
Subsampling Mathematical Relaxations
and Average-case Complexity

Boaz Barak∗ Moritz Hardt† Thomas Holenstein‡ David Steurer§

April 29, 2010

Abstract

We initiate a study of when the value of mathematical relaxations such as linear and semi-definite
programs for constraint satisfaction problems (CSPs) is approximately preserved when restricting the
instance to a sub-instance induced by a small random subsample of the variables.

Let C be a family of CSPs such as 3SAT, Max-Cut, etc.., and let Π be a mathematical program that is a
relaxation for C, in the sense that for every instance P ∈ C, Π(P) is a number in [0, 1] upper bounding the
maximum fraction of satisfiable constraints of P. Loosely speaking, we say that subsampling holds for C
and Π if for every sufficiently dense instance P ∈ C and every ε > 0, if we let P′ be the instance obtained
by restricting P to a sufficiently large constant number of variables, then Π(P′) ∈ (1±ε)Π(P). We say that
weak subsampling holds if the above guarantee is replaced with Π(P′) = 1−Θ(γ) whenever Π(P) = 1− γ,
where Θ hides only absolute constants. We obtain both positive and negative results, showing that:

1. Subsampling holds for the BasicLP and BasicSDP programs. BasicSDP is a variant of the semi-
definite program considered by Raghavendra (2008), who showed it gives an optimal approximation
factor for every constraint-satisfaction problem under the unique games conjecture. BasicLP is the
linear programming analog of BasicSDP.

2. For tighter versions of BasicSDP obtained by adding additional constraints from the Lasserre
hierarchy, weak subsampling holds for CSPs of unique games type.

3. There are non-unique CSPs for which even weak subsampling fails for the above tighter semi-
definite programs. Also there are unique CSPs for which (even weak) subsampling fails for the
Sherali-Adams linear programming hierarchy.

As a corollary of our weak subsampling for strong semi-definite programs, we obtain a polynomial-
time algorithm to certify that random geometric graphs (of the type considered by Feige and Schechtman,
2002) of max-cut value 1 − γ have a cut value at most 1 − γ/10. More generally, our results give an
approach to obtaining average-case algorithms for CSPs using semi-definite programming hierarchies.

∗Department of Computer Science and Center for Computational Intractability, Princeton University boaz@cs.princeton.edu.
Supported by NSF grants CNS-0627526, CCF-0426582 and CCF-0832797, and the Packard and Sloan fellowships.

†Department of Computer Science and Center for Computational Intractability, Princeton University,
mhardt@cs.princeton.edu. Supported by NSF grants CCF-0426582 and CCF-0832797.

‡Department of Computer Science, ETH Zurich, thomas.holenstein@inf.ethz.ch. Work done while at Princeton University
and supported by NSF grants CCF-0426582 and CCF-0832797.

§Department of Computer Science and Center for Computational Intractability, Princeton University
dsteurer@cs.princeton.edu. Supported by NSF grants 0830673, 0832797, 0528414.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 129 (2009)

Contents

1 Introduction 1
1.1 M C on the sphere . 1
1.2 Subsampling mathematical relaxations . 2
1.3 Subsampling SDPs and average-case complexity. 3
1.4 Related work . 4

2 Overview of proofs 5
2.1 Subsampling for k-CSPs and BasicSDP . 5
2.2 Weak subsampling for strong SDPs . 6
2.3 Negative results for subsampling . 7

3 Preliminaries 7

4 Subsampling theorem for Max-kCSPs 8
4.1 Subsampling basic semidefinite programs . 9

5 M C in random geometric graphs 10

6 Negative results for subsampling 12
6.1 No subsampling for SDP relaxations of k-CSPs with k > 3. 12
6.2 No subsampling for SDP relaxations of non-unique 2-CSPs 12
6.3 No subsampling for LP relaxations of 2-CSPs . 13

7 Proof of the main theorem for Unique Games 13
7.1 First step: proxy graph theorem via subsampling theorem 14
7.2 Second step: proxy graphs for unique games . 15
7.3 Putting things together . 17

8 Proof of subsampling theorem 18
8.1 Proof of Concentration Lemma . 19
8.2 Proof of Structure Lemma . 23

A Edge distribution of subsample of the third power 27

B Details on random geometric graphs 5 29

C Subsampling edges 31

D Deviation bounds 33

1 Introduction

In this paper we consider the following seemingly unrelated questions:

1. Is the M C problem hard on random geometric graphs of the type considered by Feige and
Schechtman [FS02]?

2. Is the value of a mathematical relaxation for a constraint-satisfaction problem (CSP) preserved when
one passes from an instance P to a random induced sub-formula of P?

It turns out that (in a sense made precise below) the answer to the first question is “no” and in fact this is
intimately related to the second question. The answer to the second question is much more subtle, and, in
contrast to the case of the objective value1 of the CSP, the answer strongly depends on the type of relaxation
and CSP.

1.1 M C on the sphere

M C— the problem of finding a cut maximizing the number of cut edges— is a widely studied
optimization problem, important both in its own right, and as a testbed for techniques in algorithms and
hardness of approximation. The best approximation algorithm for M C known today is the semi-definite
program GW SDP of Goemans and Williamson [GW94], which is optimal in the worst-case under the
unique games conjecture [KKMO04, MOO05]. GW SDP is a special case of the BasicSDP algorithm for
CSPs considered by Raghavendra [Rag08], who showed that the latter algorithm always has an optimal
approximation factor in the worst-case under the unique games conjecture.

In particular GW SDP gives a value of at most 1 −Ω(ε2) when given as input a graph whose maximum
cut cuts 1−ε fraction of the edges.2 In this work we study the average-case complexity of M C— namely
whether one can do better on natural distributions over the instances. Since random graphs are expanders
and so obviously have a maximum cut value close to 1/2 (and moreover this fact can be efficiently certified
using the second eigenvalue), one needs to consider other distributions over the inputs. We consider random
geometric graphs, that in light of known results, arguably constitute the most natural distribution of M C
instances that is not obviously easy.

Random geometric graphs. A random geometric graph is obtained by taking the vertices as random
unit vectors in �d, and connecting two vertices u, v ∈ �d based on their distance ‖u − v‖2. We consider
the distribution Gn,d,γ, where the vertices are n random unit vectors in �d, and we connect two vectors
if ‖u − v‖2 > 2

√
1 − γ. By construction, GW SDP will have value 1 − γ on these graphs, but, as shown

by [FS02], as long as n is not too small these graphs will have with high probability a maximum cut value
of 1 − c

√
γ for some absolute constant c. Moreover, as we observe here, for a suitable choice of n, these

graphs will also be hard instances for the Sherali-Adams [SA90] linear programming hierarchies; these are
generally incomparable with GW SDP and have been shown to solve M C on dense graphs [dlVKM07].
Nevertheless, we show here that these graphs can be certified to have small max cut in polynomial time. (A
certification algorithm that the max-cut of a random graph from a distribution is at most v is an algorithm
whose output always upper bounds the max-cut, and with high probability the output is at most v.)

1A k-CSP is a collection P of functions mapping n variables from some finite alphabet to {0, 1}, such that every P ∈ P depends on
at most k variables. We define the objective value of a CSP to be the maximum of 1

|P|

∑
P∈P P(x), taken over all possible assignments

x to the variables.
2As a relaxation for a maximization problem, the value of GW SDP is always at least as large as the integral objective value.

Hence the fact that the relaxation outputs some value v for an instance G is a certification that the maximum cut of G is at most v.

1

Informal Theorem 1 (M C on random geometric graphs, see Theorem 5.5). There is a polynomial-time
algorithm that certifies that a random graph G from Gn,d,γ satisfies M C(G) 6 1 − Ω(

√
γ), for every

γ ∈ (0, 1), d ∈ � and n > C(γ)/µ(γ, d), where M C(G) denotes the fraction of edges cut by the maximum
cut in G, C(γ) is some constant depending only on γ, and µ(γ, d) denotes the normalized measure in the unit
sphere of the ball of radius

√
2γ around some unit vector.

By a simple calculation one can show that the probability that two random unit vectors u, v in �d will
satisfy ‖u− v‖2 > 2

√
1 − γ is exactly µ(γ, d), implying that if n � 1/µ(γ, d) the graph Gn,d,γ will have average

degree� 1 (and hence has a trivial large max cut). Thus the value of n that Theorem 1 applies to is at most a
constant factor larger than the minimum possible. The algorithm A of Theorem 1 is simply a tightening of
the relaxation GW SDP obtained by adding the so-called “triangle inequalities” to that program.

1.2 Subsampling mathematical relaxations

The other question we consider is whether the value of mathematical relaxations such as linear and semi-
definite programming is preserved under subsampling. That is, given a CSP instance φ on n variables, we
consider the instance φ′ obtained by choosing at random S ⊆ [n] of some specified size, and keeping only the
constraints involving only variables in S . We ask in what cases the value of the relaxation of φ′ is close to the
value of φ.

This question is a variant of property testing [Ron00, Rub06] that we believe is interesting in its own
right. It also has algorithmic applications. Subsampling gives a fast way to “sketch” a CSP in a way that
preserves the the objective value but using a much smaller instance size. But since we generally cannot
compute this objective value in the worst case, we’d want to make sure that if φ was an “easy instance” for
our algorithm, then φ′ will be such an instance as well. A subsampling theorem for mathematical relaxations
guarantees this property.

Subsampling for the objective value of constraint satisfaction problem (namely the fraction of satisfied
constraints) was studied before by Goldreich, Goldwasser and Ron [GGR98] who gave a subsampling
theorem for M C, and by Alon, de la Vega, Kannan and Karpinski [AdlVKK03] who gave a subsampling
theorem for general CSPs. But, to our knowledge, subsampling for mathematical relaxations was not studied
before. As we show, unlike the case of the objective value, subsampling sometimes fails for the value of
relaxations, and this depends on the particular relaxation and CSP.

Another, more minor difference between prior works and ours is that while prior works focused on the
dense case, considering k-CSPs with Ω(nk) constraints, we consider general, possibly non dense, CSPs, and
wish to optimize the trade-off between the sample size and density. We say that a 2-CSP is ∆-dense if every
variable appears in at least ∆ constraints, and use a suitable generalization of this notion to k-CSPs (see
Section 4). We show a subsampling theorem for the objective value of ∆-dense CSPs with the optimal sample
of size O(n/∆). Namely, we show that the value of the induced instanced is equal to the value of the original
instance up to 1 ± ε multiplicative factor, where O notation in the sample size hides polynomial factors in
1/ε. The only prior work to consider this trade-off was by Feige and Schechtman [FS02], who gave such a
result for M C with O(n log n/∆) sample size.

Our results for subsampling mathematical relaxations of CSPs are the following (see Section 4.1 and 7 for
formal statements). In all cases we consider a ∆-dense CSP P and a subformula of P′ induced on a random
subset of poly(1/ε)(n/∆) variables, and we let Π(P) be the value of the relaxation Π on P.3

3For the positive results, our sample size is as small as possible; the negative results hold also for much larger sample size and in
particular show that one cannot get a constant size subset even if ∆ = Ω(n), see Section 6.

2

We start by showing that subsampling holds for BasicSDP and BasicLP, where BasicSDP is the semi-
definite program considered by Raghavendra [Rag08] and BasicLP is its linear programming analog.4

Informal Theorem 2 (Subsampling for BasicSDP and BasicLP, see Section 4.1). In the notation above, for
any CSP P and for Π that is either BasicSDP or BasicLP,

Π(P) − ε 6 Π(P′) 6 Π(P) + ε

We then show that for stronger SDPs, we still have weak subsampling if the CSP is a unique game.

Informal Theorem 3 (Subsampling for unique games, see Theorem 7.2). In the notation above, if P is a
unique game, then for every k ∈ �, letting γ = 1 − BasicSDPk(P),

1 − γ − ε 6 BasicSDPk(P′) 6 1 − γ/9 + ε

where BasicSDPk denotes BasicSDP augmented with k rounds of the Lasserre hierarchy.

Theorem 3 is the main technical contribution of this paper, and also the one used to obtain our algorithm
for M C on random geometric graphs. We also have negative results that complement our positive results
and show that, in contrast to the case of the objective value, subsampling sometimes fails for mathematical
relaxations.

Informal Theorem 4 (Negative results for subsampling, see Theorems 6.1 and 6.2). There is a (non
unique) CSP P and absolute constant δ > 0 for which BasicSDPO(1)(P) 6 1 − δ but with high probability
BasicSDP√n(P′) > 1−o(1). There is a unique CSP P and absolute constant δ > 0 for which BasicLP3(P) 6
1− δ but with high probability BasicLPω(1)(P) > 1− o(1), where BasicLPk denotes BasicLP augmented with
k rounds of the Sherali-Adams hierarchy, and o(1) (resp. ω(1)) denotes a function that tends to 0 (resp. ∞)
with n.

See Figure 1 for an overview of our positive and negative results on subsampling mathematical relaxations.
As one can see, we cover most of the cases, with the most interesting (in our opinion) open question is
whether strong semidefinite programs for unique CSPs such as M C actually have strong subsampling,
in the sense that the value of the program on a subsample approximates the value on the original instance
with arbitrary accuracy. We suspect that the answer is “no”, though have no proof of that.

1.3 Subsampling SDPs and average-case complexity.

As mentioned above, we use Theorem 3 (weak subsampling theorem for strong SDPs on unique CSPs)
to show Theorem 1— the M C algorithm for random geometric graphs. Theorem 1 is obtained from
our subsampling theorem as follows: we first show that BasicSDP3(Gd,γ) 6 1 −Ω(

√
γ) where BasicSDP3

denotes the BasicSDP program augmented with the triangle inequalities, and Gd,γ is the graph on the
continuous d-dimensional sphere where we connect two unit vectors u, v if ‖u− v‖2 > 2

√
1 − γ. (Equivalently,

one can think of Gd,γ as a random graph from Gn,d,γ where d, γ are fixed and n tends to infinity.) We show
this by observing that the edges of G can be partitioned into essentially disjoint union of odd cycles of length
O(1/

√
γ), and noting that triangle inequalities can capture the fact that one cannot cut all the edges of an odd

cycle. Since random geometric graphs are simply subsamples of Gd,γ, our subsampling theorem implies that
BasicSDP3 will have value in 1 − Θ(

√
γ) for these graphs.

4We actually use the “smoothed” version of Raghavendra’s SDP considered in [RS09, Ste10]— see Section 4.1. The two
programs are closely related, and [Rag08]’s result holds for the smoothed version as well.

3

Basic LPX
Basic SDPX

Sherali Adams LP×

Lasserre SDPX

Integer Progam / Objective Value X[AdlVKK03]

non-unique: ×

unique: weak subsample

Figure 1: Overview of subsampling results. Xdenotes a subsampling theorem, while × denotes that subsampling fails.

Arrows point from weaker to tighter relaxations.

This algorithm is an instance of a general recipe for using our subsampling theorem for average-case
algorithms. Many natural distributions can be thought of as random subsamples of some instance (or family of
instances) φ (e.g., random graphs are subsamples of a random dense graph, random 3SAT are subsamples of
a random dense formula). In such cases, if one can give a relaxation that gives a tight value on φ (perhaps by
exploiting its density) and the relaxation admits subsampling, then it follows that the relaxation succeeds on
the distribution of subsamples as well. In our case, even though sufficiently many rounds on Sherali-Adams
hierarchy give a tight value on Gd,γ (since, considering γ as constant, it is dense), we cannot use those directly
as they do not admit subsampling. Similarly, even though BasicSDP admits subsampling, it does not yield a
tight value on dense 3SAT formulas, which is the reason our results do not refute Feige’s hypothesis [Fei02]
on the hardness of certifying that random 3SAT formulas are unsatisfiable.

We note that subsampling theorems have been used before for approximation algorithms for CSPs, but
in a different way. Prior works used subsampling of the objective value to show worst-case approximation
algorithms for dense graphs, by showing that one can first subsample to constant size and then solve the
problem using brute force on the sample [AdlVKK03] (or use that argument to show that linear programming
hierarchies will succeed on the original instance [dlVKM07]). In contrast we use subsampling of the
relaxation value to give average-case algorithms on some specific distributions of (possibly sparse) graphs.
Our result is also one of the few examples where higher order SDPs can succeed in an algorithmic task in
which BasicSDP fails. As mentioned above, if the unique games conjecture is true, then BasicSDP is an
optimal worst-case approximation algorithm for CSPs, though of course it can be worse than other efficient
algorithms on some (distributions of) inputs.

1.4 Related work

As mentioned above, there has been many works on estimating graph parameters from random small induced
subgraphs of dense graphs. Goldreich, Goldwasser and Ron [GGR98] show that the the Max-Cut value of a
dense graph (degree Ω(n)) is preserved by subsampling. (In this and other results, the constants depend on
the quality of estimation.) Feige and Schechtman [FS02] showed that the result holds generally for ∆-dense
graphs so long as the degree ∆ > Ω(log n) and the subgraph is of size at least Ω(n log n/∆). (As a corollary of
our results, we slightly strengthen [FS02]’s bounds to hold for any ∆ > Ω(1) and subgraph size larger than
Ω(n/∆).) Alon et al [AdlVKK03] generalize [GGR98] for k-CSP’s and improve their quantitative estimates.
See also [RV07] for further quantitative improvements in the case of k = 2.

There has also been much work on matrix and graph sparsification by means other than uniform sampling,

4

see for instance [ST04, AHK06, AM07, SS08, BSS09]. Indeed, spectral sparsifiers are stronger than the
notion we consider, in the sense that passing to a spectral sparsifier will preserve the SDP value for, say, M
C. Algorithmically though, if one only wants to preserve the SDP value, there are some advantages to
subsampling, as it reduces not just the number of edges but also the number of vertices, hence potentially
yielding sublinear algorithms, and can also be carried out very efficiently by just random sampling, reducing
to a subgraph of constant degree. In contrast constant degree spectral sparsification [BSS09] cannot be
achieved by sampling vertices (or even edges for that matter) uniformly at random, even for regular graphs.

2 Overview of proofs

In this section we give a high level overview of our proofs, focusing on our main result— Theorem 3 showing
a weak subsampling theorem for strong semidefinite programs for unique games. A kCSP P on an alphabet
[q] is a collection of local functions (called “constraints”) from [q]n → [0, 1], where for x ∈ [q]n we denote
P(x) = 1

|P|

∑
P∈P P(x). If U is a set of variables, then P[U] denotes the restriction of P to those constraints that

depend on variables in U. We’ll let P′ denote P[U] where U is a random subset of size set to an appropriate
parameter (that we ignore in this overview).

2.1 Subsampling for k-CSPs and BasicSDP

Alon, de la Vega, Kannan and Karpinski [AdlVKK03] proved a subsampling theorem for k-CSP. As a first
step, we extend their results to hold with a better dependency between the sample size and density, and
to hold for constraints that can output a real number, say in [0, 1], rather than just a Boolean value. The
latter extension is trivial, but the former (which we need for our M C application) requires some work,
adapting and refining techniques of [GGR98, FS02, dlVKM07]. Our subsampling theorem for (generalized)
k-CSPs is stated in Section 4 and proven in Section 8.

Subsampling for BasicSDP. BasicSDP is the semi-definite program for k-CSPs considered by Raghaven-
dra [Rag08], who showed that it gives an optimal approximation ratio in the worst-case under the unique
games conjecture. For a given kCSP P over alphabet [q], this program assigns a vector vi,a for every variable
xi and alphabet symbol a ∈ [q] of P. It also assigns qk numbers µP,1k , . . . , µP,qk for every constraint P of P. It
makes the following consistency requirement on {vi,a} and {µP,x}— the inner product of vi,a and v j,b should
match the probability of the event “xi = a AND x j = b” in any local distribution µP involving both variables
xi and x j (this can be captured by linear and semi-definite conditions). The value of the CSP is simply the
expectation of P(x) over a random constraint P and a random partial assignment x chosen from µP. (To avoid
the potential issue of the SDP being extremely sensitive to few of the constraints, we follow [RS09, Ste10] in
allowing a bit of slackness in the consistency constraints on µP.)

Our subsampling theorem for BasicSDP, proven in Section 4.1, follows from the general subsampling for
k-CSPs. The idea is to combine two observations: (1) because the assignment to the vectors {vi,a} determines
the best choice for the local distribution, it is possible to write BasicSDP as a program that has no constraints
and needs to maximize a sum of local functions over these vectors, (2) one can use dimension reduction to
assume that the vectors have constant dimension with little loss of accuracy [RS09]. Thus by discretizing this
constant dimensional space, we can think of BasicSDP as itself a CSP over some constant sized alphabet,
and apply our k-CSP subsampling theorem to this CSP. A similar (even simpler) reasoning applies to the
linear programming variant BasicLP, and also to quadratic programs, in particular implying a variant of
property testing for positive semi-definiteness, see Section 4.

5

2.2 Weak subsampling for strong SDPs

We now give a high level overview of the proof of Theorem 3. Because stronger SDPs such as those from the
Lasserre hierarchy actually involve constraints including several vectors, they cannot be expressed as a CSP
in the same way as BasicSDP. Indeed, we have negative results showing that subsampling can fail for these
SDPs (see Sections 2.3 and 6).

The result actually does not depend on the particular properties of the Lasserre hierarchy, and holds for a
very general class of strong SDPs. We start by formalizing this class. Any strong SDP can be thought of as
the program BasicSDP augmented with the constraint that the positive semi-definite matrix X of the inner
products of all these vectors is in some convex setM. But one needs the setM to satisfy some “niceness
conditions” in order for it to make sense to apply the program on a subsampled CSP. The niceness conditions
we consider are rather mild, and require that solutions remain valid under renaming and identifying of vertices
(see Section 7). In particular they apply to any SDP obtained by adding a number of Lasserre rounds to
BasicSDP.

If Π is any strong SDP, P is a CSP, and P′ is a subsample of P, then it’s not hard to show that with high
probability Π(P′) > Π(P) − ε, since this only needs the argument that the value of one solution (the optimal
one for P) will be approximately preserved. The challenging task is to show that Π(P′) is not much larger
than Π(P), and because subsampling does not always hold for SDPs, we know that the proof for subsampling
of k-CSPs does not generalize to this case.

The crucial notion we use is of that of a proxy CSP. Let G and H be two unique games on the same
alphabet and number of variables, we say thatH is proxy for G (with respect to the program Π), if for every
assignment X (even possibly outsideM) to the vectors of Π, 1−Π(G)[X] 6 1−Π(H)[X]/10, where Π(P)[X]
denotes the value of the program Π on the CSP P with assignment X to the vectors of Π.5 That is, one can
think ofH as pointwise dominating G with respect to the program Π. We then show that this domination
condition is somewhat preserved under subsampling, at least for the optimal solutions. That is, we show that
with high probability 1 −Π(G′) 6 1 −Π(H ′)/10 + ε, where G′ andH ′ are the subsampled versions of G and
H ′. The idea here is to use our subsampling theorem for SDP looking at the SDP maxX Π(H)[X]/10 −Π(G).
This is a basic SDP since it places no constraints on X, and so since we know its optimum is at most 0, this
should be approximately preserved under subsampling.

The above discussion shows that to prove Theorem 3 it suffices to find some unique gameH such that
(*)H is a proxy for G and (**) with high probability 1 −Π(H ′) 6 1 −Π(G) + ε. This is what we do. The
proxy gameH is simply the game G3 obtained by taking all length-3 paths in the constraint graph of G and
composing the corresponding permutations. Condition (*) is not that hard to show. Intuitively, an assignment
that satisfies 1 − γ fraction of the constraints of G should satisfy about 1 − 3γ fraction of the constraints ofH ,
(since each one is just three constraints of G) and this reasoning carries over to SDP assignments as well.

Condition (**) looks suspiciously close to what we’re trying to prove in the first place (preservation
of value under subsampling), but note the asymmetry— we need to show that a subsample ofH will have
roughly the same value as the original graph G. It turns out this will actually help us. What we need to show
is a way to decode an assignment for the SDP of the subsampled gameH ′ into an assignment of roughly the
same value for the SDP of the original game G. For simplicity, assume that the alphabet of the CSP is {0, 1}
in which case the vector assignment is just one vector per variable.6 Suppose that G has n variables, each

5The actual domination condition we use will restrict the possible vector assignments based on the norms of the vectors, but
because we restrict the vectors to a product set, it does not make a difference in our arguments.

6Although in the phrasing above it seems that one would need two vectors per variable for alphabet of size 2, it is known how to
transform the SDP into an equivalent program needing only one vector per variable in this case.

6

participating in ∆ constraints, and we subsample to a set S of size n′ = O(n/∆) variables.7 We are given a
vector assignment {v′i′}i′∈S for each of the n′ variables in the sample that gives value τ for Π(H ′), and need
to “decode” it into an assignment {vi}i∈[n] that gives value roughly τ for Π(G). We will use a randomized
decoding, assigning for every variable i of G the vector vi′ where i′ is a random neighbor of i in G that is
contained in the sample S .8 Let (i′, i, j, j′) be the length-3 path corresponding to a random constraint ofH ′

that survived the subsampling. That is, i′, j′ ∈ S . If the subsampled graph is (approximately) regular, we can
choose (i′, i, j, j′) in the following way: first let (i, j) be variables corresponding to a random constraint in G,
then take i′ to be a random neighbor of i that is also in S , and take j′ to be a random neighbor of j that is
also in S . We know that on average the vectors v′i′ and v′j′ contribute τ to the value of Π(H ′). But then on
expectation the contribution to Π(G) of the decoded vectors vi and v j is also τ, since vi is exactly obtained by
taking v′i′ for a random neighbor i′ ∈ S of i, and v j is obtained by taking v′j′ for a random neighbor j′ ∈ S of j.
This concludes the proof. We remark that this reasoning is somewhat reminiscent of Dinur’s analysis of her
gap amplification lemma for PCP’s [Din07].

2.3 Negative results for subsampling

We now briefly sketch why, unlike the case for kCSPs, subsampling sometimes fails for strong semidefinite
and linear programs—- see Section 6 for more details. The idea is simple: many integrality gaps examples, for
both LP hierarchy and SDP’s, are actually obtained from random instances. Examples include Schoenebeck’s
result [Sch08] showing random 3SAT is an integrality gap example for the Lasserre SDP hierarchy, and
results showing that random graphs (and more generally good expanders) are integrality gap examples for
linear programming hierarchies for M C [dlVKM07, CMM09]. Such random instances can be thought
of as subsampling of sufficiently dense instance. But sufficiently strong SDP or LP programs will succeed in
certifying that a dense instance has small value. Thus these integrality gaps give example of a CSP P where
Π(P) is small, where Π is a sufficiently strong linear or semidefinite program, but Π(P′) is close to 1 for a
random induced sub-instance P′ of P. Note that indeed for unique games random graphs are actually easy
for semi-definite programs [AKK+08], explaining perhaps why subsampling for unique games is possible for
semi-definite programs but not for linear programs.

3 Preliminaries

Let G be a ∆-regular graph with vertex set V = [n] and edge set E (no parallel edges or self-loops). We give
weight 2/∆n to each edge of G so that every vertex of G has (weighted) degree 2/n and G has total edge weight
1. We say a graph is normalized if it has total edge weight 1. (We choose this normalization, because we
will often think of a graph as a probability distribution over unordered vertex pairs.) For a graph G as above
and a vertex subset U ⊆ V , let G[U] denote the induced subgraph on U. To preserve our normalization, we
scale the weights of the edges of G[U] such that the total edge weight in G[U] remains 1. We denote by Vδ a
random subset of a δ fraction of the vertices in V , and hence G[Vδ] denotes a random induced subgraph of G
of size δ|V |. With our normalization, the typical weight of an edge in G[Vδ] is 2/δ2∆n.

7Note that, ignoring constant factors, G has roughly n∆ constraints, G′ has n/∆ constraints,H has n∆3 constraints, andH ′ has
n∆ constraints— the latter fact is some indication why one may hope to decode an assignment toH ′ into an assignment to G.

8Our “niceness conditions” will ensure that if the inner-product matrix of the original assignment was in M then the same
will hold for the decoded assignment. Also we will flip the vector if the corresponding permutation on {0, 1} was a 7→ −a, but in
the discussion below as assume that all permutations involved are the identity— this simplifies notation and is immaterial to this
argument.

7

Max k-CSPs. A k-CSP instance P is a set of predicates (or pay-off functions) of the form P : [q]n → �,

where every P = P(xi1 , xi2 , . . . , xik) is a k-junta, meaning it depends only on k of the n variables in x. We’ll
think of Var(P) = (i1, . . . , ik) as an ordered set and denote the r-th variable by Varr(P) = ir. Without loss of
generality we may assume that in each predicate P ∈ P, all k variables are distinct. The norm of a pay-off

function is defined as |P| def
= maxx∈[q]n |P(x)| , and we put |P| =

∑
P∈P |P|.

We think of P itself as a mapping P : [q]n → � defined as P(x) def
= 1
|P|

∑
P∈P P(x) . The optimum is

denoted opt(P) = maxx∈[q]n P(x).We will typically assume that |P| 6 1 for all P ∈ P in which case opt(P) 6 1.
For a subset U ⊆ [n], with |U | = δn, we let PU denote the k-CSP PU = {δ−kP : P ∈ P,Var(P) ⊆ U} . In this
case, we define PU(x) = 1

|P|

∑
P∈PU P(x) .

Unique Games. A unique game G is given by a constraint graph G = (V, E), an alphabet [R] and constraints
πv←u for each edge e = (u, v) ∈ E. An assignment x ∈ [R]n satisfies the edge e if πv←u(xu) = xv. It will be
convenient for us to define unique games as a minimization problem in which the objective is to minimize the
number of unsatisfied constraints. Note that throughout the introduction U G was a maximization
problem, but these two views are equivalent. As a minimization problem unique game has the following SDP
relaxation (which is closely related to BasicSDP program mentioned before):

sdp(G) def
= min �

(u,v)∈E
�

a∈[R]
‖ua − vπv←u(a)‖

2 (1)

subject to the constraints that
∑

a∈[R] ‖ua‖
2 = 1 for every u ∈ V and 〈ua, ub〉 = 0 for all u ∈ V and a , b.

An SDP solution is a positive semidefinite (V × [R]) × (V × [R]) matrix written as (Xua,vb)u,v∈V,a,b∈[R] so that
Xua,vb = 〈ua, vb〉. We will denote byM2 the set of such matrices that satisfy the three constraints above. We
will write sdp(G)[X] to denote the value of sdp(G) under the particular solution X. We denote by G[U] the
unique game G restricted to the constraint graph G[U].

4 Subsampling theorem for Max-kCSPs

We will now state our subsampling theorem for k-CSPs and, as direct application, obtain subsampling
theorems for basic semidefinite relaxations of k-CSPs. To state the theorem we need a notion of density of a
k-CSP. For 2-CSPs we will use the standard notion of density in a graph. Specifically, we will say a 2-CSP is
∆-dense if every vertex has Θ(∆) neighbors. For k-CSPs when k > 2 a natural generalization is to demand
that after assigning k − 1 out of k coordinates in each constraint, there are still Θ(∆) constraints remaining. In
this case we say that the k-CSP is ∆-dense.

Theorem 4.1. Let ε > 0,∆ > 1. Let P be a ∆-dense k-CSP in n variables over an alphabet of size q so
that |P| 6 1 for all P ∈ P. Put δ > ε−C log(q)/∆ for some absolute constant C. Suppose U ⊆ [n] is chosen
uniformly at random so that |U | = δn. Then,∣∣∣� opt(PU) − opt(P)

∣∣∣ 6 ε . (2)

The formal density condition and the proof of this theorem are given in Section 8. We instead proceed to
discuss the applications of this theorem.

8

4.1 Subsampling basic semidefinite programs

The above subsampling theorem for k-CSPs can actually be used to give a general subsampling theorem for
basic semidefinite programs. A semidefinite program is called basic if it can be written as a 2-CSP Q in n
variables (over infinite alphabet) of the following form:

opt(Q) = max �
i, j∈[n]

Pi j({vi,a}a∈[R], {v j,b}b∈[R]) (3)

where Q = {Pi j}i, j∈[n] so that each Pi j is a continuous function satisfying a Lipschitz condition in the inner
products 〈vi,a, v j,b〉. Here the maximum is taken over a bundle of R vectors {vi,a} per variable i ∈ [n]. We
further require that each constraint on the vectors involves only vectors from the same bundle {vi,a}a∈[R] (such
as ‖vi,a‖

2 6 1 or
∑

a∈[R] ‖vi,a‖
2 = 1). We also assume that |Pi j| 6 1.

It is crucial here that the maximization is over a product space of n coordinates. Each coordinate
corresponds to one vector bundle {vi,a}a∈[R]. Still we cannot yet apply our subsampling theorem, because
each coordinate is maximized over a continuous space, i.e., (Bd

2)R. However, using dimension reduction
as in [RS09], the dimension of the vectors can be assumed to be poly(1/ε) without changing the objective
value by more than an ε/2. Once the dimension is small we can discretize the space by an ε′-net (for small
enough ε′) changing the inner products again only by ε/2. Hence we have the following lemma.

Lemma 4.2. Let Q be a ∆-dense 2-CSP of the form (3). Then there is a 2-CSP Q′ with alphabet size at most
2poly(1/ε) such that |opt(Q) − opt(Q′)| 6 ε.

This shows that we do have a strong subsampling theorem for any basic semidefinite program:

Corollary 4.3. Let Q denote a basic semidefinite program. Assume Q is ∆-dense and let ε > 0. Then,∣∣∣� opt(QU) − opt(Q)
∣∣∣ 6 ε , (4)

where U ⊆ [n] is a randomly chosen set of size ε−Cn/∆ for sufficiently large C > 0.

Proof. After applying Lemma 4.2, we can use Theorem 4.1 to conclude the claim. Note that the alphabet
size of 2poly(1/ε) translates into a factor poly(1/ε) in sample size. �

We will next demonstrate that both BasicSDP for k-CSPs and the U G SDP are in fact basic
relaxation of the above form and therefore have a strong subsampling theorem.

For the U G SDP this is immediate after changing it from a minimization problem to a
maximization problem. (We can simply multiply the objective by −1.) Note that the SDP relaxation for
unique games corresponds to a dense 2-CSP if this is the case for the constraint graph. We remark that the
same is true for the difference of two dense U G relaxations and this is the case that will be used in
the proof of our main theorem later (Section 7).

More generally, the same can be done for the BasicSDP relaxation of any k-CSP. Raghavendra [Rag08]
defined BasicSDP for a k-CSP P = {P1, . . . , Pm} with |Pt| 6 1 over the alphabet [R] as the program

max �
t∈[m]

�
x∼µt

Pt(x)

subject to the constraint that �rx∼µt {xi = a, x j = b} = 〈vi,a, v j,b〉 for all t ∈ [m], i, j ∈ Var(Pt), and a, b ∈ [R].
The maximum is taken over all ensembles {vi,a} of unit vectors and Rk tuples of variables µt, each of which
is required to be a probability distribution on Var(Pt). Let violate(t) denote the sum of |�rx∼µt {xi = a, x j =

b} − 〈vi,a, v j,b〉| over all i, j ∈ Var(Pt) and a, b ∈ R. While the constraints of [Rag08] is that violate(t) = 0 for

9

all t ∈ [m], we follow [RS09, Ste10] that replaced this with the constraint �t∈[m] violate(t) 6 ε and showed the
two programs are approximately equivalent up to poly(ε) perturbation of the instance. As shown in [Ste10],
because there are only a few (R2k2) constraints per pay-off function Pt, we can introduce this penalty function
into the objective function, adding the term −�t∈[m] violate(t)/ε into the expression we maximize. Hence, for
our purposes we may assume that BasicSDP has the form in (3) so that our subsampling theorem applies. We
stress that this approach can only work since there are a few constraints for each pay-off functions of P. The
approach breaks down in the presence of constraints that involve arbitrary combinations of variables, such as
`2

2 triangle inequalities. In this case it is no longer possible to assign a meaningful penalty to each constraint.
In the case of BasicLP similar arguments apply. BasicLP is the same as BasicSDP except that we don’t

require the probability distributions to be realized as inner products of vectors. Two distributions µP and µP′

are however required to be consistent whenever they share a variable. These constraints can be written in the
objective function and this results in a 2-CSP to which our subsampling theorem applies.

Application to property testing positive definite matrices. Our subsampling theorem also applies to
quadratic forms and this can be very useful. We illustrate one application in the context of property testing.
Specifically, we will get a property testing algorithm for the class of positive semidefinite matrices. Let us say
that a matrix B is ε-far from positive semidefinite definite if there exists a vector x with ‖x‖∞ 6 1 such that
−ε > 〈x, Bx〉 =

∑
i j bi jxix j. Recall that B is positive semidefinite if and only if 〈x, Bx〉 > 0 for all x. Notice

we could have defined distance in terms of the operator norm which is to say that there exists an x with
‖x‖2 6 1 such that 〈x, Bx〉 6 −ε. However, since every vector x of Euclidean norm 1 also satisfies ‖x‖∞ 6 1,
this would only be a stronger notion of “ε-far” thus applying to fewer matrices. Note that the expression
maxx:‖x‖∞61〈x, Bx〉 is a 2-CSP to which we can apply our subsampling theorem (after discretization of the
domain.) This lets us distinguish between matrices that are positive semidefinite and those that are ε-far from
a small subsample. Formally, we get the following corollary. The simple proof is omitted.

Corollary 4.4. Let B by a matrix with ‖B‖∞ 6 D/n2. Then there is a property testing algorithm A such
that: If B is ε-far from being positive semidefinite, then A rejects B with probability greater than 2/3. If
B is positive semidefinite, then A rejects B with probability less than 1/3. Furthermore, A reads only
poly(D, ε−1) many entries of B and runs in time poly(D, ε−1)

5 M C in random geometric graphs

In this section we discuss the application of our theorem to solving M C in random geometric
graphs. Let us first recall some basic facts. The value of the maximum cut of a graph G is given by
opt(G) := maxx∈{−1,1}n〈x, 1/4L(G)x〉. Here L(G) denotes the combinatorial Laplacian of G. The Goemans-
Williamson [GW94] relaxation for M C is sdp(G) = max

{
1/4L(G) • X | X � 0,∀i : Xii = 1

}
. Note that

opt(G) and sdp(G) range between 0 and 1, the total edge weight of a normalized graph. We will consider
relaxations obtained by adding valid constraints to the above program. A specific set of constraints we’ll be
interested in are the `2

2 triangle inequalities which can be expressed by adding the constraint Xi j +X jk−Xik 6 1
and Xi j + X jk + Xik > −1 . for every i, j, k ∈ V. The relaxation including triangle inequalities will be denoted
sdp3(G).

Sphere graphs. We denote by Gγ the graph on the vertex set V = �d−1 with edge set E = {(u, v) ∈
V × V | 1

4‖u − v‖
2 > 1 − γ} . The integral value of Gγ, denoted opt(Gγ), is defined as the maximum of

µ(A, Ā) def
= µ2({(x, y) ∈ E : x ∈ A, y < A}) taken over all measurable subsets A ⊆ �d−1 Here, µ denotes the

10

uniform surface measure of the sphere �d−1 and µ2 = µ × µ. A theorem of Feige and Schechtman shows that
the maximum is attained for any hemisphere.

Theorem 5.1 (Feige-Schechtman [FS02]). Fix γ ∈ [0, 1] and consider the graph Gγ. Then, the maximum of
µ(A, Ā) over all measurable subsets A ⊆ �d−1 is attained for any hemisphere H ⊆ �d−1.

Recall, if A is a hemisphere, µ(A, Ā) = 1−Θ(
√
γ). Hence opt(Gγ) = 1−Θ(

√
γ). At this point we mention

that the SDP relaxation for M C is well-defined on infinite graphs though we omit the formal details.
In this case it is easiest to think of E as a distribution over edges so that the SDP maximizes the quantity
�(u,v)∼E

1
4‖ f (u) − f (v)‖2 over all embeddings f : V → B satisfying the usual additional constraints. Here B

can be taken to be the unit ball of the infinite dimensional Euclidean space.
The sphere graph itself can then be interpreted as an SDP solution, hence the following fact.

Fact 5.2 (Basic SDP). sdp(Gγ) > 1 − γ.

Proof. The graph itself gives an embedding (the identity embedding) such that for each edge (u, v) ∈ E,
1
4‖u − v‖

2 > 1 − γ. Since the SDP averages this quantity over all edges in the graph, the claim follows. �

We will show next that triangle inequalities change the value of the SDP from 1 − γ to 1 −Ω(
√
γ) thus

capturing the integral value up to constant factors in front of γ.

Lemma 5.3. sdp3(Gγ) 6 1 −Ω(
√
γ) .

This lemma was quite possibly previously known, but we will give a proof in Section B for lack of a
reference. Using standard discretization arguments all previous lemmas can be transferred to a sufficiently
dense discretization of the continuous sphere. Similarly, it is not difficult to show that sufficiently many
random points from the sphere will give a good discretization.

Lemma 5.4. Fix γ ∈ [0, 1], d ∈ �. Then, there exists an n0(d, γ) ∈ � so that if we pick V ⊆ S d−1 uniformly
at random with |V | > n0, then the induced subgraph Gγ[V] satisfies (1) opt(Gγ[V]) = 1 − Θ(

√
γ), and (2)

sdp3(Gγ[V]) = 1 − Θ(
√
γ).

The proof is given in Section B. It is worth noting that the proof of the previous lemma gives a very weak
bound on the number of vertices that we are required to subsample. In particular, it is not difficult to see that
the average degree of the graph will be n1−o(1). A priori, it could therefore be the case that the SDP value
changes when considering a subsample of the sphere with average degree log(n) or even O(1). Indeed, [FS02]
show that for some fixed γ, a random subsample of the sphere of expected degree O(log n) will satisfy most
triangle inequality constraints with high probability thus exhibiting some integrality gap for sdp3.

9 However,
our main theorem in this section implies that asymptotically sdp3 behaves like 1 −

√
γ rather than 1 − γ.

To argue this, we’d like to use our subsampling theorem for unique games. It is well known how to
express the max-cut problem on a graph G as an instance G of U G where the constraint graph is
exactly G. Since we defined unique games to be minimization problems, this corresponds to minimizing the
number of uncut edges. We therefore have that opt(G) = 1 − opt(G) and furthermore it is well known that
sdp(G) = 1 − sdp(G) for the basic SDP relaxation and also sdp3(G) = 1 − sdp3(G) where the latter refers to
an SDP relaxation for U G that includes triangle inequalities, yielding the following theorem:

9In their example the angle between two neighboring vertices is chosen to be more than 60 degrees corresponding to very large γ
to which our theorem does not apply due to the constant factor loss in γ.

11

Theorem 5.5. Fix γ ∈ [0, 1] and let ∆ > poly(1/γ). Fix d and choose n such that for n uniformly random
points V ⊆ �d−1 the induced graph Gγ[V] has expected degree ∆. Then,

sdp3(Gγ[V]) = 1 − Θ(
√
γ).

Proof. We think of Gγ[V] as a uniform vertex subsample of a random dense discretization Gγ[W] in d
dimension. Note that by Lemma 5.4 we have sdp3(Gγ[W]) = 1 − Θ(

√
γ). We can reduce Gγ[W] to a unique

game G so that sdp3(G) = Θ(
√
γ). Now Gγ[V] corresponds to the unique game G[V], since the constraint

graph of G[V] is precisely Gγ[V]. By Theorem 7.2 (subsampling theorem for U G), we know
that sdp3(G[V]) = Θ(

√
γ). Note that triangle inequalities correspond to a reasonable relaxation. But then it

follows that sdp3(Gγ[V]) = Θ(
√
γ). �

Theorem 1 is a corollary of this theorem, since sdp3 can now be used to certify that random geometric
graphs have small max-cut value.

6 Negative results for subsampling

In this section we first observe that its is impossible to obtain even a weak subsampling result for the
semidefinite programming relaxation of k-CSPs with k > 3. This results follows from Schoenebeck’s
integrality gap [Sch08]. We also argue that even in the case of 2-CSPs subsampling is impossible when the
constraints are not unique.

Second, we give a separation between semidefinite programming and linear programming by showing
that a subsampling result for linear programming is impossible even in the case of M C and U
G. Here, our results are based on the integrality gap construction of [CMM09].

6.1 No subsampling for SDP relaxations of k-CSPs with k > 3.

Theorem 6.1. There is a k-CSP P with Ω(nk) constraints in the variables [n] so that sdpO(1)(P) 6 0.51, but
with high probability sdpΩ(n)(P[U]) > 0.99 where U ⊆ [n] is a random set of size δn with δ > c/n1−1/k for
some constant c.

Proof sketch. We may take P to be a random dense instance of k-XOR. It is known that an SDP with a
constant number of rounds of Lasserre captures the integral value of the CSP. Now P[U] is a k-XOR instance
with Ω(δknk) = Cn constraints for some constant C. For large enough C , the result of [Sch08] then implies
the claim. �

6.2 No subsampling for SDP relaxations of non-unique 2-CSPs

The above result also shows that we cannot hope for a subsampling theorem for semidefinite relaxations
of non-unique 2-CSPs. Indeed, we can take a dense instance P of 3-SAT and express it as a 2-CSP P′ as
follows: Every constraint P ∈ P gets mapped to a new variable xP over the alphabet [8]. Each label represents
an assignment to the original constraint. Every two constraints sharing one variable in P contribute one
constraint P′ ∈ P′ which enforces that the assignment to the shared variable is consistent.

Subsampling variables in P′ corresponds to subsampling constraints in P. Using [Sch08], the subsample
of P will be a gap instance for the Lasserre hierarchy. Since our reduction is local, ideas of [Tul09] show that
also the subsample of P′ will be a gap instance. This rules out the possibility of a subsampling theorem for
non-unique 2-CSPs of alphabet size 8.

12

6.3 No subsampling for LP relaxations of 2-CSPs

In this section we rule out subsampling theorems for strong linear programming relaxations even in the case
of M C for which strong semidefinite relaxations do admit a subsampling theorem. Specifically, we
consider the Sherali-Adams LP relaxation for M C: lpr(G) = max

∑
(u,v)∈E xuv over (u, v) s.t. the vector

(xuv)u,v∈V lies in the Sherali-Adams relaxation of the cut polytope.
The Sherali-Adams relaxation of the cut polytope is obtained by applying r rounds of lift-and-project

operations to the base set of linear inequalities that define the metric polytope, i.e., {xi j + x jk > xik, xi j + x jk +

xik 6 2, xi j = x ji, 1 > xi j > 0}. For a formal definition see, for instance, [CMM09].
The next theorem shows that there are graphs which have Sherali-Adams value bounded away from 1

for a constant number of rounds. But after subsampling the value comes arbitrarily close to 1 even when
considering a huge number of rounds.

Theorem 6.2. For every function ε = ε(n) that tends to 0 with n, there exists a function r = r(n) that tends to
∞ with n and family of graphs {Gn} of degree D = D(n) such that

1. For every n, lp3(Gn) 6 0.8

2. If G′ is a random subgraph of G of size (n/D)1+ε(n) then �[lpr(n)(G
′)] > 1 − 1

r(n) .

where lpk(H) denotes the value of k levels of the Sherali-Adams linear program for Max-Cut on the graph H.

Proof sketch. Let Gn = Gn,p for some p 6 1
2 . It is not difficult to argue that three rounds of Sherali-Adams

have value at most 0.7 on G = Gn with high probability over Gn itself. This follows by considering triangles
in G and arguing that every edge in G occurs in the same number of triangles up to negligible deviation. But
3 rounds of Sherali-Adams have value at most 2/3 on a triangle. Hence, lp3(G) 6 2/3 + o(1).

On the other hand let δ = nε
D where D = pn is the expected degree of G. We observe that G′ = G[Vδ] is

exactly distributed like G′ = Gm,λ/m for m = (n/D)1+ε and λ = mε. Using arguments similar to [ABLT06],
one can check that such graphs have girth going to infinity, and for some M ∈ ω(1), all subsets size M are
(1 + η)-sparse, where η ∈ o(1). Hence, we can follow the proof as above and use [CMM09] to argue that
G[Vδ] has Sherali-Adams value larger than 1 − o(1) for ω(1) rounds, and therefore picking r(n) sufficiently
small concludes the proof sketch. �

Remark 6.3. We remark that such expansion based arguments can be used to give similar results for
subsamples of any ∆-regular graph and in particular for subsamples of the Feige-Schechtman graph.

7 Proof of the main theorem for Unique Games

We now come to the proof of our main theorem —a weak subsampling theorem for strong SDP relaxations of
U G. Let us first formalize the notion of a “reasonable” SDP relaxation.

Definition 7.1 (Reasonable SDP relaxation for U G). Let V be a set of n vertices and letM be a
convex subset of the setM1 defined as

M1
def
=

{
X ∈ �(V×[R])×(V×[R]) | X � 0, ∀i ∈ V, a ∈ [R]. Xia,ia 6 1

}
.

For a unique game on a graph G with vertex set V , we define sdpM(G) by

sdpM(G) def
= min

X∈M
�

(u,v)∈E
�

a∈[R]
‖ua − vπv←u(a)‖

2 .

13

We say that sdpM is a reasonable relaxation for U G ifM is closed under renaming of coordinates
and permutation of labels in the sense that

∀F : V → V. ∀π1, . . . , πn : [R]→ [R]. ∀X ∈ M. (XF(i)πi(a),F(j)π j(b))i, j∈V,a,b∈[R] ∈ M .

Here, the function F is not required to be bijective, but for every u, v ∈ V, πv←u is a permutation of [R]. We
also say thatM is reasonable if it satisfies the condition above.

For an SDP to be reasonable it is only needed that any set of vectors used for one vertex of the unique
game can also be used in any other vertex, even after a permutation of the labels.

The next theorem gives a subsampling result for any reasonable relaxation of U G.

Theorem 7.2 (Main). Let ε > 0 and let G be a unique game on a ∆-regular constraint graph. Then, for
δ = ∆−1 · poly(1/ε),

1
9 sdpM(G) − ε 6 � sdpM(G[Vδ]) 6 sdpM(G) + ε ,

where sdpM is any reasonable relaxation.

The theorem is proven in the next two steps.

7.1 First step: proxy graph theorem via subsampling theorem

For our first step we’ll need a special case of our subsampling theorem for semidefinite programs. It shows
that under certain regularity conditions subsampling is possible for semidefinite programs that correspond
roughly to the SDP of a unique game on a regular graph.

Lemma 7.3. Let ε > 0 and let P be a 2-CSP over n variables of the form P(x) =
∑

i, j∈V bi jP(xi, x j) where
we interpret each variable xi as a collection of vectors xi = (vi,a)a∈[R] and each pay off function is bounded
and of the form P(xi, x j) =

∑
a,b da,b〈xi,a, x j,b〉 . Assume that each bi j 6 1/∆n and

∑n
i=1 bi j = Θ(1/n) for every

j, Then, for δ > poly(1/ε)/∆,
� opt(P[Vδ]) = opt(P) ± ε .

As shown in Section 4 this lemma can be derived easily from Theorem 4.1. We’ll proceed to state and
prove our proxy theorem.

Theorem 7.4 (Proxy Theorem). Let G,H be unique games on ∆-dense constraint graphs and suppose

sdp(G)[X] > c · sdp(H)[X] (5)

for every SDP solution X ∈ M1. Then for δ > ∆−1poly(1/ε), we have

� sdpM(G[Vδ]) > c · � sdpM(H[Vδ]) − ε .

Proof of Theorem 7.4. Consider the 2-CSP instance,

max
X∈M1

P(X) = c · sdp(H)[X] − sdp(G)[X].

Note that by our assumption
opt(P) = max

X∈M1
P(X) 6 0 .

14

Let A(G) and A(H) denote the adjacency matrices of G and H respectively. Since G is ∆-regular and H has
degree at least ∆, we know that each entry of B = cA(H) − A(G) is bounded by O(1/∆n), whereas each
row/column in B sums up to Θ(1). Hence, the matrix B satisfies the assumption of Lemma 7.3. It remains to
check that in P each pay off function is bounded. This follows from the fact that in both sdp(H) and sdp(G)
each pay-off function is of the form �a∈[R] ‖ua − vπ(v)‖

2 and this expression is bounded since each vector has
norm at most 1 so that each payoff function is bounded by O(R).

Therefore, by Lemma 7.3,

ε > � opt(P[Vδ]) = � max
X∈M1

csdp(H[Vδ])[X] − sdp(G[Vδ])[X]

> �max
X∈M

csdp(H[Vδ])[X] − sdp(G[Vδ])[X] (sinceM ⊆M1)

> �max
X∈M

csdp(H[Vδ])[X] −max
X∈M

sdp(G[Vδ])[X] .

Hence,
� sdpM(G[Vδ]) > c · � sdpM(H[Vδ]) − ε .

�

7.2 Second step: proxy graphs for unique games

In this section, we show that taking the “third power” of a unique game results in a useful proxy graph.

Definition 7.5 (Third power of a unique game). For a unique game G we define G3 to be the unique game
defined on the third graph power of the constraint graph. An edge e = (u, v) therefore corresponds to a path
(u, u′, v′, v) in G. The constraint πv←u on the edge (u, v) is defined as the composition of the three constraints
along the path in G, that is

πv←u = πv←v′ ◦ πv′←u′ ◦ πu′←u . (6)

Lemma 7.6. Let G denote a ∆-regular unique game. Then, for every SDP solution X ∈ M1,

sdp(G)[X] > 1/9 · sdp(G3)[X] .

Proof. Let X ∈ M1 and let (u, v) be an edge in G3 corresponding to a path (u, u′, v′, v) in G. Let a ∈ [R] and
put a′ = πu′←u(a), b′ = πv′←u′(a′), and b = πv←v′(b′). Note that by definition of G3, we have πv←u(a) = b.
By triangle inequalities

‖ua − vb‖ 6 ‖ua − u′a′‖ + ‖u′a′ − v
′
b′‖ + ‖v′b′ − vb‖

Squaring both sides and taking expectation over a ∈ [R], we get

�
a∈[k]
‖ua − vb‖

2 6 3 �
a∈[k]
‖ua − u′a′‖

2 + 3 �
a∈[k]
‖u′a′ − v

′
b′‖

2 + 3 �
a∈[k]
‖v′b′ − vb‖

2 .

Averaging over edges in G3, we get

�
(u,v)∈G3

�
a∈[k]
‖ua − vπv←u(a)‖

2 6 9 �
(u,v)∈E

�
a∈[k]
‖ua − vπv←u(a)‖

2 .

�

Lemma 7.7. Let G be a ∆-regular unique game on a graph G = (V, E) and let G̃ be the unique game on a
graph G̃ = (Vδ, Ẽ) defined by the edge distribution

15

– sample a random edge (i, j) from G,

– choose u and v to be random neighbors of i and j in Vδ (if i or j have no neighbor in Vδ, choose a
random vertex in Vδ),

– output (u, v) as an edge in Ẽ. The constraint on the edge (u, v) is taken to be the composition of the
constraints on (u, i), (i, j), (j, v) the same way as in Definition 7.5.

Then for δ > ∆−1poly(1/ε),
�‖G3[Vδ] − G̃‖TV 6 ε .

Here, ‖·‖TV denotes statistical distance.

Proof Sketch. If every vertex of G has the same number of neighbors in Vδ, then the two graphs G3[Vδ] and
G′ are identical. For δ > ∆−1poly(1/ε), the following event happens with probability 1 − ε: Most vertices
of G (all but an ε fraction) have up to a multiplicative (1 ± ε) error the same number of neighbors in Vδ.
Conditioned on this event, it is possible to bound ‖G3[Vδ] −G′‖TV by O(ε). Assuming this fact, the lemma
follows. The details can be found in Section A. �

Lemma 7.8. Let G be unique game on a ∆-regular constraint graph. Then for δ > ∆−1 · poly(1/ε) and for
any reasonable relaxation sdpM,

� sdpM(G3[Vδ]) > sdpM(G) − ε .

Proof. Let G̃ be as in Lemma 7.7 and let X̃ be an optimal solution for sdpM(G̃).
Let F (Vδ) denote the distribution over mappings F : V → Vδ, where for every vertex i ∈ V , we choose

F(i) to be a random neighbor of i in Vδ (and if i has no neighbor in Vδ, we choose F(i) to be a random vertex
in Vδ). For convenience, we introduce the notation N(i,Vδ) for the set of neighbors of i in Vδ (if i has no
neighbor in Vδ, we put N(i,Vδ) = Vδ). For each F ∼ F (Vδ) we define a decoded SDP solutionAF(X̃) for G.
Specifically, the entry corresponding to i, j ∈ V and labels a′, b′ ∈ [R]

1. Let F(i) = u and F(j) = v. Assigning the label a′ to i forces j to have label b′ = π j←i(a′) and hence u
and v must have labels a = πu←i(a′) and b = πv← j(b′).

2. Define
AF(X̃)ia′, jb′ := X̃ua,vb = X̃F(i)πu←i(a),F′(j)πv← j(π j←i(a)) .

SinceM is reasonable (see Definition 7.1), we haveAF(X̃) ∈ M for any mapping F : V → Vδ.
We defineAF (Vδ)(X̃) := �F∼F (Vδ)AF(X̃). SinceM is convex, we also have

AF (Vδ)(X̃) = �
F∼F (Vδ)

AF(X̃) ∈ M .

We claim that
sdp(G)[AF (Vδ)(X̃)] = sdp(G̃)[X̃] .

16

Indeed,

sdp(P)[AF (Vδ)(X̃)] = 2 �
i j∼G

�
a′∈[R]

AF (Vδ)(X̃)ia′, jπ j←i(a′)

= 2 �
i j∼G

�
a′∈[R]

�
F∼F (Vδ)

X̃F(i)πF(i)←i(a′),F′(j)πF(j)← j(π j←i(a′))

= 2 �
u′v′∼G

�
a∈[R]

�
u∈N(i,Vδ)

�
v∈N(j,Vδ)

X̃uπu←i(a′),vπv← j(π j←i(a′))

= 2 �
u′v′∼G

�
a∈[R]

�
u∈N(i,Vδ)

�
v∈N(j,Vδ)

X̃ua,vπv←u(a) (using (6))

= 2 �
uv∼G̃

�
a∈[R]

X̃ua,vπv←u(a)

= sdp(G̃)[X̃] . (7)

It follows that

sdpM(G) 6 sdpM(G)[AF (Vδ)(X̃)] (usingAF (Vδ)(X̃) ∈ M)

= sdpM(G̃)[X̃] (using (7))

= sdpM(G′) . (8)

We can now finish the proof of the lemma,

� sdpM(G3[Vδ]) > � sdpM(G̃) − O(1)�‖G3[Vδ] −G′‖TV

> sdpM(G) − ε (using (8) and Lemma 7.7) .

�

7.3 Putting things together

By combining the previous two steps we can prove Theorem 7.2.

Proof of Theorem 7.2. We need to show that

1
9 sdpM(G) − O(ε) 6 � sdpM(G[Vδ]) 6 sdpM(G) .

The upper bound on � sdpM(G[Vδ]) is easy to show. We consider an optimal solution X ∈ M for G. Note
that the value of X is preserved for G[Vδ] in expectation, i.e.,

� sdpM(G[Vδ]) 6 � sdpM(G[Vδ])[X] = sdpM(G)[X] .

We combine the lemmas in this section to prove the lower bound. Notice that by Lemma 7.6, we can
chooseH = G3 (for c = 1/9) in Lemma 7.4. With this choice ofH , we can finish the proof of the theorem,

� sdpM(G[Vδ]) > 1
9 · � sdpM((G3)[Vδ]) − ε (using Lemma 7.4)

> 1
9 · sdpM(G) − 10

9 ε (using Lemma 7.8) .

�

17

8 Proof of subsampling theorem

In this section prove our main subsampling theorem for k-CSPs. We will work with the following notion of
density.

Definition 8.1 (density). We say that a k-CSP P is ∆-dense if |P| 6 1 for every P ∈ P and furthermore for
every r ∈ [k] and fixing of k − 1 variables I = (i1, . . . , ir−1, ∗, ir+1, . . . , ik), we have

∆

c
6

∑
P∈P : Var(P)=I

|P| 6 c∆ (9)

for some absolute constant c > 0.

Here, ∆ is a parameter in [1, n]. The larger ∆ the denser the instance. In a 2-CSP ∆ corresponds to the
degree of each variable. In a dense k-CSP [AdlVKK03] we have ∆ = Θ(n).

Theorem 8.2. Let ε > 0,∆ > 1. Let P be a β-dense k-CSP in n variables over an alphabet of size q. Put
δ > ε−C log(q)/∆ for some absolute constant C. Suppose U ⊆ [n] is chosen uniformly at random so that
|U | = δn. Then, ∣∣∣� opt(PU) − opt(P)

∣∣∣ 6 ε . (10)

Remark 8.3. In the case k = 2, our notion of density reduces to the usual notion of density in a graph. We
get the optimal trade-off between density and sample size in that case. When k > 3 there are k-CSPs with
nk−1 constraints that do not allow sparsification. For instance, consider a dense k-CSP in which all constraints
share the same variable. We cannot subsample here, since we would likely lose that variable and hence all
constraints.

Throughout the proof we will think of k as an absolute constant and consider any function of k as O(1).
We will also assume that coordinates in [n] are sampled with replacement.

One direction of the theorem is immediate.

Lemma 8.4.
�

[
max
x∈[q]n

PU(x)
]
> max

x∈[q]n
P(x) . (11)

Proof. Suppose x∗ ∈ [q]n maximizes P(x). Note that �
[
maxx∈[q]n PU(x)

]
> � [PU(x∗)] . On the other hand,

�PU(x) = P(x). �

The other direction requires all the work. We will split it up into two main lemmas. The first lemma
shows that the subsampling step is random enough to give a concentration bound for large subsets of [q]n.

Lemma 8.5 (Concentration). There are constants c0, c1 so that for δ0 = ε−c0 log(q)/∆ and randomly chosen
U ⊆ [n] of size |U | > δ0n we have that for every subset Ψ ⊆ [q]n of size |Ψ| 6 exp(εc1 |U |),∣∣∣∣∣� [

max
x∈Ψ
PU(x)

]
−max

x∈Ψ
P(x)

∣∣∣∣∣ 6 ε . (12)

We think of δ0n as the smallest sample size for which we can expect concentration. The previous lemma
shows that the maximum value of any fixed set of exp(poly(ε)|U |) assignments is preserved when sampling
U of size larger than δ0n.

The second main lemma shows that this concentration bound is actually good enough for us. Indeed, the
maximum of the subsample turns out to have enough redundancy so that we can find a suitably small set of
assignments in [q]n that captures the optimal value of the subsample up to a small error.

18

Lemma 8.6 (Structure). For every constant c there is a constant C and a set of assignments Ψ ⊆ [q]n of size
|Ψ| 6 exp(εcδn) where δ = ε−C log(q)/∆ such that for randomly chosen U of size |U | = δn, we have

�

[
max
x∈[q]n

PU(x)
]
6 �

[
max
x∈Ψ
PU(x)

]
+ ε . (13)

Together these two lemmas direcly imply the main subsampling theorem as shown next.

Proof of Theorem 8.2. In one direction, let Ψ be the set from Lemma 8.6 which we obtain for c = c1 where
c1 is the constant from Lemma 8.5. Let C be the constant given by Lemma 8.6 for the given choice of c. Then
with δ = ε−C log(q)/∆, we have

�

[
max
x∈[q]n

PU(x)
]
6 �

[
max
x∈Ψ
PU(x)

]
+ ε/2 (by Lemma 8.6)

6 �
[
max
x∈Ψ
P(x)

]
+ ε (by Lemma 8.5)

6 �

[
max
x∈[q]n

P(x)
]

+ ε .

The other direction follows from Lemma 8.4. �

8.1 Proof of Concentration Lemma

Fix a vector x ∈ [q]n. We will first analyze the case where we sample sets U1,U2, . . . ,Uk ⊆ [n] independently
at random of size δ1n (δ1 is some parameter that we’ll instantiate later) and we keep all constraints whose rth
variable is contained in Ur. Later we will be able to conclude the case where U1 = U2 = · · · = Uk.

The argument proceeds in k steps. At each step i we restrict the P to those constraints whose r-th variable
is contained in Ur. After each step we perform a pruning operation in which we remove variables whose
influence has become too large. We then argue that the pruned CSP has the desired concentration properties
and moreover that pruning doesn’t remove to many constraints in expectation.

Denote by P1 the CSP obtained from P by throwing away all predicates whose first variable is not in U1.

Then normalize by a factor δ−1
1 , since we expect to remove a δ1 fraction of the predicates. Formally,

P1 = {δ−1
1 P | Var1(P) ∈ U1, P ∈ P} .

Now, let Infi(P1) = 1
|P|

∑
P∈P1 : i∈Var(P) |P| denote the influence of variable i in P1. Let N = � Infi(P1) =

O(1/n). As mentioned before, we will throw away all predicates that contain a variable whose influence in P1
has become too large, say, larger than 2N,

P
prune

1 = {P ∈ P1 | ∀i ∈ Var(P) : Infi(P1) 6 2N} .

We think of this as the pruning of P1. Continue this process, inductively, by putting

Pr = {δ−1
1 P | Varr(P) ∈ Ur, P ∈ P

prune

r−1 } ,

and
P

prune

r = {P ∈ Pr | ∀i ∈ VarP : Infi(Pr) 6 2rN} .

Here Infi(Pr) = 1
|P|

∑
P∈Pr : i∈Var(P) |P|. Note that Pprune

k−1 will still have maximum influence at most O(1/n).
In the following, when we write Pr(x) we think of it as normalized in the same way we normalize PU(x),

i.e., by a factor 1/|P|.

19

Lemma 8.7. For every x ∈ [q]n,

�r {|Pk(x) − P(x)| + tε} 6 O(exp(−t2ε2δ1n)) (14)

Proof. The proof proceeds in k steps. At each step we will apply a variant of Azuma’s inequality (sometimes
referred to as McDiarmid’s inequality) given by Lemma D.3.

Specifically, we claim that

�r
{
Pr(x) > P

prune

r−1 (x) + tε
}
6 O(exp(−t2ε2δ1n)) , (15)

for every 0 < r 6 k. We define the mapping

fr(Ur) =
∑

P∈P
prune
r−1 ,Varr(P)∈Ur

δ−1
1 P(x) = Pr

where we think of Ur as a tuple (i1, . . . , iδ1n) each coordinate being an index in [n]. Note that

� fr =
∑

P∈P
prune
r−1

δ1δ
−1
1 P(x) = P

prune

r−1 (x) .

We claim that fr has Lipschitz constant O(1/δ1n) in the sense that replacing any coordinate i ∈ Ur by a
i′ ∈ [n] can change the function value by at most O(1/δ1n). This is because the influence of each variable in
P

prune

r−1 is at most O(1/n).
Lemma D.3 then implies

�r { fr > � fr + tε} 6 exp
−Ω(δ2

1n2t2ε2)
δ1n

 = exp
(
−Ω(t2ε2δ1n)

)
.

This is what we claimed in (15). By a union bound, (15) holds for all r ∈ [k]. Hence, we can chain these
inequalities together and get

�r {|Pk(x) − P1| > tε} 6 O(exp(−t2ε2δ1n)) .

�

We’d like to argue that at every pruning step only a few predicates get removed and hence Pprune
r and Pr

are close. Specifically we’d like to show that the influence of i has enough concentration so that it is larger
than twice its expectation only with small probability. This directly gives us a bound on the expected amount
of pruning. The key observation is the next lemma which shows that the degree of each fixing I of k − 1
variables is concentrated.

Lemma 8.8. Assume δ1 > 1/ε2∆, fix I = (i1, . . . , ir−1, ∗, ir+1, . . . , ik) and let Q = {P ∈ P | Var(P) = I}. Then,

�

∣∣∣∣∣∣∣∣δ1∆ −
∑

P∈Q : Varr(P)∈Ur

|P|

∣∣∣∣∣∣∣∣ 6 εδ1∆ . (16)

20

Proof. By the density condition on P, we have
∑

P∈Q |P| > Ω(∆) and |P| 6 1. (In particular, |Q| > Ω(∆).)
Consider the random variable

Z =
∑

P∈Q,Varr(P)∈Ur

|P| ,

which sums the norm of all predicates in Q that are selected by Ur. Let µ = �Z = δ1∆. We can express Z as a
sum of independent variables Z =

∑|U |
i=1 Zi, where Zi is the outcome of the i-th sample in U. Since we sampled

with replacement, the Zi’s are independent and identically distributed. Every Zi assumes each value |P| for
P ∈ Q with probability 1/n. We note that �Zi = 1

n
∑

P∈Q |P| = Θ(∆
n). Let us compute the fourth moment of

Z − �Z. First observe that �(Zi − �Zi)4 6 O(� |Zi|
4) and

� |Zi|
4 6

1
n

∑
P∈Q

|P|4 6
O(∆)

n
.

Similarly, for any i , k:

�(Zi − �Zi)2(Zk − �Zk)2 6
O(1)
n2

∑
P,P′∈Q

|P|2|P′|2 6
O(∆2)

n2 .

By independence and the fact that �(Zi − �Zi) = 0, we therefore have

�(Z − �Z)4 =
∑

i

�(Zi − �Zi)4 + 6
∑
i,k

�(Zi − �Zi)2
�(Zk − �Zk)2

6 δ1n ·
O(∆)

n
+ (δ1n)2 ·

O(∆2)
n2

= O(µ2) .

Thus, by Markov’s inequality,

�r(|Z − �Z| > t) 6
E(Z − �Z)2

t4 6
O(µ2)

t4 . (17)

Therefore we can bound � |Z − �Z| in expectation by integrating (17) over t > 1,∫
t>1

t · �r(|Z − �Z| > tεµ)dt 6
∫

t>1
t ·

O(µ2)
(tεµ)4 dt 6

O(1)
ε4µ2

∫
t>1

1
t3 dt 6 ε (18)

for µ larger than c/ε3, i.e., δ1 > c/ε3∆. �

Lemma 8.9. For every 0 < r < k,
1
|P|
�

∑
P∈Pr\P

prune
r

|P| 6 ε . (19)

Proof. We’d like to bound

1
|P|

∑
P∈Pr\P

prune
r

|P| 6 2
∑
i=1

|Infi(Pr) − � Infi(Pr)| (20)

in expectation over Ur by O(ε). We will bound � |Infi(Pr) − � Infi(Pr)| for every fixing I that includes
variable i and fixes all but the variable in position r. Indeed fix I = (i1, . . . , ir−1, ∗, ir+1, . . . , ik). Let Q = {P ∈

21

Pr | Var(P) = I}. We will bound the expected gain of influence of variable i in Q. By linearity of expectation
this will give us a bound on (20). Let Z =

∑
P∈Q|Varr(P)∈Ur |P|. By Lemma 8.8,

|�Z − Z| 6 ε�Z .

Since we have this bound for every fixing and these fixings form a partition of Pr we find that after
renormalization, we have

� |Infi(Pr) − � Infi(Pr)| 6
ε

n
.

�

Let us denote by P′r the CSP that is obtained in the exact same way as Pr except without the pruning step.
In particular, P′k is simply the CSP P in which the r-th variable is restricted to Ur for each r ∈ [k].

The next corollary summarizes what we have shown so far.

Corollary 8.10. Let Ψ ⊆ [q]n of size exp(Ω(ε2δ1n)). Then,∣∣∣∣∣� [
max
x∈Ψ
P′k(x)

]
−max

x∈Ψ
P(x)

∣∣∣∣∣ 6 ε. (21)

Proof. We first note that Pk ⊆ P
′
k and we can get

�
1
|P|

∑
P∈P′k\Pk

|P| 6
ε

2
.

This follows from repeated application of Lemma 8.9 (with sufficiently small value of ε) for each r ∈ [k]. In
particular this shows that ∣∣∣∣∣∣� max

x∈[q]n
P′k(x) − � max

x∈[q]n
Pk(x)

∣∣∣∣∣∣ 6 ε/2 . (22)

On the other hand, by Lemma 8.7 and the union bound over x ∈ Ψ, we get that∣∣∣∣∣� [
max
x∈Ψ
Pk(x)

]
−max

x∈Ψ
P(x)

∣∣∣∣∣ 6 ε/2 . (23)

Here we used the fact that the probability that the maximum deviates by t · ε drops of exponentially in t so
that we can integrate over t > 1 to get a bound on the expectation. Thus,∣∣∣∣∣� [

max
x∈Ψ
P′k(x)

]
−max

x∈Ψ
P(x)

∣∣∣∣∣ 6 ε ,
which is what we wanted to show. �

We are now ready to prove the first main lemma. The proof reduces the general case to the case where
each coordinate is subsampled independently as previously dealt with. The idea is to partition the set of
variables into m bins and only consider predicates whose variables fall into k distinct bins. The total weight
of the remaining predicates can be neglected for large enough m.

22

Proof of Lemma 8.5 (Concentration). Partition [n] randomly into m bins, i.e., [n] = S 1 ∪ S 2 ∪ · · · ∪ S m, with
m = Θ(1/ε2) (say). Furthermore, let U` = U ∩ S ` for ` ∈ [m]. One can show that with probability 1 − o(1),
for all r ∈ [k] we have |Ur | ∈ [1

2m |U |,
2
m |U |].

For a given P ∈ P the probability that there are i, j ∈ Var(P) and j ∈ [m] so that i ∈ S ` and j ∈ S ` is at
most O(ε2). Hence, we can throw away all such P ∈ P and lose only an O(ε2) fraction in expectation.

On the other hand, for every u ∈ [m]k with pairwise distinct coordinates, we let Pu = {P ∈ P | ∀r : Varr ∈

S ur }. For every Pu we may then apply Corollary 8.10, since Uu1 ,Uu2 , . . . ,Uur are independently chosen. We
apply the corollary with ε′ = ε/mk = poly(1/ε). This requires us to choose δ0 large enough as a function of ε
so that the previous lemmas (in particular Lemma 8.9) apply to subsets of size |Ur |. This allows us to sum
the error over all applications of the Corollary for a total error of ε. The Corollary applies to sets Ψ of size
exp(Ω(ε2|Ur |)) = exp(poly(ε)|U |) which is what we needed. �

8.2 Proof of Structure Lemma

Proof Idea. The main idea is the following. We have a subsample U of size δn. Hence, maxx∈[q]n PU(x) is
a maximization problem in δn variables. In particular the maximum is achieved by one of roughly 2δ log(q)n

assignments to these variables. The whole problem is that we need a set of assignments Ψ of size 2poly(ε)δn �

2δn with the property that one of the assignments in Ψ is near optimal with respect to PU .

The proof strategy is to design a deterministic algorithm D(y) that is given a seed y ∈ [q]S where S ⊆ U.
The algorithm returns an assignment x = D(y) to the variables in U with the guarantee that for some seed
y ∈ [q]S , the induced assignment x = D(y) is near optimal in PU . An important parameter is the seed
length of D, i.e., the size of S . It is also crucial that the algorithm does not know U but only S and PS .

(Otherwise the algorithm could trivially return an optimal assignment for PU .) Specifically, we want to
achieve seed length |S | 6 poly(ε)δ1n/ log(q). This will suffice for the purpose of our proof, since then we can
put Ψ = {D(y) : y ∈ [q]S }. In this case Ψ will be sufficiently small.

The key point in the proof is to choose U so large that for every x ∈ [q]n both PU(x) and PS (x) are a
good approximation of P(x). This fact will be the main reason why we can hope to obtain a near optimal
assignment for PU by just looking at PS . We remark that this proof strategy is due to [GGR98]. Formally we
will prove the next lemma.

Lemma 8.11. For every constant c, there is another constant C and a deterministic algorithm D : [q]S → [q]U

which extends an assignment to the coordinates S to an assignment to the coordinates in U so that

� max
x∈[q]S

PU(D(x)) > � max
x∈[q]U

PU(x) − ε .

Here the expectation is taken over random U ⊆ [n] of size δn = ε−Cδ0n and random subset S ⊆ U of size
|S | 6 ε−cδn/ log(q).

Once we have this lemma it will be easy to conclude the Structure Lemma. We will next describe our
algorithm and then prove Lemma 8.11.

Deterministic greedy algorithm. Let α = εc1/ log(q), the factor by which S needs to be smaller than U.
Assume a fixed partition of U into m pairwise disjoint sets U = U1 ∪ U2 ∪ · · · ∪ Um of equal size. Here
m is some parameter that we’ll need and determine later. Choose S ` uniformly at random from U\U` of
size |S `| =

α
m |U | for some parameter α. Let S = S 1 ∪ · · · ∪ S m. Note that |S | = α|U |. We want |S `| > δ0n so

that the concentration lemma will apply even to the sets S `. We take m = poly(1/ε), e.g., m = ε−2k will be
sufficient. Hence, α

m is some fixed polynomial in ε and this determines the size of U.

23

The algorithm D works as follows.

Input: x ∈ [q]S

Output: z ∈ [q]U

Algorithm:

– For every i ∈ S , we put zi = xi.

– For every ` ∈ [m], do the following: Let y∗ ∈ [q]U`\S denote the partial assignment that maximizes
the function f (y) = PS `(x[y]) where x[y] denote the assignment which is equal to y for all
coordinates i ∈ U`\S and equal to x elsewhere. Formally, let

y∗ = arg max
y∈[q]U`\S

PS `(x[y]) (24)

and put zi = y∗i for every i ∈ U`\S .

This defines an assignment z to all coordinates in U.

Analysis. To analyze our algorithm, let x∗ ∈ [q]n denote the assignment that maximizes maxx∈[q]n PU(x).
Our goal is to define a sequence of “hybrid” assignments x0, x1, . . . , xm where x0 = x∗ and xm = D(y) for
some y ∈ [q]S so that in expectation over U and S , we have

PU(xm) > PU(x0) − ε .

The sequence is defined as follows. Let x0 = x∗. Inductively, let x` for 0 < ` 6 m be equal to x`−1 in all
coordinates except U`. The coordinates U` are induced from S ` exactly as in our algorithm in equation (24),
i.e., for all i ∈ U`\S , we let x`i = y∗i where y∗ is defined as

y∗ = arg max
y∈[q]U`\S

PS `(x`−1[y]) .

We observe that indeed xm is the generated by D for some x ∈ [q]S since all coordinates in xm are induced by
looking only at coordinates in S (though it need not be the case that xm = D(x∗)). Now, denote the error at
step ` by

err(`) = PU(x`−1) − PU(x`) .

Note that err(`) is a random variable depending on both U and S . The claim now reduces to showing

�

∑
`∈[m]

err(`) 6 ε , (25)

since by definition PU(x∗) − PU(xm) 6
∑
`∈[m] err(`) .

In order to argue (25), it will be convenient to consider

ẽrr(`) = PU\U`(x`−1) − PU\U`(x`) .

Since we chose m large enough and hence U` is a sufficiently small fraction of U, it follows that for all
` ∈ [m], ∑

`∈[m]

err(`) 6
∑
`∈[m]

ẽrr(`) +
ε

2
. (26)

24

Let
z∗ = arg max

y∈[q]U`\S
PU\U`(x`−1[y]) .

Note that here we are maximizing over PU\U` rather than PS ` . The following lemma gives us a concrete way
of bounding ẽrr(`).

Lemma 8.12.
ẽrr(`) 6

∣∣∣PU\U`(x`−1[z∗]) − PS `(x`−1[z∗])
∣∣∣ (27)

Proof. If (27) were false, then we would have

PS `(x`−1[z∗]) > PS `(x`−1[y∗]) .

But this is a contradiction, since we chose y∗ as the maximum with respect to PS ` . �

The next lemma shows that the RHS above is small in expectation. The reason is that S ` is chosen
uniformly at random inside U\U`. Let x̃ = x`−1[z∗]. We have �PS `(x̃) = PU\U`(x̃). We only need to argue
that the average deviation ofPS ` (x̃) from its mean is small. This can be argued directly but it also follows from
Lemma 8.5 applied to PU\U` and Ψ = {x̃}. To apply this lemma, we actually need that PU\U` is sufficiently
close to being sufficiently dense. This is true in expectation over U.

Lemma 8.13.
�

∣∣∣PU\U`(x̃) − PS `(x̃)
∣∣∣ 6 ε

2m
(28)

Proof. As mentioned before we think of PS ` as a subsample of PU\U` . We would like to apply Lemma 8.5
(Concentration) to conclude the claim. However PU\U` need not satisfy the density condition. However, by
Lemma 8.8, PU\U` does satisfy, for every fixing I of k − 1 variables,

�
U

∣∣∣∣∣∣∣∣
∑

P∈PU\U` ,Var(P)=I

|P| − δ∆

∣∣∣∣∣∣∣∣ 6 ε′δ∆ . (29)

In other words, every fixing I satisfies the density requirement in expectation. We can therefore treat PU\U`

as a δ∆-dense CSP and subsample S ` ⊆ U\U` from it. Note that we can take δ∆ = poly(1/ε) arbitrarily large
so that we may subsample an α fraction of the variables of U\U` and expect error ε/4m in the application of
Lemma 8.5. The fact that PU\U` satisfies only (29) leads to additional approximation errors in the application
of Lemma 8.5. By summing (29) over all possible I, we can bound these errors by ε′. Again taking δ∆ large
enough we can assure ε′ 6 ε/4m. Hence, we get a total expected error of ε/2m which is what we wanted to
show. �

Combining Lemma 8.12 with Lemma 8.13, we conclude that for every ` ∈ [m],

� ẽrr(`) 6
ε

2m
. (30)

Finally,

�

∑
`∈[m]

err(`) 6 �
∑
`∈[m]

ẽrr(`) +
ε

2
(by (26))

=
∑
`∈[m]

� ẽrr(`) +
ε

2

6 m ·
ε

2m
+
ε

2
(using (30))

= ε

25

We can now complete the proof of the Structure Lemma. We would like to put Ψ(S) = {D(x) | x ∈ [q]S }.

Then, by Lemma 8.11,
� max

x∈Ψ(S)
PU(x) > � max

x∈[q]U
PU(x) − ε . (31)

We are not quite done, since the Structure Lemma requires a single fixed set Ψ(S). So far we are choosing S
randomly as a subset of U. Hence, the set Ψ(S) that we constructed above depends on the choice of U. To
finish the proof we need a single set Ψ ⊆ [q]n that is independent of the choice of U. This is easy to accomplish
from what we have. Simply pick S and U independently and consider U′ = U ∪S . Since |S | 6 poly(ε)|U |, we
can make the difference between PU(x) and PU′(x) negligible for any x ∈ [q]n. Therefore, we may exchange
U′ for U in the previous argument so that the choice of S and U is independent. Since (31) is then true in
expectation taken over independent S and U, there must also exist a fixed choice of S for which (31) is true
in expectation taken over U. But now we may take Ψ = Ψ(S) in order to conclude the proof of the Structure
Lemma.

References

[ABLT06] S. Arora, B. Bollobás, L. Lovász, and I. Tourlakis. Proving integrality gaps without knowing
the linear program. Theory of Computing, 2(1):19–51, 2006.

[AdlVKK03] N. Alon, W. F. de la Vega, R. Kannan, and M. Karpinski. Random sampling and approximation
of MAX-CSPs. J. Comput. Syst. Sci., 67(2):212–243, 2003.

[AHK06] S. Arora, E. Hazan, and S. Kale. A fast random sampling algorithm for sparsifying matrices.
In Proc. 10th APPROX, pages 272–279. Springer, 2006.

[AKK+08] S. Arora, S. Khot, A. Kolla, D. Steurer, M. Tulsiani, and N. Vishnoi. Unique games on
expanding constraints graphs are easy. In Proc. 40th STOC. ACM, 2008.

[AM07] D. Achlioptas and F. McSherry. Fast computation of low-rank matrix approximations. J. ACM,
54(2), 2007.

[BSS09] J. D. Batson, D. A. Spielman, and N. Srivastava. Twice-Ramanujan sparsifiers. In Proc. 41st
STOC, pages 255–262. ACM, 2009.

[CMM09] M. Charikar, K. Makarychev, and Y. Makarychev. Integrality gaps for sherali-adams relaxations.
In Proc. 41st STOC. ACM, 2009.

[Din07] I. Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007.

[dlVKM07] W. F. de la Vega and C. Kenyon-Mathieu. Linear programming relaxations of maxcut. In
N. Bansal, K. Pruhs, and C. Stein, editors, SODA, pages 53–61. SIAM, 2007.

[Fei02] U. Feige. Relations between average case complexity and approximation complexity. In STOC,
pages 534–543, 2002.

[FS02] U. Feige and G. Schechtman. On the optimality of the random hyperplane rounding technique
for max cut. Random Struct. Algorithms, 20(3):403–440, 2002.

[GGR98] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. J. ACM, 45(4):653–750, 1998.

26

[GW94] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145, 1995.
Preliminary version in STOC’94.

[KKMO04] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for
MAX-CUT and other 2-variable CSPs? SIAM J. Comput, 37(1):319–357, 2007. Preliminary
version in FOCS’ 04.

[MOO05] E. Mossel, R. O’Donnell, and K. Oleszkiewicz. Noise stability of functions with low in.uences
invariance and optimality. In Proc. 46th FOCS, pages 21–30. IEEE, 2005.

[Rag08] P. Raghavendra. Optimal algorithms and inapproximability results for every csp? In Proc.
40th STOC, pages 245–254. ACM, 2008.

[Ron00] D. Ron. Property testing. In Handbook of Randomized Computing, Vol. II, pages 597–649.
Kluwer Academic Publishers, 2000.

[RS09] P. Raghavendra and D. Steurer. How to round any csp. In Proc. 50th FOCS, pages 586–594.
IEEE, 2009.

[Rub06] R. Rubinfeld. Sublinear time algorithms. In Proc. International Congress of Mathematicians,
volume 3, pages 1095–1110. European Math. Soc., 2006.

[RV07] M. Rudelson and R. Vershynin. Sampling from large matrices: An approach through geometric
functional analysis. J. ACM, 54(4), 2007.

[SA90] H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM J. Discrete Math.,
3(3):411–430, 1990.

[Sch08] G. Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs. In FOCS, pages
593–602. IEEE Computer Society, 2008.

[SS08] D. A. Spielman and N. Srivastava. Graph sparsification by effective resistances. In Proc. 40th
STOC. ACM, 2008.

[ST04] D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems. In Proc. 36th STOC, pages 81–90. ACM, 2004.

[Ste10] D. Steurer. Fast sdp algorithms for constraint satisfaction problems. In Proc. 21st ACM-SIAM
SODA, 2010.

[Tul09] M. Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In Proc. 41st STOC 2009,
pages 303–312. ACM, 2009.

A Edge distribution of subsample of the third power

In this section we compare the edge distribution of the subsample of G3 to a somewhat nicer distribution. This
step was needed in Lemma 7.7. In the following let G = (V, E) be a ∆-regular graph and δ > poly(ε−1)∆−1.

Further denote W = Vδ.

27

Lemma A.1. Let D1 denote the uniform distribution over edges in G3[W]. Let D2 denote the distribution
obtained as follows:

1. Pick a random edge (v, v′) ∈ E.

2. Choose uniformly at random w ∈ NW(v) and w′ ∈ NW(v′).

3. Output (w, w′).

Then,
�
W

[TV(D1,D2)] 6 ε .

Here and in the following TV(D1,D2) denote the total variation distance between the two distributions D1
and D2.

Proof. Let us compare the following two distributions:

P1 : Pick a uniformly random path p = (w, v, v′, w′) from the set of all paths of length 3 in G which have
w, w′ ∈ W.

P2 : Pick a random edge v, v′ ∈ E and random neighbors w ∈ NW(v), w′ ∈ NW(v′) and consider the path
(w, v, v′, w′).

Notice that it suffices to bound the statistical distance between P1 and P2. This is because D1 is just the
marginal distribution of P1 on the endpoints of the path (w, w′). Likewise D2 is the marginal distribution of
P2 on (w, w′).

Now, let p = (w, v, v′, w′) denote any path of length 3 in G so that w, w′ ∈ W. Let N denote the number
of such paths. Note that �N = δ2∆3n. Let us now compare the probability of this path under the two
distributions. For P1 we get

P1(p) =
1
N
.

On the other hand, under P2,

P2(p) =
1

|NW(v)|
·

1
∆n
·

1
|NW(v′)|

.

Note that for every v ∈ V, we have � |NW(v)| = δ∆. It now suffices to argue the bound

� [TV(P1, P2)] = �
1
2

∑
p

∣∣∣∣∣ 1
N
−

1
|NW(v)||NW(v′)|∆n

∣∣∣∣∣ 6 ε. (32)

Let us call a path p = (w, v, v′, w′) good if

1
|NW(v)| · |NW(v′)|

=
1 ± ε′

δ2∆2 .

Later we will choose ε′ = Ω(ε) to be sufficiently small, say, ε′ = ε/100. We need the following simple
concentration bounds.

Claim A.2. With probability 1 − ε′ over the choice of W, we have

1. N−1 = (1 ± ε′)/(δ2∆3n) .

28

2. The fraction of bad paths is less than 1/O(ε′5(δ∆)3) .

Proof. The first claim follows from Lemma D.1. Regarding the second claim, it is not hard to show for every
v, v′ that

�r
{

1
|NW(v)||NW(v′)|

<
1 ± ε′

δ2∆2

}
6

1
O(ε′4(δ∆)3)

.

This can be shown by computing the fourth moment �(|NW(v)| − δ∆)4 and bounding the probability of a
factor 1 + α deviation of |NW(v)| from its mean for small enough α = Ω(ε′). This argument shows that the
expected number of bad paths is at most 1/O(ε′4(δ∆)3) and the claim is completed by applying Markov’s
inequality. �

Given this claim, we can finish the proof of the lemma. Indeed letting Q denote the set of good paths, we
have with probability 1 − ε′,∑

p

∣∣∣∣∣ 1
N
−

1
|NW(v)||NW(v′)|∆n

∣∣∣∣∣ 6∑
p∈Q

2ε′

δ2∆3n
+

∑
p<Q

1
∆n

6 2ε′ +
N

O(ε′5(δ∆)3)
·

1
∆n

= 2ε′ +
1

O(ε′5δ∆)
·

N
δ2∆3n

6 O(ε′) .

In the first inequality we used the fact that |NW(v)| > 1 for any existing path and hence the term
1/|NW(v)||NW(v′)|∆n is never larger than 1/∆n. In the last step we used that we may choose δ∆ > Cε′−5 for
sufficiently large constant C > 0, and that N 6 (1 + ε′)δ2∆3n. Hence,

�TV(P1, P2) 6 (1 − ε′)O(ε′) + ε′ 6 ε . �

B Details on random geometric graphs 5

In this section we will in the details that were left out in Section 5. We start with the proof of Lemma 5.3.

Lemma 5.3 (Restated). sdp3(Gγ) 6 1 −Ω(
√
γ) .

The proof works as follows. First, triangle inequalities are known to imply the odd cycle constraints
which means that an SDP with triangle inequalities on an odd cycle of length k has value at most (and, in fact,
equal to) 1 − 1/k.

Lemma B.1. Let C be an odd cycle of length k. Then, sdp3(C) 6 1 − 1/k.

Second, it follows that if a graph G can be covered uniformly by odd cycles of length k, then its sdp3-value
can be at most 1 − 1/k.

Lemma B.2. Let G = (V, E) be a (possibly infinite) graph. Suppose there exists a distribution C over odd
cycles of length k for some fixed number k such that the marginal distribution on each edge of a random cycle
from C has statistical distance ε to the uniform distribution over edges in G. Then, sdp3(G) 6 1 − 1/k + ε.

29

Proof. By our assumption we have that for every embedding f : V → B,

�
(u,v)∼E

1
4‖ f (u) − f (v)‖2 6 �

C∼C
�

(u,v)∼C
1
4‖ f (u) − f (v)‖2 + ε .

But we know, by Lemma B.1, that for every f : V → B, satisfying the triangle inequalities,

�
(u,v)∼C

1
4
‖ f (u) − f (v)‖2 6 1 − 1

k .

Hence,

�
(u,v)∼E

1
4
‖ f (u) − f (v)‖2 6 1 − 1

k + ε .

�

We will next see that the sphere graph can by uniformly covered by odd cycles of length O(1/
√
γ). We

begin with the following simple observation.

Lemma B.3. For every l ∈ [1 − γ, 1 − γ/2], there exists an odd cycle, denoted Cl = (v1, . . . , vk), in Gγ of
length k = O(

√
γ) such that 1

4‖vi − vi+1‖
2 = l for all i ∈ {1, . . . , k − 1}.

Proof sketch. Pick an arbitrary great circle around the sphere and place the vertices v1, . . . , vk equally spaced
along this circle. For k = O(

√
γ) vertices, we can accomplish the Euclidean distance between two consecutive

vertices is less than, say,
√
γ/10. Now connect each vertex v on the circle to the unique vertex w which

maximized ‖v−w‖2. This creates an odd cycle and, by our previous observation, it follows that 1
4‖v−w‖

2 > 1−γ.
Now we can make 1

4‖v − w‖
2 = l be walking along the cycle and moving vertices in a direction orthogonal to

the plane defined by the circle until all edges have length l. �

Lemma B.4. Let γ > 0 and let S d−1 be the sphere. There exists a distribution C over odd cycles C =

(v1, . . . , vk) for some k 6 10π√
γ

such that for all i, the marginal distribution of (vi, vi+1) has statistical distance
o(1) to the uniform distribution over edges in Gγ (as d → ∞).

Proof. We will describe the distribution C as follows:

1. Pick a random edge e = (u, v) ∈ E from Gγ.

2. Let l = 1
4‖u − v‖

2. If l 6 1 − γ/2, let Cl = (v1, v2, . . . , vk) denote the odd cycle given by Lemma B.3. If
l > 1 − γ/2, declare “failure”.

3. If the previous step succeeded, pick a random rotation R and output RC = (Rv1,Rv2, . . . ,Rvk).

We claim that if the second step succeeds, then indeed every marginal (Rvi,Rvi+1) is distributed like
a uniformly random edge. This is (1) because (u, v) was chosen to be a uniformly random edge and (2)
(Rvi,Rvi+1) is a random rotation of (u, v) and hence, by spherical symmetry, is equally likely to be any edge in
E that has the same length as (u, v).

On the other hand, by measure concentration, with probability 1 − exp(−Ω(d)), we have that 1
4‖u − v‖

2 ∈

[1 − γ, 1 − γ/2]. This completes the claim since the probability of failure only introduces o(1) statistical
distance. �

In this section we give some details on how to obtain a dense discretization of the Feige-Schechtman
graph.

30

Lemma 5.4 (Restated). Fix γ ∈ [0, 1], d ∈ �. Then, there exists an n0(d, γ) ∈ � so that if we pick V ⊆ S d−1

uniformly at random with |V | > n0, then the induced subgraph Gγ[V] satisfies (1) opt(Gγ[V]) = 1 − Θ(
√
γ),

and (2)

sdp3(Gγ[V]) = 1 − Θ(
√
γ).

Proof sketch. The first claim is shown in [FS02]. For the second claim, let us decompose �d−1 into equal
volume cells of diameter at most ε. Here, ε is a parameter that we will later take to be very small, say,
ε 6 d/100. Now pick enough vectors V ⊆ �d−1 uniformly at random such that with probability at least 1 − ε
every two cells have the same number of vectors up to a factor of 1 ± ε in it.

We need to show that sdp3(Gγ[V]) 6 1 − Ω(
√
γ). To this end we first consider a related graph G′, which

has the same vertex set as G but different edges. A random edge in G′ is defined by the following process:
Pick first a random edge on the continuous sphere, then for each endpoint pick a random vertex in the equal
volume cell containing the endpoint. Finally, normalize the edges such that the total edge weight is the same
as in G.

We can use the distribution over odd cycles given by Lemma B.4 in order to get a distribution for the
graph G′ as follows: Pick the cycle and map each point to a vertex in the corresponding cell. The resulting
marginal distributions will be uniform in G′. Thus, sdp3(G′) = 1 − Θ(

√
γ).

Finally, we will show that �‖L(G′) − L(Gγ[V])‖TV tends to zero with ε. That is, the two distributions have
statistical distance tending to zero. This also shows that for sufficiently small ε, the semidefinite programs
also have approximately the same value. Now to argue the above point, consider the process of picking a
random edge. Consider first the case that in G′, the two cells containing the chosen points have exactly the
expected number of vectors in them, and furthermore, suppose that the two cells are good in the sense that
either none of the vertices in them share an edge or all pairs of vertices between the two cells share an edge
in G. In this case, the edges in G going between these two cells have exactly the same probability as under G′.

The first assumption is close enough to the truth, since the number of vertices in different cells differ by
at most a factor of 1 ± ε, For the second assumption it suffices to pick ε small enough so that a cap of radius r
has the same volume as a cap of radius r ± ε up to a factor of 1 ± o(1). This happens for, say, ε � 1/d. This
will guarantee that the number of bad pairs of cells is small. This argument can be found in [FS02]. �

C Subsampling edges

In this section, we will briefly discuss the analogue of our main theorem in the setting where we sample
a fraction of the edges in G at random so that the expected degree in G is constant. Here, G = (V, E) will
always denote a ∆-regular graph on n vertices. Our proof in the case of edge subsampling is much simpler.
As it turns out it suffices to bound the cut norm between the original graph and its subsample and to argue
that the SDP value is a Lipschitz function of the cut norm. The latter fact is a consequence of Grothendieck’s
inequality.

We let Eδ ⊆ E denote a random subset of E of size δ|E|. We’ll overload notation slightly by using G[Eδ]
for the graph G restricted to the edge set Eδ.

Definition C.1. The cut norm of a real valued n × n matrix A is defined as

‖A‖C = max
U,V⊆[n]

∣∣∣∣∣∣∣∣
∑

i∈U, j∈V

ai j

∣∣∣∣∣∣∣∣ . (33)

31

It is known that the cut norm is within constant factors of the norm

‖A‖∞7→1 = max
xi,y j∈{−1,1}

∑
i, j∈[n]

ai jxiy j . (34)

A natural semidefinite relaxation of (34) replaces every pair xi, y j by two unit vectors ui, v j, i.e.,

sdpC(A) = max
‖ui‖=‖vi‖=1

ai j〈ui, v j〉. (35)

A theorem of Grothendieck bounds the gap between the cut norm and its relaxation by a multiplicative
constant (the Grothendieck constant).

Theorem C.2. There is a constant KG (known to be less than 1.8) such that sdpC(A) 6 KG‖A‖∞7→1.

The next lemma shows that the cut norm between a graph and its subsample is small.

Lemma C.3. Let δ > cε−2∆−1. Then, �
∥∥∥A(G) − δ−1A(G[Eδ])

∥∥∥
∞7→1 6 ε.

Proof. We can show that with probability 1 − eΩ(n), |〈x, Ay〉 − δ−1〈x, A′y〉| 6 ε simultaneously for all x, y ∈
{−1, 1}n. The proof follows from Hoeffding’s bound and the union bound. The details are straightforward and
therefore omitted from this paper. �

Similarly the following lemma can be shown.

Lemma C.4. Let δ > cε−2∆−1. Then, �
∥∥∥D(G) − δ−1D(G[Eδ])

∥∥∥
∞→1 6 ε .

The previous two lemmas showed that the expected difference in cut norm between the graph G and its
edge subsample G[Eδ] is small.

Corollary C.5. For δ > cε−2∆−1, we have � ‖L(G) − δ−1L(G[Eδ])‖C 6 ε .

It turns out that bounding the difference in cut norm is sufficient for bounding the difference in SDP
values.

Lemma C.6. Let G and G′ be any two graphs on n vertices. LetM ⊆M2 (see Definition 7.1) be any set of
positive semidefinite n × n matrices. Suppose ‖L(G) − L(G′)‖C 6 t. Then,

|sdpM(G) − sdpM(G′)| 6 O(t) .

Proof. ∣∣∣sdpM(G) − sdpM(G′)
∣∣∣ 6 ∣∣∣∣∣ max

X∈M2
(L(G) − L(G′)) • X

∣∣∣∣∣
6 O(1) · ‖L(G) − L(G′)‖C (by Theorem C.2)

6 O(t) .

�

Corollary C.7. Let G denote a ∆-regular graph and let δ > poly(1/ε)∆−1. Then,

�
∣∣∣sdpM(G) − sdpM(G[Eδ])

∣∣∣ 6 ε (36)

for anyM ⊆M2.

32

Negative results for linear programs. We remark that using the approach of [CMM09] one can obtain
strong and general results ruling out subsampling for linear programs.

Theorem C.8. Let ε, λ > 0. Suppose G is a ∆-regular graph with ∆ > nθ. Then with high probability over
G′ = G[Eλ/∆], after removing o(n) vertices, lpr(G

′) > 1 − ε for r = nα where α(1/ε, 1/θ, λ) tends to zero as
any of its arguments grows.

The proof follows by arguing that G[Eλ/∆] has sufficient small set expansion so that [CMM09] applies.
Details are omitted.

D Deviation bounds

Deviation bounds for submatrices. The following general lemma is useful in bounding the deviation of
expressions

∑
i, j∈S |ai j| when S denotes a random subset of [n] and A is a n × n matrix.

Lemma D.1. Let A denote a symmetric n × n matrix such that aii = 0 for all i ∈ [n]. Suppose there is some
β > 0 such that |ai j| 6 β for all i, j ∈ [n] and

∑
j |ai j| 6 1 for all i. Now, let S ⊆ [n] denote a random subset of

[n] of size δn for some δ > β. Then, for all ε > 0,

�r


∣∣∣∣∣∣∣∣δ−2

∑
i, j∈S

ai j −
∑

i, j∈[n]

ai j

∣∣∣∣∣∣∣∣ > εn

 6 O(1)
ε2δn

. (37)

Proof. Denote by Xi j the random variable which is equal to ai j when both i ∈ S and j ∈ S and is zero
otherwise. Let µi j = � Xi j = δ2ai j. Putting X =

∑
i, j∈[n] Xi j and µ = � X we will compute the variance of X.

The key fact that we will use is that the selection of i, j and k, l is independent unless either i = k or j = l.
Pairs where neither is the case will not contribute to the variance. More precisely,

� (X − µ)2 = �

∑
i j

Xi j − µi j


2

= �

∑
i, j,k,l

(Xi j − µi j)(Xkl − µkl)


=

∑
i j

�
(
Xi j − µi j

)2
+

∑
i jk

�
(
Xi j − µi j

) (
Xk j − µk j

)
=

∑
i j

O(δ2)a2
i j +

∑
i jk

O(δ3)ai jak j .

At this point notice that
∑

i j a2
i j is maximized when in every row we have 1/β entries of magnitude β in

which case the expression evaluates to 1
ββ

2n = βn. Likewise the second expression
∑

i jk ai jak j is maximized
when in every column j ∈ [n] we have 1/β nonzero entries of magnitude β. In this case the expression is
(1/β)2β2n = n. Hence,

σ2 = � (X − µ)2 6 O(δ2βn) + O(δ3n) 6 O(δ3n) , (38)

where we used that δ > β. Hence by Chebyshev’s inequality,

�r(|X − µ| > εδ2n) 6
σ2

ε2δ4n2 =
O(1)
ε2δn

.

This is what we claimed up to scaling. �

33

In the proof of the proxy graph theorem we used the following simple observation relating the Laplacian
of a subsample L(G[Vδ]) to the corresponding principal submatrix of the Laplacian L(G)Vδ .

Lemma D.2. Let G be a ∆-regular graph and let H be a graph of degree at least ∆. Let δ > poly(1/ε)∆−1.

Then,
�‖L(G[Vδ]) − L(G)Vδ‖TV 6 ε .

Proof. By inspection of the two matrices we see that the difference in the entries of the matrix is due to
irregularities in the degrees of G[Vδ]. Specifically, the matrix L(G)Vδ has diagonal entries equal to 1/δn. On
the other hand, the i-th diagonal entry of L(G[Vδ]), call it di, is equal to δ−1 ∑

j∈Vδ ai j. We have that � di = 1
δn

and we claim, ∑
i∈Vδ

�

∣∣∣∣∣di −
1
δn

∣∣∣∣∣ 6 ε .
This can be derived from Lemma D.1. �

McDiarmid’s inequality. We also needed McDiarmid’s large deviation bound (sometimes called Azuma’s
inequality).

Lemma D.3. Let X1, . . . , Xm be independent random variables all taking values in the set X. Further, let
f : Xm → � be a function of X1, . . . , Xm that satisfies for all i, x1, x2, . . . , xm, x′i ∈ X,

| f (x1, . . . , xi, . . . , xm) − f (x1, . . . , x′i , . . . , xm)| 6 ci.

Then, for all t > 0,

�r{| f − �
[
f
]
| > t} 6 2 exp

 −2t2∑m
i=1 c2

i

 .

34

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

