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Abstract

In STOC ’08, Peikert and Waters introduced a powerful new primitive called Lossy Trapdoor
Functions (LTDFs). Since their introduction, lossy trapdoor functions have found many uses
in cryptography. In the work of Peikert and Waters, lossy trapdoor functions were used to
give an efficient construction of a chosen-ciphertext secure (IND-CCA2) cryptosystem. Lossy
trapdoor functions were then shown to imply deterministic encryption by Bellare, Fischlin,
O’Neill and Ristenpart in CRYPTO ’08. In TCC ’09, Rosen and Segev showed that lossy
trapdoor functions are correlated product secure, meaning that they remain one-way even when
evaluated on correlated inputs.

In their work, Peikert and Waters gave constructions of LTDFs from the Decisional Diffie-
Hellman (DDH) assumption and lattice assumptions. Bellare et al., and Rosen and Segev also
gave (identical) efficient constructions of LTDFs from Paillier’s Decisional Composite Residuos-
ity (DCR) assumption. To date, these remain the only known constructions of lossy trapdoor
functions.

In this work we extend the notion of smooth hash proof systems as defined by Cramer and
Shoup in Eurocrypt ’02, to include an additional homomorphic property. We call this primitive
smooth homomorphic hash proof systems. We show that smooth homomorphic projective hash
proof systems include all Diverse Group Systems as defined by Cramer and Shoup. Using this
definition, we show that
• Smooth homomorphic hash proof systems imply LTDFs.
• Diverse group systems as defined in [CS02] imply LTDFs. These are the first known generic

constructions of LTDFs.
• Applying our generic construction the specific constructions of smooth hash proof systems

given by Cramer and Shoup, we obtain the first construction of LTDFs from the quadratic
residuosity (QR) assumption. We also obtain a novel construction of LTDFs from Paillier’s
decisional composite residuosity (DCR) assumption.

• Applying our results to the results of Bellare et al. we obtain a construction of deterministic
encryption from smooth homomorphic hash proof systems.

• Applying our results to the results of Rosen and Segev, we obtain a construction of correlated
product secure functions from smooth homomorphic hash proof systems. This provides the
first construction of correlated product secure functions from the QR assumption.

• Applying the black-box separation results of Rosen and Segev, we show that there is a black-
box separation between smooth homomorphic hash proof systems and one-way trapdoor
permutations.

• While homomorphic encryption can never be IND-CCA2 secure, we notice that smooth
homomorphic hash proof systems yield a homomorphic IND-CCA1 secure cryptosystem.
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1 Introduction

In cryptography, a primary goal is understanding the relationship between the wealth of crypto-
graphic primitives that have been created since the fields inception. This pursuit has a number
of tangible benefits for the field. First, by making connections between primitives we can often
realize primitives under new (concrete) hardness assumptions which provides security against crypt-
analysis, or algorithmic breakthroughs targeting a specific number-theoretic hardness assumption.
Second, it contributes to the map of the cryptographic landscape, an important goal, for it is only
by knowing the current state of the field, that we can make forward progress. Third, by creating
links between cryptographic primitives, we are also creating links between the ideas that underlie
their definitions and constructions, and this linking of ideas greatly increases the rate of progress
in the field.
With these goals in mind, in [PW08], Peikert and Waters introduced a new primitive called Lossy
Trapdoor Functions (LTDFs), LTDFs provided a stepping stone that allowed Peikert and Wa-
ters to demonstrate the first injective trapdoor functions based on the Decisional Diffie-Hellman
(DDH) assumption, and the first chosen ciphertext (IND-CCA2) secure cryptosystem based on
lattice assumptions. In addition to providing natural constructions of injective trapdoor functions
and IND-CCA secure cryptosystems, Peikert and Waters went on to show that LTDFs provide
very natural constructions of many cryptographic primitives, including pseudo-random generators,
collision-resistant hash functions, and oblivious transfer. The extremely intuitive nature of these
many constructions provided early evidence of the value of this new primitive. Since the original
work of Peikert and Waters, lossy trapdoor functions have been shown to imply many other im-
portant cryptographic primitives. In [BFOR08], Bellare, Fischlin, O’Neill and Ristenpart showed
that LTDFs imply deterministic encryption. Deterministic encryption was defined in [BBO07] in
an attempt to capture the strongest notion of security possible for a deterministic function. While
[GL89] showed that one-way functions can be viewed as a function that does not leak the parity of
a random subset of the bits of its input, deterministic encryption [BBO07] can be viewed as a func-
tion that does not leak any fixed function1 of its input. Deterministic encryption has applications
to efficiently searchable encryption, and securing legacy systems. Lossy trapdoor functions were
then shown to imply correlated product secure functions by Rosen and Segev in [RS09]. Roughly
a family of correlated product secure functions is a family of functions that remain one-way even
when the output of multiple functions is given on the same input.
While we have seen a wide variety of important consequences of lossy trapdoor functions, there
remains a dearth of constructions. In [PW08], Peikert and Waters constructed LTDFs from the
DDH assumption and lattice assumptions, and an efficient construction of LTDFs from Paillier’s
Decisional Composite Residuosity (DCR) assumption was given independently in [BFOR08] and
[RS08]. Despite the clear value of lossy trapdoor functions there has been no construction of LTDFs
from the well-known Quadratic Residuosity (QR) assumption, and no general constructions of lossy
trapdoor functions from any generic primitive.
The main contribution of this work is a proof that smooth homomorphic hash proof systems as
introduced in [CS02] imply lossy trapdoor functions. We actually show a more general statement
that Diverse Group Systems as defined in [CS02] imply lossy trapdoor functions. This provides the
first known generic construction of lossy trapdoor functions, a new construction of lossy trapdoor
functions from the DCR assumption, and the first known construction of lossy trapdoor functions
from the QR assumption.
Our results have a number of other consequences as well, and applying our construction to the
results of [BFOR08], we achieve the first construction of deterministic encryption from smooth
homomorphic hash proof systems. Applying our results to those of [RS09], we give the only known
construction of correlated product secure functions from a primitive other than lossy trapdoor

1independent of the choice of the deterministic encryption.
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functions, and the first known construction of correlated product secure functions from the QR
assumption. Applying the separation of Rosen and Segev, we provide a black-box separation of
smooth homomorphic hash proof systems and one-way trapdoor permutations.

1.1 Previous Work

Lossy Trapdoor Functions (LTDFs) were introduced by Peikert and Waters in [PW08], simulta-
neously providing a link between the Decisional Diffie-Hellman assumption and one-way trapdoor
functions, and the first IND-CCA secure cryptosystem based on lattice assumptions. Roughly, a
family of lossy trapdoor functions is a family of functions with two computationally indistinguish-
able branches. An injective branch with a trapdoor, and a lossy branch which statistically loses
information about its input, in particular the image size of the lossy branch is required to be much
smaller than its domain size. If the lossy branch is lossy enough, this immediately implies that the
injective branch is an injective one-way trapdoor function. Peikert and Waters gave constructions of
lossy trapdoor functions from the DDH assumption and lattice-based assumptions. In [BFOR08],
[RS08], Bellare et al. and Rosen and Segev gave efficient constructions of lossy trapdoor func-
tions from Paillier’s DCR assumption. These are currently the only known constructions of lossy
trapdoor functions. Lossy trapdoor functions are known to imply IND-CCA secure encryption.
In addition to IND-CCA secure encryption, LTDFs were shown to imply collision-resistant hash
functions [PW08], deterministic encryption [BFOR08], lossy encryption [PVW08] and correlated
product secure functions [RS09].
Universal Hash Proof Systems were introduced by Cramer and Shoup in [CS02], generalizing their
construction of IND-CCA encryption from the Decisional Diffie-Hellman (DDH) assumption given
in [CS98]. In [CS02], Cramer and Shoup defined two types of hash proof systems, smooth projective
hash families, which immediately implied IND-CPA secure encryption, and universal projective hash
families, which could be used as a type of designated verifier proof system for the specific class of
language given by smooth projective hash families. They went on to show that universal hash
proof systems imply smooth projective hash proof systems, so it was sufficient to construct only
universal hash proof systems. Their general construction, however, was fairly inefficient, and in all
of their constructions they were able to avoid the general construction of smooth projective hash
proof systems, and create efficient smooth projective hash proof systems directly. In this work, we
will deal only with smooth hash proof systems.
In order to construct explicit hash proof systems, Cramer and Shoup defined another primitive
called a Diverse Group System. Diverse Group Systems seemed to capture the essential part of the
algebraic structure of a cyclic group, and they gave a very natural construction of universal hash
proof systems from Diverse Group Systems. They went on to construct diverse group systems from
the DDH assumption, the Quadratic Residuosity (QR) assumption and the Decisional Composite
Residuosity (DCR) assumption. In the work of Cramer Shoup, the smooth projective hash acts as
the encryption, and the universal projective hash acts as the zero knowledge proof necessary for
IND-CCA security. In this work, we will not require the proof component, consequently we will
focus on smooth projective hash families and ignore universal projective hash families.
The primary result of this work is a proof that smooth homomorphic hash proof systems imply lossy
trapdoor functions. By providing a link between smooth homomorphic hash proof systems, and
lossy trapdoor functions, we provide a number of new connections as well. This work provides the
first construction of lossy trapdoor functions from any generic primitive. Additionally, it provides
the first construction of deterministic encryption from smooth homomorphic projective hash proof
systems, when applied to the universal hash proof systems of Cramer and Shoup in [CS02], these
results also provide the first known construction of both lossy trapdoor functions and correlated
product secure functions from the QR assumption.
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1.2 Our Contributions

In this work, we show that that smooth homomorphic hash proof systems imply lossy trapdoor
functions (LTDFs). Applying our results to the constructions of universal hash proof systems
given by Cramer and Shoup in [CS02] immediately yields lossy trapdoor functions from the DDH,
DCR and QR assumptions. When applied to DDH, the construction achieved in this way is
essentially identical to the construction of LTDFs given by Peikert and Waters in [PW08], however
the constructions from the DCR and QR assumptions are new. While our construction of LTDFs
from the DCR assumption is less efficient than that given by [BFOR08] and [RS08], our results
provide the first construction of lossy trapdoor functions from the QR assumption.
It was shown in [BFOR08] that lossy trapdoor functions imply deterministic encryption, so our
results give the first construction of deterministic encryption from smooth homomorphic hash proof
systems.
In [RS09], Rosen and Segev introduced correlated product secure functions, and showed that lossy
trapdoor functions are correlated product secure. Applying their results to our construction, we
have a construction of correlated product secure functions from smooth homomorphic hash proof
systems. This connection also yields the first known construction of correlated product secure
functions from the QR assumption. Finally, combining our results with the black-box separations
of Rosen and Segev [RS09], we find that there is a black-box separation between one-way trapdoor
permutations and smooth homomorphic hash proof systems.
Our primary results are summarized as follows

Theorem (Main Theorem). Smooth Homomorphic Projective Hash Proof Systems imply Lossy
Trapdoor Functions.

This theorem has a number of immediate Corollaries. Since Bellare et al. [BFOR08] showed that
LTDFs imply deterministic encryption (as defined in [BBO07]), we have

Corollary. Smooth Homomorphic Projective Hash Proof Systems imply deterministic encryption.

Since Rosen and Segev [RS09] showed that LTDFs imply correlated product secure encryption,
and a black-box separation between one-way trapdoor permutations and correlated product secure
functions, we have

Corollary. Smooth Homomorphic Projective Hash Proof Systems imply correlated product secure
functions.

Corollary. There is a black-box separation between Smooth Homomorphic Projective Hash Proof
Systems and one-way trapdoor permutations, i.e. there exists an oracle, relative to which the latter
exists but the former does not.

1.3 High Level Intuition

In this section we describe the high level intuition behind our constructions. In [PW08], Peikert
and Waters gave a construction of lossy trapdoor functions from the DDH assumption. In their
construction, the description of a function was essentially an El-Gamal encrypted matrix, and
evaluation of the function on a vector in {0, 1}n was just the (multiplicative) matrix product of
the matrix with the vector. An injective function used an encryption of the identity matrix, while
a lossy function used an encryption of the zero matrix. The homomorphic property of El-Gamal,
guarantees that the output of the function will either be an encryption of the input, or an encryption
of 0. This idea was not sufficient, however, because if you instantiate it näıvely, the randomness
of the encryption of zero, might (statistically) leak the entire input. Thus they had to modify
their construction using the explicit properties of El-Gamal. In particular, they used the fact
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that the encryption randomness is separate from the ciphertext, and that the encryption remains
secure even when the same randomness is used to encrypt multiple messages with different public
keys. A similar construction allowed them to create lossy trapdoor functions from lattice-based
assumptions.
We observe, that the cryptosystem of Cramer and Shoup based on the quadratic residuosity as-
sumption in [CS02] decouples the ciphertext from the randomness as well. Thus we can try to
construct lossy trapdoor functions using a technique similar to that of Peikert and Waters. For this
construction, the proof that the lossy mode is indeed lossy follows along the same lines as the proof
in [PW08]. The proof of indistinguishability of modes is quite different however. In [PW08], the
proof of indistinguishability of modes in their DDH construction relies crucially on the fact that
the plaintext and the secret key are being combined in the same group. This is not true of our QR
based construction and the fact that the injective and lossy modes are computationally indistin-
guishable does not follow immediately from the techniques of Peikert and Waters and new ideas are
needed. Specifically, we introduce an additional step in their proof of security, where we selectively
introduce “bad” randomness into one column of the encrypted matrix. Using ideas similar to those
of [CS02], we show that encryptions made with this “bad” randomness are indistinguishable from
valid encryptions. This is delicate, however, because, unlike [CS02], we are encrypting multiple
messages (an entire column) using the same randomness. We can, however, leverage the group
structure afforded by the problem to overcome this obstacle. We can then show that when using
“bad” randomness to encrypt a column, the encryption of the column of the identity matrix and
an encryption of a column of the zero matrix are statistically indistinguishable. We then generalize
these ideas to all the smooth homomorphic hash proof systems constructed in [CS02].

2 Preliminaries

2.1 Notation

If A is a Probabilistic Polynomial Time (PPT) machine, then we use a← A to denote running the
machine A and obtaining an output, where a is distributed according to the internal randomness
of A. If R is a set, we use r ← R to denote sampling uniformly from R.
We use the notation

Pr[r ← R;x← X : A(x, r) = c],

to denote the probability that A outputs c when x is sampled uniformly from X and r is sampled
uniformly from R, so the probability ranges over the choice of r, x and the internal randomness of
A.
We define the statistical distance between two distributions X,Y to be

∆(X,Y ) =
1
2

∑
x

|Pr[X = x]− Pr[Y = x]|

If X and Y are families of distributions indexed by a security parameter λ, we use X ≈s Y to mean
the distributions X and Y are statistically close, i.e., for all polynomials p and sufficiently large λ,
we have ∆(X,Y ) < 1

p(λ) .
We use X ≈c Y to mean X and Y are computationally close, i.e., for all PPT adversaries A, for
all polynomials p, then for all sufficiently large λ, we have |Pr[AX = 1]− Pr[AY = 1]| < 1/p(λ).

2.2 Lossy Trapdoor Functions

We briefly recall the definition of lossy trapdoor functions given in [PW08].
A tuple (Sltdf , Fltdf , F

−1
ltdf) of PPT algorithms is called a family of (n, k)-Lossy Trapdoor Functions

if the following properties hold:
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• Sampling Injective Functions: Sltdf(1λ, 1) outputs s, t where s is a function index, and t
its trapdoor. We require that Fltdf(s, ·) is an injective deterministic function on {0, 1}n, and
F−1

ltdf(t, Fltdf(s, x)) = x for all x.

• Sampling Lossy Functions: Sltdf(1λ, 0) outputs (s,⊥) where s is a function index and
Fltdf(s, ·) is a function on {0, 1}n, where the image of Fltdf(s, ·) has size at most 2n−k.
• Indistinguishability: The first outputs of Sltdf(1λ, 0) and Sltdf(1λ, 1) are computationally

indistinguishable.

2.3 Subset Membership Problems

In this section we recall the definition of of a subset membership problem as formalized in [CS02].
Roughly, given sets L ⊂ X, we want L and X to be computationally indistinguishable.
Formally, given a family of sets (X,L,W ) indexed by a security parameter λ, we require L ⊂ X,
and there is a binary relation R : X ×W → {0, 1}. If R(x,w) = 1, we say that w is a witness for
x. In this work, we will restrict our attention to relations R such that for all x ∈ L, there exists a
w ∈W such that R(x,w) = 1, and for all x 6∈ L, and all w ∈W , R(x,w) = 0.
We also need the following efficient sampling algorithms.
• Instance Sampling: Given a security parameter λ, we can sample (X,L,W ) and R.
• Sampling Without Witness: Given (X,L,W ) we can sample (statistically-close to) uni-

formly on X.
• Sampling With Witness: Given (X,L,W ) we can sample x (statistically-close to) uniformly

on L, along with a witness w such that R(x,w) = 1.

Definition 1. A subset membership problem is called hard if for all PPT distinguishers,

|Pr[x← X : D(x) = 1]− Pr[x← L : D(x) = 1]| < ν(λ),

for some negligible function ν.

As in [CS02], the security of all of our constructions will rely on the security of some underlying
hard subset membership problem. In fact, the hardness assumptions DDH, DCR and QR all have
natural formulations in terms of hard subset membership problems [CS02].

2.4 Smooth Hash Proof Systems

We briefly recall the notion of smooth projective hash families as defined by Cramer and Shoup in
[CS02]. Let H be a function family indexed by keys in the a keyspace K, i.e. for each k ∈ K,
Hk : X → Π. Let L ⊂ X and α : K → S. We require efficient evaluation algorithms such that, for
any x ∈ X, Hk(x) is efficiently computable using k ∈ K. Using the terminology of [CS02], this is
called the private evaluation algorithm. Additionally, if x ∈ L and a witness w for x ∈ L is known,
then Hk(x) is efficiently computable given x,w, α(k). This is called the public evaluation algorithm.
Finally we require efficient sampling algorithms to sample uniformly from X, uniformly from K,
and uniformly from L along with a witness. The security properties of the system will follow from
the indistinguishability of X and L.

Definition 2. The set HPS = (H,K,X,L,Π, S, α) is a projective hash family if, for all k ∈ K, the
action of Hk on the subset L is completely determined by α(k).

For a projective hash family, α(k) determines the output of Hk on L. A smooth projective hash
family is one in which α does not encode any information about the action of Hk on X \ L.
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Definition 3. Let (H,K,X,L,Π, S, α) be a projective hash family, and define two distributions
Z1, Z2 taking values on the set X \ L × S × Π. For Z1, we sample k ← K, x ← X \ L, and set
s = α(k), π = Hk(x), for Z2 we sample k ← K, x ← X \ L, and π ← Π, and set s = α(k). The
projective hash family is called ν-smooth if ∆(Z1, Z2) < ν.

This means that, given α(k) and x ∈ X \ L, Hk(x) is statistically close to uniform on Π.
In [CS02], they showed that smooth projective hash families immediately imply IND-CPA secure
encryption by taking sk = k, pk = α(k), and to encrypt a message m ∈ Π, we sample x ∈ L along
with randomness and output E(m) = (x,Hk(x) +m).
We extend the definition of smooth projective hash proof systems slightly

Definition 4. If HPS = (H,K,X,L,Π, S, α) is a projective hash family, we say that HPS is a
homomorphic projective hash family if X is a group, and for all k ∈ K, and x1, x2 ∈ X, we have
Hk(x1) +Hk(x2) = Hk(x1 + x2), that is to say Hk is a homomorphism for each k.

In [CS02] Cramer and Shoup provide smooth homomorphic projective hash families based on the
DDH, DCR and QR assumptions. We observe also that smooth hash proof systems immediately
imply IND-CCA1 security, and smooth homomorphic hash proof systems imply homomorphic IND-
CCA1 secure encryption. See Appendix E for a full discussion and proof. This is interesting
because a homomorphic cryptosystem can never achieve full IND-CCA2 security. Homomorphic
cryptosystems that support a limited form of security against an adaptive chosen-ciphertext attack
can be found in [PR07].

3 Building Intuition: Lossy Trapdoor Functions from the QR As-
sumption

Before we show our more general proof, we build the intuition about our general construction by
showing how to construction lossy trapdoor functions from the quadratic residuosity (QR) assump-
tion. This is the first known construction of lossy trapdoor functions from the QR assumption.

3.1 The Quadratic Residuosity Assumption

We briefly review the definition of the quadratic residuosity assumption. Let N = pq be the product
of two primes. Let J ⊂ Z∗N be the subset of elements with Jacobi symbol 1, i.e.

J =
{
x ∈ Z∗N :

( x
N

)
= 1
}
.

Let QR ⊂ X be the set of quadratic residues modulo N ,

QR = {x ∈ Z∗N : ∃y ∈ Z∗N s.t. y2 = x mod N}.

Definition 5 (The Quadratic Residuosity (QR) Assumption). The Quadratic Residuosity assump-
tion states that the sets QR and J \QR are computationally indistinguishable.

3.2 Slightly Lossy Functions from the QR Assumption

While the constructions from LTDFs in [PW08] require the lossy branch to lose many bits, in
[MY09], Mol and Yilek considered LTDFs that lose only a fraction of a single bit. The called these
Slightly Lossy Trapdoor Functions. As a warmup, before constructing full lossy trapdoor functions
from the Quadratic Residuosity (QR) assumption, we give a simple, intuitive construction of weakly
lossy functions from the QR assumption. In particular, the lossy branch of this family loses only a
single bit of information, and the family has no trapdoor.
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• Sampling Injective Functions:
Generate safe primes p, q ← PRIMES(λ), i.e. p = 2p′ + 1, and q = 2q′ + 1 for primes p′ and
q′, and set N = pq. Let g be a generator of the cyclic group J . Note |J | = 2p′q′.
The function index will be (g,N) and the trapdoor will be (p, q).
• Sampling Lossy Functions:

Generate safe primes p, q ← PRIMES(λ), i.e. p = 2p′ + 1, and q = 2q′ + 1 for primes p′ and
q′, and set N = pq. Let g be a generator of the cyclic group QR. Note |QR| = p′q′.
The function index will be (g,N) and the trapdoor will be (p, q).
• Evaluation:

Given a message x ∈ [bN/2c],
let F ((g,N), x) = gx mod N .

The indistinguishability of branches is exactly the QR Assumption. To see that the lossy branch
is actually lossy notice that the uniform distribution on the set {0, 1, . . . , N/2} is only negligibly
far from uniform on {0, 1, . . . , |J |}, we have that in injective mode, F will be injective with all but
negligible probability, while in lossy mode, the output of F only depends on x mod |QR|. Since
|J | = 2|QR|, we have that in lossy mode, the family loses 1 bit of information.

3.3 Lossy Trapdoor Functions from the QR Assumption

In this section we show how to construct Lossy Trapdoor Functions (LTDFs) from the Quadratic
Residuosity (QR) assumption. Let N = pq be the product of two safe primes, i.e. p = 2p′ + 1, and
q = 2q′ + 1, for primes p′, q′. Then |J | = 2p′q′, and |QR| = p′q′. Choose µ ← Z∗N uniformly, and
let g = µ2 mod N . It is not hard to see that the distribution of g is statistically close to uniform
over the generators of the cyclic group QR. We are now ready to describe our construction.
• Sampling Injective Functions:

Let B = (bij) be the n× n identity matrix.
Sample w1, . . . , wn ←W .
Sample k1, . . . , kn ← K.
Set hi = gwi mod N ,
Let

R =

 h1
...
hn

 A =

 (−1)b11hk11 · · · (−1)b1nhk1n
...

. . .
...

(−1)bn1hkn
1 · · · (−1)bnnhkn

n

 .

Where all the operations are done in the multiplicative group Z∗N . The function index will be
(R,A), and the trapdoor will be ({wi}, {ki}).
• Sampling Lossy Functions:

This is identical to sampling the Injective Functions, only B = (bij) is set to be the n× n zero
matrix.
• Evaluation:

Given a message z = z1 · · · zn ∈ {0, 1}n, and a function index (R,A), output Rz,Az, where

Rz =
n∏
i=1

hzi
i mod N = g

Pn
i=1 wizi mod N,

and

Az =


∏n
j=1A

zj

1j mod N
...∏n

j=1A
zj
nj mod N

 =

 (−1)
Pn

i=1(−1)b1izigk1
Pn

i=1 wizi mod N
...

(−1)
Pn

i=1(−1)bnizigkn
Pn

i=1 wizi mod N

 .
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In particular, Rz and Az are the standard matrix products (written in multiplicative notation,
instead of additive notation).
• Trapdoor:

Given a value Rz = r, and Az = (a1, . . . , an), set

m′i = air
−ki mod N

= (−1)
Pn

j=1 bijzjgki
Pn

j=1 wjzj

 n∏
j=1

w
zj

j

−ki

mod N

= (−1)zi

Then set mi = 0 if m′i = 1, and mi = 1 if m′i = −1.
It is not difficult to check that the correctness of the trapdoor. The lossiness of the lossy branch
follows because the output of the function in Lossy Mode evaluated on z = z1 · · · zn is

g
Pn

i=1 wizi mod N,

and (a1, . . . , an), where ai = gki
Pn

i=1 wizi mod N . In particular, the output is completely deter-
mined by

∑n
i=1wizi mod φ(N), where φ(·) is the Euler φ function. Thus the residual leakage of

the function is at most log(φ(N)) ≈ log(N). In particular, by making n significantly larger than
log(N), we can attain any degree of lossiness we desire.
The only difficulty is showing that Injective and Lossy keys are indistinguishable.

Lemma 1. The distribution on function indices output by the Injective and Lossy sampling al-
gorithms are computationally indistinguishable, assuming the Quadratic Residuosity Assumption
holds for N .

Proof. To prove the indistinguishability, we proceed via hybrid argument, on the columns of A.
Let Di be the distribution on function indices, where the first i columns of B are the identity
matrix, and the last n − i columns of B are the zero matrix. Thus D0 is the distribution output
by the Injective Sampling Algorithm, and Dn is the distribution output by the Lossy Sampling
algorithm. To show that D0 and Dn are indistinguishable, it suffices to show that Di−1 and Di are
indistinguishable for each i ∈ {1, . . . , n}.
Consider the distribution D′i, which is identical to Di except that instead of setting hi = gwi

mod N , we sample hi uniformly from J \ QR. Clearly D′i and Di are computationally indis-
tinguishable under the Quadratic Residuosity Assumption. Thus to show that Di−1 and Di are
computationally indistinguishable, it suffices to show that D′i−1 and D′i are computationally indis-
tinguishable. In fact, we will show that D′i−1 and D′i are statistically indistinguishable. The only
difference in the distributions D′i−1 and D′i are in the ith columns, so it is enough to consider the
distributions of the ith columns conditioned on all the rest of the values. In particular, we condition
on the values of h1, . . . , hn, and the values hk`

j mod N for j 6= i, and ` ∈ [n]. Since hj ∈ QR, for
j 6= i, conditioning on values hk`

j fixes k` mod |QR|, i.e. k mod p′q′. Thus to show that D′i−1 and
D′i are statistically close it suffices to show that the distributions Λ1 and Λ2 are statistically close,
where

Λ1 = {(h, k mod p′q′, hk mod N)} Λ2 = {(h, k mod p′q′,−hk mod N},

where h ← J \ QR, and k ← K. Now, notice that since h ∈ J \ QR, hp
′q′ 6= 1 mod N , but

h2p′q′ = 1 mod N . Since N is the product of two safe primes, in particular, both p and q are 3
modulo 4, −1 ∈ J , so hp

′q′ = −1 mod N . Since

hk = hbp
′q′hk mod p′q′ = (−1)bhk mod p′q′ mod N,
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we have that the distributions Λ1 and Λ2 are identical.

Using the ideas of Cramer and Shoup, [CS02], we can generalize this construction to any smooth
homomorphic hash proof system.

4 Lossy Trapdoor Functions from Smooth Homomorphic Hash
Proof Systems

In this section we generalize the results of Section 3, and achieve our main result showing that
smooth homomorphic hash proof systems imply lossy trapdoor functions. In [PW08] gave a con-
struction of lossy trapdoor functions from the Decisional Diffie-Hellman (DDH) assumption. We
show that a similar construction goes through with smooth homomorphic hash proof systems. This
extends the intuition given in [CS02] that projective hashing provides a good generalization of the
DDH assumption. We note, however, that although our construction is very similar that of [PW08],
the proofs of security are quite different.
Let (X,L,W ) be a hard subset membership problem. For notational convenience, we suppress the
dependence on the security parameter λ. Let H = (H,K,X,L,Π, S, α) be an associated smooth
homomorphic projective hash family.
• Key Generation:

Pick x1, . . . , xn ∈ L.
Fix b ∈ Π \ {0}.
Generate the matrix B = (Bij) ⊂ Πn×n, where Bij = 0 if i 6= j, and
In lossy mode Bii = 0 for all i.
In injective mode Bii = b.

k1, . . . , kn ← K, and output

R =

 x1
...
xn

 A =

 Hk1(x1) +B11 · · · Hk1(xn) +B1n
...

. . .
...

Hkn(x1) +Bn1 · · · Hkn(xn) +Bnn


The trapdoor will be (k1, . . . , kn).
• Evaluation:

Given a message z = z1, . . . , zn ∈ {0, 1}n
Given a function index R,A, calculate

FR,A(z) = (Rz,Az) =

 n∑
i=1

zixi,


∑n

i=1 zi(Hk1(xi) +B1i)
...∑n

i=1 zi(Hkn(xi) +Bni)


 .

• Trapdoor:
Given a value (Rz,Az), and a trapdoor (k1, . . . , kn), we begin by noting that the homomorphic
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property of Hk guarantees that

FR,A(z) = (Rz,Az) =

 n∑
i=1

zixi,


∑n

i=1 zi(Hk1(xi) +B1i)
...∑n

i=1 zi(Hkn(xi) +Bni)




=

 n∑
i=1

zixi,

 Hk1 (
∑n

i=1 zixi) +
∑n

i=1 ziB1i)
...

Hkn (
∑n

i=1 zixi) +
∑n

i=1 ziBni)




Since
∑n

i=1 zixi, and ki is known, we can calculate Hki
(
∑n

i=1 zixi) and subtract it from each
component to recover the vector (

n∑
i=1

ziB1i, · · · ,
n∑
i=1

ziBni

)t
.

Now, in injective mode, Bij = 0 ∈ Π for i 6= j, and Bij = b for i = j, so(
n∑
i=1

ziB1i, · · · ,
n∑
i=1

ziBni

)t
= (z1b1, · · · , znbn) .

Since the zi ∈ {0, 1}, and since b is known, we can recover the zi by inspection.
We now examine the security of this construction.

Lemma 2. In Lossy Mode, the image of F has size at most |X|.

Proof. Notice that in Lossy Mode, since Bij = 0 for all i, j,

FR,A(z) =

 n∑
i=1

zixi,

 Hk1 (
∑n

i=1 zixi))
...

Hkn (
∑n

i=1 zixi))




which depends only on the sum
∑n

i=1 zixi ∈ X. Thus the size of the image is bounded by |X|.

Thus by taking n > log(|X|), we can make the lossy mode of F as lossy as desired.

Lemma 3. The Injective and Lossy Modes are computationally indistinguishable.

Proof. The proof of Lemma 3 is similar to the proof of Lemma 1.
To prove the indistinguishability, we proceed via hybrid argument, on the columns of A. Let Di

be the distribution on function indices, where the first i columns of B are the diagonal matrix
with bj along the diagonal, and the last n − i columns of B are the zero matrix. Thus D0 is the
distribution output by the Injective Sampling Algorithm, and Dn is the distribution output by the
Lossy Sampling algorithm. To show that D0 and Dn are indistinguishable, it suffices to show that
Di−1 and Di are indistinguishable for each i ∈ {1, . . . , n}.
Consider the distribution D′i, which is identical to Di except that instead of setting xi ← L,
we sample xi ← X \ L, and all the other xi sampled from L as before. Clearly D′i and Di are
computationally indistinguishable assuming it is hard to distinguish L from X \ L. Thus to show
that Di−1 and Di are computationally indistinguishable, it suffices to show that D′i−1 and D′i
are computationally indistinguishable. In fact, we will show that D′i−1 and D′i are statistically
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indistinguishable. The only difference in the distributions D′i−1 and D′i are in the ith columns,
so it is enough to consider the distributions of the ith columns conditioned on all the rest of the
values. In particular, we condition on the values of h1, . . . , hn, and the values hk`

j mod N for j 6= i,
and ` ∈ [n]. Since xj ∈ L for j 6= i, the value of Hk`

(xj) is completely determined by α(k`). In
particular, there will still be entropy in Hk(xi) even conditioned on all the other values. We make
this explicit below. We begin by noticing that if xi ← X \ L, and k ← K, then the distributions

Λ1 = {xi, α(k), Hk(xi) + bi} Λ2 = {xi, α(k), Hk(xi)},

are statistically close, i.e. ∆(Λ1,Λ2) = ν. In particular, this implies that the distributions

{xi, Hki
(x1), . . . , Ĥki

(xi), . . . ,Hki
(xn), Hki

(xi)+bi} {xi, Hki
(x1), . . . , Ĥki

(xi), . . . ,Hki
(xn), Hki

(xi)}

are statistically close. Since each of the kj are independent, this shows that ∆(D′i−1, D
′
i) < ν.

Putting it all together, we have

Di−1 ≈c D′i−1 ≈s D′i ≈c Di.

In Appendix B, we show that a similar construction and proof goes through for Diverse Group
Systems.
Thus we arrive at

Theorem 1 (Main Theorem). Smooth Homomorphic Projective Hash Proof Systems imply Lossy
Trapdoor Functions, and Diverse Group Systems imply Lossy Trapdoor Functions.

This theorem has a number of immediate Corollaries. Since Bellare et al. [BFOR08] showed
that LTDFs imply deterministic encryption (as defined in [BBO07]), we have Corollary 1. Since
Rosen and Segev [RS09] showed that LTDFs imply correlated product secure encryption, we have
Corollary 2. Since Rosen and Segev showed a black-box separation between one-way trapdoor
permutations and correlated product secure functions, we have Corollary 3.

Corollary 1. Smooth Homomorphic Projective Hash Proof Systems imply deterministic encryp-
tion.

Corollary 2. Smooth Homomorphic Projective Hash Proof Systems imply correlated product
secure functions.

Corollary 3. There is a black-box separation between Smooth Homomorphic Projective Hash
Proof Systems and one-way trapdoor permutations, i.e. there exists an oracle, relative to which
the latter exists but the former does not.

5 Conclusion

In this work, we showed that the intuition that hash proof systems are a natural generalization of
the Decisional Diffie-Hellman (DDH) assumption holds in the case of lossy trapdoor functions as
well. In particular, we showed that the construction of lossy trapdoor functions from DDH given in
[PW08] can be made to work with any smooth homomorphic projective hash (or any diverse group
system). This shows an interesting connection between these two powerful primitives and provides
the first generic2 construction of lossy trapdoor functions from any primitive.

2i.e. not based on specific number theoretic assumptions
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When applied to the specific constructions of hash proof systems given in [CS02], our results imme-
diately give new constructions of lossy trapdoor functions and correlated product secure functions
from the Decisional Composite Residuosity (DCR) assumption, and the first known constructions
of lossy trapdoor functions and correlated product secure functions from the quadratic residuosity
assumption. When applied the results of [BFOR08], we obtain the first construction of deterministic
encryption from smooth homomorphic hash proof systems. Combining our work with the negative
results of [RS09], we obtain a black-box separation between one-way trapdoor permutations and
smooth homomorphic hash proof systems.
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Appendix

A Diverse Group Systems

In [CS02], Cramer and Shoup defined diverse group systems and used them as a foundation for all
their constructions of Universal Hash Proof Systems. We review these definitions here.
Let X,L,Π be finite abelian groups written additively, with L ( X. Let Hom(X,Π) be the
group of homomorphisms, φ : X → Π. This is also clearly an abelian group under the operation
(φ1 + φ2)(x) = φ1(x) + φ2(x).

Definition 6. Let X,L,Π be finite abelian groups with L ( X. Let H ⊂ Hom(X,Π), We call

G = (H, X, L,Π),

a group system.

Definition 7. We call a group system G = (H, X, L,Π) diverse if for all x ∈ X \ L, there exists
φ ∈ H such that φ(`) = 0 for all ` ∈ L, but φ(x) 6= 0.

Now, we review some of the basic algebra that underlies group systems.

Definition 8. Let G = (H, X, L,Π) be a group system. For Y ⊂ X, define A(Y ) = Ann(Y ) ∪ H,
i.e.

A(Y ) = {φ ∈ H : φ(y) = 0 ∀y ∈ Y }.

It is easy to see that G is diverse if and only if for all x ∈ X \ L, A(L ∪ {x}) ( A(L).
We also define

Definition 9. Let G be a group system. For x ∈ X, define I(x) to be the image of the homomor-
phisms in A(L) applied to x, i.e.

I(x) = {π ∈ Π : ∃φ ∈ A(L) s.t. φ(x) = π}.

Lemma 4. Let G = (H, X, L,Π) be a diverse group system, and suppose p is the smallest prime
dividing |X/L|, then p ≤ |I(x)| for all x ∈ X \ L.

Proof. Fix x ∈ X \ L, and let

E : A(L)→ Π
φ 7→ φ(x).

Then Ker(E) = A(L ∪ {x}), and Im(E) = I(x), so the first isomorphism theorem tells us that
A(L)/A(L∪{x}) ' I(x), in particular, I(x) > 1, and |I(x)| | |A(L)|. Let q be a prime that divides
|I(x)|, then q | |A(L)|. It remains to show that q | |X/L|. Let d = |X/L|, then for all x ∈ X,
dx ∈ L. Since q | |A(L)|, A(L) contains an element of order q, call it φ. But (dφ)(x) = φ(dx) = 0
for all x ∈ X, so q | d. Thus any prime divisor of |I(x)| is a prime divisor of |X/L|, so it must be
at least p.

In particular, Lemma 4 gives a minimum size for I(x).
Now, suppose φ ← H. If the action of φ on L is completely specified, then φ is fixed up to an
element in A(L). Thus for x ∈ X \ L, the value of φ(x) is known up to an element in I(x). In
particular, only the coset of I(x) in Π/I(x) is fixed by the action of φ on L.
In [CS02] Cramer and Shoup show a natural method for constructing universal hash proof systems
from Diverse Group Systems.
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Definition 10. Let G = (H, X, L,Π) be a diverse group system, and let g1, . . . , gd ∈ L be a set of
generators for L. We define the associated hash proof system H = (H,K,X,L,Π, S, α),
• For uniformly chosen k ∈ K, Hk is uniform on H.

Without loss of generality, we may assume K = H, and k = φ ∈ H.
We maintain universal hash proof notation to emphasize that Hk(·) that someone who can
calculate Hk(·) on elements of L may not know the underlying homomorphism φ.
• S = Πd, and

α : K → S

k 7→ (Hk(g1), . . . ,Hk(gd)).

Although it was not required as a general property in the Cramer Shoup constructions, we note
that for Universal Hash Proof Systems derived from Diverse Group Systems, Hk(x1) + Hk(x2) =
Hk(x1 + x2) since the Hk are in Hom(X,Π). We require this property for our construction of
Lossy Trapdoor Functions. We emphasize, however, that this is the only additional property of a
Smooth Projective Hash that we require. In particular, our construction will work for any Smooth
Projective Hash Family that satisfies Hk(x1) + Hk(x2) = Hk(x1 + x2), even if it was not derived
from a Diverse Group System.
We note too, that Universal Hash Proofs derived from Diverse Group systems may have the addi-
tional property that they are homomorphic over the keys, i.e. Hk1(x) + Hk2(x) = Hk1+k2(x). We
will not make use of this property, but this additionally homomorphic property may have value in
future constructions.

B Lossy Trapdoor Functions from Diverse Group Systems

Let G = (H, X, L,Π) be a diverse group system based on a hard subset membership problem and
let H = (H,K,X,L,Π, S, α) be its associated projective hash family.
We slightly modify the construction of Section 4 to work in this context. The only change will be
to the key generation algorithm, where the diagonal elements bi can no longer be fixed arbitrarily,
but must depend on xi.
• Key Generation:

Pick x1, . . . , xn ∈ L.
For each xi, choose bi ← I(xi) \ {0}.
Generate the matrix B = (Bij) ⊂ Πn×n, where Bij = 0 if i 6= j, and
In lossy mode Bii = 0 for all i.
In injective mode Bii = bi.

k1, . . . , kn ← K, and output

R =

 x1
...
xn

 A =

 Hk1(x1) +B11 · · · Hk1(xn) +B1n
...

. . .
...

Hkn(x1) +Bn1 · · · Hkn(xn) +Bnn


The trapdoor will be (k1, . . . , kn).
• Evaluation:

Given a message z = z1, . . . , zn ∈ {0, 1}n
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Given a function index R,A, calculate

FR,A(z) = (Rz,Az) =

 n∑
i=1

zixi,


∑n

i=1 zi(Hk1(xi) +B1i)
...∑n

i=1 zi(Hkn(xi) +Bni)


 .

• Trapdoor:
Given a value (Rz,Az), and a trapdoor (k1, . . . , kn), we begin by noting that the homomorphic
property of Hk guarantees that

FR,A(z) = (Rz,Az)

=

 n∑
i=1

zixi,


∑n

i=1 zi(Hk1(xi) +B1i)
...∑n

i=1 zi(Hkn(xi) +Bni)




=

 n∑
i=1

zixi,

 Hk1 (
∑n

i=1 zixi) +
∑n

i=1 ziB1i)
...

Hkn (
∑n

i=1 zixi) +
∑n

i=1 ziBni)




Since
∑n

i=1 zixi, and ki is known, we can calculate Hki
(
∑n

i=1 zixi) and subtract it from each
component to recover the vector (

n∑
i=1

ziB1i, · · · ,
n∑
i=1

ziBni

)t
.

Now, in injective mode, Bij = 0 ∈ Π for i 6= j, and Bij = bi for i = j, so(
n∑
i=1

ziB1i, · · · ,
n∑
i=1

ziBni

)t
= (z1b1, · · · , znbn) .

Since the zi ∈ {0, 1}, and the bi are known, we can recover the zi by inspection.
The proof that the two modes are indistinguishable is almost identical to the proof of Lemma 3.

C Lossy Trapdoor Functions from the DCR Assumption

We briefly review the definition of Paillier’s [Pai99] decisional composite residuosity assumption.
Let N = pq be the product of two safe primes. Then the DCR assumption roughly says that the
set of Nth powers modulo N2 is computationally indistinguishable from the uniform distribution
modulo N2.

Definition 11 (The Decisional Composite Residuosity (DCR) Assumption). The Decisional Com-
posite Residuosity (DCR) assumption states that

{xN mod N2 : x ∈ Z∗N2} ≈c {x : x ∈ Z∗N2}.

Let L = {x2N mod N2 : x ∈ Z∗N2}, and X = {x2 mod N2 : x ∈ Z∗N2}. It is immediate that
L ⊂ X is a hard subset membership problem under the DCR assumption. We choose to work with
squares because this makes L and X cyclic groups, which simplifies the exposition somewhat.

16



In this section we show how to construct Lossy Trapdoor Functions (LTDFs) from the DCR as-
sumption. This construction is just a slight modification of our general construction in Section 4
when applied to the construction of universal hash proof systems from decisional composite resid-
uosity in [CS02]. In [CS02], Cramer and Shoup give three different versions of IND-CCA secure
encryption from the DCR assumption. This is the third (called variation 2), in Cramer and Shoup
describe it in this way “In this variation, the ciphertexts are not as compact as those in the schemes
in §8.2.2 and §8.2.3; however, the ciphertexts have more algebraic structure. A scheme such as this
may be useful in certain applications.” They were right.
We now describe the construction. Let N = pq be the product of two safe primes, i.e. p = 2p′ + 1,
and q = 2q′ + 1, for primes p′, q′. Choose µ ← Z∗N2 uniformly, and let g = µ2N mod N2. It is
not hard to see that the distribution of g is statistically close to uniform over the generators of the
cyclic group L.
We are now ready to describe our construction.
• Sampling Injective Functions:

Let B = (bij) be the n× n identity matrix.
Sample w1, . . . , wn ←W .
Sample k1, . . . , kn ← K.
Set hi = gwi mod N2,
Let

R =

 h1
...
hn

 A =

 (−1)b11hk11 · · · (−1)b1nhk1n
...

. . .
...

(−1)bn1hkn
1 · · · (−1)bnnhkn

n

 .

Where all the operations are done in the multiplicative group Z∗N2 . The function index will be
(R,A), and the trapdoor will be ({wi}, {ki}).
• Sampling Lossy Functions:

This is identical to sampling the Injective Functions, only B = (bij) is set to be the n× n zero
matrix.
• Evaluation:

Given a message z = z1 · · · zn ∈ [N ]n, and a function index (R,A), output Rz,Az, where

Rz =
n∏
i=1

hzi
i mod N2 = g

Pn
i=1 wizi mod N2,

and

Az =


∏n
j=1A

zj

1j mod N
...∏n

j=1A
zj
nj mod N2

 =

 (−1)
Pn

i=1(−1)b1izigk1
Pn

i=1 wizi mod N2

...
(−1)

Pn
i=1(−1)bnizigkn

Pn
i=1 wizi mod N2

 .

In particular, Rz and Az are the standard matrix products (written in multiplicative notation,
instead of additive notation).
• Trapdoor:
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Given a value Rz = r, and Az = (a1, . . . , an), set

m′i = air
−ki mod N2

= (−1)
Pn

j=1 bijzjgki
Pn

j=1 wjzj

 n∏
j=1

w
zj

j

−ki

mod N2

= (−1)zi

Then set mi = 0 if m′i = 1, and mi = 1 if m′i = −1.
The proof that the lossy and injective branches are computationally indistinguishable is almost
identical to the general proof in Section 4. Notice, however, that this construction is more efficient
than the construction based on quadratic residuosity, because the input can be taken from [N ]n and
not {0, 1}n. We remark, however, that this construction is still less efficient than the construction
of LTDFs based on the DCR assumption given in [BFOR08] and [RS08].

D IND-CCA Security

We review the notion of security against a chosen-ciphertext attack (IND-CCA) given in [RS91].
We imagine a game played between a challenger and an adversary. The challenger has a public key
cryptosystem (G,E,D) and runs the key generation algorithm to generate a public key and secret
key (pk, sk)← G(1λ), the adversary then sends pk to the adversary A.
Initially we set the target ciphertext c∗ = ⊥.
• Challenge Query: The adversary sends two messages m0,m1 to the challenger. The challenger

chooses b ← {0, 1}, and randomness r and returns an encryption c = E(pk,mb, r) to the
adversary. The challenger then sets the target ciphertext c∗ = c.
• Decryption Query: The adversary sends a ciphertext c to the challenger. If c 6= c∗, the

challenger runs m = D(sk, c) and returns m to the adversary.
After a polynomial number of queries, exactly one of which is a challenge query the adversary
outputs b∗ ∈ {0, 1}. We define increasing levels of security depending on the restrictions placed on
the adversary’s use of decryption queries.

Definition 12. A public key cryptosystem is IND-CPA secure if every efficient adversary A playing
the above game never makes any decryption queries, and∣∣∣∣Pr[A = b]− 1

2

∣∣∣∣ < ν(λ),

for some negligible function ν.

Definition 13. A public key cryptosystem is IND-CCA1 secure if every efficient adversary A
playing the above game never makes a decryption query after the challenge query, and∣∣∣∣Pr[A = b]− 1

2

∣∣∣∣ < ν(λ),

for some negligible function ν.

Definition 14. A public key cryptosystem is IND-CCA2 secure if every efficient adversary A
playing the above game ∣∣∣∣Pr[A = b]− 1

2

∣∣∣∣ < ν(λ),

for some negligible function ν.
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E Smooth Hash Proof Systems are IND-CCA1 Secure

We observe that that the natural IND-CPA secure cryptosystem based on smooth hash proof sys-
tems described in [CS02] is actually IND-CCA1 secure. This fact is perhaps implicit in [CS02],
but it does not appear to have been ever noted explicitly, so for completeness we include it.
First, recall the construction of the system. Given a smooth projective hash proof system HPS =
(H,K,X,L,Π, S, α) based on a hard subset membership problem L ⊂ X, we define a cryptosystem
as follows.
• Key Generation:
k ← K, and pk = α(k), sk = k.
• Encryption:

To encrypt a message m ∈ Π, select x← L, along with a witness w. Use the public evaluation
algorithm to compute Hk(x) using w and α(k). Output c = (x,Hk(x) +m).
• Decryption:

Given c = (x, π), use the private evaluation algorithm to compute Hk(x) using x and k, and
output m = π −Hk(x).

Lemma 5. The scheme described above is IND-CCA1 secure.

Proof. We proceed via a (short) sequence of games. Let G0 be the real IND-CCA1 game. Consider
a variation of the IND-CCA1 security game, where instead of generating the challenge ciphertext
correctly, the challenger chooses x← L without a witness and uses the private evaluation algorithm
to compute Hk(x), and outputs c = (x,Hk(x)+mb). Call this G1. Since x ∈ L, then G1 is identical
to the IND-CCA1 game. Now, consider a game, G2, where the challenger samples X ← \L, and
computes the challenge ciphertext as c = (x,Hk(x) + mb) using the private evaluation algorithm.
By the indistinguishability of L and X, the games G1 and G2 are computationally indistinguishable.
Now, consider a final variant, G3, in which the challenger proceeds as in G2 but ignores the messages
m0,m1 and outputs the challenge ciphertext c = (x,Hk(x)). The smoothness of the hash proof
system guarantees that the distribution of challenge ciphertexts is statistically close in games G2

and G3, thus even an unbounded adversary cannot distinguish the two games. It is clear, however,
that any adversary has exactly probability 1

2 of winning G3.
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