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Abstract

In this paper we demonstrate a close connection between UG and MC. In MC, one is given
anetwork graphand ademand graphon the same vertex set and the goal is to remove as few edges from the network
graph as possible such that every two vertices connected by a demand edge are separated. On the other hand, U

G is a certain family of constraint satisfaction problems.
In one direction, we show that, at least with respect to current algorithmic techniques, MC is not harder than

UG. Specifically, we can adapt most known algorithms for UG to work for MC and obtain
new approximation guarantees for MC that depend on the maximum degree of the demand graph. This degree
plays the same role as the alphabet size plays in approximation guarantees for U G.

In the other direction, we show that MC is not easier than U G (ΓM 2 L to be precise). We
exhibit a reduction from U G to MC so that the fraction of edges in the optimal multicut is up to a
factor of 2 equal to the fraction of constraint violated by the optimal assignment for the U G instance. In
contrast to the vast majority of U G reductions whose analysis relies on Fourier analysis and isoperimetric
inequalities, this reduction is simple and the analysis is elementary. Further, the maximum degree of the demand graph
in the instance produced by the reduction is less than the size of the alphabet size in the Unique Games instance.

Our results rely on a simple but previously unknown characterization of MC in terms ofL1 metrics.
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1 Introduction

Minimum Multicut. An instance of Minimum Multicut (MC) is specified by two graphsG andH on the same
vertex set. We refer toG as thenetwork graphand toH as thedemand graph. The goal is to find a partition of the vertex
set such that all demand edges are separated with the objective to minimize the fraction of network edges cut.

Unique Games. U G is a constraint satisfaction problem where, given a constraint graphG(V,E), a label set
[k] and for each edgee = (u, v), a bijective constraintπuv : [k] 7→ [k], the goal is to assign to each vertex inG a label
from [k] so as to maximize the fraction of the constraints that aresatisfied. A constrainte = (u, v) is said to besatisfied
by an assignment ifu is assigned a labeli andv is assigned a labelj such thatπuv(i) = j. over all labelings. The Unique
Games Conjecture (UGC) of Khot [Kho02] asserts that for such a constraint satisfaction problem, for arbitrarily small
constantsη, ζ > 0, it is NP-hard to decide whether there is a labeling that satisfies 1− η fraction of the constraints or,
for every labeling, the fraction of the constraints satisfied is at mostζ as long as the size of the label set,k, is allowed to
grow as a function ofη andζ.

1.1 Previous and Related Work

MC. The MC problem is a generalization of the classic minimum (s, t)-cut problem and has received a
considerable amount of attention (see the book by Vazirani [Vaz01] for a comprehensive treatment of this problem).
The MC problem isNP-hard, and the best approximation algorithm for this problem is due to Garg, Vazirani and
Yannakakis [GVY96] who build on theregion growingtechnique of Leighton and Rao [LR99] to give aO(log |E(H)|) =
O(logn) factor approximation algorithm for this problem. The result of Garg, Vazirani and Yannakakis relies on a certain
natural linear programming (LP) relaxation of the MC problem. This relaxation is inspired by theLP formulation
of the MF-MC problem. They also prove that, unlike in the case of the MF-MC problem, there
is an integrality gap ofΩ(logn) for theLP that they consider. Subsequently there have been attempts, for instance by
Agarwal, Charikar, Makarychev and Makarychev [ACMM05], to reduce the gap ofΘ(logn) to o(logn) using a semi-
definite programming (SDP) based approach. The hope was to strengthen the Garg-Vazirani-Yannakakis relaxation for
MC in the world ofSDP in a manner similar to how Arora, Rao and Vazirani [ARV04], for the S C
problem, strengthened the Leighton-RaoLP relaxation to aSDP and obtained aO(

√
logn) approximation algorithm for

the S C problem. In such an attempt, Agarwalet al. proved that the gap remainsΩ(logn) even when one goes
far beyondSDPs: to the computationally infeasible world of optimizing over the space ofL1 embeddable metrics. This
is in stark contrast with the S C problem where it was discovered by Aumann and Rabani [AR98] and Linial,
London and Rabinovich [LLR95] that theL1 tightening of theLP considered by Leighton and Rao for the S C
problem has no integrality gap.

On the hardness side, it is known that the problem is as hard to approximate as the VC problem, even when
H is a tree. The current best unconditional result for V C is about 1.36 due to Dinur and Safra [DS05]. Then
there are conditional results due to Chawlaet al. [CKK+05] and Khot and Vishnoi [KV05] who prove that, assuming the
Unique Games Conjecture (UGC) of Khot [Kho02], there is no constant factor approximation to the MC problem.

U G. Since its origin, theUGC has been successfully used to prove (often optimal) hardness of approxi-
mation results for several importantNP-hard problems such as V C [KR03], M C [KKMO04] and
a wide class of constraint satisfaction problems [Rag08]. The list of problems for which the best inapproximability
result rests on the validity of theUGC is growing rapidly and in a relatively short time since the conjecture was made,
it has become one of the key open problems in complexity theory and approximation algorithms. The validity of this
conjecture remains under scrutiny.

Several attempts have been made to disprove theUGC. Starting with the original paper of Khot [Kho02] itself,
to the papers by Trevisan [Tre05], Gupta and Talwar [GT06], Charikar, Makarychev and Makarychev [CMM06a] and
Chlamtac, Makarychev and Makarychev [CMM06b]. Needless to say, they all fall short of disproving theUGC. Except
the result of Gupta and Talwar, which is aLP based approach, the other results are based onSDP relaxations of the
U G problem. Roughly, they all lead to the conclusion that theUGC cannot be strengthened to the case when
η, ζ to very smallo(1) terms.
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On attempts to prove theUGC, very recently, an approach to put it on a firm ground has been ruled out by a result
of Raz [Raz08] and suitably generalized by Baraket al. [BHH+08]. The latter result proves that one cannot hope to
amplify hardness of aUGC instance by taking tensor products, a standard approach to amplify hardness.

1.2 Main Results

We show that there is a close connection between the MC problem on instances with maximum degree∆ in the
demand graph and the U G problem where the number of labels is about∆.

Hardness result forMC assumingU G. 1 2 The starting point of our results is a simple reduction
that, assuming theUGC, the MC problem is hard to approximate to within any constant factor. The previous
proofs of this theorem, following thedictatorship testparadigm, rely on fourier analysis. Our reduction, on the other
hand, relies on a new relaxation of the MC problem, and is approximation preserving in a sense we will describe
later.

SDP based algorithms forMC from U G algorithms. We show thatSDP rounding algorithms de-
veloped for U G apply with simple modifications to the (seemingly harder) MC problem with bounded
degree demand graph instances. For instance an algorithm of Charikaret al. [CMM06a] can recover a labeling of value
at least 1−

√
ε logk given anSDP solution of value 1− ε. The analogous result for MC we show is to recover

a multicut of instance at most
√
ε log(∆/ε) from anSDP solution of value at mostε. Here,∆ is the largest degree in

the demand graph. Similarly, from a result of Chlamtacet al. [CMM06b] we deduce an algorithm for MC which
outputs a multicut of value at mostε

√
logn log(∆/ε) from anSDP solution of value at mostε.

Characterization ofMC by L1 metrics. Our results rely on a new tool which is a relaxation of the MC
problem as an optimization problem over the class ofL1 embeddable metrics. We prove that this relaxation captures the
optimal value within a factor of 2. Though the optimization problem overL1 embeddable metrics is not known to be
computationally feasible, it allows us to prove the hardness result and considerSDP relaxations to it and derive several
new algorithmic results for the MC problem mentioned above.

1.3 Further Connections

Easiness results for tensor products ofMC instances. A typical approach to constructing hard instances is to
study how the optimal value behaves under taking products. This approach failed for U G as shown by Raz
[Raz08] and Baraket al. [BHH+08]. In the spirit of translating results for U G to MC, we prove an
analogous result: if the demand graph of a MC instance is a product oft demand graphs, in each of which the
maximum degree is bounded by∆, then in the product graph, even though the maximum degree of the demand graph
could be as high as∆t, the approximation factors just depend on∆. As in Baraket al., The key here is to show that if
one is given a vector solution to a certainSDP of the MC problem such that all vectors have non-negative entries,
then one can get approximation factors which do not depend on the degree of the demand graph. Then one only needs to
show how to translate generalSDP solutions to ones with non-negative coordinates such that the cost of the non-negative
solution is not too high compared to the original one.

Algorithm for MC instance with demand graphs without large independent set.One of our algorithmic results
stated before implies that if the degree of the demand graph is bounded by a constant then there is essentially aO(

√
logn)

approximation algorithm for the MC problem. Bounded degree graphs are sparse but and will typically have
independent sets of sizeΩ(n). We prove a somewhat complementary result: if the size of the largest independent set
in the demand graph without taking into account isolated vertices isα,, then there is a logα factor approximation for
the MC problem. Firstly, this result implies the Garg, Vazirani and Yannakakis result. Secondly, it implies that
if the average degree of the demand graph isΩ(n) then there is a constant factor approximation for MC. This

1A similar result was communicated to us by Julia Chuzhoy.
2We quickly observe that the Sherali–Adams SDP gap for U G due to [RS09] can be translated using our reduction to give strong

ω(1) integrality gap for MC. This integrality gap is not implied by the integrality gap for MC in [ACMM05].
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result shows that, for instance, for almost all dense demand graphs (say sampled fromG(n,1/2)), MC can be
approximated within a factor ofO(log logn).

1.4 Interpretations and Future Directions

The main appeal of our work is the viewpoint and the directions that seem to emerge from it. One challenge that emerges
from the connections above is to come up with algorithms for U G that do not generalize to MC on
bounded degree demand graph . The only possible candidate we are aware of is an algorithm for U G on
expanding constraint graphs [AKK +08]. The first obstacle in adapting this algorithm for MC is to define the right
notion of “expanding MC instances” (expansion of the network graph doesn’t seem to be enough).

Another interpretation, and the original motivation for the paper, is that our results give hope that it might be possible
to reduce MC on bounded degree demand graphs to U G. This could be an avenue of important future
research.

Yet another possibility one can explore is to try to base the hardness results relying on theUGC on the following
tempting hypothesis. (Our reduction shows that theUGC implies this hypothesis.)

Multicut Hypothesis. For every small enough constantε > 0, there is a∆(ε) such that it isNP-hard to decide, given an
instance of MC with the maximum degree of the demand graph is bounded by∆(ε), whether the optimal multicut
is of value less thanε or more than 1− ε.

1.5 Techniques

In this section we give an overview of our techniques.

Hardness. The hardness reduction is simple enough to be described here. It takes a U G instanceU with
constraint graphG(V,E), label set [k], and permutations{πe}e∈E and constructs the following MC instance: for
every vertexv ∈ V, there is acloudof k vertices indexed by (v, i) wherei ∈ [k]. There is a demand edge between every
pair (v, i) and (v, j) for i , j ∈ [k]. There is a network edge between (u, i) and (v, j) if (u, v) is a constraint edge inU
andπuv(i) = j. Thus, the demand graph consists of cliques over the clouds of sizek and the network edges consist of a
perfect matching between the clouds corresponding to a constraint inU. The network graph constructed is sometimes
referred to as thelabel extendedgraph corresponding toU. If we impose, w.l.o.g., an extra structure on the bijections
in U that they arelinear3, it is easy to see that a labeling satisfying 1− ε fraction of the constraints gives a multicut
in the label extended graph cutting at mostε fraction of the network edges. The linearity property of the constraints
implies that ifΛ : V → {0,1, . . . , k − 1} is a labeling, then (Λ + j) mod k, for every j ∈ [k], satisfies exactly the same
constraints asΛ.Hence, the multicut in the label extended graph of valueε consists of the followingk parts:{(v, (Λ(v)+ j)
mod k) : v ∈ V} where j ∈ {0,1, . . . , k− 1}.

On the other hand, if there is a multicut in the reduced graph of value at mostε, then one can find a labeling ofU
which satisfies at least 1− 2ε fraction of the constraints. To prove this first one notices that, by definition, a multicut is a
collection of independent sets in the demand graph. Hence, every part in the multicut will contain at most one candidate
label for a vertexv of U. Thus, one strategy is to sample a random part from the multicut and assign to a previously
unassigned vertices the label suggested by it. Formally, ifv ∈ V has not been assigned a label yet and (v, i) appears in
the part sampled from the multicut in the label extended graph, assignv label i. Keep doing this until all vertices have
been assigned a label. (This will happen with probability one.) Notice that the label of two verticesu, v joined by an
edge inU will have inconsistent labels if there is somei such that edge between (u, i) and (v, πuv(i)) is cut the first time
one ofu or v gets its label. Now, one can show using a simple argument that the expected number of edgesuv ∈ E that
get assigned inconsistent labels is at most two times the fraction of edges in the multicut we started off with.

SDP Algorithms. The basicSDP for MC requires one to come up with a unit vector for every vertex in the
graph such that the vectors corresponding to any two of them connected by a demand edge are orthogonal. The goal
is then to find such a vector solution which minimizes the average squared euclidean distance between pairs of vertices

3See Section2.2for the definitions
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connected by a network edge. A standardSDP for (linear) UG on label set [k], on the other hand, requires one
to come up with a set ofk orthonormal vectors for every vertex so as to maximize the averagecorrelationbetween the
two sets of orthonormal vectors connected by an edge in the constraint graph. A bit more formally, if{ui}i∈[k] and{vi}i∈[k]

are two orthonormal set of vectors corresponding to an edge (u, v) in the U G instance with the bijectionπ
between them, then the correlation between them is defined to be�i∈[k] uivπ(i). It is easily observed that up to a simple
affine transformation of the objective function, thisSDP is the same as the one for MC for the instance produced
by our reduction.

A typical rounding algorithm for UG can be interpreted as converting theSDP solution into a distribution
over cuts in the label extended graph. One such approach [CMM06a] is the following: pick a random gaussian vectorg

and a thresholdτ ∈ �+ and output the set of labels for a vertexv in the U G instance which have projection
at leastτ on g. Formally, letSv := {i ∈ [k] : 〈vi , g〉 > τ}. The choice ofτ is such that the expected cardinality ofSv is
one. Since{vi}i∈[k] is an orthonormal set,τ = Θ(

√
logk) suffices. Further if12 �i∈[k] ‖ui − vπuv(i)‖

2 = εuv for an edgeuv
in the U G instance, the probability that there is somei such thati ∈ Su butπuv(i) < Sv is O(

√
εuv logk). Now

assign a random label for every vertex from the setSv. It is not difficult to see now that this strategy proves that theSDP
value for a U G instance being at least 1− ε implies a labeling which satisfies 1−O(

√
ε logk) fraction of the

constraints.
Recall that there are two ways in which the MC instances produced by our reduction are special: (1) the

demand graphs are union of disjoint cliques of sizek (hence, maximum degree of the demand graph isk−1), and (2) the
network edges are a union ofperfect matchings(corresponding to the bijections between pairs of cliques in the demand
graph. When we systematically study variousSDP based algorithms for U G (like the one described above),
we observe that all these algorithms do not make critical use of the two structural properties listed above. They can be
easily modified to give algorithms with similar guarantees for general MC instances where the role of the the label
set is assumed by the maximum degree of the demand graph.

In the case of a MC instance where the maximum degree of the demand graph is∆, we do exactly the same
rounding pretending our MC instance was one gotten from the hardness reduction applied to a U G
instance with∆ − 1 labels. We pick a random gaussiang and a thresholdτ and first pick all vertices in the MC
instance whose vectors have projection more thanτ on g. Since all vectors are unit and those joined by an edge in the
demand graph are orthogonal, the probability that a pair of orthogonal vectors has more thanτ projection on a random
gaussian isN2(τ). Here,N(τ) is the probability that aN(0,1) random variable takes value more thanτ. It could happen
that two verticess, t adjacent in the demand graph end up having projectionτ or more. This probability isN2(τ). Hence,
the probability that, for a given vertex, there is some neighbor of it with this projectionτ or more is at most∆ · N2(τ).
This is where the maximum degree of the demand graph comes in. We have no other choice but to create a separate
component in the multicut for every demand-neighbor of a vertex with projection more thanτ. We keep doing this until
we have found a multicut. The rest of the calculation is almost the same as that for U G. One can show
that the probability that a network edgeuv getscut (one having projection more and the other less thanτ) is at most
O(
√
εuvτN(τ)). Hereεuv is the squared euclidean distance between the vectors corresponding tou andv. Hence, using

an argument similar to the one use in the soundness of the hardness reduction one can show that the expected size of
the multicut produced is at mostO(

√
ε log(∆/ε) + ε). Hereε is theSDP value for the MC instance. Choosing

τ := O(
√

log(∆/ε)) we get that the size of the multicut output by this algorithm is at mostO(
√
ε log(∆/ε)).

To summarize, using theSDP solution for the MC problem, we come up with a distribution over cuts of the
vertex set. This distribution has two nice properties: (1) it is a distribution over independent sets in the demand graph and,
(2) that the expected number of cuts that separate a network edge is related to the squared euclidean distance between
the vectors corresponding to the two endpoints of the network edge. This abstraction leads us to aL1 characterization of
MC within a factor of 2. (See Section2.1.1.) TheSDPs are now easily seen as relaxations for this characterization
and rounding algorithms as ways to convert generalSDP solutions to solutions for thisL1 program.

Once we have such a distribution over independent sets over the demand graphs, the strategy is similar to that in
the soundness proof of the hardness reduction: sample a sequenceT1,T2, . . . of independent sets from this distribution.
DefineSi := Ti\ ∪

i−1
j=1 S j . Stop sampling once every vertex of the MC instance is in someSi . Output the sets

S1,S2, . . . as the multicut.
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1.6 Organization

In section 2, we give a more detailed overview over the reductions and relaxations mentioned in the introduction. In
section 3, we show a representative proof. In appendix A, we prove the properties of MC relaxations described in
section 2. In appendix B, we give a detailed proof of the properties of the reduction from U G to MC.

2 Relaxations and Reductions for MC

Let us recall the definition of MC and introduce additional notation. A MC instance is specified by two
graphsG andH on the same vertexV. We refer toG as thenetwork graphand toH as thedemand graph. The goal is to
find a partitionP of the vertex setV such that all demand edges are separated with the objective to minimize the number
of network edges that are separated. Formally,

OPT(G,H) : minimize �
(u,v)∈E(G)

{
P(u) , P(v)

}
(1)

subject to ∀(s,t)∈E(H) P(s) , P(t) . (2)

Here,P(u) ⊆ V denotes the cluster of the partitionP that contains the vertexu ∈ V. We denote the fraction of network
edges contained in the optimal multicut byOPT(G,H). All of our discussion also applies to weighted network graphs.

2.1 Relaxations of MC

In this section, we present a plethora of relaxations for MC and discuss their properties and the relations between
them. The proofs of theorems in this section can be found in appendixA (the organization of§A is essentially the same
as the organization of this section).

LP relaxation. A function d: X × X → �+ is a metric4 on X, if it satisfies the triangle inequality for all triples in
X, i.e.,d(x, y) 6 d(x, z) + d(z, y) for any three pointsx, y, z ∈ X. Garg, Vazirani and Yannakakis [GVY96] consider the
following linear programming relaxation of MC.

LP(G,H) : minimize �
(i, j)∈E(G)

d(i, j) (3)

subject to ∀(s,t)∈E(H) d(s, t) = 1 , (4)

d is a metric onV . (5)

(We useLP(G,H) to refer to both the relaxation and its optimal objective value.) The integrality gap ratio of this
relaxation as a function of the size ofH is Θ(log|E(H)|) [GVY96]. In section2.3.2, we present (stronger) upper and
lower bounds on the integrality gap in terms of different parameters of the demand graphH. In particular, we show that
the gap remainsΘ(log|E(H)|) even on demand graphs with maximum degree 1.

SDP relaxation. Alternatively, we can consider the following naturalSDP relaxation of MC.

SDP(G,H) : minimize �
(i, j)∈E(G)

1
2‖vi − v j‖

2 (6)

subject to ∀(s,t)∈E(H) 〈vs, vt〉 = 0 , (7)

∀i∈V ‖vi‖
2 = 1 . (8)

This relaxation corresponds to theSDP relaxation of M C used by Goemans and Williamson [GW95]. In contrast
to theLP relaxation, this relaxation is sensitive to the maximum degree of the demand graph, denoted∆ := ∆(H).

Theorem 2.1. Let (G,H) be aMC instance andε = SDP(G,H). Then,OPT(G,H) = O
( √

ε log(∆/ε)
)
.

4In this paper, we do not distinguish between semimetrics and proper metrics.
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The proof of this theorem follows the analysis of the corresponding approximation algorithms for U G
[CMM06a, CMM06b]. The bound of Theorem2.1 is almost tight (a consequence of known integrality gaps for U
G [KV05, KKMO04], together with the reduction from U G to MC).

Theorem 2.2. For everyε > 0 and∆ = 2o(1/ε), there existsMC instances(G,H) with SDP(G,H) = ε, ∆(H) = ∆,
yetOPT(G,H) = Ω(

√
ε log∆).

Metric SDP relaxation. The approximation guarantees for the relaxationsLP(G,H) andSDP(G,H) are incomparable.
By combining the two relaxations, we can obtain an approximation ratio that is never worse thanO(logn) but can be
much better thanO(logn) when demand-degree∆ is not too large.

SDPmetric(G,H) : minimize �
(i, j)∈E(G)

1
2‖vi − v j‖

2 (9)

subject to ∀(s,t)∈E(H) 〈vs, vt〉 = 0 , (10)

∀i∈V ‖vi‖
2 = 1 , (11)

‖vi − v j‖
2 is a metric onV ∪ {0} . (12)

The constraint (12) requires that the distance functiond(i, j) = ‖vi−v j‖
2 satisfies the triangle inequality on the setV∪{0}.

Here, 0 is an additional point embedded in the origin, i.e.,v0 = 0. The following approximation guarantee follows by
adapting the analysis of the U G algorithm of Chlamtac, Makarychev and Makarychev [CMM06b].

Theorem 2.3. Let (G,H) be a MC instance on n vertices withε = SDPmetric(G,H). Then,OPT(G,H) =
O

(
ε
√

logn log(∆/ε)
)
.

Note that the approximation ratio in this theorem is never worse thanO(logn) because we can assume∆ 6 n and
ε > 1/n2 (at least for unweighted graphs).

2.1.1 Intractable Relaxations

In the following, we introduce two very strong relaxations. We do know whether they can be solved efficiently. (Assum-
ing theUGC no efficient algorithm can solve them.) We introduce these relaxations, because we find them helpful for
understanding the previously introduced relaxations.

The first intractable relaxation has only a constant integrality gap. We use this relaxation to clarify the rounding
problem of MC (especially for the relaxationSDP(G,H) andSDPmetric(G,H)).

The purpose of the second intractable relaxation is to estimate the behavior ofSDP(G,H) when (G,H) is a product
instance.

Characterization of MC in terms of L1 metrics. We say thatd: X×X→ �+ is anL1 metric on a setX if there
exists a multiplierα and a distribution over cutsS ⊆ X such thatd(i, j) = α · �

{
i and j are separated byS

}
.

L1(G,H) : minimize �
(i, j)∈E(G)

d(vi , v j) (13)

subject to ∀(s,t)∈E(H) d(vs, vt) = 1 , (14)

∀i∈V d(0, i) = 1/2 , (15)

d is anL1 metric onV ∪ {0} . (16)

This relaxation of MC characterizes theOPT(G,H) up to a factor 2. (It is an interesting question whether this
factor can be avoided.)

Theorem 2.4. For everyMC instance(G,H), we haveOPT(G,H) 6 2 · L1(G,H).

It is remarkable that constraint (15) plays a crucial role for this theorem. Without constraint (15) the integrality gap
of the relaxation would beΩ(logn) [ACMM05].
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Non-negative SDP relaxation. We consider a strengthening of the relaxationSDP(G,H) where we add the constraint
that all vectors lie in the non-negative orthant�N

+ of a sufficiently high dimensional Euclidean space (the dimensionN
is allowed to depend arbitrarily on the size of the instance (G,H)).

SDP+(G,H) : minimize �
(i, j)∈E(G)

1
2‖vi − v j‖

2 (17)

subject to ∀(s,t)∈E(H) 〈vs, vt〉 = 0 , (18)

∀i∈V ‖vi‖
2 = 1 , (19)

∀i∈V vi ∈ �
N
+ . (20)

The remarkable property of the this relaxation is that it has an approximation guarantee independent of the degree of the
demand graph, and it differs from the relaxationSDP(G,H) by at most a factor ofO(log(∆/ε)).

Theorem 2.5. For everyMC instance(G,H), we haveOPT(G,H) 6 O
(√

SDP+(G,H)
)
.

Theorem 2.6. For everyMC instance(G,H), we haveSDP+(G,H) 6 SDP(G,H) ·O
(
log(∆/ε)

)
.

The first theorem follows, after a standard application of Cauchy–Schwarz, from (the proof of) Theorem2.4. The
second theorem is obtained by adapting a construction in [BHH+08]. Also notice that Theorem2.1follows immediately
from these two theorems aboutSDP+(G,H).

2.2 Reduction from U G to MC

(See appendixB for more details and proofs about this reduction.)

ΓM 2 L variant of U G. We consider a straight-forward reductionΦ (a generalization of the well-
known reduction in [KRAR95]) that maps a U G instanceU to a multicut instance (G,H) = Φ(U). We
analyze our reduction for a well-known special case of U G, calledΓM 2 L (sometimes also referred to
aslinear unique gamesor E2LIN(k)). We need this additional assumption to ensure that the best multicut inΦ(U) is at
least as good as the best labeling for the U G instanceU.

We say a U G instanceU hasΓM 2 L form, if the label set ofU can be identified with the group�k

in such a way that every permutationπuv in U satisfiesπ(i + s) = πuv(i) + s ∈ �k for all s, i ∈ �k. In other words,πuv

encodes a constraint of the formxu − xv = cuv ∈ �k. Assuming this special structure of the permutations does not make
the problem any easier [KKMO04].

Theorem 2.7. Given aΓM 2 L instanceU, we can efficiently compute a multicut instance(G,H) = Φ(U) with
ε 6 OPT(G,H) 6 2ε, whereε is the fraction of constraints violated by the optimal assignment forU. The maximum
degree of H is less than the alphabet size ofU.

Combining this theorem and theO(logn)-approximation for MC [GVY96] yields a corresponding approxima-
tion for ΓM 2 L. The same approximation is obtained by Gupta and Talwar [GT06] using different (more involved)
techniques. (However, their LP relaxation for U G is essentially the same as the LP relaxation for MC
used in [GVY96].) Their algorithm has the benefit that it works also for general U G instances.

Corollary 2.8. Given aΓM 2 L instanceU such that an optimal assignment satisfies1 − ε of the constraints, we
can efficiently compute a labeling forU which satisfies at least1−O(ε logn) of the constraints.

2.3 Further Results and Discussions

2.3.1 Better SDP Approximation for Product Instances of MC

In this section, we want to better approximation for product instances using the intractable relaxationSDP+(G,H).
The following notion of product of MC instances is motivated by the notion of parallel repetition of U

G instances.
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Definition 2.9. The product of two multicut instance (G,H) and (G′,H′) on vertex setsV andV′, respectively, is defined
as (G,H)⊗ (G′,H′) := (G⊗AND G′,H ⊗OR H′) . In the graphG⊗AND G′, we connect (u,u′) and (v, v′) if both coordinates
are either equal or adjacent in the original graphs. In the graphH ⊗OR H′, we connect (u,u′) and (v, v′) if one of the
coordinates is adjacent in the original graph.

We can prove the following theorem for product instances.

Theorem 2.10.Let (G,H) be a multicut instance withSDP(G,H) = ε. Then, for t∈ �,

OPT
(
G⊗AND t,H⊗OR t

)
6 O

( √
t · ε log(∆/ε)

)
,

where∆ is the maximum degree of the demand graph H.

The proof of this theorem starts with a solution for the relaxationSDP(G,H). By Theorem2.6, we can transform this
solution to a solution forSDP+(G,H) by increasing the cost by at most a factorO(log(∆/ε)). By tensoring this solution
for SDP+(G,H), we obtain a solution forSDP+

(
G⊗AND t,H⊗OR t) of cost at mostt · ε log(∆/ε) . Thus, by Theorem2.5,

there exists a multicut for the product instance (G,H)⊗t of costO
( √

t · ε log(∆/ε)
)
.

We claim that for “bipartite” MC instances, Theorem2.10strongly improves the guarantee of Theorem2.1for
suitable values oft. (We say that a MC instance (G,H) is bipartite if there exists a bipartition (V1,V2) of V such
that all edges ofG go across the bipartition and all edges ofH stay within their part of the bipartition.) The reason is the
multiplicative property of the relaxationSDP(G,H) for bipartite instances.

Lemma 2.11 ([MS07, LM08]). Let (G,H) be a bipartite multicut instance on the vertex set V. Then, for all t∈ �,

SDP
(
G⊗AND t,H⊗OR t

)
= 1−

(
1− SDP(G,H)

)t
6 t · SDP(G,H) .

This lemma shows that in Theorem2.10, we havet·ε ≈ SDP
(
G⊗AND t,H⊗OR t). Hence, if we would apply Theorem2.1

on the product instance (G,H)⊗t, we would get the boundOPT(G,H)⊗t 6 O(t
√
ε log(∆/ε)), which is worse than the

bound of Theorem2.10by a factor
√

t. (Here, we are using that∆(H⊗OR t) > ∆(H)t.)

2.3.2 LP Relaxation and Parameters of the Demand Graph

(The proofs of the theorems in this section are in appendixA.4.)

A lower bound. First we note that restricting the degree of the demand graph does not improve the integrality gap of
theLP relaxation.

Theorem 2.12.For every n∈ �, there exists a multicut instance(G,H) on n vertices such that∆(H) = 1, LP(G,H) =
O

(
1/ logn

)
, yetOPT(G,H) = Ω(1).

For this theorem, we can chooseG as a random 2-lift of, say, a random 3-regular graphG0 (see [AL02] for the notion
of lifts of graphs). In the graphH, we match all vertices that correspond to the same vertex inG0. A similar theorem is
shown in [GT06].

An upper bound. Next we introduce a graph parameterα∗(H) that allows to prove a better bound on the integrality
gap ofLP relaxation. Letα∗(H) := minS maxT |S∩ T |, whereS ranges over all vertex covers ofH andT ranges over all
independent sets ofH. The integrality gap ratio ofLP(G,H) is only logarithmic inα∗(H).

Theorem 2.13.For everyMC instance(G,H), we haveOPT(G,H) 6 LP(G,H) ·O
(
logα∗(H)

)
.

Notice thatα∗(H) is less than both the vertex cover number ofH and the independent set number ofH. It is easy to
see thatα∗(H) < O(logn) for most dense graphsH (say,H is drawn from the distributionG(n, 1/2)).

The proof of this theorem is by inspection of one of the known proofs [CKR01, GKL03] thatLP(G,H) has integrality
ratioO(logn).
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2.3.3 Tightness of SDP Approximations

It is an interesting question whether in our approximation guarantees (Theorems2.1, 2.3) the dependence on∆/ε can
be improved to just∆. At least for the second guarantee it seems unlikely that an approximation algorithm based on
the same relaxation can achieve such a guarantee. Suppose we could round an solution forSDPmetric(G,H) of valueε
to a multicut of valueO(ε

√
logn log∆). We claim that this bound would imply aO(

√
logn)-approximation even for

arbitrary demand degrees. The reason is that one can reduce the degrees of the demand graph to 1 by splitting5 every
vertex in sufficiently many copies. To make sure that the resulting multicut instance is equivalent to the original one it
suffices to connect all copies of a vertex by a clique in the demand graph. If we give enough weight to the edges in those
cliques the optimal multicut will not separate any of the copies of a vertex.

On the other hand, the strong integrality gap for MC [ACMM05] suggests that an algorithm based onSDPmetric

cannot achieve anO(
√

logn)-approximation for general demand degrees.

3 Selected Proof

In this section we give very simple proof of an approximation guarantee forSDP(G,H) which is slightly weaker than
the guarantee in Theorem2.1.

Theorem 3.1. For everyMC instance(G,H), if SDP(G,H) = ε thenOPT(G,H) 6 O
(√
ε log(∆/ε)

)
.

We prove this theorem by a natural rounding procedure. The analysis combines ideas of Goemans and Williamson
[GW95] and Karger, Motwani and Sudan [KM94].

Proof. Let v1, . . . , vn ∈ �n be an optimal solution toSDP(G,H). Sampler = log(∆/ε) random hyperplanes through the
origin. Let S1, . . . ,SR ⊆ �

n be the induced partition of�n (R = 2r with probability 1). LetM̄ be the set of pairs (i, j)
such thatvi andv j lie in different parts of the partition. For every edge (i, j) ∈ E(G), we can upper bound the probability
that the vectors ofi and j lie in different parts by

�
{
(i, j) ∈ M̄

}
6 r · ‖vi − v j‖ .

For every demand pair (s, t) ∈ E(H), we can upper bound the probability that the vectors ofs andt lie in the same part
by

�
{
(s, t) < M̄

}
= (1/2)r .

Let V0 be the set of verticesssuch that the vector of a neighbor ofs in H lies in the same part asvs. We can upper bound
the probability that a vertexs is in the setV0 by

� {s ∈ V0} 6 degH(s)(1/2)r .

Let us consider the multicut that consists of the componentsK j = {i ∈ V \ V0 | vi ∈ S j} and singleton components for
each vertex inV0. Let M be the set of edges inG that cross the multicut. We have

� {(i, j) ∈ M} 6 �
{
(i, j) ∈ M̄

}
+ � {i ∈ V0} + � { j ∈ V0} 6 r · ‖vi − v j‖ + 2−r (degH(i) + degH( j)) .

Hence, we can give the desired upper bound onOPT(G,H),

1
|E(G)| � |M| 6 r �

(i, j)∈E(G)
‖vi − v j‖ + 2∆ · 2−r 6 r

√
ε + 2∆(H) · 2−r =

√
ε log(∆/ε) + 2∆ · (ε/∆) = O(

√
ε log(∆/ε)) .

�

5This idea of splitting vertices to reduce the degrees of the demand graph was communicated to us by Julia Chuzhoy after we presented our
work to her.
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A Relaxations of MC

A.1 Preliminaries

The following lemma simplifies the analysis of many of the rounding algorithm for MC. Essentially, this lemma
is the core of the proof of Theorem2.4.

Lemma A.1. Let (G,H) be aMC instance with vertex set V. Consider a distribution over independent sets S of
H, i.e.,∀(s, t) ∈ E(H). � {s, t ∈ S} = 0 . Then,

OPT(G,H) 6 �
(u,v)∈E(G)

�
{
(u, v) ∈ (S, S̄)

}
� {u ∈ S ∨ v ∈ S}

.

Proof. Let S1, . . . ,Sr , . . . be an infinite sequence of independent samples from this distribution. We extract a sequence
of disjoint vertex setsT1, . . . ,Tr , . . . as follows

Tr = Sr \ (Sr−1 ∪ · · · ∪ S1) .

SinceV is a finite set, almost all setsTr are empty. If we discard the empty sets, we obtain a partitionP of V. The
constraint (A.1) implies that none of the setsTr contain an edge ofH. Hence,P separated all demand edges. It remains
to bound the fraction of network edges separated byP. Let (u, v) be an edge inG. Let us condition on the event thatSr

is the first set that contains eitheru or v. If (u, v) ∈ M, then it must be the case that (u, v) ∈ (Sr , S̄r ). Hence,

� {P(u) , P(v)} 6
�

{
(u, v) ∈ (S, S̄)

}
� {u ∈ S or v ∈ S}

.

We can conclude that

OPT(G,H) 6 �
(u,v)∈E(G)

� {P(u) , P(v)} < �
(u,v)∈E(G)

�
{
(u, v) ∈ (S, S̄)

}
� {u ∈ S or v ∈ S}

.

�
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A.2 SDP Relaxations

A.2.1 Basic SDP Relaxation

Lemma A.2. Let (G,H) be a multicut instance. SupposeSDP(G,H) = ε. Then,

OPT(G,H) 6 O(
√
ε log(∆/ε)) .

Proof. Let v1, . . . , vn ∈ �n be an optimal solution forSDP(G,H) of valueε. Letg be a standardn-dimensional Gaussian
vector, and letS be the set of vertices whose vectors have a projection ong larger thanτ = C

√
log(∆/ε),

S = {i ∈ V | 〈g, vi〉 > τ} .

Let N(τ) denote the probability that a standard Gaussian variable is at leastτ. The behavior of the Gaussian tail tells us
N(τ) � ε/∆. For every edge (s, t) ∈ E(H), the projections〈g, vs〉 and〈g, vt〉 are independent and thus

� {s, t ∈ S} = N(τ)2 .

Let S0 be the set of vertices that are inS and have a neighbor fromH in S. Then, for everys ∈ V,

� {s ∈ S0} = degH(s)N(τ)2 .

Consider an edge (i, j) ∈ E(G). Let εi j =
1
2‖vi − v j‖

2. We can writev j = (1− εi j )vi +Θ(
√
εi j )v⊥i , wherev⊥i is a unit vector

orthogonal tovi . We have

� { j < S | i ∈ S} = �
{
(1− εi j )〈g, vi〉 + Θ(

√
εi j )〈g, v

⊥
i 〉 < τ | 〈g, vi〉 > τ

}
= O(

√
εi j τ) (by [CMM06b, Lemma A.2]).

And, therefore�
{
(i, j) ∈ (S, S̄)

}
6 O(

√
εi j )τN(τ). Let T = S \ S0. Then,

�
{
(i, j) ∈ (T, T̄)

}
� {i ∈ T ∨ j ∈ T}

6
�

{
(i, j) ∈ (S, S̄)

}
+ 2∆ · N(τ)2

� {i ∈ S ∨ j ∈ S} − 2∆ · N(τ)2

6
O(
√
εi j )τN(τ) + 2∆N(τ)2

N(τ) · (1− 2∆ · N(τ))

= O(
√
εi j )τ + ε (usingN(τ) � ε/∆)

By LemmaA.1 there exists a multicut of size

OPT(G,H) 6 �
(i, j)∈E(G)

O(
√
εi j log(∆/ε) + ε) 6 O(

√
ε log(∆/ε))

�

A.2.2 Metric SDP Relaxation

The following lemma is proved in [CMM06b] (based on [ARV04, Lee05]).

Lemma A.3. Let V = [n] and let{v1, . . . , vn} ⊆ �n be a collection of unit vectors satisfying the`2
2-triangle inequality

(also including the origin). Then, for every m> 0 there exists a distribution over subsets S⊆ V such that

– for every vertex i∈ V,
� {i ∈ S} = α ,

12



– for any two vertices s, t ∈ V with 〈vs, vt〉 = 0,

� {s, t ∈ S} 6 α · 1
m ,

– for any two vertices i, j ∈ V,

�
{
(i, j) ∈ (S, S̄)

}
6 α ·O(

√
logmlogn) · ‖vi − v j‖

2 .

Lemma A.4. Let (G,H) be a multicut instance. SupposeSDPmetric(G,H) = ε. Then,

OPT(G,H) 6 O
(
ε ·

√
logn ·

√
log(∆/ε)

)
.

Proof. Let {v1, . . . , vn} ⊆ �n be an optimal solution forSDPmetric(G,H) of valueε. Consider the distribution over subsets
S ⊆ V from the lemma above form= ∆/ε. We denote byS0 the set of vertices inS that have a demand-neighbor inS.
By the union bound, we have for every terminals ∈ V,

� {s ∈ S0} 6 ∆ · α ·
1
m = α · ε .

Let T be the set-valued random variable defined byS \ S0. For every network edge (i, j), we have

�
{
(i, j) ∈ (T, T̄)

}
� {i ∈ T ∨ j ∈ T}

6
�

{
(i, j) ∈ (S, S̄)

}
+ � {i ∈ S0} + � { j ∈ S0}

α
6
α ·O(

√
logmlogn) · ‖vi − v j‖

2 + 2αε

α

6 O(ε +
√

logmlogn‖vi − v j‖
2) . (21)

Using LemmaA.1, we can finish the proof

OPT(G,H) 6 �
(i, j)∈E(G)

�
{
(i, j) ∈ (T, T̄)

}
� {i ∈ T ∨ j ∈ T}

6 �
(i, j)∈E(G)

O(ε +
√

logmlogn‖vi − v j‖
2) = O(ε

√
logmlogn) .

�

A.3 Intractable Relaxations

A.3.1 Characterization of MC by L1 metrics

Proof. [Proof of Theorem2.4] Let d be an optimal solution toL1(G,H). We can expressd as a distribution over subsets
S ⊆ V(G). It is easy to see that constraint (15) implies that the sets in the support of this distribution are independent
sets ofH. From LemmaA.1, we get the desired bound on the multicut valueOPT(G,H),

OPT(G,H) 6 �
(u,v)∈E(G)

�
{
(u, v) ∈ (S, S̄)

}
� {u ∈ S ∨ v ∈ S}

6 �
(u,v)∈E(G)

�
{
(u, v) ∈ (S, S̄)

}
max{� {u ∈ S} ,� {v ∈ S}}

= �
(u,v)∈E(G)

αd(u, v)
α/2

= 2 · ψ1(G,H) .

�
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A.3.2 Non-negative SDP Relaxation

Theorem2.6follows from the following lemma, which is implicit in [BHH+08].

Lemma A.5. [BHH+08] Let (G,H) be a multicut instance and letv1, . . . , vn ∈ �n be an optimal solution toSDP(G,H)
of valueε. Then, there exists vectorsv′1, . . . , v

′
n with only non-negative coordinates such that

1. for all i ∈ [n], we have‖v′i ‖
2 = 1,

2. for all (s, t) ∈ E(H), we have〈v′s, v
′
t〉 = 0.

3. for all (i, j) ∈ E(G), we have1
2‖v
′
i − v

′
j‖

2 6 O(log(∆/ε))‖v′i − v
′
j‖

2 +O(ε) .

Theorem2.5follows from the following lemma.

Lemma A.6. Supposev1, . . . , vn ∈ �d
+ is a solution forSDP+(G,H) of costε. Then,

OPT(G,H) 6 2
√

2ε .

Proof. Let v2i denote the vectors obtained fromvi by squaring every coordinate. We consider theL1-metric d on
{0,1, . . . ,n} defined byd(i, j) = 1

2‖v
2
i − v

2
j ‖1 andd(0, i) = 1

2‖v
2
i ‖1 = 1/2. We have

2d(i, j) = ‖v2i − v
2
j ‖1 =

d∑
r=1

∣∣∣vi(r) − v j(r)
∣∣∣ ∣∣∣vi(r) + v j(r)

∣∣∣ 6 ‖vi − v j‖2 · ‖vi + v j‖2 6 2‖vi − v j‖2 .

For every demand pair (s, t) ∈ E(H), the condition〈vs, vt〉 = 0 shows that the support of the non-negative vectorsvs and
vt is disjoint. Therefore,d(s, t) = 1

2‖v
2
s − v

2
t ‖1 =

1
2‖v

2
s‖1 +

1
2‖v

2
t ‖1 = 1. It follows thatd is a solution forL1(G,H). Hence,

by Theorem2.4,

OPT(G,H) 6 2 �
(i, j)∈E(G)

d(i, j) 6 2 �
(i, j)∈E(G)

‖vi − v j‖2 6 2

(
2 �

(i, j)∈E(G)

1
2‖vi − v j‖

2
2

)1/2

= 2
√

2ε .

�

A.4 LP Relaxation

A.4.1 A lower bound

Here we present a proof of Theorem2.12.

Proof. Let G0 be regular graph with girthΩ(logn) and max-cut value at most 2/3 (a random 3-regular graph works
well). We consider the unique game onG0 that corresponds to the max-cut problem, that is, for every edge (u, v) of G0,
we have the permutationπuv : {0,1} → {0,1} with πuv(b) = 1 − b. It is easy to see that the value of this unique game
is equal to the fraction of edges contained in the max-cut ofG0. Hence, by the choice ofG0, the value of this unique
game is at most 2/3. Let (G,H) be the multicut instance obtained by applying the reduction in§B to the unique game
on G0. Note thatH is just a matching because the unique game has an alphabet of size 2. By LemmaB.2, we have
1− 2OPT(G,H) 6 VAL(G0) 6 2/3. ThusOPT(G,H) > 1/6.

We claim thatLP(G,H) = O(1/ logn). Note that this claim together with the factOPT(G,H) > 1/6 implies the
lemma. Letd be the shortest path metric ofG scaled by a factor 1/girth(G0) = O(1/ logn). Since every edge ofG has
lengthO(1/ logn) in this metric, it follows that the objective value forLP(G,H) achieved byd is O(1/ logn). It remains
to show thatd satisfies all constraints ofLP(G,H). Let (s, t) be any demand pair. LetP be the shortest path froms to
t in G. Note thatd(s, t) = length(P)/girth(G0). By the construction6 of G, the pathP corresponds to cycle inG0 of the
same length. Thus, length(P) > girth(G0) andd(s, t) > 1.

�
6 In graph theory, this construction is known as “lifting” [AL02]. In this language,G would be called a 2-lift ofG0. There is a 2-to-1

correspondence between the paths ofG andG0.
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A.4.2 An upper bound

In this section we prove Theorem2.13.

Proof. Let the metricd on V := V(G) be an optimal solution toLP(G,H). Supposeα∗(H) = maxT |V∗ ∩ T | for a vertex
coverV∗ of H. (Recall thatT ranges over all independent sets ofH.) We may assumeV∗ = [n]. We construct a multicut
as follows (the construction is from [CKR01], the analysis is along the lines of [GKL03]):

1. Pick a radiusr uniformly at random from the interval
[

1
6,

2
6

]
.

2. Pick a random orderingπ : V∗ → [n] of the non-isolated vertices ofH.

3. For every vertexs with degH(s) > 1, define

Ss :=
{
u ∈ V | d(s,u) 6 r andd(t,u) > r for all t ∈ V∗ with π(t) < π(s)

}
4. Output the partitionP induced by the setsS1, . . . ,Sn.

Since every cluster of the partitionP has diameter at most2/6, every demand edge is separated byP.
For every vertexu ∈ V, let Bu denote the set of verticess ∈ V∗ such that16 6 d(s,u) 6 2

6.
We claim that for any two verticesu, v ∈ V,

� {P(u) , P(v)} 6 O
(
log |Bu ∪ Bv|

)
· d(u, v) (22)

Let us first show that the claim implies the theorem. Notice that any two vertices inBu are at distance at most4
6 < 1.

Hence,Bu ⊆ V∗ does not contain a demand edge. Thus,|Bu| 6 α
∗(H).

We can now estimate the fraction of edges in the multicut given byP as follows:

�
(u,v)∈E(G)

� {P(u) , P(v)}
(22)
6 �

(u,v)∈E(G)
O

(
log |Bu ∪ Bv|

)
· d(u, v) = O

(
log |Bu ∪ Bv|

)
· LP(G,H) .

It remains to prove the claim (22). This claim follows from the proof of [GKL03, Theorem 3.2]. We omit the details
from this preliminary version of the paper. �

B Reduction from U G to MC

The reason whyΓM 2 L instances are more convenient to start with is due to the following structure. Given a
labelingΛ one can define a labelingΛ+ i for everyi ∈ �k as follows: (Λ+ i)(v) := Λ(v)+ i. Then,VAL(Λ) = VAL(Λ+ i)
for everyi ∈ �k. We will often abuse notation and use [k] in place of�k.

The Reduction. LetU = (G(V,E), [k], {πuv}(u,v)∈E) be an instance ofΓM 2 L. Consider the following instance of
MC derived from it. The vertex set of the MC instance isV′ := V × [k] and vertices are labeled by (v, i),
wherev is a vertex in theΓM 2 L instance andi is a potential label tov. The network graphG′ consists of edges
between (v, i) and (w, j) iff (v, w) is an edge in theΓM 2 L instance andπvw(i) = j. The demand graphH′ consists of
edges (v, i) and (v, j) for everyv ∈ V and everyi , j ∈ [k]. It follows from the reduction that the demand graph consists
of n cliques of sizek. Hence, the maximum degree of the demand graph isk.

The proof of Theorem2.7 follows from the following two lemmata. The first lemma is straightforward though it
uses crucially the fact that the instanceU hasΓM 2 L form.

Lemma B.1. Suppose there is a labelingΛ ofU such thatVAL(Λ) > 1− ε, then there is multicut in(G′,H′) of value at
mostε.
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Proof. We partition the vertex setV′ into k parts using the labelingΛ of V: Let Sc ⊆ V′ be the set of vertices (v, i) with
i = Λ(v) + c. The collectionP := {S1, . . . ,Sk} forms a partition ofV′. Let us compute the fraction of edges that are cut
by the partitionP,

�
(x,y)∈E(G′)

{P(x) , P(y)} = �
i∈�k

�
(u,v)∈E(G)

{
P
(
(u, i)

)
, P

(
(v, πuv(i))

)}
(by construction ofG′)

= �
i∈�k

�
(u,v)∈E(G)

{Λ(u) − i , Λ(v) − πuv(i)} (by definition ofP)

= �
(u,v)∈E(G)

{Λ(u) , πuv(Λ(v))} (usingπuv(i) = πuv(Λ(v)) − Λ(v) + i)

= VAL(Λ) .

�

The second lemma is the more interesting direction of the Theorem2.7. Here, starting from a multicut in (G′,H′) of
value at mostε, which separates all demand pairs, we construct a labeling forU where at mostε fraction of constraints
are not satisfied.

Lemma B.2. Suppose that there is multicut in(G′,H′) of value at mostε, then there is a labeling forU of value at least
1− 2ε.

Proof. We present a probabilistic construction similar to the proof of LemmaA.1 Let P be a partition ofV′ that separates
all edges ofH′ and only anε fraction of the edges ofG′. We consider the distribution over subsetsS ⊆ V′ obtained by
choosing uniformly at random a cluster ofP. Let S1, . . . ,Sr , . . . be infinite sequence of independent random subsets of
V′, each chosen from this distribution.

We extract a labelingΛ : V → [k] from this sequence of sets in the following way: For a vertexu ∈ V, let Sr(u) be
the first set in the sequence that contains a vertex (u, i) for some labeli ∈ [k]. SinceP is a multicut, the labeli ∈ [k] such
that (u, i) is in the setSr(u) is unique. We assign this label to vertexu.

Let us estimate the fraction of constraints violated by this labeling. Let (u, v) be an edge in the unique gameU. For
r ∈ �, let us condition on the event thatSr is the first set that contains a vertex (u, ·) or (v, ·). Now, if Λ violates (u, v),
then it must be the case that one of the network edges (u, i) ∼ (v, πuv(i)) in G′ is cut by the setSr . Hence,

� {Λ(v) , πuv(Λ(u))} 6
�

{
∃i.

(
(u, i), (v, πuv(i)

)
∈ (S, S̄)

}
� {∃i. (u, i) ∈ S or ∃i. (v, i) ∈ S}

6

∑k
i=1�

{(
(u, i), (v, πuv(i)

)
∈ (S, S̄)

}
max

{
� {∃i. (u, i) ∈ S} ,� {∃i. (v, i) ∈ S}

} . (23)

Suppose that the multicutP separates aεuv fraction of the network edges of the form (u, ·) and (v, ·) vertices. Then, the
right-hand side of (23) equals 2εuv (the neumerator iskεuv · 2/|P| and the denominator isk/|P|, where|P| is the number
of clusters in the partitionP). We can conclude that

VAL(Λ) > 1− �
(u,v)∈E(G)

� {Λ(v) , πuv(Λ(u))} > 1− �
(u,v)∈E(G)

2εuv = 1− 2ε .

�
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