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Abstract

In this paper we demonstrate a close connection betweeuitJGames and MucriCur. In MurniCur, one is given
anetwork graphand ademand graplon the same vertex set and the goal is to remove as few edges from the network
graph as possible such that every two vertices connected by a demand edge are separated. On the otkewhand, U
GawMes is a certain family of constraint satisfaction problems.

In one direction, we show that, at least with respect to current algorithmic techniquasCiv is not harder than
Unique Games. Specifically, we can adapt most known algorithms ferdue Games to work for MurriCur and obtain
new approximation guarantees foruMiCur that depend on the maximum degree of the demand graph. This degree
plays the same role as the alphabet size plays in approximation guaranteesfar Ghmes.

In the other direction, we show thatu#iCur is not easier than ddoue Games (I'Max 2 LiN to be precise). We
exhibit a reduction from bique Games to MurriCur so that the fraction of edges in the optimal multicut is up to a
factor of 2 equal to the fraction of constraint violated by the optimal assignment forntfeedUGames instance. In
contrast to the vast majority ofdbue Games reductions whose analysis relies on Fourier analysis and isoperimetric
inequalities, this reduction is simple and the analysis is elementary. Further, the maximum degree of the demand graph
in the instance produced by the reduction is less than the size of the alphabet size in the Unique Games instance.

Our results rely on a simple but previously unknown characterizationwafi@ur in terms ofL; metrics.
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1 Introduction

Minimum Multicut.  An instance of Minimum Multicut (MzriCur) is specified by two graphs andH on the same
vertex set. We refer t6 as thenetwork graphand toH as thedemand graphThe goal is to find a partition of the vertex
set such that all demand edges are separated with the objective to minimize the fraction of network edges cut.

Unique Games. Unique GaMmes is a constraint satisfaction problem where, given a constraint gstE), a label set

[K] and for each edge = (u,v), a bijective constraint, : [k] — [k], the goal is to assign to each vertexGna label
from [K] so as to maximize the fraction of the constraints thatsatésfied A constrainte = (u, v) is said to besatisfied

by an assignment ifi is assigned a labélandv is assigned a labglsuch thatr,(i) = j. over all labelings. The Unique
Games ConjecturdJGC) of Khot [Kho0Z asserts that for such a constraint satisfaction problem, for arbitrarily small
constants;, £ > 0, it is NP-hard to decide whether there is a labeling that satisfieg; fraction of the constraints or,

for every labeling, the fraction of the constraints satisfied is at mastlong as the size of the label detis allowed to
grow as a function of and/.

1.1 Previous and Related Work

MurtiCur. The MurniCur problem is a generalization of the classic minimugt)-cut problem and has received a
considerable amount of attention (see the book by Vazing (1 for a comprehensive treatment of this problem).
The MurriCur problem isNP-hard, and the best approximation algorithm for this problem is due to Garg, Vazirani and
Yannakakis GVY96] who build on theregion growingtechnique of Leighton and RabRR99] to give aO(log|E(H)|) =
O(log n) factor approximation algorithm for this problem. The result of Garg, Vazirani and Yannakakis relies on a certain
natural linear programming.P) relaxation of the McriCur problem. This relaxation is inspired by the formulation
of the MaxFLow-MinCut problem. They also prove that, unlike in the case of thexMow-MinCut problem, there
is an integrality gap of2(logn) for the LP that they consider. Subsequently there have been attempts, for instance by
Agarwal, Charikar, Makarychev and Makarych&CJMMO5], to reduce the gap ad(logn) to o(logn) using a semi-
definite programming3DP) based approach. The hope was to strengthen the Garg-Vazirani-Yannakakis relaxation for
MurriCur in the world of SDP in a manner similar to how Arora, Rao and VaziraARV04], for the Sarsest Cut
problem, strengthened the Leighton-Radrelaxation to é8DP and obtained &(+/logn) approximation algorithm for
the Sarsest Cur problem. In such an attempt, Agarwetlal. proved that the gap remaig¥logn) even when one goes
far beyondSDPs: to the computationally infeasible world of optimizing over the spade @mbeddable metrics. This
is in stark contrast with thersrsest Cut problem where it was discovered by Aumann and RabaRidg] and Linial,
London and Rabinovich LR95] that theL, tightening of theLP considered by Leighton and Rao for theugest Cur
problem has no integrality gap.

Onthe hardness side, it is known that the problem is as hard to approximate asiive®6bver problem, even when
H is a tree. The current best unconditional result ferMx Cover is about 1.36 due to Dinur and Saffa$05. Then
there are conditional results due to Chaetal. [CKK*05] and Khot and VishnoikV05] who prove that, assuming the
Unique Games Conjectur&lGC) of Khot [Kho0Z], there is no constant factor approximation to thetMCur problem.

UniQue Games.  Since its origin, theJGC has been successfully used to prove (often optimal) hardness of approxi-
mation results for several importaNP-hard problems such asekrex Cover [KRO3], Maxmmum Cur [KKMOO04] and
a wide class of constraint satisfaction problerRaifi08. The list of problems for which the best inapproximability
result rests on the validity of theéGC is growing rapidly and in a relatively short time since the conjecture was made,
it has become one of the key open problems in complexity theory and approximation algorithms. The validity of this
conjecture remains under scrutiny.

Several attempts have been made to disproveJB€. Starting with the original paper of KhoKpho07 itself,
to the papers by Trevisaife03, Gupta and TalwarGT06, Charikar, Makarychev and MakarycheZl{IM064 and
Chlamtac, Makarychev and Makarych&NIMO6b]. Needless to say, they all fall short of disproving th&C. Except
the result of Gupta and Talwar, which iSL® based approach, the other results are base8iDih relaxations of the
Unique Games problem. Roughly, they all lead to the conclusion thatW@C cannot be strengthened to the case when
n, ¢ to very smallo(1) terms.



On attempts to prove theGC, very recently, an approach to put it on a firm ground has been ruled out by a result
of Raz [Raz0§ and suitably generalized by Barak al. [BHH*08]. The latter result proves that one cannot hope to
amplify hardness of BGC instance by taking tensor products, a standard approach to amplify hardness.

1.2 Main Results

We show that there is a close connection between therfdur problem on instances with maximum degreé the
demand graph and thextgue Games problem where the number of labels is abaut

Hardness result forM vriCur assumingUnioue Games. 1 2 The starting point of our results is a simple reduction
that, assuming th&GC, the MuriCur problem is hard to approximate to within any constant factor. The previous
proofs of this theorem, following thdictatorship tesparadigm, rely on fourier analysis. Our reduction, on the other
hand, relies on a new relaxation of thesiiCur problem, and is approximation preserving in a sense we will describe
later.

SDP based algorithms foM vLriCur from UniQue Games algorithms. We show thatSDP rounding algorithms de-
veloped for Wique Games apply with simple modifications to the (seemingly hardeuMCur problem with bounded
degree demand graph instances. For instance an algorithm of ChetrddafCMMO064] can recover a labeling of value
at least 1- /slogk given anSDP solution of value 1- . The analogous result for driCur we show is to recover
a multicut of instance at mos{/slog(A/¢) from anSDP solution of value at most. Here, A is the largest degree in
the demand graph. Similarly, from a result of Chlamgaal. [CMMO6b] we deduce an algorithm for MriCur which
outputs a multicut of value at mast/lognlog(A/&) from anSDP solution of value at most.

Characterization ofMuLriCur by L; metrics. Our results rely on a new tool which is a relaxation of thetCur
problem as an optimization problem over the claskiofmbeddable metrics. We prove that this relaxation captures the
optimal value within a factor of .2ZThough the optimization problem over embeddable metrics is hot known to be
computationally feasible, it allows us to prove the hardness result and coB8fi@earlaxations to it and derive several
new algorithmic results for the MxiCut problem mentioned above.

1.3 Further Connections

Easiness results for tensor products ® vLriCur instances. A typical approach to constructing hard instances is to
study how the optimal value behaves under taking products. This approach failesidor Games as shown by Raz
[Raz08 and Baraket al. [BHH*08]. In the spirit of translating results forNgoue Games to MurriCur, we prove an
analogous result; if the demand graph of atMCur instance is a product dfdemand graphs, in each of which the
maximum degree is bounded By then in the product graph, even though the maximum degree of the demand graph
could be as high aa!, the approximation factors just depend AnAs in Baraket al, The key here is to show that if

one is given a vector solution to a cert&bP of the MuLriCur problem such that all vectors have non-negative entries,
then one can get approximation factors which do not depend on the degree of the demand graph. Then one only needs
show how to translate gene®DP solutions to ones with non-negative coordinates such that the cost of the non-negative
solution is not too high compared to the original one.

Algorithm for MurTiCur instance with demand graphs without large independent seDne of our algorithmic results
stated before implies that if the degree of the demand graph is bounded by a constant then there is es€¢Rrflatini
approximation algorithm for the MriCur problem. Bounded degree graphs are sparse but and will typically have
independent sets of sizg(n). We prove a somewhat complementary result: if the size of the largest independent set
in the demand graph without taking into account isolated vertices ithen there is a log factor approximation for

the MurriCut problem. Firstly, this result implies the Garg, Vazirani and Yannakakis result. Secondly, it implies that
if the average degree of the demand grapke(s) then there is a constant factor approximation forcMCur. This

A similar result was communicated to us by Julia Chuzhoy.
2We quickly observe that the Sherali-Adams SDP gap fiant Games due to RS0g can be translated using our reduction to give strong
w(1) integrality gap for MizriCur. This integrality gap is not implied by the integrality gap foutsdiCur in [ACMMO5].



result shows that, for instance, for almost all dense demand graphs (say sampleg(fcdt2)), MurriCur can be
approximated within a factor dd(log logn).

1.4 Interpretations and Future Directions

The main appeal of our work is the viewpoint and the directions that seem to emerge from it. One challenge that emerge:
from the connections above is to come up with algorithms ferlk Games that do not generalize to tdriCur on
bounded degree demand graph . The only possible candidate we are aware of is an algoritkrmufoGhMes on
expanding constraint graph8KK *08]. The first obstacle in adapting this algorithm foruMiCur is to define the right

notion of “expanding MrriCut instances” (expansion of the network graph doesn’t seem to be enough).

Another interpretation, and the original motivation for the paper, is that our results give hope that it might be possible
to reduce MiLriCut on bounded degree demand graphs tmlk Games. This could be an avenue of important future
research.

Yet another possibility one can explore is to try to base the hardness results relyingl@Ghen the following
tempting hypothesis. (Our reduction shows thatul@&C implies this hypothesis.)

Multicut Hypothesis. For every small enough constant 0O, there is aA(g) such that it ilNP-hard to decide, given an
instance of MiriCut with the maximum degree of the demand graph is boundes(by whether the optimal multicut
is of value less than or more than 1 &.

1.5 Techniques
In this section we give an overview of our techniques.

Hardness. The hardness reduction is simple enough to be described here. It takesua GamEes instanceld with
constraint grapl(V, E), label set K], and permutation$re}ece and constructs the following MriCur instance: for
every vertex € V, there is acloud of k vertices indexed byu(i) wherei € [k]. There is a demand edge between every
pair (v,i) and ¢, j) fori # j € [K]. There is a network edge betweanij and ¢, j) if (u,v) is a constraint edge it/
andr,(i) = j. Thus, the demand graph consists of cliques over the clouds ok sizd the network edges consist of a
perfect matching between the clouds corresponding to a constralit Tihe network graph constructed is sometimes
referred to as théabel extendedraph corresponding t@/. If we impose, w.l.o.g., an extra structure on the bijections
in U that they ardinear?, it is easy to see that a labeling satisfying E fraction of the constraints gives a multicut
in the label extended graph cutting at medtaction of the network edges. The linearity property of the constraints
implies that ifA: V — {0,1,...,k— 1} is a labeling, thenX + j) modk, for every| € [K], satisfies exactly the same
constraints ad. Hence, the multicut in the label extended graph of valaensists of the followind parts:{(v, (A(v)+ j)
modKk) : v € V}wherej € {0,1,...,k—1}.

On the other hand, if there is a multicut in the reduced graph of value atanib&n one can find a labeling @
which satisfies at least-12¢ fraction of the constraints. To prove this first one notices that, by definition, a multicut is a
collection of independent sets in the demand graph. Hence, every part in the multicut will contain at most one candidate
label for a vertex of U. Thus, one strategy is to sample a random part from the multicut and assign to a previously
unassigned vertices the label suggested by it. Formallyeilv has not been assigned a label yet and) @ppears in
the part sampled from the multicut in the label extended graph, ass@dpeli. Keep doing this until all vertices have
been assigned a label. (This will happen with probability one.) Notice that the label of two vetticeéned by an
edge inU will have inconsistent labels if there is somsuch that edge between, {) and ¢, 7,(i)) is cut the first time
one ofu or v gets its label. Now, one can show using a simple argument that the expected number abedgethat
get assigned inconsistent labels is at most two times the fraction of edges in the multicut we $tavigd o

SDP Algorithms. The basicSDP for MurriCur requires one to come up with a unit vector for every vertex in the
graph such that the vectors corresponding to any two of them connected by a demand edge are orthogonal. The go
is then to find such a vector solution which minimizes the average squared euclidean distance between pairs of vertice

3See Sectior2.2 for the definitions



connected by a network edge. A standaRpP for (linear) Uxique Games on label setl], on the other hand, requires one
to come up with a set df orthonormal vectors for every vertex so as to maximize the avaragelation between the
two sets of orthonormal vectors connected by an edge in the constraint graph. A bit more forr@jly,dfandi{vi}icik
are two orthonormal set of vectors corresponding to an edgg i the Unique Games instance with the bijection
between them, then the correlation between them is defined E)lpeuiv,(). It is easily observed that up to a simple
affine transformation of the objective function, tISBP is the same as the one fordiCur for the instance produced
by our reduction.

A typical rounding algorithm for Wique Games can be interpreted as converting 8P solution into a distribution
over cuts in the label extended graph. One such appré2idi064 is the following: pick a random gaussian vector
and a threshold € R, and output the set of labels for a vertein the Unique Games instance which have projection
at leastr ong. Formally, letS, := {i € [K] : {vi,g) > 7}. The choice ofr is such that the expected cardinality ®fis
one. Sincguiliery is an orthonormal set; = O(+/logk) sufices. Further if% Eie Ui — v,,uu(i)||2 = gy, for an edgew
in the Unioue GaMes instance, the probability that there is sonseich thai € Sy, butny,(i) ¢ S, is O(+/ew logk). Now
assign a random label for every vertex from theSett is not difficult to see now that this strategy proves that3bé
value for a Wique Games instance being at least-1¢ implies a labeling which satisfies-10( 4/ logk) fraction of the
constraints.

Recall that there are two ways in which thesiiCur instances produced by our reduction are special: (1) the
demand graphs are union of disjoint cliques of $ifbence, maximum degree of the demand grap+ig), and (2) the
network edges are a union pérfect matchinggcorresponding to the bijections between pairs of cliques in the demand
graph. When we systematically study vari@BP based algorithms for ddoue Games (like the one described above),
we observe that all these algorithms do not make critical use of the two structural properties listed above. They can be
easily modified to give algorithms with similar guarantees for generairi@ur instances where the role of the the label
set is assumed by the maximum degree of the demand graph.

In the case of a MuriCur instance where the maximum degree of the demand graphwe do exactly the same
rounding pretending our MriCur instance was one gotten from the hardness reduction applied tacaeUsAMES
instance withA — 1 labels. We pick a random gaussi@mand a threshold and first pick all vertices in the MriCur
instance whose vectors have projection more than g. Since all vectors are unit and those joined by an edge in the
demand graph are orthogonal, the probability that a pair of orthogonal vectors has morgtbgattion on a random
gaussian idN?(r). Here,N(7) is the probability that &l(0, 1) random variable takes value more thait could happen
that two verticess, t adjacent in the demand graph end up having projeetimnmore. This probability isN?(z). Hence,
the probability that, for a given vertex, there is some neighbor of it with this project@mrmore is at mosA - N2(7).

This is where the maximum degree of the demand graph comes in. We have no other choice but to create a separa
component in the multicut for every demand-neighbor of a vertex with projection more.tiiénkeep doing this until

we have found a multicut. The rest of the calculation is almost the same as thatifet: Bames. One can show

that the probability that a network edge getscut (one having projection more and the other less thais at most
O(+ew™N(7)). Heregy, is the squared euclidean distance between the vectors correspondiagdo. Hence, using

an argument similar to the one use in the soundness of the hardness reduction one can show that the expected size
the multicut produced is at mo&(y/elog(A/e) + €). Heree is the SDP value for the MizriCur instance. Choosing

7 := O(+/log(A/¢)) we get that the size of the multicut output by this algorithm is at rdgsfe log(A/«)).

To summarize, using th®DP solution for the MiLriCur problem, we come up with a distribution over cuts of the
vertex set. This distribution has two nice properties: (1) itis a distribution over independent sets in the demand graph and
(2) that the expected number of cuts that separate a network edge is related to the squared euclidean distance betwe
the vectors corresponding to the two endpoints of the network edge. This abstraction lead& usharacterization of
MurriCur within a factor of 2 (See Sectio.1.1) TheSDPs are now easily seen as relaxations for this characterization
and rounding algorithms as ways to convert gen8Ed#P solutions to solutions for thik; program.

Once we have such a distribution over independent sets over the demand graphs, the strategy is similar to that il
the soundness proof of the hardness reduction: sample a sedueifige .. of independent sets from this distribution.
DefineS; := T;\ U‘j;ll S;. Stop sampling once every vertex of thesiviCur instance is in som&;. Output the sets
S1, Sy, ... as the multicut.



1.6 Organization

In section 2, we give a more detailed overview over the reductions and relaxations mentioned in the introduction. In
section 3, we show a representative proof. In appendix A, we prove the propertiasn€ivt relaxations described in
section 2. In appendix B, we give a detailed proof of the properties of the reduction framelGames to MurriCur.

2 Relaxations and Reductions for MiLriCur

Let us recall the definition of MuriCur and introduce additional notation. AuiiiCur instance is specified by two
graphsG andH on the same verteX. We refer toG as thenetwork graphand toH as thedemand graphThe goal is to

find a partitionP of the vertex seY such that all demand edges are separated with the objective to minimize the number
of network edges that are separated. Formally,

OPT(G,H): minimize L {P() # P)} 1)
subjectto Y(speer) P(s) # P(1). 2)

Here,P(u) C V denotes the cluster of the partitibhthat contains the vertexe V. We denote the fraction of network
edges contained in the optimal multicut ©®T(G, H). All of our discussion also applies to weighted network graphs.

2.1 Relaxations of MiLtiCur

In this section, we present a plethora of relaxations forCut and discuss their properties and the relations between
them. The proofs of theorems in this section can be found in appé@nfthe organization oA is essentially the same
as the organization of this section).

LP relaxation. A functiond: X x X — R, is ametric¢* on X, if it satisfies the triangle inequality for all triples in
X, i.e.,d(x, y) < d(x,2) + d(z y) for any three pointx, y,z € X. Garg, Vazirani and Yannakaki&}'Y96] consider the
following linear programming relaxation of driCur.

LP(G,H): minimize E dd, j 3
(G.H) B 96D ©)
subjectto Y(speer) d(s,t) =1, 4)

dis a metric orv . (5)

(We useLP(G, H) to refer to both the relaxation and its optimal objective value.) The integrality gap ratio of this
relaxation as a function of the size Hfis @(loglE(H)|) [GVY96]. In section2.3.2 we present (stronger) upper and
lower bounds on the integrality gap in terms offeient parameters of the demand gr&phn particular, we show that

the gap remain®(log|E(H)|) even on demand graphs with maximum degree 1.

SDP relaxation. Alternatively, we can consider the following natugP relaxation of MstriCur.

. e . l- . _2
SDP(G,H): minimize (i,j)éEE(G) sl = vjll (6)
subjectto Y (syeg(H) (vs,vt) =0, (7)

Viev  lbil®=1. 8)

This relaxation corresponds to tB®P relaxation of Mix Cut used by Goemans and Williamsa®\V95. In contrast
to theLP relaxation, this relaxation is sensitive to the maximum degree of the demand graph, denet&fH).

Theorem 2.1. Let (G, H) be aMutniCur instance and: = SDP(G, H). Then,OPT(G, H) = O( y/zlog (¥/¢)).

“4In this paper, we do not distinguish between semimetrics and proper metrics.



The proof of this theorem follows the analysis of the corresponding approximation algorithmsitat: Games
[CMMO06a, CMMO06b]. The bound of Theorer.1is almost tight (a consequence of known integrality gaps fantd
Games [KV05, KKMOO04], together with the reduction fromnioue Games to MurriCur).

Theorem 2.2. For everye > 0 andA = 2°/9) there existdMurriCur instancegG, H) with SDP(G, H) = &, A(H) = A,
yetOPT(G, H) = Q(+/elogA).

Metric SDP relaxation. The approximation guarantees for the relaxatioP&, H) andSDP(G, H) are incomparable.
By combining the two relaxations, we can obtain an approximation ratio that is never wors@(tbgn) but can be
much better tha®(log n) when demand-degreeis not too large.

SDPmetridG, H):  minimize Uﬁg%G) Lloi — vjl? (9)
subject to Y(st)eE(H) (Vs vt) = 0, (10)

Viev Il =1, (11)

llvi - vjlI? is & metric orV U {0} . (12)

The constraint]2) requires that the distance functid(, j) = [lvj —v; || satisfies the triangle inequality on the ¥et {0}.
Here, 0 is an additional point embedded in the origin, igs 0. The following approximation guarantee follows by
adapting the analysis of thentgue Games algorithm of Chlamtac, Makarychev and Makarych@wMO06h).

Theorem 2.3. Let (G, H) be aMutriCur instance on n vertices with = SDPpnetiid G, H). Then,OPT(G,H) =
O(e ylognlog (4/¢)) .

Note that the approximation ratio in this theorem is never worse @{&yn) because we can assumie< n and
e > Yn? (at least for unweighted graphs).

2.1.1 Intractable Relaxations

In the following, we introduce two very strong relaxations. We do know whether they can be sfileaghdy. (Assum-
ing theUGC no dficient algorithm can solve them.) We introduce these relaxations, because we find them helpful for
understanding the previously introduced relaxations.

The first intractable relaxation has only a constant integrality gap. We use this relaxation to clarify the rounding
problem of MuLriCur (especially for the relaxatioBDP(G, H) andSDPmetrid G, H)).

The purpose of the second intractable relaxation is to estimate the beha8bP@8, H) when G, H) is a product
instance.

Characterization of MuLriCur in terms of L; metrics. We say that: Xx X — R, is anL; metric on a seX if there
exists a multiplierr and a distribution over cutS ¢ X such thad(i, j) = « - P{i andj are separated b} .

L1(G,H): minimize (i’j)]eEE(G) d(vi, vj) (13)
subjectto Y (speeH) d(vs, o) = 1, (14)

Viev d(0,i) = ¥2, (15)

dis anL; metric onV U {0} . (16)

This relaxation of MiLriCur characterizes th®PT(G, H) up to a factor 2. (It is an interesting question whether this
factor can be avoided.)

Theorem 2.4. For everyMurriCur instance(G, H), we haveOPT(G, H) < 2- L1(G, H).

It is remarkable that constraint%) plays a crucial role for this theorem. Without constraiti)(the integrality gap
of the relaxation would b&(logn) [ACMMO5].



Non-negative SDP relaxation. We consider a strengthening of the relaxat8P(G, H) where we add the constraint
that all vectors lie in the non-negative orthal of a suficiently high dimensional Euclidean space (the dimension
is allowed to depend arbitrarily on the size of the instaiigeH)).

SDP.(G,H): minimize (LDJEEE(G) Lloi — vjl12 (17)
subjectto Y(stee(H) (vs,vt) =0, (18)

Viv  IlilP=1, (19)

Viev v e RN, (20)

The remarkable property of the this relaxation is that it has an approximation guarantee independent of the degree of th
demand graph, and itffiers from the relaxatio8DP(G, H) by at most a factor oD(log (4/¢)).

Theorem 2.5. For everyMutmiCur instance(G, H), we haveOPT(G, H) < O( \/SDP, (G, H)).

Theorem 2.6. For everyMurriCut instance(G, H), we haveSDP, (G, H) < SDP(G, H) - O (log (2/¢)) .

The first theorem follows, after a standard application of Cauchy—Schwarz, from (the proof of) THzdrerhe
second theorem is obtained by adapting a constructioBHHH{"08]. Also notice that Theorerf.1follows immediately
from these two theorems abdsDP., (G, H).

2.2 Reduction from WNiQue Games to MurriCur

(See appendiB for more details and proofs about this reduction.)

I'Max 2 Lin variant of UniQue Games. We consider a straight-forward reductidn(a generalization of the well-
known reduction in KRAR95]) that maps a Wieue Games instancel{ to a multicut instance@, H) = ®(U). We
analyze our reduction for a well-known special case efgue Games, calledI’ Max 2 Lin (sometimes also referred to
aslinear unigue gamesr E2LIN(K)). We need this additional assumption to ensure that the best multi®{tZi) is at
least as good as the best labeling for thedue Games instancel/.

We say a Wique Games instanceld hasI” Max 2 Lin form, if the label set ofi/ can be identified with the grougik
in such a way that every permutatiap, in U satisfiest(i + s) = my,(i) + s € Zx for all s,i € Zx. In other wordszy,
encodes a constraint of the fomm — X, = ¢y, € Zx. Assuming this special structure of the permutations does not make
the problem any easieKKMOO04].

Theorem 2.7. Given aI'Max 2 Lix instancel{, we can giciently compute a multicut instan¢&, H) = ®(U) with
e < OPT(G, H) < 2¢, whereg is the fraction of constraints violated by the optimal assignmenZforThe maximum
degree of H is less than the alphabet sizg6f

Combining this theorem and tl@log n)-approximation for MiriCur [GVY96] yields a corresponding approxima-
tion forI'Max 2 Lin. The same approximation is obtained by Gupta and Tal@a0[ using diferent (more involved)
techniques. (However, their LP relaxation foxiQue Games is essentially the same as the LP relaxation farMCur
used in GVY96].) Their algorithm has the benefit that it works also for genemabtt Games instances.

Corollary 2.8. Given aI’ Max 2 Liv instanced such that an optimal assignment satisfles ¢ of the constraints, we
can gficiently compute a labeling fokf which satisfies at leadt— O(e logn) of the constraints.

2.3 Further Results and Discussions

2.3.1 Better SDP Approximation for Product Instances of MiLriCur

In this section, we want to better approximation for product instances using the intractable rel8RRids, H).
The following notion of product of McriCur instances is motivated by the notion of parallel repetition efque
GaMEs instances.



Definition 2.9. The product of two multicut instanc&(H) and G’, H’) on vertex set¥ andV’, respectively, is defined
as G,H)® (G, H") := (G®anp G, H®or H’) . In the graphG ®anp G, We connecti, u’) and ¢, v’) if both coordinates
are either equal or adjacent in the original graphs. In the gkagiyr H’, we connectif, u’) and ¢,v’) if one of the
coordinates is adjacent in the original graph.

We can prove the following theorem for product instances.

Theorem 2.10. Let (G, H) be a multicut instance witBDP(G, H) = . Then, for te N,

OPT (G®#0!, H®o"") < O( - £log (4/e)) ,
whereA is the maximum degree of the demand graph H.

The proof of this theorem starts with a solution for the relaxaib® (G, H). By Theoren?.6, we can transform this
solution to a solution foBDP, (G, H) by increasing the cost by at most a fad@ftog (4/<)). By tensoring this solution
for SDP.. (G, H), we obtain a solution foBDP. (G®et H®orY) of cost at most - £log(4/:) . Thus, by Theoren?.5,
there exists a multicut for the product instanGe )® of costO(\/t -eglog (A/g)) .

We claim that for “bipartite” MizriCut instances, Theore@10strongly improves the guarantee of Theor2rhfor
suitable values of. (We say that a McriCur instance G, H) is bipartite if there exists a bipartition\;, V2) of V such
that all edges o& go across the bipartition and all edgegbétay within their part of the bipartition.) The reason is the
multiplicative property of the relaxatioBDP(G, H) for bipartite instances.

Lemma 2.11 (MS07, LMO08]). Let(G, H) be a bipartite multicut instance on the vertex set V. Then, foralN,
SDP (G®0!, H®oR") = 1 — (1 - SDP(G, H))t <t-SDP(G,H).

This lemma shows that in TheoretrlQ we have-s ~ SDP (G®ant H®ort)  Hence, if we would apply Theorethl
on the product instances(H)®, we would get the boun®PT(G, H)® < O(t+/elog (4/)), which is worse than the
bound of Theoren2.10by a factor vit. (Here, we are using thai(H®rt) > A(H)'.)

2.3.2 LP Relaxation and Parameters of the Demand Graph

(The proofs of the theorems in this section are in appeA#x)

A lower bound. First we note that restricting the degree of the demand graph does not improve the integrality gap of
theLP relaxation.

Theorem 2.12. For every ne N, there exists a multicut instan¢&, H) on n vertices such that(H) = 1, LP(G,H) =
O(1/logn), yetOPT(G, H) = Q(1).

For this theorem, we can chodSas a random 2-lift of, say, a random 3-regular gr&glt{see RL02] for the notion
of lifts of graphs). In the graphl, we match all vertices that correspond to the same vert&girA similar theorem is
shown in GTOG.

An upper bound. Next we introduce a graph paramet€fH) that allows to prove a better bound on the integrality
gap ofLP relaxation. Letr*(H) := ming maxr|S n T|, whereS ranges over all vertex covers bBfandT ranges over all
independent sets ¢f. The integrality gap ratio dfP(G, H) is only logarithmic ina*(H).

Theorem 2.13. For everyMutriCur instance(G, H), we haveOPT(G, H) < LP(G, H) - O (loga*(H)) .

Notice thate*(H) is less than both the vertex cover numbeHo&nd the independent set numbertbfit is easy to
see thatr*(H) < O(logn) for most dense graphd (say,H is drawn from the distributiogz(n, 1/2)).

The proof of this theorem is by inspection of one of the known praddfR01, GKLO03] thatLP(G, H) has integrality
ratio O(logn).



2.3.3 Tightness of SDP Approximations

It is an interesting question whether in our approximation guarantees (The@r&n2s3) the dependence o¥e can
be improved to jusi. At least for the second guarantee it seems unlikely that an approximation algorithm based on
the same relaxation can achieve such a guarantee. Suppose we could round an sol8&h,fa1(G, H) of valuee
to a multicut of valueO(e 4/lognlogA). We claim that this bound would imply @( +/log n)-approximation even for
arbitrary demand degrees. The reason is that one can reduce the degrees of the demand graph to 1 bgwsgiitting
vertex in sdficiently many copies. To make sure that the resulting multicut instance is equivalent to the original one it
sufices to connect all copies of a vertex by a clique in the demand graph. If we give enough weight to the edges in those
cligues the optimal multicut will not separate any of the copies of a vertex.

On the other hand, the strong integrality gap fankCur [ACMMO5] suggests that an algorithm based3P netric
cannot achieve a®( +/logn)-approximation for general demand degrees.

3 Selected Proof

In this section we give very simple proof of an approximation guarante8B&(G, H) which is slightly weaker than
the guarantee in Theorel

Theorem 3.1. For everyMutriCur instance(G, H), if SDP(G, H) = £ thenOPT(G, H) < O(\/Elog (A/s)) .

We prove this theorem by a natural rounding procedure. The analysis combines ideas of Goemans and Williamsor
[GW95 and Karger, Motwani and SudaKI194].

Proof. Letus,...,vy € R" be an optimal solution t8DP(G, H). Sampler = log(4/) random hyperplanes through the
origin. LetSs,...,Sgr € R" be the induced partition d&" (R = 2" with probability 1). LetM be the set of pairs,(j)
such that; ando; lie in different parts of the partition. For every edgg) € E(G), we can upper bound the probability
that the vectors afand j lie in different parts by

P{(i. ) € M} <1+ lloi = vjl.

For every demand pais(t) € E(H), we can upper bound the probability that the vectors andt lie in the same part
by _
P{(st) ¢ M} = (1/2)".

Let Vp be the set of verticessuch that the vector of a neighbor®ih H lies in the same part ag. We can upper bound
the probability that a vertegis in the set/q by

P{se Vo} < deg,(9)(¥2)" .

Let us consider the multicut that consists of the componknts {i € V \ Vg | vj € S;} and singleton components for
each vertex in/g. Let M be the set of edges & that cross the multicut. We have

P{(i. ) € M} <P{(i, ) € M} + P{i € Vo} + P € Vo} < - [loi — vjll + 27" (deg, i) + deg;(j)).
Hence, we can give the desired upper boun®&T (G, H),

@ EIM|<r ' _)]EE(G)Ilvi —0jll +2A - 27" < r e+ 2A(H) - 27" = Velog(d/z) + 2A - (¢/a) = O( Ve log(2/s)) .
i,))e

O

5This idea of splitting vertices to reduce the degrees of the demand graph was communicated to us by Julia Chuzhoy after we presented ou
work to her.



References

[ACMMO5] Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makaryc®¢y/log n)-approximation algorithms

[AKK *08]

[ALO2]

[AROS]

[ARVO04]

[BHH*08]

[CKK*05]

[CKRO1]

[CMMO63a]

[CMMO6b]

[DS05]

[GKLO3]

[GTO6]

[GVY96]

[GW95]

[Kho02]

[KKMOO04]

[KM94]

[KRO3]

[KRARY5]

[KVO5]

for min UnCut, min 2CNF deletion, and directed cut problemsSTOG pages 573-581, 2004L, 2, 6, 9

Sanjeev Arora, Subhash Khot, Alexandra Kolla, David Steurer, Madhur Tulsiani, and Nisheeth K. Vishnoi. Unique
games on expanding constraint graphs are easy: extended abst&EOQpages 21-28, 20083

Alon Amit and Nathan Linial. Random graph coverings i: General theory and graph connedBaitybinatorica
22(1):1-18, 2002.8, 14

Yonatan Aumann and Yuval Rabani. Ad(logk) approximate min-cut max-flow theorem and approximation algo-
rithm. SIAM J. Comput.27(1):291-301, 19981

Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embeddings and graph partitioning. In
STOC pages 222-231, 2004, 12

Boaz Barak, Moritz Hardt, Ishay Haviv, Anup Rao, Oded Regev, and David Steurer. Rounding parallel repetitions of
unigue games. IFOCS pages 374-383, 2002, 7, 14

Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivakumar. On the hardness of approximating
multicut and sparsest-cut. Proceedings of the Annual IEEE Conference on Computational Compleyityber 20,
pages 144-153, 20051

Gruia Calinescu, Howard J. Kaffp and Yuval Rabani. Approximation algorithms for the 0-extension problem. In
SODA pages 8-16, 20018, 15

Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algorithms for unique gaS8iESQn
pages 205-214, 2004, 2, 4, 6

Eden Chlamtac, Konstantin Makarychev, and Yury Makarychev. How to play unique games using embeddings. In
FOCS pages 687-696, 200€L, 2, 6, 12

Irit Dinur and Shmuel Safra. On the hardness of approximating minimum vertex céwerals of Mathematics
162(1):439-485, 20051

Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals, and low-distortion embed-
dings. INFOCS pages 534-543, 2003, 15

Anupam Gupta and Kunal Talwar. Approximating unigue gameSQDA '06: Proceedings of the seventeenth annual
ACM-SIAM symposium on Discrete algorithpages 99-106, New York, NY, USA, 2006. ACM,, 7, 8

Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Approximate Max-Flow Min-(Multi)Cut theorems and their
applications.SIAM Journal on Computing5(2):235-251, April 19961, 5, 7

Michel X. Goemans and David P. Williamson. Improved approximation algorithms for maximum cut and satisfiability
problems using semidefinite programmirdgurnal of the ACM42(6):1115-1145, 19955, 9

Subhash Khot. On the power of unique 2-prover 1-round gaméxolkreedings of the ACM Symposium on the Theory
of Computingnumber 34, pages 767—775, 200R.

Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability results for max-cut
and other 2-variable CSPs? Amnual Symposium on Foundations of Computer Sciengaber 45, pages 146-154,
2004. 1,6,7

David Karger and Rajeev Motwani. Approximate graph coloring by semidefinite programmingpuinal of the
ACM, pages 2-13, 19949

Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to withi@mputational Complexity,
Annual IEEE Conference 90:379, 2003.1

Philip Klein, Satish Rao, Ajit Agrawal, and R. Ravi. An approximate max-flow min-cut relation for undirected
multicommodity flow, with applicationsCombinatorica 15(2):187-202, June 199%.

Subhash A. Khot and Nisheeth K. Vishnoi. The unique games conjecture, integrality gap for cut problems and em-
beddability of negative type metrics infg. In FOCS '05: Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Sciengages 53—62, Washington, DC, USA, 2005. IEEE Computer Society.

10



[Lee05] James R. Lee. On distance scales, embeddings, finibt relaxations of the cut cone. 80DA pages 92-101,
2005. 12

[LLR95] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its algorithmic applications.
Combinatorica 15(2):215-245, 19951

[LMO8] Troy Lee and Rajat Mittal. Product theorems via semidefinite programmin@AhQP (1), pages 674—-685, 2008

[LR99] Frank Thomson Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use in designing
approximation algorithmsJournal of the ACM46(6):787-832, 19991

[MSO07] Rajat Mittal and Mario Szegedy. Product rules in semidefinite programmingCTh pages 435-445, 20078

[Rag08] Prasad Raghavendra. Optimal algorithms and inapproximability results for every c§¥0O'08: Proceedings of
the 40th annual ACM symposium on Theory of compupiages 245-254, New York, NY, USA, 2008. ACM.

[Raz08] Ran Raz. A counterexample to strong parallel repetitilmundations of Computer Science, Annual IEEE Symposium
on, 0:369-373, 20082

[RS09] Prasad Raghavendra and David Steurer. Integrality gaps for strong SDP relaxations of unique ge@€S§ 2009.
To appear.2

[Tre05] Luca Trevisan. Approximation algorithms for unique gamesF@CS '05: Proceedings of the 46th Annual IEEE
Symposium on Foundations of Computer Sciepegies 197-205, Washington, DC, USA, 2005. IEEE Computer
Society. 1

[Vaz01] Vijay V. Vazirani. Approximation algorithmsSpringer-Verlag New York, Inc., New York, NY, USA, 2001

A Relaxations of MuLriCur

A.1 Preliminaries

The following lemma simplifies the analysis of many of the rounding algorithm farrMlur. Essentially, this lemma
is the core of the proof of Theoregh4.

Lemma A.1. Let (G, H) be aMurriCur instance with vertex set V. Consider a distribution over independent sets S of
H,i.e.vY(st) € E(H). P{ste S} =0.Then,

P{(u.v) € (S.S)}
PT(G,H) < .
OPT(G. H) (uv)eE@G) P{ue Svuve S}

Proof. LetS4,...,S;,... be an infinite sequence of independent samples from this distribution. We extract a sequence
of disjoint vertex set34,..., Ty, ... as follows

Tr=Sr\(Sr—1U"'USl)-

SinceV is a finite set, almost all sefi are empty. If we discard the empty sets, we obtain a part®ad V. The
constraint A.1) implies that none of the sef§ contain an edge dfi. Hence P separated all demand edges. It remains
to bound the fraction of network edges separate@blyet (u, v) be an edge iG. Let us condition on the event that

is the first set that contains eitheor v. If (u,v) € M, then it must be the case that {) € (S, S;). Hence,

P{(u.v) € (S.S)}

P {P(u) # P(v)} < P{ueSorve S}’

We can conclude that

o . 5 P{(u.v) € (S, 9)}
OPT < E P E
G.H) (u)eEG) (P(W) # PO)} < (ur)eE@G) P{ue Sorv e S}
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A.2 SDP Relaxations
A.2.1 Basic SDP Relaxation
Lemma A.2. Let(G, H) be a multicut instance. SuppoSBP(G, H) = &. Then,

OPT(G, H) < O(e10g(®/2)) .

Proof. Letuy,...,v, € R" be an optimal solution foBDP(G, H) of valuee. Letg be a standard-dimensional Gaussian
vector, and leS be the set of vertices whose vectors have a projectiaplarger thanr = C y/log(%/e),

S={ieV]|{guv)=T1}.

Let N(7) denote the probability that a standard Gaussian variable is atrledise behavior of the Gaussian tail tells us
N(1) < ¢/a. For every edgeqt) € E(H), the projectiongg, vs) and{g, v;) are independent and thus

P{steS}=N®x)>.
Let Sg be the set of vertices that are®and have a neighbor froid in S. Then, for everyse V,
IP{s e So} = deg,(S)N(r)2.

Consider an edge,(j) € E(G). Letsjj = %Ilvi - v,-||2. We can writevj = (1 - &ij)vi + O(+/Eij)v;, whereu;- is a unit vector
orthogonal ta;. We have

P{j¢S|ieS)=P{1-a))gu)+O(ya)g. o) < (g0 >}
= O(+&j1) (by [CMMOGb, Lemma A.2]).

And, thereforeP {(i, j) € (S, S)} < O(y&j)7N(7). LetT = S\ So. Then,

P{(i.)) e (T.T)} P ) e (S.S)}+2A N)?
PlicTvjeT] PlieSv]eSI-2A N2
O(+/&i))TN(7) + 2AN(7)?
N(7) - (1- 2A - N(z))
=O(+&ij)t+¢ (usingN(7) < /A)

By LemmaA.1 there exists a multicut of size

OPT(G.H)< E _O(4/ajl0g(t/e) + &) < O(+/z10a())

(i.))€E@G)

A.2.2 Metric SDP Relaxation
The following lemma is proved ingMMO6b] (based on ARV04, Lee03).

Lemma A.3. Let V = [n] and let{v1,...,vn} € R" be a collection of unit vectors satisfying th?;triangle inequality
(also including the origin). Then, for every m0 there exists a distribution over subsetsS/ such that

— for every vertex e V,
P{ieS}=q«,

12



— for any two vertices,4 € V with (vs, vr) = 0,

]P{S,teS}<af-n%,

— for any two vertices,ij € V,
P{(i. }) € (S.S)} < a- O(+/logmlogn) - [lui — vj|[*.

Lemma A.4. Let(G, H) be a multicut instance. SuppoSBPmetid(G, H) = €. Then,

OPT(G,H) < O(e- viogn- flog (4/z)) .

Proof. Let{v1,...,uvn} € R"be an optimal solution fTdBDPmetric(G, H) of values. Consider the distribution over subsets
S c V from the lemma above fan = A/e. We denote bysg the set of vertices i$ that have a demand-neighbor$n
By the union bound, we have for every termirsa V,

P{seSp}<A-a-==a-¢.

1
m

Let T be the set-valued random variable definedbySy. For every network edge, (j), we have

P{i.)e ™} P{0.0)€(SS)+PilicSol+PlicSo) _a-0O(ylogmlogn)- [ - oyl + 202

I I p
< O(e + +/logmlognilui —vjl?). (21)

P{ieT Vv jeT} 0%
Using LemmaA.1, we can finish the proof

PG, ) e (T,T)] ,
OPT(G,H) < i@ PlieT Vet < (LDLEE(G) O(e + +/logmlognlvi — vjlI*) = O(e y/logmlogn).

A.3 Intractable Relaxations
A.3.1 Characterization of MurLtiCur by L; metrics

Proof. [Proof of Theoren®.4] Let d be an optimal solution tb;(G, H). We can expresd as a distribution over subsets
S Cc V(G). Itis easy to see that constraiits] implies that the sets in the support of this distribution are independent
sets ofH. From LemmaA.1, we get the desired bound on the multicut vaueT (G, H),

o P{(u.v) € (S.9)]
OPT < E
(G.H) (u)eE@G) P{ue Sv v e S}

P{(uv) € (S.S)}
< (uv)eE@G) max{lP{u e S},P{v € S}}

ad(u, v)
(UVEEG) /2 ¥1(G.H)
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A.3.2 Non-negative SDP Relaxation
Theorem2.6follows from the following lemma, which is implicit ingHH*08§].

Lemma A.5. [BHH"08] Let (G, H) be a multicut instance and let, ... ., v, € R" be an optimal solution t&DP(G, H)
of valuee. Then, there exists vectars ..., vy with only non-negative coordinates such that

1. foralli € [n], we havev/||? = 1,

2. for all (s,t) € E(H), we haveug, vf) = 0.

3. forall (i, j) € E(G), we have|lu/ - v’j||2 < O(log(&/))llvf — v’j||2 +0(e).
Theorenm?.5follows from the following lemma.

Lemma A.6. Suppose;,...,un € IRE is a solution forSDP, (G, H) of coste. Then,
OPT(G, H) < 2V2e.

Proof. Let vi2 denote the vectors obtained fromby squaring every coordinate. We consider themetric d on
{0,1,...,n} defined byd(i, j) = 3Ilv? - véll andd(0, ) = 3llv?ll1 = 1/2. We have

d
24, j) = llo? = o3l = D, |pi(r) = (N i) + v ()] < los = willz - s + vll2 < 2loi = vjllz
r=1
For every demand pais(t) € E(H), the conditionvs, v;) = 0 shows that the support of the non-negative veatoend
v is disjoint. Therefored(st) = 3llv2 — v2l1 = 3lIv2llL + 3llv?ll1 = 1. It follows thatd is a solution forLy(G, H). Hence,
by Theoren?.4,

1/2
OPT(G,H)<2 E d(i,j)<2 E ||Ui—Uj||2<2(2 _v,-”g) =2V2e.

. . B Ly
(i,))€E(G) (i,J))€E(G) (i,))€E(G)

A.4 LP Relaxation
A.4.1 Alower bound
Here we present a proof of Theoredri2

Proof. Let Gg be regular graph with girtl®2(logn) and max-cut value at most2 (a random 3-regular graph works
well). We consider the unique game @g that corresponds to the max-cut problem, that is, for every adgedf Go,
we have the permutation,,: {0,1} — {0, 1} with my,(b) = 1 — b. Itis easy to see that the value of this unique game
is equal to the fraction of edges contained in the max-c@pfHence, by the choice @y, the value of this unique
game is at most/3. Let (G, H) be the multicut instance obtained by applying the reductio§Birto the unique game
on Gp. Note thatH is just a matching because the unique game has an alphabet of size 2. By IB:&ym& have
1 - 20PT(G, H) < VAL(Gop) < 2/3. ThusOPT(G, H) > 1/6.

We claim thatLP(G, H) = O(1/logn). Note that this claim together with the faOPT(G, H) > 1/6 implies the
lemma. Letd be the shortest path metric Gfscaled by a factor /hirth(Gg) = O(1/logn). Since every edge & has
lengthO(1/ log n) in this metric, it follows that the objective value fbP(G, H) achieved byd is O(1/ logn). It remains
to show that satisfies all constraints afP(G, H). Let (s, t) be any demand pair. L& be the shortest path frosito
tin G. Note thatd(s, t) = lengthP)/girth(Go). By the constructiohof G, the pathP corresponds to cycle 6, of the
same length. Thus, lengt) > girth(Go) andd(s, t) > 1.

i

6 In graph theory, this construction is known as “liftingALL02]. In this languageG would be called a 2-lift 0ofG,. There is a 2-to-1
correspondence between the path&a@ndGo.
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A.4.2 An upper bound

In this section we prove Theorefnl3

Proof. Let the metricd onV := V(G) be an optimal solution taP(G, H). Supposer*(H) = maxr|V* N T| for a vertex
coverV* of H. (Recall thafl ranges over all independent setdhj We may assume* = [n]. We construct a multicut
as follows (the construction is fron€CKRO01], the analysis is along the lines d6KLO03]):

1. Pick a radiug uniformly at random from the interv{a%, é]
2. Pick a random ordering: V* — [n] of the non-isolated vertices &f.

3. For every vertexs with deg,(s) > 1, define

Ss:i={ueV|d(su) <randd(tu) >r forall t e V* with z(t) < n(9)}

4. Output the partitiorP induced by the setSy, ..., Sy.

Since every cluster of the partitidhhas diameter at mo&ts, every demand edge is separatedby
For every vertexi € V, let B, denote the set of verticesse V* such that% <d(su) < %
We claim that for any two verticagv € V,

P {P(u) # P(v)} < O(log|By U By|) - d(u, v) (22)

Let us first show that the claim implies the theorem. Notice that any two vertidgsare at distance at moét< 1.
Hence,B, C V* does not contain a demand edge. ThBg, < a*(H).
We can now estimate the fraction of edges in the multicut giveR by follows:

22
< vl) * > = vl) * 5 .
(u,v)]EE(G)]P{P(u) # P(v)} (u,v)IEE(G)O(IOngu U By|) - d(u,v) = O(log|By U By|) - LP(G, H)
It remains to prove the clain2@). This claim follows from the proof ofKL03, Theorem 3.2]. We omit the details
from this preliminary version of the paper. O

B Reduction from UniQue Games to M uLtiCur

The reason why Max 2 Lix instances are more convenient to start with is due to the following structure. Given a
labelingA one can define a labeling+ i for everyi € Zy as follows: A +i)(v) := A(v) +i. Then,VAL(A) = VAL(A +1)
for everyi € Zyx. We will often abuse notation and udg [n place ofZy.

The Reduction. LetU = (G(V, E), [K], {mu}uwee) be an instance df Max 2 LiN. Consider the following instance of
MurriCut derived from it. The vertex set of the triCur instance isV’ := V x [K] and vertices are labeled by, {),
wherev is a vertex in thd"Max 2 Liv instance and is a potential label te. The network grapl@&’ consists of edges
betweend, i) and (v, ) iff (v, w) is an edge in th& Max 2 Liv instance and,,(i) = j. The demand grapH’ consists of
edgesd,i) and ¢, j) for everyv € V and everyi # | € [K]. It follows from the reduction that the demand graph consists
of n cliques of size&k. Hence, the maximum degree of the demand gragh is

The proof of Theoren?.7 follows from the following two lemmata. The first lemma is straightforward though it
uses crucially the fact that the instarehasl Max 2 Lin form.

Lemma B.1. Suppose there is a labeling of ¢/ such thatvAL(A) > 1 - &, then there is multicut ifG’, H’) of value at
moste.
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Proof. We partition the vertex s&t’ into k parts using the labeling of V: Let S; C V' be the set of vertices,(i) with
i = A(v) + ¢. The collectionP := {S;,..., Sk} forms a partition oV’. Let us compute the fraction of edges that are cut
by the partitionP,

(X,y)g(G/) P09 # P(y)} = = (U,U)]EE(G) {P((U, i)) = P((v. ﬂuu(i)))} (by construction of3’)
= B LG {A(U) =i # A(v) - 7uw(i)}  (by definition ofP)
= U)]EE(G) (A(U) £ mu(A@)}  (usingmyw(i) = Tw(A@)) — A() +1)

= VAL(A).
O

The second lemma is the more interesting direction of the The@rénklere, starting from a multicut ird’, H’) of
value at most, which separates all demand pairs, we construct a labelirgyfahere at most fraction of constraints
are not satisfied.

Lemma B.2. Suppose that there is multicut(@’, H’) of value at most, then there is a labeling fot{ of value at least
1-2s.

Proof. We present a probabilistic construction similar to the proof of Lemrid_et P be a partition ol/’ that separates
all edges oH’ and only are fraction of the edges d&’. We consider the distribution over subs8ts V'’ obtained by
choosing uniformly at random a cluster®f LetS;,...,S,,... be infinite sequence of independent random subsets of
V’, each chosen from this distribution.
We extract a labeling\: V — [K] from this sequence of sets in the following way: For a vetexV, let Sy be
the first set in the sequence that contains a veug) for some labei € [k]. SinceP is a multicut, the label € [k] such
that (, 1) is in the selS; () is unique. We assign this label to vertex
Let us estimate the fraction of constraints violated by this labeling. b} be an edge in the unique garé For
r € IN, let us condition on the event th&t is the first set that contains a vertex -} or (v,-). Now, if A violates (i, v),
then it must be the case that one of the network edgés < (v, 7y,(i)) in G’ is cut by the se&;. Hence,

P{3i. ((u.i). (0. 7w (i) € (S. S)} _ T P{((u ). . mu (i) € (S.S))

P{A(Q) # mw(A(U)} < ————— . < :
(AL) # mu(AW) P{Ei.(ui)eSordi. (vi) €St max{P(3i. (ui) € S}, P(Ei. (v,i) € S}

(23)

Suppose that the multiclt separates a,, fraction of the network edges of the form, () and ¢, -) vertices. Then, the
right-hand side ofZ3) equals 2, (the neumerator ikey, - 2/|P| and the denominator Ig/|P|, where|P| is the number
of clusters in the partitio®). We can conclude that

VAL(A) > 1= B PIAG) # mu(AW)) > 1 260 = 1— 2.

- E
(up)eE (uv)eE(G)
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