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Abstract

We show that if C is a class of graphs which is nowhere dense then
�rst-order model-checking is �xed-parameter tractable on C. As all graph
classes which exclude a �xed minor, or are of bounded local tree-width
or locally exclude a minor are nowhere dense, this generalises algorithmic
meta-theorems obtained for these classes in the past (see [11, 13, 4]).

Conversely, if C is not nowhere dense and in addition is closed under
taking sub-graphs and satis�es some e�ectivity conditions then FO-model
checking is not FPT on C unless FPT = AW[∗].

Hence, for classes of graphs closed under sub-graphs, this essentially
gives a precise characterisation of classes for which FO model-checking is
tractable.

However, our result generalises to much more general classes of graphs.
In particular we show that every class which can e�ciently be coloured
over a class with the type representation property allows tractable �rst-
order model-checking. Such classes include all classes which are nowhere
dense and also all classes of bounded clique-width. This result therefore
uni�es all known meta-theorems for �rst-order logic.

1 Introduction

In 1990, Courcelle [1] proved his celebrated theorem stating that every graph
property de�nable in Monadic Second-Order Logic (MSO2) can be decided in
linear time on all graph classes of bounded tree width. Results of this form are
commonly referred to as algorithmic meta-theorems. In their most general form
they are results of the form �every computational problem which can be de�ned
in a given logic L can be solved e�ciently on every class C of graphs satisfying
certain conditions�. This formulation highlights the motivation for these results
from an algorithmic point of view which we will describe in more detail below.
Alternatively we can formulate algorithmic meta-theorems in the language of
logic and parameterized complexity as �the model-checking problem for the logic
L is �xed-parameter tractable on every class C satisfying certain conditions�. See
Section 2 for details on parameterized complexity. In the following we will use
this logical formulation of the results we are after.
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Following Courcelle's theorem, much work has gone into establishing fur-
ther meta-theorems for variants of monadic second-order logic and for �rst-
order logic. Courcelle, Makowski and Rotics [2] showed that MSO1, a vari-
ant of monadic second-order logic without quanti�cation over sets of edges, is
�xed-parameter tractable by linear time parameterized algorithms. For �rst-
order logic, Seese [22] proved that �rst-order model-checking is �xed-parameter
tractable on graph classes of bounded maximum degree. This was later gen-
eralised by Frick and Grohe [13] to graph classes of bounded local tree-width,
which includes the class of planar graphs, and by Flum and Grohe [11] to graph
classes excluding a �xed minor. Graph classes excluding a minor and graph
classes of bounded local tree-width are incomparable concepts. In [4], therefore,
Dawar, Grohe and Kreutzer introduced a new concept of graph classes locally
excluding a minor, which strictly generalises both excluded minors and bounded
local tree-width, and showed that �rst-order model-checking is �xed-parameter
tractable on all graph classes locally excluding a minor. With the exception of
bounded local clique-width, this is the most general meta-theorem for �rst-order
logic known so far. See [14, 17] for recent surveys on algorithmic meta-theorems.

The study of algorithmic meta-theorems is of interest to both logic and al-
gorithmic graph theory. An important task in the theory of graph algorithms
is to �nd feasible instances of otherwise intractable algorithmic problems. For
this purpose, concepts originating in graph structure theory such as bounded
tree-width or excluding a minor have proved to be extremely useful and many
NP-complete problems become tractable on graph classes whose tree-width is
bounded by a �xed constant or which exclude a �xed minor. Studying, for
instance, the methods used to prove that many problems become tractable on
graph classes of bounded tree width shows that many algorithms are based on
a similar technique and it is therefore a natural question to ask how far these
algorithmic techniques range. On the other hand, it is interesting to investi-
gate which types of problems become tractable when the tree width is bounded.
Algorithmic meta-theorems provide elegant answers to these questions in that
they establish tractability results for a very large and natural class of prob-
lems. For instance, the aforementioned result by Flum and Grohe shows that
all �rst-order problems are tractable on all graph classes excluding a �xed minor
and it also shows that all these problems can be solved by similar algorithmic
techniques.

From a logical perspective, tractability results on speci�c classes of graphs
yield interesting new insights into the complexity of commonly used logics such
as �rst-order or monadic second-order logic with potential applications in the
design and analysis of query- or speci�cation languages based on these log-
ics. For instance, it has long been realised that monadic second-order logic is
particularly well-behaved on trees, witnessed by the closed connection between
MSO and automata on trees. This realisation has been extremely fruitful in the
study of query languages for XML data, databases whose skeletons are trees.
It is likely that in a similar way a better understanding of the structure and
type of classes of graphs on which �rst-order model-checking is tractable would
have interesting implications for the design and analysis of languages based on
�rst-order concepts.

Much e�ort therefore has gone into establishing more and more general meta-
theorems, i.e. to �nd more and more general classes of graphs and graph struc-
tural concepts for which meta-theorems can be established. Ideally, we aim for a
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precise characterisation of classes of graphs for which �rst-order model-checking
becomes tractable. That is, we aim at identifying a property P of graph classes
such that �rst-order model-checking is �xed-parameter tractable on a class C
of graphs if, and only if, C has property P. Clearly, with today's technology
this can only be achieved with respect to common assumptions in complexity
theory.

In this paper we introduce a new technique for obtaining algorithmic meta-
theorems for �rst-order logic on speci�c classes of graphs which is based on
ideas of low tree-width colourings as studied in [6, 20]. Previous meta-theorems
for �rst-order logic have, in one way or another, mostly been based on the
idea of decomposition a graph recursively into almost disjoint sub-graphs of
simpler structure than the original graph. Our technique instead is based on
the following idea. Given a graph G and a formula ϕ of quanti�er-rank q we
partitionG into a number of disjoint sets, i.e. we colour it by a number of colours,
such that any q colours together induce a sub-graph which is structurally much
simpler than the original graph. If all these sub-graphs have a property that we
call the type representation property, then this will allow us to e�ciently compute
for each of these sub-graphs a small piece of information which, combining it
for all such sub-graphs, will allow us to determine whether the formula ϕ is true
in G. Hence, to show that �rst-order model-checking is tractable for a class C
of graphs we need to show that every graph G ∈ C can be coloured in a way
that any small number of colours induce a graph with the type representation
property. This is the main technical result of this paper.

Theorem. (Theorem 5.4) For each r ≥ 0 let Cr be a class of graphs with the
type representation property and let C := (Cr)r≥0. If D is e�ciently colourable
over C then MC(FO,D) ∈ FPT.

As the most important application of our technique we show that the class of
graphs of tree depth of most k (see below for details) has the type representation
property. In [20], Ne²et°il and Ossona de Mendez introduce the concept of graph
classes which are nowhere dense and show that any such class C allows small tree
depth colouring, i.e. for each G ∈ C we can compute e�ciently a colouring of G
with not too many colours such that any q colours induce a sub-graph of tree
depth at most q. The low tree-depth colouring of nowhere dense classes of graphs
has been used in [20] to obtain several algorithmic applications, for instance
in relation for �nding homomorphisms. A di�erent techniques for establish
parameterized algorithms for problems such as variants of the dominating set,
the independent set of clique problem has been established in [5].

Low tree-depth colouring of nowhere dense classes will allow us to apply our
method above to show that �rst-order logic is �xed-parameter tractable on any
class of graphs which is nowhere dense. The concept of nowhere dense classes
properly extends classes locally excluding a minor and in this sense our result
implies the most general meta-theorem for �rst-order logic (with the exception
of clique-width). But we can show even more. For classes of graphs closed under
sub-graphs we can prove a corresponding hardness result for graph classes which
are not nowhere dense and thereby give a precise characterisation of the sub-
graph closed graph classes on which �rst-order logic is tractable. To the best
of our knowledge this is the �rst time that such an exact characterisation of
tractability has been established within a natural class of graph classes such as
those closed under sub-graphs. One of the main results of this paper, therefore,
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is the following (see below for details).

Theorem. (Corollary 5.7 and Theorem 6.1) Let C be a class of graphs.

1. If C is nowhere dense, then MC(FO, C) is �xed-parameter tractable. For
every ε > 0, the running time of the algorithm for deciding whether a
formula ϕ is true in a graph G ∈ C can be bounded by f(|ϕ|) ·n1+ε, where
f : N→ N is a computable function.

2. Otherwise, if C is e�ectively not nowhere dense and closed under sub-
graphs, then MC(FO, C) is not �xed-parameter tractable unless FPT =
AW[∗].

The running time stated in the previous theorem matches the running time
achieved by Frick and Grohe for �rst-order model-checking on graph classes of
bounded local tree width (which this result generalises) and improves signif-
icantly on the running time achieved in [11, 4] for graph classes excluding a
minor or locally excluding a minor.

In [19], Ne²et°il and Ossona de Mendez introduce the concept of graph classes
of bounded expansion. Every class exluding a minor has bounded expansion
and every class of bounded expansion is nowhere dense. But for graph classes
of bounded expansion we can show the following

Corollary. (Corollary 5.8) First-order model-checking is �xed-parameter tractable
by linear time parameterized algorithms on any class of graphs of bounded ex-
pansion (and hence on classes which exclude a �xed minor).

The previous result gives a strong tractability result for �rst-order logic on
very large classes of graphs. Furthermore, for classes closed under sub-graphs
it characterises (essentially) exactly the classes of graphs on which �rst-order
model-checking is tractable. However, our method is more general and also
applies to further classes of graphs which are no longer sparse. In particular, we
show that the class of graphs of clique-width ≤ k has the type representation
property and therefore every class that can be coloured over classes of bounded
clique-width allow tractable �rst-order model-checking.

Theorem. (Corollary 7.2) For each r ≥ 0 let Cr be the class of graphs of clique-
width at most r and let C := (Cr)r≥0. If D is e�ciently colourable over C then
MC(FO,D) ∈ FPT.

This includes all classes of bounded clique-width and all classes which are
nowhere dense and hence uni�es all known meta-theorems for �rst-order logic.
But as explained below, this includes graph classes which have unbounded
clique-width and are not nowhere dense and thereby establishes new tractability
results going beyond bounded clique-width and nowhere denseness.

Organisation. We �nd it illustrative to present our method for obtaining
meta-theorems together with the application of this method to graph classes
which are nowhere dense. The paper is therefore organised as follows. In Sec-
tion 2 we present notation and concepts used throughout the paper. In Section 3
we present the concept of tree-depth and nowhere dense classes of graphs. In
Section 4 we introduce the concept of type representation schemes and illustrate
it by showing that classes of graphs of bounded tree-depth allow such schemes.
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In Section 5 we introduce the concept of C-colourings and the general method
for obtaining meta-theorems and illustrate it by showing that �rst-order model-
checking is �xed-parameter tractable on nowhere dense classes of graphs.

In Section 6, we show that �rst-order model-checking is not �xed-parameter
tractable on every class of graphs closed under sub-structures which is not
nowhere dense, under some further assumptions. Finally, in Section 7 we show
our results on graph classes with low clique-width colouring.

2 Preliminaries

Our graph theoretical notation follows [7]. In particular, if G is a graph we refer
to its set of vertices by V (G) and to its set of edges by E(G). All graphs in
this paper are undirected and simple, i.e. without self-loops. A colouring of a
graph G is an assignment of colours to the vertices of G. A colouring is proper
if whenever {u, v} ∈ E(G), then u and v are assigned di�erent colours.

We refer to [10, 9] for background on logic. The complexity theoretical
framework we use in this paper is parameterized complexity. See [8, 12] for
details. Let C be a class of coloured graphs. The parameterized model-checking
problem MC(FO, C) for �rst-order logic (FO) on C is de�ned as the problem to
decide, given G ∈ C and ϕ ∈ FO, if G |= ϕ. The parameter is |ϕ|. MC(FO, C)
is �xed-parameter tractable (fpt), if for all G ∈ C and ϕ ∈ FO, G |= ϕ can be
decided in time f(|ϕ|) · |G|c, for some computable function f : N→ N and c ∈ N.
The class FPT is the class of all problems which are �xed-parameter tractable.
In parameterized complexity theory it plays a similar role to polynomial time
in classical complexity theory. The role of NP as a witness for intractability is
played by a class called W[1] and it is a standard assumption in parameterized
complexity theory that FPT 6= W[1], similar to P 6= NP in classical complexity.
It has been shown that MC(FO,G), where G is the class of all �nite graphs, is
complete for a parameterized complexity class called AW[∗] which is much larger
than W[1]. Hence, unless FPT = AW[∗], an assumtion widely disbelieved in the
community, �rst-order model-checking is not �xed-parameter tractable on the
class of all graphs.

Let G be a structure and v1, . . . , vk be elements in V (G). For q ≥ 0, the
�rst-order q-type tpGq (v) of v is the class of all FO-formulas ϕ(x) of quanti�er-
rank ≤ q such that G |= ϕ(v). The �rst-order 0-type is referred to as the atomic
type of v and denoted by atpG(v). We will usually omit the superscript G if
its is clear from the context. A �rst-order q-type τ(x) is a maximally consistent
class of formulas ϕ(x).

By de�nition, types are in�nite. However, it is well known that there are only
�nitely many FO-formulas of quanti�er rank ≤ q which are pairwise not equiv-
alent. Furthermore, we can e�ectively normalise formulas in such a way that
equivalent formulas are normalised syntactically to the same formula. Hence,
we can represent types by their �nite set of normalised formulas and we can also
check whether a formula belongs to a type. Note, though, that it is undecidable
whether a set of formulas is a type as by de�nition, types are satis�able.

We refer to [9] for a de�nition of Ehrenfeucht-Fraïssé games.
Let C be a class of graphs. The �rst-order theory ThFO(C) is de�ned as the

class of �rst-order formulas true in all graphs G ∈ C.
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3 Tree-Depth and Nowhere Dense Classes of Graphs

In this section we present the concepts of tree depth and nowhere dense classes
of graphs introduced in [21, 20].

The tree depth of graphs. We �rst need some further notation. A rooted
tree (T, r) is a connected acyclic graph T with a distinguished vertex r, the root
of the tree. A rooted forest is the disjoint union of rooted trees. The height of
a vertex v in a rooted tree (T, r) is the length of the path (number of edges)
from the root r to v. The height of a tree is the maximal height of its vertices.
The height of a rooted forest is the maximal height of the trees it contains. A
vertex u ∈ V (T ) is an ancestor of v ∈ V (T ), and v is a descendant of u, if u lies
on the path from the root r to v.

Let T be a rooted tree. The closure of T clos(T ) is de�ned as the graph
obtained from T by adding an edge from every vertex v ∈ V (T ) to each of its
descendants in T . The closure of a rooted forest is de�ned analogously.

3.1 De�nition ([21]). A graph G has tree-depth h if it is a sub-graph of the
closure of a rooted forest F of height at most h. We call F a tree-depth decom-
position of G.

It is an easy exercise to show that every graph G of tree-depth at most h also
has path-width and hence tree-width at most h. To simplify presentation, we
will always assume in the sequel that the tree-depth decomposition is actually
a tree, rather than a forest. At no point will the extension to forests cause any
di�culties whatsoever.

The following was proved in [21].

3.2 Theorem. There is an algorithm which, given a graph G of tree-depth
at most h, computes a tree-depth decomposition in time f(h) · |G|, for some
computable function h.

Nowhere dense classes of graphs. We now recall the de�nition of nowhere
dense classes of graphs. A graph H is a minor of G (written H 4 G) if H
can be obtained from a sub-graph of G by contracting edges. An equivalent
characterisation (see [7]) states that H is a minor of G if there is a map that
associates to each vertex v of H a non-empty tree Gv ⊆ G such that Gu and
Gv are disjoint for u 6= v and whenever there is an edge between u and v in
H there is an edge in G between some node in Gu and some node in Gv. The
sub-graphs Gv are called branch sets.

We say that H is a minor at depth r of G (and write H 4r G) if H is a minor
of G and this is witnessed by a collection of branch sets {Gv | v ∈ V (H)}, each
of which induces a graph Gv of radius at most r. That is, for each v ∈ V (H),
there is a w ∈ V (G) such that Gv ⊆ NGv

r (w).
The following de�nition is due to Ne²et°il and Ossona de Mendez [20].

3.3 De�nition (nowhere dense classes). A class of graphs C is said to be
nowhere dense if for every r there is a graph H such that H 64r G for all
G ∈ C.
C is called somewhere dense if it is not nowhere dense.
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It follows immediately from the de�nitions that if a class C of graphs which
is not nowhere dense then there is a radius r such that every graph H is a
depth r minor of some graph GH ∈ C. If, furthermore, C is closed under taking
sub-graphs, then the depth-d image IH of H in GH is itself a graph in C. Note
that the size of IH is polynomially bounded in H (for �xed r). Classes which
are not nowhere dense are called somewhere dense in [20]. Let us call a class
e�ectively somewhere dense if, given a graph H, a depth-d image IH ∈ C of H
in a graph GH ∈ C can be computed in polynomial time.

Low Tree Depth Colourings. We will also need the following results
from [20]. For each p ∈ N and each graph G let χp(G) be the least number of
colours needed for a proper vertex colouring of G such that any i < p colours
induce a sub-graph of G of tree-depth at most i. Clearly, this is well-de�ned, as
the colouring which assigns a di�erent colour to each vertex has this property.
However, for special classes C of graphs we can do with far fewer colours.

It was shown in [19] that if C is a class of graphs of bounded expansion, then
for each p > 0 there is an N(p) > 0 such that χp(G) ≤ N(p) for all G ∈ C.
Furthermore, such a colouring can be computed in linear time, for each p. If
C does not have bounded expansion then this fails as bounded expansion is
actually equivalent to the existence of such an N(p) for all p.

However, it was shown in [20] that if C is nowhere dense then

lim
p→∞

lim sup
G∈C

logχp(G)
log |G|

= 0.

Hence, for every δ > 0 there is a p0, n0 such that if G ∈ C and |G| > n0 then
G can be coloured by at most |G|δ colours such that any i < p parts of this
colouring induce a sub-graph of G of tree depth at most i. Furthermore, for
every ε > 0 there is an algorithm for computing such a colouring in time |G|1+ε.

4 The Type Representation Property and Graph

Classes of Bounded Tree-Depth

In this section we introduce the concept of type representation schemes and
the type representation property. Moreover, we will show that for each k, the
class of all graphs of tree depth at most k has the type representation property.
Graph classes with the type representation property form the cornerstone of the
method for establishing tractability results for �rst-order logic presented in the
next section.

4.1 De�nition. Let C be a class of graphs. A type representation scheme L
for C consists, for each r ≥ 0, of

1. a �nite set Lr of labels

2. for each G ∈ C and each v ∈ V (G)i a labelling labL(v) ∈ Li and

3. an algorithm A which, given G ∈ C and r ≥ 0, computes for each L ∈ Li,
where i ≤ r, a tuple witG(L) ∈ V (G)i such that labL(witG(L)) = L, if
such a tuple exists, or otherwise marks L as not realised in G
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such that for all G ∈ C and u := (u1, . . . , ui) ∈ V (G)i, v := (v1, . . . , vi) ∈ V (G)i

with labL(u) = labL(v) the following properties hold:

• (equivalence) For all ϕ(x1, . . . , xi) ∈ FO of quanti�er-rank at most r − i

G |= ϕ(u) if, and only if, G |= ϕ(v).

• (consistency) If i > 1, then labL(u1, . . . , ui−1) = labL(v1, . . . , vi−1).

We say that L′ ∈ Li+1 extends L ∈ Li if there is a tuple (v1, . . . , vi+1) ∈ V (G)i+1

with labL(v) = L′ and labL(v1, . . . , vi) = L.
C has the type representation property if it has a type representation scheme

where the algorithm A runs in time f(r) · |G|c, for some computable function
f : N→ N and constant c ∈ N.

We will refer to the pair (f, c) as the time bound of the representation
scheme.

Note that every class of graphs has a type representation scheme: simply
let Lr be the (�nite) set of all �rst-order types of r tuples up to quanti�er-
rank r. Clearly, this is a type representation scheme. The problem is that
computing the types and �nding representatives for the labels L ∈ Lr cannot
be done e�ciently in general and hence not every class of graphs has the type
representation property.

We will show next that for each k ≥ 0, the class of graphs of tree depth at
most k has the type representation property.

It will be convenient for us to encode graphs of tree-depth ≤ h as la-
belled trees of height h. Let T be a tree of height h with root r. Let Σh :=
{c, g0, g1} ∪ {(e0, . . . , eh) : ei ∈ {0, 1,−}}. We encode a graph G ⊆ clos(T )
as Σh-labelled tree (T, σ), where σ(r) := {c, gr}, where gr = g1 if r ∈ V (G)
and gr = g0 otherwise, and for each v 6= r of height i in the tree we let
σ(v) := {gv, (e0, . . . , eh)} where

• gv = g1 if v ∈ V (G) and gv = g0 otherwise,

• ej := − for all j ≥ i and

• for j < i, if uj is the ancestor of v at height j, then ej := 1 if {v, uj} ∈ E(G)
and ej := 0 otherwise.

Hence, c marks the root of the tree and vertices labelled g1 represent the
vertices in G. The tuples (e0, . . . , eh) encode the edges of G. It is easily seen
that every formula ϕ(x) ∈ FO of quanti�er-rank q can e�ectively be translated
into a formula ϕ∗(x) ∈ FO of quanti�er-rank at most q + h such that for all
u ∈ V (G), G |= ϕ(u) if, and only if, (T, σ) |= ϕ∗(u). We �x this translation for
the rest of the paper.

4.2 De�nition. Let T be a tree of height h and let x, y ∈ V (T ). The least
common ancestor lcaT (x, y) of x and y in T is the element of T of maximal
height that is an ancestor of both x and y. We de�ne lchT (x, y) to be the height
of lcaT (x, y).

If T is clear from the context we will omit the subscript in lchT (x, y) and
simply write lch(x, y).
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4.3 Lemma (Equivalence Lemma). Let (T, σ) be a Σh-labelled tree of height at
most h encoding a graph G and let ϕ(x1, . . . , xr) ∈ FO be a formula of quanti�er-
rank at most q. If u1, . . . , ur, v1, . . . , vr ∈ V (T ) are such that g1 ∈ σ(ui), g1 ∈
σ(vi), for all 1 ≤ i ≤ r, and for all 1 ≤ i ≤ j ≤ h,

tp
(T,σ)
(r+1+q−j)·h(vj) = tp

(T,σ)
(r+1+q−j)·h(uj) and lch(vi, vj) = lch(ui, uj),

then G |= ϕ(v1, . . . , vr) if, and only if, G |= ϕ(v1, . . . , vr).

Proof. First note that if tp
(T,σ)
h (u) = tp

(T,σ)
h (v) for some vertices u, v ∈ V (T ),

then u and v are of the the same height in T as the height of a vertex is de�nable
by a �rst-order formula of quanti�er-rank at most h. It follows that the height
of ui equals the height of vi, for all 1 ≤ i ≤ r. By the same argument, vi is an
ancestor of vj if, and only if, ui is an ancestor of uj and the distances between
vi, vj and ui, uj are the same.

By induction on q we show that Duplicator has a winning strategy in the
q-round Ehrenfeucht-Fraïssé game Gq(A, v1, . . . , vr;B, u1, . . . , ur), where A =
B = G. The distinction between A and B is simply to easy notation.

For q = 0 it su�ces to show that atp(v1, . . . , vr) = atp(u1, . . . , ur). Clearly,
σ(ui) = σ(vi), for all i, as they have the same atomic type. We show next that
{vi, vj} ∈ E(G) if, and only if, {ui, uj} ∈ E(G). If vj , vi are incomparable by
the ancestor relation, then uj , ui are incomparable and there is no edge between
them by the de�nition of a tree-depth decomposition. Conversely, if vi is an
ancestor of vj and the height of vi is s then, by the remark above, ui is an
ancestor of uj and the height of ui is also s. But then the edge between vi, vj is
encoded in the label of vj and as uj has the same label there is an edge between
ui and uj . The converse is analogous.

Now let q > 0. By assumption, tp
(T,σ)
(r+q−j)·h(vj) = tp

(T,σ)
(r+q−j)·h(uj), for all

1 ≤ j ≤ r. Suppose �rst that Spoiler chooses v ∈ A.

• If v is an ancestor of some vj , then Duplicator chooses the corresponding
ancestor of uj . More precisely, let P := x0 . . . xs be the path from the
root r = x0 of T to xs = vj and let S := y0 . . . ys be the corresponding
path from the root to uj . If Spoiler chooses xi, i < j, then Duplicator
chooses yj . Now, A |= ϑ(vj) where ϑ(z) := ∃z0 . . . ∃zs

(
z0 = c ∧ zs =

z ∧
∧j−1
i=0 E(zi, zi+1) ∧ tp

(T,σ)
(r+q−j−1)·h(xi). Here, tp

(T,σ)
(r+q−j−1)·h(xi) is the

conjunction of all formulas χ(x) of quanti�er-rank ≤ (r+q− j−1) ·h true
at xi.

By assumption, B |= ϑ(uj) and therefore tp
(T,σ)
(r+q−j−1)·h(yi) = tp

(T,σ)
(r+q−j−1)·h(xi).

Furthermore, by the choice of xi and yi it is clear that lch(xi, vs) =
lch(yi, us) for all 1 ≤ s ≤ r. Hence, we can apply the induction hypothesis
to conclude that Duplicator has a winning strategy on the remaining q−1
round game Gq−1(A, v1, . . . , vr, xi;B, u1, . . . , ur, yi).

• The other cases, where Spoiler chooses a descendant v of some vj or an
element not related to any v1, . . . , vr can be argued similarly as distances
up to h steps in T can be de�ned as in the previous case.

The case where Spoiler chooses v ∈ B is symmetric. �

The following lemma is a simple consequence of Courcelle's theorem [1].
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4.4 Lemma. 1. There is an algorithm which, given q ∈ N and a Σh-labelled
tree (T, σ) of height at most h computes for each v ∈ V (T ) the type tpq·h(v)
in time f(q, h) · |T |, where f : N× N→ N is a computable function.

2. There is an algorithm which, given (t1, . . . , tr, (ai,j)1≤i<j≤r) where the ti
are q · h-types and 1 ≤ ai,j ≤ h, for i < j, computes a tuple v ∈ V (T )r

such that lch(vi, vj) = ai,j and tp
(T,σ)
q·h (vi) = ti, if such a tuple exists, in

time f(r) · |T | for some computable function f : N→ N.

The previous lemmas together imply that for each k ≥ 0 the class Ck of
graphs of tree depth at most k has the type respresentation property: for
r ≥ 0 we let Lr :=

(
t1, . . . , tr, (ai,j)1≤i<j≤r

)
, where the ti are (3r + 1)-types

tp3r+1(x) and ai,j ∈ {0, . . . , k}. For G ∈ Ck and v ∈ V (G)r we let labL(v) :=(
t1, . . . , tr, (ai,j)1≤i<j≤r

)
, where ti := tp

(T,σ)
3r+1 (x) and ai,j := lch(T,σ)(ui, uj).

Here, (T, σ) is the tree encoding of a tree-depth decomposition of G1.

4.5 Theorem. For each k ≥ 0, the class Ck of graphs of tree depth at most k
has the type representation property.

Another consequence of the previous lemmas is the following observation.

4.6 Theorem. There is an algorithm which, given a graph G of tree-depth at
most h and a formula ϕ(x1, . . . , xr) of quanti�er-rank at most q, computes in
time f(h, r + q) · O(|G|) a data structure A such that given v1, . . . , vr ∈ V (G)
we can decide in time O(r) whether G |= ϕ(v1, . . . , vr).

5 A General Meta-Theorem and Applications

The aim of this section is to prove a general meta-theorem for �rst-order logic
and derive some consequences. The basis of the meta-theorem are graph classes
with the type representation property as introduced in the previous section. We
�rst need some notation.

5.1 De�nition. For each r ≥ 0 let Cr be a class of graphs and let C := (Cr)r≥0.
A C-colouring of width r of a graph G is a colouring of G such that for all colours
C1, . . . , Cr, the sub-graph G[C1, . . . , Cr] of G induced by the colours C1, . . . , Cr
is in Cr.

A class D of graphs is colourable over C, or C-colourable, if for every r ≥ 0
and every G ∈ D there is a C-colouring of G of width r.

Note that we do not require the colouring in the previous de�nition to be
proper in the graph theoretical sense, i.e. both endpoints of an edge can be
coloured by the same colour. For our purposes we need that C-colourings can
be computed e�ciently.

5.2 De�nition. For each r ≥ 0 let Cr be a class of graphs and let C := (Cr)r≥0.
A class D of graphs is e�ciently colourable over C if

1Note that tree-depth decompositions of a graph are not necessarily unique. However,

as they can be computed by a deterministic algorithm there is a canonical one which we

choose. This will, however, never be a problem in the sequel and we could even work without

a canonical representation.
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• for each r ≥ 0 and ε > 0 there is an n0 ≥ 0 such that for all G ∈ C,
χp(G) ≤ |G|ε, where χp(G) denotes the minimal number of colours for a
C-colouring of G of width r and

• there is an algorithm which, given G ∈ D and r ≥ 0, ε > 0 computes
such a colouring of G in time f(r, ε) · |G|c, for some computable function
f : N×Q→ N and c ∈ N.

We will refer to the pair (f, c) as the time bound of the colouring.

As an example, let Cr be the class of all graphs of tree depth at most r and
let C := (Cr)r≥0. As we have seen in Section 3 above, every nowhere dense class
D of graphs is e�ciently colourable over C. Furthermore, for each r, ε > 0 a
colouring can be computed in time f(r, ε) · |G|1+ε.

5.3 Lemma. For ε > 0, every nowhere dense class D is e�ciently colourable
over C with time bound (f, 1 + ε), for some computable function f : N×Q→ N.

We now prove the main result of this section.

5.4 Theorem. For each r ≥ 0 let Cr be a class of graphs with the type rep-
resentation property and let C := (Cr)r≥0. If D is e�ciently colourable over C
then MC(FO,D) ∈ FPT.

Furthermore, if (f1, c1) and (f2, c2) are the time bounds of the type repre-
sentation scheme and the colouring, respectively, then for every δ > 0 there is
a computable function f : N→ N such that for each ϕ ∈ FO and G ∈ D, G |= ϕ
can be decided in time f(|ϕ|) · |G|max{c1+δ,c2}.

For the rest of this section let us �x C and D as in the statement of the
theorem. Suppose we are given a graph G ∈ D and a formula ϕ′ ∈ FO of which
we want to decide G |= ϕ. We �rst translate ϕ′ into an equivalent formula ϕ
in prenex normal form where in addition we assume that the �rst quanti�er
is existential, i.e. ϕ is of the form ∃x1Qx2 . . . Qrxrψ(x1, . . . , xr). Let r be the
number of variables in ϕ and let L be the type representation scheme of Cr. Fix
some ε < 1

3r .

Step 1. We �rst compute a colouring of G by c := |G|ε colours C :=
{C1, . . . , Cc} such that any i ≤ r colours C := (C1, . . . , Ci) induce a sub-graph
GC := G[C1, . . . , Ci] ∈ Cr. We will denote the colour of v ∈ V (G) by C(v).

5.5 De�nition. 1. For v := v1, . . . , vs ∈ V (G), where s ≤ r, we de�ne

col(v) := (labL(v),C(v1), . . . ,C(vs)).

2. We call a tuple c := (L,C1, . . . , Cs) realisable at width s if L is realisable
in G(C1,...,Cs) and denote the set of realisable tuples at width s by Rs. We
let R :=

⋃r
i=1Rs and call the tuples in R realisable.

3. For c := (L,C) ∈ Rs we de�ne wit(c) := witGC (L). Hence, wit(c) is a
tuple v ∈ V (GC) witnessing that L is realised in GC .

4. If c := (L,C1, . . . , Cs) and c′ := (L′, C ′1, . . . , C
′
s+1) are realisable tuples we

say that c′ extends c if for all 1 ≤ i < j ≤ s, Ci = C ′i and L
′ extends L in

G(C′
1,...,C

′
s+1)

.
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After the initial preprocessing in Step 1, the algorithm for checking whether
G |= ϕ now proceeds in three further steps.

Step 2. For all c ∈ Rr let v := wit(c). If G |= ψ(v) mark c as good, otherwise
mark it as bad.

Step 3. For i := r − 1...1 (counting downwards) and for all c ∈ Ri do the
following:

• if Qi = ∀ and all c′ ∈ Ri+1 which extend c are good then mark c as
good. Otherwise mark it as bad.

• if Qi = ∃ and there exists a good c′ ∈ Ri+1 extending c, then mark
c as good. Otherwise mark it as bad.

Step 4. If there is a good tuple inR1 then accept, otherwise reject. (Recall that
ϕ was assumed to be in prenex normal form starting with an existential
quanti�er.)

We next show correctness of the algorithm.

5.6 Lemma. On input G,ϕ := ∃x1Qx2 . . . Qrxrψ(x1, . . . , xr), where ψ is atomic,
the algorithm returns true if, and only if, G |= ϕ.

Proof. To simplify notation let us de�ne

ϕi(x1, . . . , xi) := Qi+1xi . . . Qrxrψ(x1, . . . , xr),

for 0 ≤ i ≤ r. Hence, ϕ0 = ϕ and ϕr = ψ. By induction on 0 ≤ q ≤ r we will
show that for all v1, . . . , vs ∈ V (G), where s := r − q,

G |= ϕs(v1, . . . , vs) if, and only if, col(v1, . . . , vs) is good after Step 3.

Clearly, for q = r − 1 this implies that G |= ϕ1(v) if, and only if, col(v) is
good. Hence, in Step 4, the algorithm accepts if, and only if, there is a good
tuple c ∈ R1 if, and only if, there G |= ϕ1(wit(c)) if, and only if, G |= ∃x1ϕ1,
i.e. G |= ϕ.

Assume �rst that q = 0 and let v := v1, . . . , vr ∈ V (G). Let c := col(v) =
(L,C). Suppose that G |= ϕr(v). By the equivalence property of type represen-
tation schemes, if col(v) = col(u) for some u := u1, . . . , ur ∈ V (G) then GC |=
ϕr(v) if, and only if, GC |= ϕr(u). Further, as ϕr is atomic, GC |= ϕr(u) if, and
only if, G |= ϕr(u). Hence, as G |= ϕr(v), this implies that GC |= ϕr(wit(c))
and therefore c is marked good in Step 2.

Conversely, assume that c := col(v1, . . . , vr) ∈ Rr is good after Step 2. By
construction of the algorithm, G |= ϕr(wit(c)) and therefore, by the equivalence
property of type representation schemes as before, G |= ϕr(v1, . . . , vr).

Now assume that q > 0 and set s := r − q. Let v1, . . . , vs ∈ V (G) and let
c := col(v1, . . . , vs). Suppose �rst that G |= ϕs(v1, . . . , vs). If Qs = ∀, then this
implies that G |= ϕs+1(v1, . . . , vs, v) for all v ∈ V (G). By induction hypothesis,
col(v1, . . . , vs, v) is good for all v ∈ V (G). As this spans all tuples c ∈ Rs+1

which extend c this implies that c is marked as good in Step 3.
IfQs = ∃, then there must be a vertex v ∈ V (G) such thatG |= ϕs+1(v1, . . . , vs, v)

and therefore, by induction hypothesis, col(v1, . . . , vs, v) is marked as good. As
clearly col(v1, . . . , vs, v) extends c, c is marked as good in Step 3.
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Finally, assume that c ∈ Rs is marked as good in Step 3. We again dis-
tinguish between Qs = ∀ and Qs = ∃. If Qs = ∀, then c being good im-
plies that all c′ which extend c are good. By induction hypothesis and the
equivalence property of type representation schemes, this implies that for all
u := (u1, . . . , us+1) such that col(u) extends c, G |= ϕs+1(u). However, for
every v ∈ V (G), col(v1, . . . , vs, v) extends col(v1, . . . , vs) and therefore for all
v ∈ V (G), G |= ϕs+1(v1, . . . , vs, v). Thus, G |= ϕs(v1, . . . , vs). The case Qs = ∃
can be argued analogously. This concludes the proof of the lemma. �

The previous lemma established the correctness of the algorithm. We now
analyse its running time. In what follows, let r := |ϕ|. Let f1 : N → N and
c1 ∈ N be the time bound for the type representation scheme of C as de�ned in
De�nition 4.1 and let f2 : N→ N and c2 ∈ N be the time bound for computing
the C-colouring as de�ned in De�nition 5.2.

1. The algorithm �rst computes the colouring of G. By de�nition of e�cient
C-colourings, for every �xed r and ε > 0 there exists the required colouring
of G using c := |G|ε colours which can be computed in time f2(r, ε)|G|c2 .

2. The algorithm then computes in eachGC := G[C], where C := (C1, . . . , Cr)
is a tuple of colours, the witnesses wit(L,C) for all L ∈ Rr. This takes
time cr · f1(r) · |G|c1 .

3. After this preparation the algorithm proceeds to the two main steps. In
Step 2 we need time cr · O(r) to check which tuples c are good and Step
3 requires a total of r · cr · cr = r · c2r time.

Hence, in total the algorithm needs

f2(|ϕ|, ε)|G|c2 + c3|ϕ| · g(|ϕ|) · |G|c1 ,

where g : N → N is a computable function, depending on f2. However, as c :=
|G|ε and ε < 3r, the running time is bounded by f2(|ϕ|, ε)|G|c2 +g(|ϕ|) · |G|c1+δ,
where δ := ε · 3|ϕ| < 1, and this is enough to show that the algorithm runs in
parameterized polynomial time. This completes the proof of Theorem 5.4.

Recall that for nowhere dense classes of graphs the time bounds for the type
representation scheme over graphs of bounded tree depth as linear in the size
of |G| and that the colouring can be computed in time |G|1+ε, for every ε > 0.
Hence, for nowhere dense classes of graphs we get the following result.

5.7 Corollary. Let C be a nowhere dense class of graphs. For every ε > 0 there
is a computable function f : N → N and an algorithm which, given G ∈ C and
ϕ ∈ FO, decides G |= ϕ in time f(|ϕ|) · |G|1+ε.

For graph classes C of bounded expansion we can do even better. It was
shown in [19] that if C is a class of graphs of bounded expansion then for each
p ≥ 0 there exists an N(p) ≥ 0 such that every graph G ∈ C can be coloured by
N(p) colours in a way that any i ≤ p colours induce a sub-graph of tree depth
at most i and such a colouring can be computed in linear time. Hence, following
the analysis of the running time above, for such classes we obtain a linear time
parameterized algorithm.
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5.8 Corollary. Let C be a class of graphs of bounded expansion. There is lin-
ear time parameterized algorithm solving the �rst-order model-checking problem
MC(FO, C) on C.

Recall that graph classes of bounded expansion strictly generalise graph
classes excluding a �xed minor. Hence the previous result improves signi�cantly
over the time bounds achieved in [11].

6 Graph Classes which are Somewhere Dense

As a consequence of the main theorem in the previous section we obtained that
�rst-order model-checking is �xed-parameter tractable on all classes of graphs
which are nowhere dense. In this section we will show that, if we consider
classes of graphs closed under sub-graphs, then essentially tractable �rst-order
model-checking cannot be extended beyond classes that are nowhere dense. In
this way, for classes closed under sub-graphs, we essentially obtain an precise
characterisation of the classes of graphs for which �rst-order model-checking is
tractable.

Recall the de�nition of e�ectively somewhere dense classes of graphs in Sec-
tion 2. If a class C of graphs is not nowhere dense then there is a radius r such
that every graph H is a depth r minor of some graph GH ∈ C. If, furthermore,
C is closed under taking sub-graphs, then the depth-d image IH of H in GH
is itself a graph in C. Note that the size of IH is polynomially bounded in H
(for �xed r). Classes which are not nowhere dense are called somewhere dense
in [20]. Let us call a class e�ectively somewhere dense if, given a graph H, a
depth-d image IH ∈ C of H in a graph GH ∈ C can be computed in polynomial
time.

6.1 Theorem. If C is closed under sub-graphs and e�ectively somewhere dense
then MC(FO, C) 6∈ FPT unless FPT= AW[∗].

To prove the theorem we will show that �rst-order model-checking on the
class of all graphs, which is AW[∗] complete, is parameterized reducible to �rst-
order model-checking on any e�ectively somewhere dense class closed under
sub-graphs. We �nd it convenient to state this in terms of a �rst-order inter-
pretations. See e.g. [16].

6.2 De�nition. Let σ := {E} be the signature of graphs, where E is a binary
relation symbol. A (one-dimensional) interpretation from σ-structures to σ-
structures is a triple Γ := (ϕuniv(x), ϕvalid, ϕE(x, y)) of FO[σ]-formulas.

For every σ-structure T with T |= ϕvalid we de�ne a graph G := Γ(T ) as
the graph with vertex set V (G) := {u ∈ V (T ) : T |= ϕuniv(v)} and edge set
E(G) := {{u, v} ∈ V (G) : T |= ϕE(u, v)}.

If C is a class of σ-structures we de�ne Γ(C) := {Γ(T ) : T ∈ C, T |= ϕvalid}.

Every interpretation naturally de�nes a mapping from FO[σ]-formulas ϕ to
FO[σ]-formulas ϕ∗ := Γ(ϕ). Here, ϕ∗ is obtained from ϕ by recursively replacing

• �rst-order quanti�ers ∃xϕ and ∀xϕ by ∃x(ϕuniv(x)∧ϕ∗) and ∀x(ϕuniv(x)→
ϕ∗) respectively, and

• atoms E(x, y) by ϕE(x, y).
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The following lemma is easily proved (see [16]).

6.3 Lemma (interpretation lemma). Let Γ be an FO-interpretation from σ-
structures to σ-structures. Then for all FO-formulas and all σ-structures G |=
ϕvalid

G |= Γ(ϕ) ⇐⇒ Γ(G) |= ϕ.

6.4 De�nition. Let C,D be classes of σ-structures. A �rst-order reduction
(Γ, f) from C to D consists of a �rst-order interpretation Γ of C in D together
with a polynomial-time computable function f : C → D such that for all G ∈ C
and all ϕ ∈ FO[σ],

G |= ϕ if, and only if, f(G) |= Γ(ϕ).

The following lemma follows immediately from the de�nitions.

6.5 Lemma. Let C,D be two classes of graphs and let (Γ, f) be a �rst-order
reduction from C to D. Then (Γ, f) is a parameterized reduction from MC(FO, C)
to MC(FO,D). In particular, if MC(FO,D) ∈ FPT then MC(FO, C) ∈ FPT.

Let G be the class of all graphs and let C be an e�ectively somewhere dense
class of graphs closed under sub-graphs. Let r be the radius as above such that
every graph occurs as a depth r minor of some graph in G. We �rst de�ne the
function f : G → C.

Let H ∈ G be a graph. We construct a graph H ′ as follows. Let I ⊆ V (H)
be the set of isolated vertices in H and let V := V (H) \ I.

For every vertex v ∈ V we add the following gadget ρ(v) := (Vv, Ev) to H ′:
Vv := {v, v1, v2} and Ev :=

{
{v, v1}, {v, v2}

}
. Hence, essentially, we take v and

add two new neighbours of degree 1. For every edge {u, v} ∈ E(H) we add a
path of length 2r linking v and u in H ′. Formally, we �x an ordering ≤H on
V (H) and let

V (H ′) := V (H)∪̇{v1, v2 : v ∈ V (H) \ I} ∪̇
{ei(v,w) : 1 ≤ i ≤ 2r, {u, v} ∈ E(H), u ≤H v}

and

E(H ′) :=
{
{v, e1(v,w)}, {w, e

2r
(v,w)}, {e

i
(v,w), e

i+1
(v,w)} :

1 ≤ i < 2r, v ≤H w,
{v, w} ∈ E(H)

}
∪{

{v, v1}, {v, v2} : v ∈ V (H) \ I
}

Now, let GH′ be a depth d image of H ′ in a graph G ∈ C. As C is closed under
sub-graphs, GH′ ∈ C and, as C is e�ectively somewhere dense, given H, we can
compute GH′ in polynomial time. We de�ne f(H) := GH′ .

To complete the reduction we de�ne a �rst-order interpretation of G in C.
For this, we let ϕuniv(x) be the formula that says x is an isolated vertex or x
has degree at least 3 and there are two disjoint paths of length at most r from x
to vertices of degree 1. Now let H be a graph and let G := f(H) be the image
of H ′ in C. Then ϕuniv(x) will be true at all vertices in G which are copies of
vertices v ∈ V (H). Now to de�ne the edges we take the formula ϕE(x, y) which
says that x, y satisfy ϕuniv and there is a path between x and y of length at most
2r2. Finally, we let ϕvalid be the formula that says every vertex either satis�es
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ϕuniv or lies on a path of length at most 4r2 between two vertices satisfying ϕuniv
and has degree 2.

Now clearly, for all graphs G ∈ G, Γ(f(G)) ∼= G and hence, by the interpre-
tation lemma, G |= ϕ if, and only if, f(G) |= Γ(ϕ).

Theorem 6.1 now follows immediately from the fact that MC(FO,G) is AW[∗]-
complete (see e.g.[12]).

A further consequence of this construction is the following

6.6 Corollary. If C is a somewhere dense class of graphs closed under sub-
graphs then ThFO(C) is undecidable.

7 Graph Classes of Low Clique-Width Colouring

In this section we apply our method developed in Section 5 for establishing
even more general meta-theorems for �rst-order logic. For p ≥ 0, let Cp be
the class of graphs of clique-width at most p and let C := (Cp)p≥0. See [3] for
a de�nition of clique-width. In this section we will show that C has the type
representation property. As a consequence, every class D of graphs which is
e�ciently colourable over C has tractable �rst-order model-checking, see Corol-
lary 7.2 below. As clique-width generalises tree-depth and every class of graphs
of bounded clique-width is trivially colourable over C, this result strictly gener-
alises all known meta-theorems for �rst-order logic and provides a unifying link
between classes of bounded clique-width and classes which exclude a minor or
have bounded local tree-width or are nowhere dense.

We will show �rst that C has the type representation property.

7.1 Lemma. For any p ≥ 0, the class C of graphs of clique-width at most p has
the type representation property.

Proof. It is well known that, similarly to graphs of small tree-with, graphs G
of clique-width at most p can be encoded as labelled binary trees T (G) over a
signature Σp. Essentially, the tree T (G) corresponds to a clique-width expres-
sion generating G. The vertices of G are in one-to-one correspondence to the
leaves of T (G) and the inner vertices of T (G) are labelled by the operations in
the clique-width expression. See e.g. [2]. We will follow the presentation in [18].

Given a graphG ∈ C we can compute a clique-width expression generatingG.
It has been shown in [15] that computing approximate clique-width expressions
generating G is �xed-parameter tractable. More precisely, one �rst computes
a rank-decomposition of G of optimal width s ≤ p from which a clique-width
expression of width at most 2s+1 can be computed e�ciently. Hence, given
G ∈ C we can compute a tree T (G) encoding G, where T (G) is a tree over
Σk for k := 2p+1, in time f(p) · |G|c, for some c ∈ N and computable function
f : N→ N.

Furthermore, every �rst-order formula ϕ of quanti�er-rank q can be trans-
lated e�ectively into an MSO1-formula ϕ∗ on Σk-labelled binary trees such that
G |= ϕ if, and only if, T (G) |= ϕ∗, where T (G) is the encoding of G as a Σk-
labelled tree. The quanti�er-rank of ϕ∗ is q + k′, where k′ only depends on k
and hence on the clique-width p of G.

We de�ne a type representation scheme for C as follows. Let r ≥ 0 be given.
Let c := {c1, . . . , cr} be constant symbols disjoint from any symbol in Σk. We
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let Lr be the class of MSO-types of quanti�er-rank r of Σk∪̇c-structures, up to
equivalence. Clearly, up to equivalence, there are only �nitely many pairwise
non-equivalent such types and hence Lr is �nite.

Now, given a graph G and a tuple v := (v1, . . . , vr) ∈ V (G)r we �rst compute
the Σk-labelled tree T (G) as above. To compute the label labL(v) we have to
compute the tpMSOr (v) in G. For this, let u be the tuple of leaves in T (G)
corresponding to v. As above, we can compute the quanti�er-(r + k′)-MSO

type of the structure
(
T (G), u1, . . . , ur

)
, the Σk∪̇c-structure obtained from T (G)

by interpreting ci by ui, in time f(r + k′) · |T | for some computable function
f : N→ N. From this the type tpMSOr (v) can be computed easily.

Finally, using exactly the same method, for each type τ ∈ Lr we can compute
a tuple witG(τ) ∈ V (G)r such that labL(witG(τ)) = τ in linear time, if such a
witness exists.

It is easily veri�ed that (Lr)r≥0 forms a type representation scheme. �

As a consequence, every class D which is e�ciently colourable over C :=
(Cp)p≥0 has tractable �rst-order model-checking. This is the main result of this
section.

7.2 Corollary. For p ≥ 0 let Cp be the class of graphs of clique-width at most
p and let C := (Cp)p≥0. Let D be a class of graphs which is e�ciently colourable
over C. Then MC(FO,D) ∈ FPT.

As explained above, this theorem strictly generalises the existing meta-
theorem for �rst-order logic on graph classes of bounded clique-width and also
Corollary 5.7 and thereby provides the most general meta-theorem known so
far. In particular, it also applies to classes of graphs of unbounded clique-width
and which are not nowhere dense.
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