

Parameterized Complexity of First-Order Logic

Correction

Anuj DawarStephan KreutzerCambridge UniversityOxford UniversityComputer LaboratoryComputing Laboratoryanuj.dawar@cl.cam.ac.ukkreutzer@comlab.ox.ac.uk

19th March 2013

1 Retraction of Main Result

In the previous version of this technical report we claimed the following result.

Theorem. (Corollary 5.7) Let \mathcal{C} be a class of graphs. If \mathcal{C} is nowhere dense, then MC(FO, \mathcal{C}) is fixed-parameter tractable. For every $\varepsilon > 0$, the running time of the algorithm for deciding whether a formula φ is true in a graph $G \in \mathcal{C}$ can be bounded by $f(|\varphi|) \cdot n^{1+\varepsilon}$, where $f : \mathbb{N} \to \mathbb{N}$ is a computable function.

When preparing a conference submission of the paper we discovered a flaw in the argument, which we have not been able to fix. We therefore retract the claim of the theorem.

Tractability of first-order model checking on nowhere-dense classes was also claimed by Dvořák and Král in [3, Theorem 10] citing an unpublished manuscript by the authors and R. Thomas. The final version of that paper [4] contains only the weaker result for classes of locally bounded expansion. To the best of our knowledge, the question for nowhere-dense classes remains open.

The argument outlined in the technical report does go through for classes of graphs of bounded expansion, which is a weaker statement, so that the following result holds true.

Theorem. First-order model-checking is fixed-parameter tractable by linear time parameterized algorithms on any class of graphs of bounded expansion (and hence on classes which exclude a fixed minor).

A detailed proof of this theorem can be found in [4] and also in [8].

In the previous version of this technical report we also claimed a lower bound, i.e. an intractability result for first-order model-checking on classes of graphs which are not nowhere dense. This result still holds true and we repeat the proof here.

2 Preliminaries

Our graph theoretical notation follows [1]. In particular, if G is a graph we refer to its set of vertices by V(G) and to its set of edges by E(G). All graphs in this paper are undirected and simple, i.e. without self-loops. A *colouring* of a graph G is an assignment of colours to the vertices of G. A colouring is *proper* if whenever $\{u, v\} \in E(G)$, then u and v are assigned different colours.

We refer to [6, 5] for background on logic. The complexity theoretical framework we use in this paper is *parameterized complexity*. See [2, 7] for details. Let C be a class of coloured graphs. The *parameterized model-checking problem* MC(FO, C) for first-order logic (FO) on C is defined as the problem to decide, given $G \in C$ and $\varphi \in FO$, if $G \models \varphi$. The *parameter* is $|\varphi|$. MC(FO, C) is *fixedparameter tractable* (fpt), if for all $G \in C$ and $\varphi \in FO$, $G \models \varphi$ can be decided in time $f(|\varphi|) \cdot |G|^c$, for some computable function $f : \mathbb{N} \to \mathbb{N}$ and $c \in \mathbb{N}$. The class FPT is the class of all problems which are fixed-parameter tractable. In parameterized complexity theory it plays a similar role to polynomial time in classical complexity theory. The role of NP as a witness for intractability is played by a class called W[1] and it is a standard assumption in parameterized complexity theory that FPT \neq W[1], similar to $P \neq NP$ in classical complexity. It has been shown that MC(FO, G), where G is the class of all finite graphs, is complete for a parameterized complexity class called AW[*] which is much larger than W[1]. Hence, unless FPT = AW[*], an assumtion widely disbelieved in the community, first-order model-checking is not fixed-parameter tractable on the class of all graphs.

Let G be a structure and v_1, \ldots, v_k be elements in V(G). For $q \ge 0$, the first-order q-type $\operatorname{tp}_q^G(\overline{v})$ of \overline{v} is the class of all FO-formulas $\varphi(\overline{x})$ of quantifier-rank $\le q$ such that $G \models \varphi(\overline{v})$. The first-order 0-type is referred to as the *atomic type* of \overline{v} and denoted by $\operatorname{atp}^G(\overline{v})$. We will usually omit the superscript G if its is clear from the context. A first-order q-type $\tau(\overline{x})$ is a maximally consistent class of formulas $\varphi(\overline{x})$.

By definition, types are infinite. However, it is well known that there are only finitely many FOformulas of quantifier rank $\leq q$ which are pairwise not equivalent. Furthermore, we can effectively *normalise* formulas in such a way that equivalent formulas are normalised syntactically to the same formula. Hence, we can represent types by their finite set of normalised formulas and we can also check whether a formula belongs to a type. Note, though, that it is undecidable whether a set of formulas is a type as by definition, types are satisfiable.

We refer to [5] for a definition of Ehrenfeucht-Fraïssé games.

Let C be a class of graphs. The *first-order theory* $\operatorname{Th}_{FO}(C)$ is defined as the class of first-order formulas true in all graphs $G \in C$.

3 Nowhere Dense Classes of Graphs

In this section we present the concept of nowhere dense classes of graphs introduced in [10, 11].

A graph H is a *minor* of G (written $H \preccurlyeq G$) if H can be obtained from a sub-graph of G by contracting edges. An equivalent characterisation (see [1]) states that H is a minor of G if there is a map that associates to each vertex v of H a non-empty tree $G_v \subseteq G$ such that G_u and G_v are disjoint for $u \neq v$ and whenever there is an edge between u and v in H there is an edge in G between some node in G_v . The sub-graphs G_v are called *branch sets*.

We say that H is a *minor at depth* r of G (and write $H \preccurlyeq_r G$) if H is a minor of G and this is witnessed by a collection of branch sets $\{G_v \mid v \in V(H)\}$, each of which induces a graph G_v of radius at most r. That is, for each $v \in V(H)$, there is a $w \in V(G)$ such that $G_v \subseteq N_r^{G_v}(w)$.

The following definition is due to Nešetřil and Ossona de Mendez [11].

3.1 Definition (nowhere dense classes). A class of graphs C is said to be nowhere dense if for every r there is a graph H such that $H \not\preccurlyeq_r G$ for all $G \in C$.

C is called somewhere dense if it is not nowhere dense.

It follows immediately from the definitions that if a class C of graphs which is not nowhere dense then there is a radius r such that every graph H is a depth r minor of some graph $G_H \in C$. If, furthermore, C is closed under taking sub-graphs, then the depth-d image I_H of H in G_H is itself a graph in C. Note that the size of I_H is polynomially bounded in H (for fixed r). Classes which are not nowhere dense are called *somewhere dense* in [11]. Let us call a class *effectively somewhere dense* if, given a graph H, a depth-d image $I_H \in C$ of H in a graph $G_H \in C$ can be computed in polynomial time.

4 Graph Classes which are Somewhere Dense

In this section we will show that essentially first-order model-checking is not fixed-parameter tractable on classes of graphs closed under sub-graphs which are somewhere dense.

Recall the definition of effectively somewhere dense classes of graphs in Section 2. If a class C of graphs is not nowhere dense then there is a radius r such that every graph H is a depth r minor of some graph $G_H \in C$. If, furthermore, C is closed under taking sub-graphs, then the depth-d image I_H of H in G_H is itself a graph in C. Note that the size of I_H is polynomially bounded in H (for fixed r). Classes which are not nowhere dense are called *somewhere dense* in [11]. Let us call a class *effectively somewhere dense* if, given a graph H, a depth-d image $I_H \in C$ of H in a graph $G_H \in C$ can be computed in polynomial time.

4.1 Theorem. *If* C *is closed under sub-graphs and effectively somewhere dense then* MC(FO, C) \notin FPT *unless* FPT= AW[*].

To prove the theorem we will show that first-order model-checking on the class of all graphs, which is AW[*] complete, is parameterized reducible to first-order model-checking on any effectively somewhere dense class closed under sub-graphs. We find it convenient to state this in terms of a first-order interpretations. See e.g. [9].

4.2 Definition. Let $\sigma := \{E\}$ be the signature of graphs, where E is a binary relation symbol. A (onedimensional) interpretation from σ -structures to σ -structures is a triple $\Gamma := (\varphi_{univ}(x), \varphi_{valid}, \varphi_E(x, y))$ of FO[σ]-formulas.

For every σ -structure T with $T \models \varphi_{valid}$ we define a graph $G := \Gamma(T)$ as the graph with vertex set $V(G) := \{u \in V(T) : T \models \varphi_{univ}(v)\}$ and edge set $E(G) := \{\{u, v\} \in V(G) : T \models \varphi_E(u, v)\}$. If C is a class of σ -structures we define $\Gamma(C) := \{\Gamma(T) : T \in C, T \models \varphi_{valid}\}$.

Every interpretation naturally defines a mapping from FO[σ]-formulas φ to FO[σ]-formulas $\varphi^* := \Gamma(\varphi)$. Here, φ^* is obtained from φ by recursively replacing

- first-order quantifiers $\exists x \varphi$ and $\forall x \varphi$ by $\exists x (\varphi_{univ}(x) \land \varphi^*)$ and $\forall x (\varphi_{univ}(x) \to \varphi^*)$ respectively, and
- atoms E(x, y) by $\varphi_E(x, y)$.

The following lemma is easily proved (see [9]).

4.3 Lemma (interpretation lemma). Let Γ be an FO-interpretation from σ -structures to σ -structures. Then for all FO-formulas and all σ -structures $G \models \varphi_{valid}$

$$G \models \Gamma(\varphi) \quad \iff \quad \Gamma(G) \models \varphi.$$

4.4 Definition. Let C, D be classes of σ -structures. A first-order reduction (Γ, f) from C to D consists of a first-order interpretation Γ of C in D together with a polynomial-time computable function $f : C \to D$ such that for all $G \in C$ and all $\varphi \in FO[\sigma]$,

$$G \models \varphi$$
 if, and only if, $f(G) \models \Gamma(\varphi)$

The following lemma follows immediately from the definitions.

4.5 Lemma. Let C, D be two classes of graphs and let (Γ, f) be a first-order reduction from C to D. Then (Γ, f) is a parameterized reduction from MC(FO, C) to MC(FO, D). In particular, if MC(FO, $D) \in$ FPT then MC(FO, C) \in FPT.

Let \mathcal{G} be the class of all graphs and let \mathcal{C} be an effectively somewhere dense class of graphs closed under sub-graphs. Let r be the radius as above such that every graph occurs as a depth r minor of some graph in \mathcal{G} . We first define the function $f : \mathcal{G} \to \mathcal{C}$.

Let $H \in \mathcal{G}$ be a graph. We construct a graph H' as follows. Let $I \subseteq V(H)$ be the set of isolated vertices in H and let $V := V(H) \setminus I$.

For every vertex $v \in V$ we add the following gadget $\rho(v) := (V_v, E_v)$ to $H': V_v := \{v, v_1, v_2\}$ and $E_v := \{\{v, v_1\}, \{v, v_2\}\}$. Hence, essentially, we take v and add two new neighbours of degree 1. For every edge $\{u, v\} \in E(H)$ we add a path of length 2r linking v and u in H'. Formally, we fix an ordering \leq_H on V(H) and let

$$V(H') := V(H) \dot{\cup} \{ v_1, v_2 : v \in V(H) \setminus I \} \dot{\cup} \\ \{ e^i_{(v,w)} : 1 \le i \le 2r, \{u,v\} \in E(H), u \le_H v \}$$

and

$$E(H') := \left\{ \{v, e_{(v,w)}^1\}, \{w, e_{(v,w)}^{2r}\}, \{e_{(v,w)}^i, e_{(v,w)}^{i+1}\} : \begin{array}{l} 1 \le i < 2r, v \le_H w, \\ \{v, w\} \in E(H) \end{array} \right\} \cup \left\{ \{v, v1\}, \{v, v_2\} : v \in V(H) \setminus I \right\}$$

Now, let $G_{H'}$ be a depth d image of H' in a graph $G \in C$. As C is closed under sub-graphs, $G_{H'} \in C$ and, as C is effectively somewhere dense, given H, we can compute $G_{H'}$ in polynomial time. We define $f(H) := G_{H'}$.

To complete the reduction we define a first-order interpretation of \mathcal{G} in \mathcal{C} . For this, we let $\varphi_{univ}(x)$ be the formula that says x is an isolated vertex or x has degree at least 3 and there are two disjoint paths of length at most r from x to vertices of degree 1. Now let H be a graph and let G := f(H) be the image of H' in \mathcal{C} . Then $\varphi_{univ}(x)$ will be true at all vertices in G which are copies of vertices $v \in V(H)$. Now to define the edges we take the formula $\varphi_E(x, y)$ which says that x, y satisfy φ_{univ} and there is a path between x and y of length at most $2r^2$. Finally, we let φ_{valid} be the formula that says every vertex either satisfies φ_{univ} or lies on a path of length at most $4r^2$ between two vertices satisfying φ_{univ} and has degree 2.

Now clearly, for all graphs $G \in \mathcal{G}$, $\Gamma(f(G)) \cong G$ and hence, by the interpretation lemma, $G \models \varphi$ if, and only if, $f(G) \models \Gamma(\varphi)$.

Theorem 4.1 now follows immediately from the fact that MC(FO, G) is AW[*]-complete (see e.g.[7]).

A further consequence of this construction is the following

4.6 Corollary. If C is a somewhere dense class of graphs closed under sub-graphs then $Th_{FO}(C)$ is undecidable.

References

- [1] R. Diestel. *Graph Theory*. Springer-Verlag, 3rd edition, 2005.
- [2] R. Downey and M. Fellows. Parameterized Complexity. Springer, 1998.
- [3] Z. Dvorak and D. Král. Algorithms for classes of graphs with bounded expansion. In *WG*, pages 17–32, 2009.

- [4] Z. Dvořák, D. Král, and R. Thomas. Deciding first-order properties for sparse graphs. In 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2010.
- [5] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 2nd edition, 1999.
- [6] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer, 2nd edition, 1994.
- [7] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006. ISBN 3-54-029952-1.
- [8] M. Grohe and S. Kreutzer. Methods for algorithmic meta-theorems. *Contemporary Mathematics*, 588, American Mathematical Society 2011.
- [9] W. Hodges. A shorter model theory. Cambridge University Press, 1997.
- [10] J. Nešetřil and P. O. de Mendez. Tree depth, subgraph coloring and homomorphisms. *European Journal* of *Combinatorics*, 2005.
- [11] J. Nešetřil and P. Ossona de Mendez. On nowhere dense graphs. *European Journal of Combinatorics*, 32(4):600–617, 2011.