and then use these instances as guides for constructing hardness reductions based on standard complexity
theoretic assumptions. These reductions yield inapproximability ratios quite close to the actual integrality gaps.
Examples include A k- [CGH+04], G S T [HK03] and A F-  P-
M [GK07]. Assuming UGC , our result proves hardness of a large class of problems in a similar spirit.
However, instead of explicitly constructing integrality gap examples for such problems, we give a more direct and
intuitive proof that the integrality gap is close to the actual hardness of such problems. We note that the only other
result for LPs similar in flavor as ours, though unrelated, is that of [MNRS08] for M-W C.

Unique Games Conjecture. Since its inception, the UGC of Khot [Kho02] has been used to obtain a host of
inapproximability results [Kho02, KV05, CKK+06, KKMO07, KR08, MNRS08, GMR08, Rag08, CGM09] and,
it implies optimal hardness of approximation results for problems such as M C [KKMO07] and V
C [KR08, BK09].

Very recently, for the problem of V C , a similar analysis using the Invariance Principle was also
proved by Austrin, Khot and Safra [AKS09]. They were motivated by the problem of proving hardness of approx-
imating V C on bounded degree graphs where as the goal of this paper is to establish the optimality of
LP-based algorithms for problems similar to V C .

4

1.4 Rest of the paper.

In Section 2, we give a detailed outline of the proof of Theorem 1.1. In Section 2.1 we formally define the class
of problems we shall be interested in. In Section 2.2, we outline the properties of the dictatorship test which leads
to the proof of Theorem 1.1. We describe the rounding algorithm and prove its optimality in Section 3. We give
all the details of the construction and the properties of the dictatorship test in Section 4. This requires us to prove
some properties of a feasible solution to the LP, which we describe in Section 4.1. The actual reduction from UGC
to a problem in the class k-sm-CSP builds on the construction of the dictatorship function in a standard manner –
we describe this in the appendix (Section 6.5). We describe the setting of the q > 2 case in Section 5.

2 Proof of Theorem 1.1

In this section we will reduce the task of proving Theorem 1.1 to constructing a dictatorship test. Once we have
stated the claim for the dictatorship test, it would be standard to convert it into a UGC -based hardness result and
deduce Theorem 1.1. The soundness of this dictatorship test, in turn, relies on the rounding algorithm ROUND of
Figure 3 which is described in Section 3. We start with some necessary preliminaries to describe the problems and
the LP we will consider for them.

2.1 Preliminiaries

Given distinct x, y ∈ {0, 1}k, we say y � x, if for every i ∈ [k], yi ≥ xi. Further, a subset A ⊆ {0, 1}k is said to be
upward monotone if for every x ∈ A, and every y such that y � x, it follows that y ∈ A.

Definition 2.1 (The class k-sm-CSP). Let k be a positive integer. An instance of type k-sm-CSP is given by

I = (V, E, {Ae}{e∈E}, {wv}v∈V) where :

– V = {v1, v2, . . . , vn} denotes a set of variables/vertices taking values over {0, 1} along with non-negative
weights such that

∑
v∈V wv = 1.

– E denotes a collection of hyperedges, each on at most k vertices. For each hyperedge e ∈ E, there is a
constraint Ae which is an upward monotone set denoting the set of accepted configurations of the vertices in
e.

The objective is to find an assignment Λ : V 7→ {0, 1} for the vertices in V that minimizes
∑
v∈V wvΛ(v) such that for

each e = (v1, v2, . . . , vl), (Λ(v1), . . . ,Λ(vl)) ∈ Ae. A k-sm-CSP Π is given by upward monotone sets {A1, . . . , At}.

Every instance of Π is supposed to have its constraints for the hyperedges to be one of {A1, . . . , At}. For simplicity,
we will assume that the size of each hyperedge is exactly k. Our proofs also hold when hyperedges have size at
most k.

Definition 2.2. For a set A ⊆ {0, 1}k, define ConvexHull(A) as the convex hull of elements in A. Note that any
element x ∈ ConvexHull(A) can be expressed as

∑
σ∈A λσ · σ, where λσ can be thought of as giving a probability

distribution over elements of A.

The LP relaxation for k-sm-CSP appears in Figure 2. On an instance I and a feasible solution x to LP(I), we
will let val(I, x) to denote the objective of LP(I). We now show that this indeed is an LP by explicitly writing
the constraints (2) as linear constraints. Consider an edge e = (u1, . . . , uk) ∈ E. We define variables λe

σ, where

5

σ ∈ {0, 1}k and it varies over all elements of Ae. The constraint (2) can now be written as

(xu1 , xu2 , . . . , xuk) =
∑
σ∈Ae

λe
σσ

∀σ∈Ae λe
σ ≥ 0∑

σ∈Ae

λe
σ = 1.

In the appendix (Section 6.1), we show that for the V C and H V C problems,
this LP is at least as strong as the standard LP relaxations for these problems.

2.2 Dictatorship Function

We now describe the properties of the dictatorship test. In fact, we prefer to refer to it as a dictatorship function as
it takes some inputs and has an output rather than an acceptance predicate.

Our dictatorship function DΠ
I,x,m(r, δ) takes as input an instance I of a problem Π, a solution x to the LP

relaxation (Figure 2) for this instance, and parameters m, r and δ. r would be the label set size of the U G
instance we combine this dictatorship function with to get the actual reduction for Theorem 1.1 and can be ignored
for now. m is an upper bound on the number of distinct values the entries in the vector x are allowed to take. We
will often refer to ε as 1/m−1. δ is a smoothening parameter, essential for the application of the Invariance Principle,
and can be ignored for now. The dictatorship function outputs another instanceD of Π. The vertex set V(D) of this
instance would be [m] × {0, 1}r and we defer the precise description of the output instance for Section 4.2. Recall
that round(I, x, ε) denotes the value of the rounding algorithm ROUND(I, x, ε). Even though we will describe the
algorithm in the next section, for now, it is sufficient to know that the algorithm produces an integral solution for I
from a feasible solution x to LP(I) after it has perturbed x and made sure that its variables take at most m distinct
values. In particular, round(I, x, ε) ≤ opt(I).Now, we can state the main claim regarding our dictatorship function.

Lemma 2.3. (Informal Version) The dictatorship function DΠ
I,x,m(r, δ) has the following properties:

1. Completeness: There are r “dictator” assignments to V(D) each of which satisfy all the constraints of D
and each costs at most val(I, x) + δ.

2. Soundness: Every assignment which is “far from being a dictator” assignment and satisfies all the con-
straints inD must have cost at least round(I, x, ε) − δ.

We leave the precise definition of “dictator” and “far from being a dictator” for Section 4.2. The proof of this lemma
also appears in Section 4.2. For a fixed instance I, to maximize the gap between val(I, x) and round(I, x, ε) one
should use x = x?, the optimal solution to LP(I). The problem is that, then, we are not guaranteed that the variables
in x? takes at most m distinct values. But this is easy: since the variables take value between 0 and 1, one can just
bucket them into bins of width ε and lose only an additional ε in the completeness in the lemma above. Hence, we
can obtain the following corollary.

Corollary 2.4. The dictatorship function DΠ
I,x?,m(r, δ) has the following properties:

1. Completeness: There are r dictator assignments to V(D) each of which satisfy all the constraints of D and
each costs at most lp(I) + ε + δ.

2. Soundness: Every assignment which is “far from being a dictator” assignment and satisfies all the con-
straints inD must have cost at least round(I, x?, ε) − δ.

Here x? is the optimal LP solution for I.

6

The corollary above can be converted to a U G-based hardness result for Π. The following is just a
reformulation of Theorem 1.1 and will be proved formally in Section 6.5.

Theorem 2.5. Let Π be a k-sm-CSP, ε > 0 for k = O(1), and I be an instance of Π. Then for every δ > 0, given
an input instance J of Π, assuming the UGC , it is NP-hard to distinguish between the following:

1. Completeness: opt(J) ≤ lp(I) + ε + δ.

2. Soundness: opt(J) ≥ round(I, x?, ε) − δ.

Here x? is the optimal LP solution for I.

3 The Rounding Algorithm and its Optimality

In this section we describe our rounding algorithm ROUND and prove that it achieves the integrality gap uncon-
ditionally. Theorem 1.1 implies that it is not possible to beat this integrality gap assuming the UGC . Hence, this
algorithm is optimal.

The algorithm. The algorithm will use a parameter ε. We assume without loss of generality that 1/ε is an integer.
We first define a way of perturbing a solution x to LP(I) (Figure 2) such that the number of distinct values the
variables of x take is at most 1/ε + 1.

Definition 3.1. Given an x such that 0 ≤ xu ≤ 1 for all u ∈ V, and a parameter ε > 0, define xε as follows – for each
u ∈ V , let ku be the integer satisfying kuε < xu ≤ (ku + 1)ε, then xεu

def
= (ku + 1)ε (if xu = 0, we define xεu to be 0 as

well).

In other words, xε is obtained from x by rounding up each coordinate to the nearest integral multiple of ε (note that
this value will not exceed 1 because 1/ε is an integer). First we observe the following simple fact.

Fact 3.2. Let x be a feasible solution to LP(I). Then

1. xε is feasible for LP(I).

2. val(I, xε) ≤ val(I, x) + ε.

The proof this fact appears in the appendix (Section 6.2).
The algorithm ROUND is described in Figure 3. This algorithm takes as input an instance I, a feasible solution

x to LP(I) and a parameter ε > 0. We denote round(I, x, ε) as the value of the integral solution returned by
ROUND(I, x, ε). First, the algorithm perturbs x to xε to make sure that the number of distinct values taken by the
variables in xε is at most m = O(1/ε), which is to be thought of as a (large) constant. Thus, the variables fall into m
buckets and now, the rounding algorithm goes over all possible assignments to these constantly many buckets and
outputs the assignment with the least cost.

The optimality of the rounding algorithm. We quickly observe that ROUND achieves the integrality gap.

Lemma 3.3. Let γ∗(Π) be the worst-case approximation ratio (integrality gap) achieved by the LP relaxation for
the problem Π, i.e., γ∗(Π) def

= supI(opt(I)/lp(I)), where the supremum is taken over all instances I of Π. Then, for
any given instance J , optimal LP solution x and ε > 0, round(J , x, ε) ≤ γ∗(Π) · (opt(J) + ε).

7

Proof. Consider an input (J , x, ε) to the algorithm ROUND. We define a new instance J ′ of Π as follows: the set
of variables V ′ = {0, . . . , 1/ε+ 1} and hyperedge set E′ = {(i1, . . . , ik) | (v1, . . . , vk) ∈ E and xεu j

= i j · ε for all j ∈ [k]}.
We take the weight wi of i ∈ V ′ to be

∑
xεv=iε wv and take constraint Ae′ for an edge e′ ∈ E′ to be the same as Ae for

the corresponding edge in e ∈ E. Then, since ROUND(J , x, ε) searches over all feasible assignments to variables
in J ′, we get that round(J , x, ε) = opt(J ′). Hence, we get

round(J , x, ε) = opt(J ′) ≤ γ∗(Π) · lp(J ′)
Fact 3.2−(2)
≤ γ∗(Π) · (lp(J) + ε) ≤ γ∗(Π) · (opt(J) + ε).

�

I: An instance I = (V, E, {Ae}e∈E , {wv}v∈V) of a problem in k-sm-CSP, a feasible solution x to LP(I) and
a parameter ε > 0. Let m := 1/ε.

O: A labeling Λ : V 7→ {0, 1}.

1. Construct the solution xε.

2. For every z ∈ {0, 1}m, construct a 0-1 solution Λz as follows : Λz
u

def
= z j if xεu = jε.

3. Output the solution Λz? which has the smallest objective value among all feasible solutions in {Λz|z ∈
{0, 1}m}.

Figure 3: Algorithm ROUND

Deducing the Khot-Regev result. As an application of Theorem 1.1, we prove the result of Khot and Regev
[KR08] which states that assuming UGC , it is NP-hard to get (k−ε)-approximation algorithm for the k-H
V C problem for any constant ε > 0. Consider the following instance I of k-H V C
– we are given a set V of size k, and there is only one hyperedge in E, namely, the set of all vertices in V . The
weight of every vertex is 1/k. Consider the solution x which assigns value 1/k to all variables xu. It is easy to check
that it is feasible to our LP relaxation. The value of the solution x is 1/k. . Let us now see how the algorithm
ROUND(I, x, ε), where ε < 1/k, rounds the solution x. All entries in xε will still be same. Hence, the rounding
algorithm will consider only two options – either pick all vertices in V , or do not pick any vertex. Since the
latter case yields an infeasible solution, it will output the set V , which has value 1. Theorem 1.1 now implies that
assuming UGC , it is NP-hard to distinguish between instances of k-H V C where the optimal
value is at most 1/k−2ε from those where the optimal value is more than 1−ε. Note that the integrality gap of LP(I)
is 1. Still we are able to argue hardness of k-H V C problem starting from such an instance
because the algorithm ROUND performs poorly on this instance. In this sense, the statement of Theorem 1.1 is
stronger than that of Corollary 1.2.

4 Dictatorship Function

In this section we give details of the dictatorship function. The dictatorship function takes as input an instance
I of the problem, a feasible solution x to lp(I) and parameters m, δ and r. The entries in the solution x take at
most m distinct values. The parameter r is related to the label size in the U G instance that is used for
the reduction, and can be assumed to be an arbitrary quantity for this discussion. The output of the dictatorship
function is another instance D of the same problem. The vertex set of this instance is [m] × {0, 1}r, which we can

8

think of as m blocks. The hyperedges inD are constructed roughly as follows – for every hyperedge e in the input
instance I, we pick r hyperedges from the set Ae by a randomized process. We use these r hyperedges to construct
one hyperedge in D which spans across k suitably chosen blocks in D. The set of hyperedges in D consist of
hyperedges which can be obtained in this manner with strictly positive probability. Note that even though these
probabilities are not explicitly required for the description of D, they are still useful for the soundness analysis of
the dictatorship function.

Given a hyperedge e in the instance I, the probabilities with which we select r edges from Ae are obtained
by using the fact that x is a feasible solution to lp(I). This allows us to express x as a convex combination of
elements in Ae and the coefficients in this convex combination give us the requisite probabilities. The analysis of
the dictatorship function uses the Invariance Principle, which requires that the minimum non-zero probability of
an element in Ae is not too small, and a suitably defined “correlation graph” is connected. We achieve these two
properties by using the parameter δ to “smoothen” the probabilties obtained from the solution x. We now define
these probability distributions and their smoothenings more formally below.

4.1 Probability Distribution from the LP solution

We define the notion of smoothening the distribution obtained by restricted x to a hyperedge e.

Definition 4.1. Let x be a feasible solution to LP(I). For a hyperedge e, let x|e be the vector obtained by restricting
x to only those vertices which belong to e. Px

e shall denote the probability distribution over the vectors in {0, 1}k

corresponding to elements of Ae that arises from the fact that x|e ∈ ConvexHull(Ae). For a parameter δ > 0, define
a random function Rδ : {0, 1}k 7→ {0, 1}k which satisfies the following property independently for each i :

Rδ(x)i
def
=

{
xi with probability 1 − δ
1 with probability δ

Now define a distribution Mδ(Px
e) over {0, 1}k where

Mδ(Px
e)(z) def

= P
z′,Rδ

[
Rδ(z′) = z

]
,

where z′ is drawn according to distribution Px
e and Rδ from the space of function from {0, 1}k to {0, 1}k as described

above.

Remark 4.2. Note that for a hyperedge e, the support of Px
e is a subset of Ae. Since Ae is upward monotone, the

same fact holds for Mδ(Px
e) as well.

Definition 4.3. Let P be a distribution on {0, 1}k. Define margini(P), 1 ≤ i ≤ k as the following distribution on
{0, 1}:

margini(P)(b) def
=

∑
b1,...,bi−1,bi+1,...,bk

P(b1, . . . , bi−1, b, bi+1, . . . , bk).

The following fact, whose proof is easy to check, shows that the marginals of the distributions Px
e and Mδ(Px

e) on a
single coordinate can be easily expressed in terms of x.

Fact 4.4. Let e = (u1, . . . , uk) by a hyperedge in an instance I. Then, Emargini(P
x
e)(b) = xui , and Emargini(Mδ(Px

e))(b) =

(1 − δ)xui + δ.

Fact 4.5. For a hyperedge e, let α denote minω{Px
e(ω) : Px

e(ω) > 0}. Then minω{Mδ(Px
e(ω)) : Mδ(Px

e(ω)) > 0} is at
least δk · α.

9

A feasible solution x satisfies the property that (xu1 , . . . , xuk) can be expressed a convex combination of vectors in
Ae for every e = (u1, . . . , uk) ∈ E. The following lemma shows that under some conditions on x, the non-zero
coefficients of this convex combination are large enough. This shall be useful in our application of the Invariance
Principle. We defer the proof to appendix (Section 6.3).

Lemma 4.6. Let A be a upward monotone subset of {0, 1}k and let (x1, x2, . . . , xk) ∈ ConvexHull(A) such that
each xu is an integral multiple of ε (assume that 1/ε is an integer). Then, there is a distribution P over A such that
the minimum probability of any atom in P is at least ε

2k! .

4.2 Description and Properties of the Dictatorship Function

In this section, we first describe the parameters of the dictatorship function and the output instance that it produces.
Then we give a more formal statement of Lemma 2.3 in Lemma 4.9 and Theorem 4.10. We then prove these and
hence, complete the proof of Lemma 2.3 and Corollary 2.4. For 0 ≤ ` ≤ 1, let z←µ` denote a string drawn from
the `-biased distribution on {0, 1}r.

Parameters of DΠ
I,x,m(r, δ).

1. Starting Instance. An instance I = (V = {u1, . . . , un}, E, {Ae}e∈E , {wu}u∈V) of Π.

2. Solution to LP(I). A vector x = (xu1 , . . . , xun) which is a feasible solution to LP(I).

3. Multiplicity Parameter. m denotes the number of distinct values in the vector x and let p1, . . . , pm denote these
distinct values. Let B : V 7→ {1, 2, . . . ,m} such that B(u) := b whenever xu = pb for some b ∈ {1, . . . ,m}.

4. Smoothening Parameter. δ > 0. For a feasible solution x to LP(I) and for every edge e ∈ E, we use this
parameter to define the distribution Mδ(Px

e). The solution x shall satisfy the conditions of Lemma 4.6, and,
hence, Fact 4.5 implies that the minimum probability of an atom in Mδ(Px

e) is at least δkε
2k! .

5. Repetition Parameter. A positive integer r. (r would be the size of the label set of the UG instance
to be used in the hardness reduction.)

The Output Instance. DΠ
I,x,m(r, δ) outputs the following instanceD of Π

1. Vertex Set. The vertex set ofD is V(D) := [m] × {0, 1}r.

2. Weights on Vertices. Let p̃b
def
= pb(1 − δ) + δ for b ∈ {1, 2, . . . ,m}. The weight of a vertex (b, y) ∈ D,

wD((b, y)) def
= µp̃b(y)

∑
u∈V |xu=pb

wu.

Note that since,
∑

u∈V wu = 1,
∑
v∈V(D) wD(v) = 1.

3. Hyper-edges and Constraints. The set of constraints in D is the union of every constraint output with
positive probability by the following procedure:

(a) Pick a random hyperedge e = (u1, u2, . . . , uk) from I and let Ae denote the constraint corresponding to
it.

(b) Sample r independent copies (z j
u1 , z

j
u2 , . . . , z

j
uk)

r
j=1 from the distribution Mδ(Px

e).

10

(c) Let the corresponding hyperedge inD be((
B(u1), (z1

u1
, z2

u1
, . . . , zr

u1
)
)
,
(
B(u2), (z1

u2
, z2

u2
, . . . , zr

u2
)
)
, . . . ,

(
B(uk), (z1

uk
, z2

uk
, . . . , zr

uk
)
))

and the constraint corresponding to it be Ae.

We now define the notions “dictator” and “far from being dictator”, and then give formal statements of Lemma 2.3.

Definition 4.7. A set S ⊆ [m]× {0, 1}r is said to be a dictator if there exists an i ∈ [r] such that S = {(b, z) : zi = 1}.

For a S ⊆ [m]×{0, 1}r, define S b
def
= S ∩ (b, {0, 1}r). Further, define functions f S

b : {0, 1}r 7→ {0, 1} to be the indicator
function of the complement of S b. We refer to a subset of vertices of D of the form (b, {0, 1}r) as the hypercube
corresponding to b. Given i ∈ [r], b ∈ [m], the degree d-influence of the i-th coordinate of f S

b , Inf≤d
i (f S

b) with
respect to the measure µ p̃b is defined in Section 6.4.1.

Definition 4.8. Given τ, d ≥ 0, a set S ⊆ [m] × {0, 1}r is said to be (τ, d)-pseudo-random if for every b ∈ [m] and
every i ∈ [r], Inf≤d

i (f S
b) ≤ τ.

Now we state the completeness and soundness properties of the dictatorship function.

Lemma 4.9. (Completeness.) Suppose S ⊆ [m] × {0, 1}r is a dictator. Then S satisfies all the constraints ofD and
wD(S) ≤ val(I, x) + δ.

Observe that if we take the optimal solution x of lp(I) and use the corresponding perturbed solution xε as input to
the dictatorship function, then Lemma 4.9 combined with Fact 3.2 implies the first statement in Corollary 2.4.

Theorem 4.10. (Soundness.) For every small enough δ > 0, there exists a d, τ such that if S ⊆ [m]×{0, 1}r satisfies
all the constraints ofD and is (τ, d)-pseudo-random, then

wD(S) ≥ round(I, x, ε) − δ.

The construction of the dictatorship function can be extended to give a reduction from UG to a problem in
the class k-sm-CSP. The completeness and soundness of the dictatorship function translate to that for the reduction,
which allows us to prove Theorem 2.5. We describe this reduction in the appendix (Section 6.5).

Proofs of Completeness and Soundness Properties. Now we give proofs of Lemma 4.9 and Theorem 4.10.

Proof of Lemma 4.9. Let i be such that S = {(b, z) : zi = 1}. For any hyperedge e ∈ E, recall that the support of
Mδ(Px

e) is a subset of Ae. Hence, any (zu1 , zu2 , . . . , zuk)← Mδ(Px
e) always satisfies the constraint Ae. Thus, the set S

satisfies every constraint of the instanceD. The total weight of the set S is

wD(S) =
∑

b∈[m]

∑
z|zi=1

µp̃b(z)
∑

u|xu=pb

wu =
∑

b∈[m]

p̃b

∑
u|xu=pb

wu =
∑

u

wuxu(1 − δ) + δ ≤ val(I, x) + δ.

�

We now prove the soundness of the dictatorship test. The crux of the proof is to show that given a subset S ⊆

[m] × {0, 1}r satisfying all the constraints in D, one can find a subset J ⊆ [m] such that TJ
def
= ∪b∈J(b, {0, 1}r)

satisfies all the constraints inD and wD(TJ) ≤ wD(S) + δ.
Proof of Theorem 4.10. Define

J def
=

{
b | E

z←µp̃b

f S
b (z) ≤ δ

}
.

11

Fix a particular hyperedge e = (u1, u2, . . . , uk) ∈ E of the instance I. Let

Re
def
= {ui ∈ e |B(ui) < J}.

We will deduce the following fact from the Invariance Principle of Mossel [Mos08]. We give a detailed description
of the Invariance Principle in the appendix (Section 6.4.1). The proof of the following fact is also deferred to the
appendix (Section 6.4).

Fact 4.11.
E

[
Πu∈Re f S

B(u)(z
(u))

]
> 0.

In the expectation above, the argument z(u) of f S
B(u) is chosen with the p̃B(u)-biased measure on {0, 1}r independently

for each u ∈ Re. Since f S
b ∈ {0, 1} and, in particular non-negative, for each b ∈ [m], this fact implies that there is a

hyperedge inD that queries the hypercubes corresponding to (u1, u2, . . . , uk) at z(u1), . . . , z(uk) respectively such that
for every u ∈ Re, f S

B(u)(z
(u)) = 1. Since f S

b is the indicator of the complement of S b, this means that the constraint
was satisfied solely by the hypercubes in J. Thus, all the constraints of D would also be satisfied by the set TJ .
Note that since TJ selects hypercubes that are already 1 − δ fraction covered by S , wD(TJ) ≤ wD(S) + δ.

Further, since TJ either completely chooses a particular hypercube or completely ignores it, this corresponds
to one of the assignments that the rounding algorithm iterates through on the input (I, x, ε). This implies that
round(I, x, ε) is at most wD(TJ). This completes the proof of the theorem. �

5 Extension to larger alphabets

In this section, we show how our results can be easily extended to the case when variables take values from a larger
alphabet [q] = {0, . . . , q − 1}.

Problem Definition. Given x, y ∈ [q]k, we say that y � x, if, yi ≥ xi for all i, 1 ≤ i ≤ k. A set A ⊆ [q]k is said to
be upward monotone if for every x ∈ A, and every y such that y � x, it follows that y ∈ A. For sake of brevity, we
assume that the alphabet size, q, is implicit in the definition below.

Definition 5.1 (The class k-sm-CSP). Let k be a positive integer. An instance of type k-sm-CSP is given by

I = (V, E, {Ae}{e∈E}, {wv}v∈V) where :

– V = {v1, v2, . . . , vn} denotes a set of variables/vertices taking values over [q] along with non-negative weights
such that

∑
v∈V wv = 1.

– E denotes a collection of hyperedges, each on at most k vertices. For each hyperedge e ∈ E, there is a
constraint Ae which is an upward monotone set denoting the set of accepted configurations of the vertices in
e.

The objective is to find an assignment Λ : V 7→ [q] for the vertices in V that minimizes
∑
v∈V wvΛ(v) such that for

each e = (v1, v2, . . . , vl), (Λ(v1), . . . ,Λ(vl)) ∈ Ae. A k-sm-CSP Π is given by upward monotone sets {A1, . . . , At}.

Every instance of Π is supposed to have its constraints for the hyperedges to be one of {A1, . . . , At}. As in the binary
case, we will assume that the size of each hyperedge is exactly k. Our proofs continue to hold when hyperedges
have size at most k.

12

LP relaxation We now give an LP relaxation for a problem in k-sm-CSP. The following definition allows us to
map values in [q] to vectors whose coordinates lie between 0 and 1.

Definition 5.2. Let ∆q denote the set of vectors { (z0, . . . , zq−1) : zi ≥ 0 for all i ∈ [q] and
∑

i∈[q] zi = 1 }. There is a
natural mapping Ψq : ∆q 7→ [q] defined as Ψq((z0, . . . , zq−1)) =

∑
i∈[q] zi · i. Let ei, for i ∈ [q], be the unit vector in

Rq which has value 1 at coordinate i, and 0 elsewhere. It is easy to check that ∆q is the convex hull of the vectors
{ei : i ∈ [q]}. It follows that a vector x ∈ ∆q can also be thought of as a probability distribution over [q].

Definition 5.3. Given an integer i ∈ [q], define Φq(i) as the vector ei ∈ R
q. Given a sequence σ ∈ [q]k, for some

parameter k, define Φq(σ) = (Φq(σ1), . . . ,Φq(σk)). Note that Φq(σ) is a vector in Rq·k.

The LP relaxation for an instance I of a problem Π ∈ k-sm-CSP is described in Figure 4.

lp(I) def
= minimize

∑
v∈V

wvΨq(xv) (4)

subject to ∀e=(v1,v2,...,vk)∈E (xv1 , xv2 , . . . , xvk) ∈ ConvexHull(Ae) (5)

∀v∈V xv ∈ ∆q (6)

Figure 4: LP for k-sm-CSP

Here, ConvexHull(Ae) is the convex hull of the set {Φq(σ) : σ is a satisfying assignment for Ae}. It is easy to
check that this indeed is a linear program. Given a solution x to LP(I), let val(I, x) denote the objective function
value for x.

The Rounding Algorithm. We now describe the rounding algorithm. The algorithm uses a perturbation parame-
ter ε. We first argue that we can perturb a feasible solution to LP(I) such that the number of distinct (vector) values
taken by the variables are small. This perturbation will not affect the objective value significantly. We shall assume
without loss of generality that 1/ε is an integer.

Definition 5.4. For a parameter ε > 0, define ∆
ε,i
q , 0 ≤ i < q, as the set of points z ∈ ∆q satisfying the following

conditions – (1) z0, . . . , zi−1 are multiples of ε, and (2) zi+1 = · · · = zq−1 = 0. Observe that zi must equal 1−
∑i−1

j=0 z j.
Let ∆ε

q denote
⋃

i ∆
ε,i
q .

It is easy to check that |∆ε
q| is at most 1/(ε+1)q. We now show how a vector x ∈ ∆q can be perturbed to a vector in ∆ε

q.

Definition 5.5. Let a ∈ [0, 1] be a real number. Define aε as the smallest multiple of ε greater than or equal to
a. Consider x ∈ ∆q. Let i be the largest integer such that xε0 + · · · + xεi−1 ≤ 1. Then, define xε to be the vector
(xε0, . . . , x

ε
i−1, 1 −

∑i−1
j=0 xεj , 0, . . . , 0) ∈ ∆

ε,i
q .

The rounding algorithm is described in Figure 5. Let roundq(I, x, ε) denote the objective value of the solution
returned by ROUNDq(I, x, ε).
Since mq is O(1/εq), the running time of ROUNDq is O(poly(nk, 1/εq)). We state the following fact without proof.

Fact 5.6. Let x be a feasible solution to LP(I). Then

1. xε is feasible for LP(I).

2. val(I, xε) ≤ val(I, x) + ε · q2.

13

I: An instance I = (V, E, {Ae}e∈E , {wv}v∈V) of a problem in k-sm-CSP, a feasible solution x to LP(I) and
a parameter ε > 0. Let mq denote |∆ε

q|.

O: A labeling Λ : V 7→ [q].

1. Construct the solution xε.

2. Let I denote the set ∆ε
q arranged in some order.

3. For every z ∈ [q]mq , construct an integral solution Λz as follows : Λz
u

def
= z j if xεu = I j.

4. Output the solution Λz∗ which has the smallest objective value among all feasible solutions in {Λz|z ∈
[q]mq}.

Figure 5: Algorithm ROUNDq

Probability Distribution from a Feasible Solution.

Definition 5.7. Let x be a feasible solution to LP(I). For a hyperedge e, let x|e be the vector obtained by restricting
x to only those vertices which belong to e. Px

e shall denote the probability distribution over vectors in ∆k
q corre-

sponding to elements of Ae that arises from the fact that x|e ∈ ConvexHull(Ae). For a parameter δ > 0, define a
random function Rδ : ∆k

q 7→ ∆k
q which satisfies the following property independently for each i :

Rδ(x)i
def
=

{
xi with probability 1 − δ

eq−1 with probability δ

Now, define a distribution Mδ(Px
e) over ∆k

q where

Mδ(Px
e)(z) def

= Pz′,Rδ
[
Rδ(z′) = z

]
,

where z′ is drawn according to distribution Px
e and Rδ from the space of function from ∆k

q to ∆k
q as described above.

Definition 5.8. Given a vector p ∈ ∆q, let µp be the corresponding distriution over [q] (as described in Defini-
tion 5.2).

The Dictatorship Function. We now describe the parameters of the dictatorship function and the output instance
that it produces.
Parameters of DΠ

I,x,m(r, δ).

1. Starting Instance. An instance I = (V = {u1, . . . , un}, E, {Ae}e∈E , {wu}u∈V) of Π.

2. Solution to LP(I). x = (xu1 , . . . , xun) which is a feasible solution to LP(I).

3. Multiplicity Parameter. m denotes the number of distinct (vector) values in the vector x and let p1, . . . , pm

denote these distinct values. Note that pi ∈ ∆q for all i. Let B : V 7→ {1, 2, . . . ,m} such that B(u) := b
whenever xu = pb for some b ∈ {1, . . . ,m}.

4. Smoothening Parameter. δ > 0. For a feasible solution x to LP(I) and for every edge e ∈ E, we use this
parameter to define the distribution Mδ(Px

e).

14

5. Repetition Parameter. A positive integer r. (r would be the size of the label set of the UG instance
to be used in the hardness reduction.)

The Output Instance.
DΠ

I,x,m(r, δ) outputs the following instanceD of Π

1. Vertex Set. The vertex set ofD is V(D) := [m] × [q]r.

2. Weights on Vertices. Let p̃b
def
= (1 − δ) · pb + δ · eq−1 for b ∈ {1, 2, . . . ,m}. The weight of a vertex (b, y) ∈ D,

wD((b, y)) def
= µp̃b(y)

∑
u∈V |xu=pb

wu.

Note that since,
∑

u∈V wu = 1,
∑
v∈V(D) wD(v) = 1.

3. Hyper-edges and Constraints. The set of constraints in D is the union of every constraint output with
positive probability by the following procedure:

(a) Pick a random hyperedge e = (u1, u2, . . . , uk) from I and let Ae denote the constraint corresponding to
it.

(b) Sample r independent copies (z j
u1 , z

j
u2 , . . . , z

j
uk)

r
j=1 from the distribution Mδ(Px

e).

(c) For each j = 1, . . . , r, let (y j
u1 , y

j
u2 , . . . , y

j
uk) ∈ [q]k be a random sample from the distribution µz j

u1
×µz j

u2
×

· · · × µz j
uk

.

(d) Let the corresponding hyperedge inD be((
B(u1), (y1

u1
, y2

u1
, . . . , yr

u1
)
)
,
(
B(u2), (y1

u2
, y2

u2
, . . . , yr

u2
)
)
, . . . ,

(
B(uk), (y1

uk
, y2

uk
, . . . , yr

uk
)
))

and the constraint corresponding to it be Ae.

Properties of the Dictatorship Function.

Definition 5.9. An assignment f : [m] × [q]r 7→ [q] is said to be a dictator if there exists an j ∈ [r] such that
f (b, z) = z j.

Given b ∈ [m], let fb denote the restriction of f to (b, [q]r). Given p ∈ ∆q, let z←µr
p denote a string in [q]r drawn

from the product distribution µr
p. We can think of an assignment fb : [q]r 7→ [q] also as a a function from [q]r to

∆q (where the value i ∈ [q] gets associated with ei ∈ ∆q). Given j ∈ [r], b ∈ [m], the degree d-influence of the j-th
coordinate of fb, Inf≤d

j (fb) is defined as in Section 6.4.1.

Definition 5.10. Given τ, d ≥ 0, an assignment f : [m] × [q]r 7→ ∆q is said to be (τ, d)-pseudo-random if for every
b ∈ [m] and every j ∈ [r], Inf≤d

j (fb) ≤ τ.

Now we state the completeness and soundness properties of the dictatorship function.

Lemma 5.11. (Completeness.) Let f : [m] × [q]r 7→ [q] be a dictator. Then f satisfies all the constraints ofD and∑
v∈V(D) wD(v) · f (v) ≤ val(I, x) + Oq(δ).

Theorem 5.12. (Soundness.) For every small enough δ > 0, there exists a d, τ such that if f : [m] × [q]r 7→ [q]
satisfies all the constraints ofD and is (τ, d)-pseudo-random, then∑

v∈V(D)

wD(v) · f (v) ≥ roundq(I, x, ε) −Ωq(δ).

15

We note that the proof of this theorem is almost identical to that of Theorem 4.10. Here we outline the changes to
be made in the q > 2 case. The crux of the proof is to show that given a subset f : [m] × [q]r 7→ [q], satisfying all
the constraints inD, one can find a function g : [m]× [q]r 7→ [q] such that g depends only on b ∈ [m] (g is constant
on every cube), g satisfies all the constraints in D and

∑
v∈D wD(v) · g(v) ≤

∑
v∈D wD(v) · f (v) + Oq(δ). To obtain g,

the strategy would be to look at the cube {b} × [q]r, find the smallest i ∈ [q] such that

E
z←µp̃b

fb,i(z) ≥ δ.

Here, fb,i : [q]r 7→ {0, 1} denotes the indicator of the event that fb,i(z) = 1 if f (b, z) = i and 0 otherwise. We would
then define g(b, z) = i for all z ∈ [q]r. Thus, g has the desired form. Using the fact that f is d, τ-pseudorandom, one
can now appeal to the Invariance Principle in the q-ary setting, as in Theorem 4.10, to obtain that g still satisfies all
the constraints in D. Note that

∑
v∈V(D) wD(v) · g(v) ≤

∑
v∈V(D) wD(v) · f (v) + δ · q. Further, since g corresponds to

integral assignments to every cube, this corresponds to one of the assignments that the rounding algorithm iterates
through on the input (I, x, ε). This implies that roundq(I, x, ε) is at most

∑
v∈V(D) wD(v) · g(v). This completes the

sketch of proof of the theorem.

Unique Games Conjecture based Hardness Results. The following are equivalent to Theorem 1.1 and Corol-
lary 1.2.

Theorem 5.13. Let Π be a k-sm-CSP on alphabet [q], ε > 0 for k = O(1), and I be an instance of Π. Then for
every δ > 0, assuming the UGC , it is NP-hard to distinguish instances of Π with optimal less than lp(I)+ε+Oq(δ)
from those with optimal more than roundq(I, x?, ε) −Ωq(δ). Here x? is the optimal LP solution for I.

Corollary 5.14. Let Π be in the class k-sm-CSP on alphabet [q] and I be an instance of Π. Then for every δ > 0,
assuming the UGC , it is NP-hard to distinguish instances of Π with optimal less than lp(I) + Oq(δ) from those with
optimal more than opt(I) −Ωq(δ).

The proofs follow verbatim along the lines of their counterparts for the binary case by converting the dictatorship
function describe above.

Acknowledgments The authors would like to thank Oded Regev for bringing the paper [AKS09] to our notice and
also observing that every problem in the class k-sm-CSP over the alphabet {0, 1} can be reduced to a H
V C problem in the approximation preserving sense.

References

[AKS09] P. Austrin, S. Khot, and S. Safra. Inapproximability of vertex cover and independent set in bounded
degree graphs. In Proceedings of the 24th Annual IEEE Conference on Computational Complexity,
2009. 4, 16

[BK09] N. Bansal and S. Khot. Optimal long code test with one free bit. In Proceedings of the 50th Annual
IEEE Symposium on Foundations of Computer Science, 2009. 4

[CGH+04] J. Chuzhoy, S. Guha, E. Halperin, S. Khanna, G. Korsatz, and J. Naor. Asymmetic k-center is log∗ n
hard to approximate. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
2004. 4

[CGM09] M. Charikar, V. Guruswami, and R. Manokaran. Every permutation CSP of arity 3 is approximation
resistant. In Proceedings of the 24th Annual IEEE Conference on Computational Complexity, 2009. 4

16

[CKK+06] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar. On the hardness of approximat-
ing multicut and sparsest-cut. Computational Complexity, 15(2):94–114, 2006. 4

[GK07] N. Garg and A. Kumar. Minimizing average flow-time : Upper and lower bounds. In Proceedings of
the 48th Annual IEEE Symposium of Foundations of Computer Science, 2007. 4

[GMR08] V. Guruswami, R. Manokaran, and P. Raghavendra. Beating the random ordering is hard: Inap-
proximability of maximum acyclic subgraph. In 49th Annual IEEE Symposium on Foundations of
Computer Science, 2008. 4

[GW95] M. X. Goemans and D. P. Williamson. Approximation algorithms for maximum cut and satisfiability
problems using semidefinite programming. J. ACM, 42(6):1115–1145, 1995. 1

[HK03] E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability. In Proceedings of the 35th
Annual ACM Symposium on Theory of Computing, 2003. 4

[Kho02] S. Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 17th Annual IEEE
Conference on Computational Complexity, page 25, 2002. 4, 22

[KKMO07] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for MAX-CUT
and other 2-variable CSPs? SIAM J. Comput., 37(1):319–357, 2007. 1, 4

[KR08] S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2-epsilon. J. Comput.
Syst. Sci., 74(3):335–349, 2008. 1, 4, 8, 22

[KV05] S. Khot and N. K. Vishnoi. The unique games conjecture, integrality gap for cut problems and em-
beddability of negative type metrics into l1. In Proceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science, 2005. 4

[MNRS08] R. Manokaran, J. Naor, P. Raghavendra, and R. Schwartz. SDP gaps and UGC hardness for multiway
cut, 0-extension and metric labelling. In Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, 2008. 4

[Mos08] E. Mossel. Gaussian bounds for noise correlation of functions and tight analysis of long codes. In
Proceedings of the 49th Annual IEEE Conference on Foundations of Computer Science, pages 156–
165, 2008. 12, 20

[Rag08] P. Raghavendra. Optimal algorithms and inapproximability results for every csp? In Proceedings of
the 40th Annual ACM Symposium on Theory of Computing, 2008. 1, 2, 3, 4, 24

[RS09] P. Raghavendra and D. Steurer. Integrality gaps for strong sdp relaxations of unique games. In
Proceedings of the 49th Annual Symposium on Foundations of Computer Science, 2009. 3

[SA90] H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous and convex hull
representations for zero-one programming problems. SIAM J. Discrete Math., 3(3):411–430, 1990. 2

6 Appendix

6.1 Comparison of our LP with standard LP’s for V C and H V C

We compare the LP relaxation of Figure 2 to the standard LP’s for the V C and k-H V
C problems. For the V C problem, the two LP’s are equivalent. Fix an instance I of the V

17

C problem. For an edge e = uv, the set Ae = {(0, 1), (1, 0), (1, 1)}. Hence, an element of ConvexHull(Ae) can
be written as λ1(0, 1) + λ2(1, 0) + λ3(1, 1) = (λ2 + λ3, λ1 + λ3), where λi ≥ 0 for i = 1, 2, 3 and

∑3
i=1 λi = 1. Now,

xu = λ2 + λ3, xv = λ1 + λ3 implies that xu + xv ≥ 1. Conversely, it is easy to check that given values xu, xv ≥ 0
such that xu + xv ≥ 1, one can find corresponding λi values. Thus, the standard LP and our LP for V C
problem are equivalent.

We now show that the LP of Figure 2 is stronger than the usual LP relaxation for k-H V C
. An instance of k-H V C is specified by a ground set V and a set E ⊆ Vk. Each vertex u ∈ V
has weight wu and the goal is to find a minimum weight subset of V which contains at least one element from each
hyperedge in E. The usual LP for k-H V C is written as follows :

minimize
∑
v∈V

wvxv (7)

subject to ∀e=u1,u2,...,uk∈E xu1 + · · · + xuk ≥ 1 (8)

∀v∈V xv ≥ 0 (9)

The set Ae for this problem contains all the elements of {0, 1}k except the all zero vector (0, . . . , 0). An element
(xu1 , . . . , xuk) ∈ Ae has the property that xu1 +· · ·+xuk ≥ 1 and so the same holds for any element in ConvexHull(Ae).
Hence, constraints (2) imply constraints (8).

6.2 Details of Section 3

We prove Fact 3.2 which we restate below.

Fact 6.1. Let x be a feasible solution to LP(I). Then

1. xε is feasible for LP(I).

2. val(I, xε) ≤ val(I, x) + ε.

Proof. We first prove the first statement. It is enough to prove this for x′ where x′ differs from x on only one
coordinate u. Fix an edge e = (u1, . . . , uk) and without loss of generality assume that u = u1. Let λσ, σ ∈ Ae be the
coefficients in the convex combination of vectors in Ae which yield (xu1 , . . . , xuk). Let A′e be the set of σ for which
σ1 = 0.

For each σ ∈ A′e, define m(σ) as vector which is same as σ except that σ′1 = 1. Clearly, m(σ) ∈ Ae as well. Now
consider the vector

∑
σ<A′e λσσ +

∑
σ∈A′e λσm(σ). This is equal to (1, xu2 , . . . , xuk). Thus, we have shown that the

vector x′′ which is identical to x except that x′′u = 1 is feasible to LP(I). Now note that x′ is a convex combination
of x and x′′. Hence, the claim follows.

We now prove the second statement. Since xεu ≤ xu + ε, we get that

val(I, xε) =
∑

u

wuxεu ≤
∑

u

wuxu + ε
∑

u

wu = val(I, x) + ε.

�

6.3 Details of Section 4.1

We prove Lemma 4.6 which is restated below.

Lemma 6.2. Let A be a upward monotone subset of {0, 1}k and let (x1, x2, . . . , xk) ∈ ConvexHull(A) such that
each xu is an integral multiple of ε (assume that 1/ε is an integer). Then, there is a distribution P over A such that
the minimum probability of any atom in P is at least ε

2k! .

18

Proof. We define a variable λσ for every σ ∈ Ae. We want to find a solution to the following :

∀ j∈{1,...,k}

∑
σ∈Ae

λσσu j = xu j (10)∑
σ∈Ae

λσ = 1 (11)

∀σ∈Ae λσ ≥ 0 (12)

We know that there is a feasible solution to this set of constraints. A vertex solution corresponds to the unique
solution obtained by subset of the constraints (where inequality is replaced by equality). For a such a system of
equations, A · λ = b, we observe that all entries in A are 0-1 and all entries in b are integral multiples of ε. The
determinant of A is at most 2k!. The value of λσ (by Cramer’s rule) is the ratio of determinants of two matrices –
the matrix A with one of the columns replaced by b, and the matrix A. Since each entry of b is a multiple of ε, it is
easy to check that the determinant of the former matrix is either 0 or at least ε. This implies the lemma. �

6.4 Details of Dictatorship Function (Section 4.2)

We give a brief introduction to the Invariance Principle in this section. Then we complete the soundness analysis
(Theorem 4.10) of the dictatorship function by giving proof of Fact 4.11.

6.4.1 Gaussian Spaces and Mossel’s Invariance Principle

Measure Spaces. We will be concerned with real valued functions in two measures spaces.

1. p-biased measure space. For p ∈ [0, 1], the p-biased measure on {0, 1}r is denoted by µp where for x =

(x1, . . . , xr) ∈ {0, 1}r, µp(x) def
= p|{i:xi=1}|(1−p)|{i:xi=0}|. For f , g : {0, 1} 7→ R, define the following inner product:

〈 f , g〉p := Ex←µp[f (x)g(x)].

2. Gaussian measure space. We will denote by γ as the Gaussian measure on Rr with density γ(x) def
=

(2π)−r/2e−‖x‖
2/2 for x ∈ Rr. For a function f : Rr 7→ R we will denote by Eγ[f] def

=
∫
Rr f (x)γ(x)dx. We

will restrict ourselves to f ∈ L2(Rr, γ), i.e., f such that Eγ[f 2] < ∞. For f , g : Rr 7→ R, define the following
inner product: 〈 f , g〉γ := Ex←γ[f (x)g(x)].

Gaussian stability. For ρ ∈ [−1, 1],we denote by Uρ the Ornstein-Uhlenbeck operator Uρ which acts on L2(Rr, γ)

as Uρ f (x) def
= Ey←γ[f (ρx +

√
1 − ρ2y)]. It is easy to see that Eγ[Uρ f] = Eγ[f]. For 0 ≤ µ ≤ 1, let Fµ : R 7→ {0, 1}

denote the function Fµ(x) = 1{x<t}, where t is chosen is a way such that Eγ[Fµ] = µ.

Definition 6.3. Given µ, ν ∈ [0, 1] and ρ ∈ [−1, 1] define

Γρ(µ, ν)
def
= 〈Fµ,Uρ(1 − F1−ν)〉γ.

For a vector (ρ1, ρ2, . . . , ρk−1) ∈ [−1, 1]k−1 and µ1, µ2, . . . , µk we recursively define

Γ(ρ1,ρ2,...,ρk−1)(µ1, µ2, . . . , µk) def
= Γρ1(µ1,Γ(ρ2,...,ρk−1)(µ2, . . . , µk)).

When the ρi are all equal to ρ, and the µi are all equal to µ, we will use Γk
ρ(µ) to denote the term on left hand side

above.

We will also need the following simple facts.

19

Fact 6.4. For every θ ∈ (0, 1) and ρ = 1 − λ ∈ (0, 1), Γρ(θ, θ) ≥ θ
1/λ.

We use the above fact iteratively to obtain the following bound.

Fact 6.5. For every θ ∈ (0, 1) and ρ = 1 − λ ∈ (0, 1), Γk
ρ(θ) ≥ θ

1/λk
.

Product Spaces and Influences. Let (Ω1, µ1), . . . , (Ωr, µr) be probability spaces and let (Ω, µ) denote the product
space (

∏r
i=1 Ωi,

∏r
i=1 µi). Let f = (f1, . . . , fk) : Ω 7→ Rk. The influence of the i-th coordinate on f is defined as

Infi(f) def
=

∑
1≤ j≤k

E
x=(x1,...,xr)←µ

[Varµi[f j(x)|x1, . . . , xi−1, xi+1, . . . , xr]].

Here, fixing (x1, . . . , xi−1) and (x j+1, . . . , xr), f j(x) is just a function of xi, call it g. Hence, the variance Varµi[g] def
=

Eµi[g
2] − (Eµi[g])2. When Ω1 = · · · = Ωr and f is a boolean function, let { f̂S : S ⊆ {0, 1}r} denote the Fourier

coefficients of f with respect to the product measure µ. Define the degree-d influence of the i-th coordinate on f ,
Inf≤d

i (f), as
∑

S :i∈S ,|S |≤d f̂ 2
S .

Correlated Spaces. We now consider a correlated space P on Ω1× Ω2× · · · × Ωk with a probability measure µ.
A function f : Ω1× Ω2× · · · × Ωk 7→ R is in L2(P) if Ex←µ[f 2(x)] < ∞. We consider L2(P) as a vector space over
the reals of all functions in L2(P) where addition of two functions is defined as point-wise addition. We denote by
Varµ[f] def

= Eµ[f 2] − (Eµ[f])2, and Cov[f , g] def
= Eµ[fg] − Eµ[f] Eµ[g].

Definition 6.6. For any two linear subspaces A and B of L2(P), we define the correlation between A and B by

ρ(A, B; P) def
= sup{Cov[f , g] : f ∈ A, g ∈ B,Var[f] = Var[g] = 1}.

Now we can define the correlation, ρ(P) of a correlated space P over Ω1× Ω2× · · · × Ωk.

Definition 6.7 (Correlation). The correlation ρ(P) of a space P over Ω1× Ω2× · · · × Ωk is defined as

ρ(P) def
=

k
max

j=1

{
ρ(Ω1 × · · · ×Ω j−1 ×Ω j+1 × · · · ×Ωk,Ω j; P)

}
.

We will use the following theorems in [Mos08].

Theorem 6.8 (Cheeger’s Inequality). [Mos08] Let (Ω1 ×Ω2, P) be two correlated spaces such that the probability
of the smallest atom in Ω1 × Ω2 is at least α > 0. Define a bipartite graph G = (Ω1,Ω2, E) where (a, b) ∈ Ω1 ×Ω2

satisfies (a, b) ∈ E if P(a, b) > 0. Then if G is connected then

ρ(Ω1,Ω2; P) ≤ 1 − α2/2.

Theorem 6.9 (Invariance Principle). [Mos08] Let (
∏k

j=1 Ω
j
i , Pi), 1 ≤ i ≤ r be a sequence of correlated probability

spaces such that for all 1 ≤ i ≤ r the minimum probability of any atom in
∏k

j=1 Ω
j
i is at least α. Assume furthermore

that there exists ρ ∈ [0, 1]k−1 and 0 ≤ ρ0 < 1 such that ρ(Ω1
i , . . . ,Ω

k
i ; Pi) ≤ ρ0 and ρ(Ω{1,..., j}i ,Ω

{ j+1,...,k}
i ; Pi) ≤ ρ j

for all i, j. Then for all η > 0 there exists τ > 0 such that if f j :
∏r

i=1 Ω
j
i → [0, 1]. for 1 ≤ j ≤ k satisfy

maxi, j(Infi(f j)) ≤ τ then

Γρ(E[f1], . . . ,E[fk]) − η ≤ E

 k∏
j=1

f j

 . (13)

One may take τ = ηO
(log(1/η) log(1/α)

(1−ρ)η

)
.

20

6.4.2 Completing the soundness proof of dictatorship function

We now give the proof of Fact 4.11 which will complete the proof of Theorem 4.10. We first state the statement of
this Fact below.

Fact 6.10.
E

[
Πu∈Re f S

B(u)(z
(u))

]
> 0.

Proof. Let α def
= δkε

2k! and Qe
def
= Mδ(Px

e). We know that the minimum probability of any atom in Qe is at least
α. Using Lemma 6.11 proved below, we have that the correlated space induced by Qe on Re has correlation at
most 1 − α2. Finally, using Fact 6.5, we know that the quantity Γ(ρ,...,ρ)(δ, . . . , δ) is at least δ1/αk def

= β. Thus, using
Theorem 6.9 with η = β/2, we obtain τ = τ(η) and d = d(η) such that if for every i, Inf≤d

i (f S
b) ≤ τ, then

E
[
Πu∈Re f S

B(u)

]
≥ β − β/2 ≥ β/2 > 0.

�

It remains to prove the following lemma.

Lemma 6.11. Consider an edge e = (u1, u2, . . . , uk) ∈ E. Let Ωi denote the set {0, 1}, i = 1, . . . , k. Let S 1, S 2 be two
non-empty disjoint subsets of {u1, u2, . . . , uk}. Then the correlated space induced by Qe on (×i∈S 1Ω

i) × (×i′∈S 2Ω
i′)

has correlation at most 1 −
(
δkε
2k!

)2
.

Proof. Let U denote the set S 1 ∪ S 2. Let QS 1
e ,QS 2

e ,QU
e be the distributions obtained by restricting Qe to S 1, S 2

and U respectively. Let ΩS 1 denote the elements in × j∈S 1Ω
j with non-zero probabilites associated by QS 1

e . Define
ΩS 2 similarly. Construct a bipartite graph on ΩS 1 × ΩS 2 where we have an edge (a, b) if QU

e ((a, b)) > 0. We now
argue that this graph is connected. Indeed, let a ∈ ΩS 1 and b ∈ ΩS 2 . Since QS 1

e (a) > 0, (a, 1) is an edge in this
graph, where 1 is the all 1 vector of the appropriate dimension. Similarly, (1, b) and (1, 1) are edges in this graph. It
follows that the vertices a and b are connected. Note that for every edge (a, b) in this graph, QU

e ((a, b)) ≥ δkε
2k! . We

now invoke Lemma 6.8 to finish the proof. �

6.5 The Reduction

In this section, we give the reduction from U G to a problem Π in the class k-sm-CSP. We first state the
version of UGC on which our results rely.

Definition 6.12 (UG). An instanceU = (G(U, A), [r], {πe}e∈A,wt) of UG is defined as follows:
G = (U, A) is a bipartite graph with set of vertices U = Uleft∪Uright and a set of edges A. For every e = (v, w) ∈ E with
v ∈ Uleft, w ∈ Uright, there is a bijection πe : [r] 7→ [r], and a weight wt(e) ∈ R≥0. We assume that

∑
e∈E wt(e) = 1.

The goal is to assign one label to every vertex of the graph from the set [r] which maximizes the weight of the
edges satisfied. A labeling Λ : U 7→ [r] satisfies an edge e = (v, w), if Λ(w) = πe(Λ(v)).

The following notations will be used in the hardness reduction and we state them here.

Notations.

1. For a vertex v ∈ U, Γ(v) is the set of edges incident to v.

2. For a vertex v ∈ U, define pv
def
=

∑
e∈Γ(v) wt(e). This gives a probability distribution over the vertices in Uleft

(or Uright).

21

We now state the Strong UGC which was shown by Khot and Regev [KR08] to be equivalent to the UGC [Kho02].

Conjecture 6.13 (Strong UGC). For every pair of constants η, ζ > 0, there exists a sufficiently large constant
r := r(η, ζ), such that it is NP-hard to distinguish between the following cases for an instance
U = (G(U, A), [r], {πe}e∈A,wt) of U G:

– YES: There is a labeling Λ and a set U0 ⊆ Uleft of vertices,
∑

u∈U0 pu ≥ (1−η), such that Λ satisfies all edges
incident to U0.

– NO: There is no labeling which satisfies a set of edges of total weight value more than ζ.

Now we describe the reduction from U G instance to our problem. The reduction shall use the instance
D of Π produced by DΠ

I,x,m(r, δ). Here x is the ε-perturbed solution corresponding to an optimal solution x? to
lp(I).
Input Instance : The input to the reduction is an instanceU = (G(U, A), [r], {πe}e∈A,wt) of U G problem
as defined in Definition 6.12. Recall that G is a bipartite graph with U = Uleft ∪ Uright, and the edge weights wt
induce probability distribution pv over vertices in Uleft.
Output Instance : The output instance F of Π is as follows :

1 Vertex Set V(F) = Uleft ×V(D), i.e., we place a copy of V(D) at each vertex of Uleft. We shall index a vertex
by (u, b, y) where u ∈ Uleft and (b, y) ∈ V(D).

2 Vertex Weights The weight of a vertex (u, b, y) is

wF ((u, b, y)) = pu · wD((b, y)).

3 Hyper-edges For every hyperedge e =
(
(b1, y1), (b2, y2), . . . , (bk, yk)

)
inD, we add the following edges to F

– for each vertex u ∈ Uright and all sets of k neighbors, u1, . . . , uk (with repetition) of u, we add the hyperedge(
(u1, b1, y1 ◦ πu

(u,u1)
), . . . , (uk, bk, yk ◦ πu

(u,uk)
)
)

to F . The constraint for the these edges is the same as that for
e.

Completeness.

Theorem 6.14. Suppose there is a labeling λ forU and a subset U0 of Uleft,
∑
v∈U0 pv ≥ 1 − η, such that λ satisfies

all edges incident on U0. Then there is a subset of vertices in F which satisfy all the constraints in F and has
weight at most lp(I) + δ + ε + η.

Proof. Consider the labeling λ. We now show how to pick a set F of vertices from V(F) which satisfies all the
hyperedge constraints. For each u ∈ U0, define Ju as {(u, b, y) ∈ V(F) : yλu = 1}. For each u ∈ Uleft − U0, define J′u
as the set {(u′, b′, y′) ∈ V(F) : u′ = u}. Now define F = ∪u∈U0 Ju

⋃
∪u∈Uleft−U0 J′u.

We now show that F satisfies all hyperedge constraints. Fix a hyperedge e =
(
(b1, y1), . . . , (bk, yk)

)
in D. Let

u ∈ Uright and u1, . . . , uk be k neighbors of u. Consider a corresponding edge f = ((u1, b1, y1◦πu
(u,u1)

), . . . , (uk, bk, yk◦

πu
(u,uk)

)) in F . Lemma 4.9 shows that the set Ci = {(b, z) : zi = 1} satisfies the edge constraint for e for any i. Let us

pick i = λu. It will be enough to prove that if (bl, yl) satisfies yl
i = 1, then the vertex w = (ul, bl, yl ◦ πu

(u,ul)
) is in F.

But this is indeed the case because if ul ∈ U0, then λu = πu
(u,ul)

(λul). Therefore, yl ◦ πu
(u,ul)

has coordinate λul equal

to 1. Hence, w ∈ Jl
u. If ul ∈ Uleft − U0, then we add w ∈ J′

ul trivially. Thus, we have shown that F satsifies the edge
constraint for the hyperedge f .

Let us now compute the weight of F. If u ∈ U0, then Lemma 4.9 and Fact 3.2 show that the weight of Ju is at
most pu · (lp(I) + ε + δ). If u < U0, then the weight of J′u is pu. Thus, the weight of F is at most

(lp(I) + δ + ε)
∑
u∈U0

pu +
∑
u<U0

pu ≤ lp(I) + δ + ε + η.

�

22

Soundness.

Theorem 6.15. Suppose there is a subset of vertices F which satisfies all the constraints in F and wF (F) <

round(I, x?, ε) − 2δ. Then there is a constant ζ(ε, δ, k) such that there is a labeling for U for which the set of
satisfied edges has weight at least ζ(ε, δ, k).

Proof. Consider a set F satisfying the conditions of the theorem. Let IF(·) be the indicator function for F. For a
vertex u ∈ Uright, let N(u) ⊆ Uleft denote the neighbors of u. Recall that every vertex of F can be written as (w, z),
where w ∈ Uleft and z ∈ V(D). Since the distribution {pw}w∈Uleft is same as first picking a vertex u ∈ Uright with
probability pu and then picking a random neighbor of u (according to edge weights), we get

wF (F) = Eu∈UrightEw∈N(u)Ez∈V(D)IF((w, z ◦ πu
(u,w))),

where z is picked according to vertex weights inD. For a vertex u ∈ Uright, let G(u) denote the quantity

E
w∈N(u)

E
z∈V(D)

I
F
((w, z ◦ πu

(u,w))).

We can therefore state the condition of the Theorem as Eu∈Uright G(u) < round(I, x?, ε) − 2δ. Call a vertex
u ∈ Uright good if G(u) < round(I, x?, ε) − δ. A simple averaging argument shows that the weight of good vertices
is at least δ/2.

Fix a good vertex u. Let D(u) be a copy of the instance D. We construct a solution S (u) for D(u) as follows :
for each (b, y) ∈ V(D(u)), we pick a random neighbor ui of u according to edge weights wt in the instance U. If
(ui, b, y ◦ πu

(u,ui)) ∈ F, we add (b, y) to S (u).

Claim 6.16. S (u) satisfies all the constraints inD(u).

Proof. Let e =
(
(b1, y1), . . . , (bk, yk)

)
be a hyperedge inD(u). Suppose while constructing the set S (u), we decide to

add (bi, yi) to this set based on whether (ui, bi, yi ◦ πu
(u,ui)) ∈ F. Now observe that the instance F has the hyperedge(

(u1, b1, y1 ◦ πu
(u,u1)

), . . . , (uk, bk, yk ◦ πu
(u,uk)

)
)
. Since this hyperedge is satisfied by F, the claim follows. �

Note that E[S (u)] is exactly G(u), where the expectation is over the choice of random neighbors of u. For each
vertex w ∈ Uleft and b ∈ [m], define a 0-1 function f F,w

b on {0, 1}r as follows –

f F,w
b (y) def

=

{
1 if (w, b, y) < F
0 otherwise

Note that f F,w
b is the indicator function for complement of F for the set of vertices {(w, b, y) : y ∈ {0, 1}r}. For the

vertex u, we now define the function f F,u
b (y) which is the average of the corresponding functions for the neighbours

of u.
f F,u
b (y) def

= E
w∈N(u)

f F,w
b

(
y ◦ πu

(u,w)

)
.

Observe that f F,u
b (y) = P[(u, b, y) < S (u)], where the probability is over the choice of S (u). Rest of the proof is very

similar to the proof of Theorem 4.10 – the goal would be to prove the following statement :

Lemma 6.17. There exist values b ∈ [m], i ∈ [r] and constants d, τ depending on δ and k only such that
Inf≤d

i (f F,u
b) ≥ τ.

23

Proof. Let τ and d be as in the proof of Fact 4.11. Suppose, for the sake of contradiction, that the statement of the
lemma does not hold for these values of τ and d. Define

J(u) def
=

{
b | E

z←µp̃b

f F,u
b (z) ≤ δ

}
.

Let T (u)
J

def
= ∪b∈J(u)(b, {0, 1}r). Fix a particular hyperedge e = (a1, a2, . . . , ak) ∈ E of the instance I (which gets used

in DΠ
I,x,m(r, δ)). Let

R(u)
e

def
= {ai ∈ e |B(ai) < J(u)}.

The following fact can be deduced in the same manner as the proof of Theorem 4.11.

Fact 6.18.
E Πa∈R(u)

e
f F,u
B(a)(z

(a)) > 0,

where the expectation is over the choice of z(a) from p̃B(a)-biased measure on {0, 1}r.

Fact 6.18 implies that there exist neighbors ua ∈ N(u) for each a ∈ R(u)
e such that

E Πa∈R(u)
e

f F,ua

B(a) (z(a) ◦ πu
(u,ua)) > 0.

Therefore, there exist values {z(a) : a ∈ R(u)
e }, such that f F,ua

B(a) (z(a) ◦ πu
(u,ua)) = 1 for all a ∈ R(u)

e . But then consider the
following choice of S (u) : while considering (B(a), z(a)), we pick the neighbor ua of u. Therefore, the set S (u) does
not contain any element from the set {(B(a), z(a) : a ∈ R(u)

e }. The set S (u) still satisfies all the constraints in D(u)

(Lemma 6.16). Hence, there exists a hyperedge
(
(b1, z1), . . . , (bk, zk)

)
inDu corresponding to e which gets satisfied

by T (u)
J only. Thus, all hyperedges in D(u) are satisfied by T (u)

J . But wD(T (u)
j) ≥ round(I, x?, ε). Further, we know

that
EwD(S (u)) = G(u) ≥ wD(T (u)

J) − δ.

This contradicts the fact that EwD(u)S (u) < round(I, x?, ε) − δ. Hence, the lemma is true. �

The rest of the argument to complete the theorem follows standard arguments, see e.g. [Rag08]. �

Choice of Parameters and Proof of Theorem 1.1 Given parameters ε and δ, and a constant value k, we first pick
η according to the proof of Fact 4.11 described in Section 6.4.2. The parameter η can be assumed to be much less
than δ (otherwise we can just set η to be δ). This yields the parameters τ and d as specified by Lemma 6.17. Then,
as in [Rag08], ζ(ε, δ, k) mentioned in the statement of Theorem 6.15 depends on τ, d, δ, and hence, on ε, δ and k
only. Now we pick the label size r of the U G instance U to be large enough such that we get a gap of
1 − (η + ε + δ) versus ζ in the UGC . Theorems 6.14 and 6.15 now imply Theorem 1.1 if we pick the values δ and
ε in the reduction to be half of the ones mentioned in the theorem.

24

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

