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1 Retraction of Main Result

In the previous version of this technical report we claimed the following result.

Theorem. (Corollary 5.7) Let C be a class of graphs. If C is nowhere dense, then MC(FO, C) is
fixed-parameter tractable. For every ε > 0, the running time of the algorithm for deciding whether a
formula ϕ is true in a graphG ∈ C can be bounded by f(|ϕ|)·n1+ε, where f : N→ N is a computable
function.

When preparing a conference submission of the paper we discovered a flaw in the argument, which
we have not been able to fix. We therefore retract the claim of the theorem.

Tractability of first-order model checking on nowhere-dense classes was also claimed by Dvořák
and Král in [3, Theorem 10] citing an unpublished manuscript by the authors and R. Thomas. The
final version of that paper [4] contains only the weaker result for classes of locally bounded expansion.
To the best of our knowledge, the question for nowhere-dense classes remains open.

The argument outlined in the technical report does go through for classes of graphs of bounded
expansion, which is a weaker statement, so that the following result holds true.

Theorem. First-order model-checking is fixed-parameter tractable by linear time parameterized al-
gorithms on any class of graphs of bounded expansion (and hence on classes which exclude a fixed
minor).

A detailed proof of this theorem can be found in [4] and also in [8].
In the previous version of this technical report we also claimed a lower bound, i.e. an intractability

result for first-order model-checking on classes of graphs which are not nowhere dense. This result
still holds true and we repeat the proof here.

2 Preliminaries

Our graph theoretical notation follows [1]. In particular, ifG is a graph we refer to its set of vertices by
V (G) and to its set of edges by E(G). All graphs in this paper are undirected and simple, i.e. without
self-loops. A colouring of a graph G is an assignment of colours to the vertices of G. A colouring is
proper if whenever {u, v} ∈ E(G), then u and v are assigned different colours.
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We refer to [6, 5] for background on logic. The complexity theoretical framework we use in this
paper is parameterized complexity. See [2, 7] for details. Let C be a class of coloured graphs. The
parameterized model-checking problem MC(FO, C) for first-order logic (FO) on C is defined as the
problem to decide, given G ∈ C and ϕ ∈ FO, if G |= ϕ. The parameter is |ϕ|. MC(FO, C) is fixed-
parameter tractable (fpt), if for allG ∈ C and ϕ ∈ FO, G |= ϕ can be decided in time f(|ϕ|) · |G|c, for
some computable function f : N → N and c ∈ N. The class FPT is the class of all problems which
are fixed-parameter tractable. In parameterized complexity theory it plays a similar role to polynomial
time in classical complexity theory. The role of NP as a witness for intractability is played by a class
called W[1] and it is a standard assumption in parameterized complexity theory that FPT 6= W[1],
similar to P 6= NP in classical complexity. It has been shown that MC(FO,G), where G is the class
of all finite graphs, is complete for a parameterized complexity class called AW[∗] which is much
larger than W[1]. Hence, unless FPT = AW[∗], an assumtion widely disbelieved in the community,
first-order model-checking is not fixed-parameter tractable on the class of all graphs.

Let G be a structure and v1, . . . , vk be elements in V (G). For q ≥ 0, the first-order q-type tpGq (v)
of v is the class of all FO-formulas ϕ(x) of quantifier-rank≤ q such that G |= ϕ(v). The first-order 0-
type is referred to as the atomic type of v and denoted by atpG(v). We will usually omit the superscript
G if its is clear from the context. A first-order q-type τ(x) is a maximally consistent class of formulas
ϕ(x).

By definition, types are infinite. However, it is well known that there are only finitely many FO-
formulas of quantifier rank ≤ q which are pairwise not equivalent. Furthermore, we can effectively
normalise formulas in such a way that equivalent formulas are normalised syntactically to the same
formula. Hence, we can represent types by their finite set of normalised formulas and we can also
check whether a formula belongs to a type. Note, though, that it is undecidable whether a set of
formulas is a type as by definition, types are satisfiable.

We refer to [5] for a definition of Ehrenfeucht-Fraïssé games.
Let C be a class of graphs. The first-order theory ThFO(C) is defined as the class of first-order

formulas true in all graphs G ∈ C.

3 Nowhere Dense Classes of Graphs

In this section we present the concept of nowhere dense classes of graphs introduced in [10, 11].
A graph H is a minor of G (written H 4 G) if H can be obtained from a sub-graph of G by

contracting edges. An equivalent characterisation (see [1]) states that H is a minor of G if there is a
map that associates to each vertex v of H a non-empty tree Gv ⊆ G such that Gu and Gv are disjoint
for u 6= v and whenever there is an edge between u and v in H there is an edge in G between some
node in Gu and some node in Gv. The sub-graphs Gv are called branch sets.

We say that H is a minor at depth r of G (and write H 4r G) if H is a minor of G and this is
witnessed by a collection of branch sets {Gv | v ∈ V (H)}, each of which induces a graph Gv of
radius at most r. That is, for each v ∈ V (H), there is a w ∈ V (G) such that Gv ⊆ NGv

r (w).
The following definition is due to Nešetřil and Ossona de Mendez [11].

3.1 Definition (nowhere dense classes). A class of graphs C is said to be nowhere dense if for every
r there is a graph H such that H 64r G for all G ∈ C.
C is called somewhere dense if it is not nowhere dense.

It follows immediately from the definitions that if a class C of graphs which is not nowhere dense
then there is a radius r such that every graph H is a depth r minor of some graph GH ∈ C. If,
furthermore, C is closed under taking sub-graphs, then the depth-d image IH of H in GH is itself a
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graph in C. Note that the size of IH is polynomially bounded in H (for fixed r). Classes which are not
nowhere dense are called somewhere dense in [11]. Let us call a class effectively somewhere dense if,
given a graph H , a depth-d image IH ∈ C of H in a graph GH ∈ C can be computed in polynomial
time.

4 Graph Classes which are Somewhere Dense

In this section we will show that essentially first-order model-checking is not fixed-parameter tractable
on classes of graphs closed under sub-graphs which are somewhere dense..

Recall the definition of effectively somewhere dense classes of graphs in Section 2. If a class C
of graphs is not nowhere dense then there is a radius r such that every graph H is a depth r minor of
some graph GH ∈ C. If, furthermore, C is closed under taking sub-graphs, then the depth-d image
IH of H in GH is itself a graph in C. Note that the size of IH is polynomially bounded in H (for
fixed r). Classes which are not nowhere dense are called somewhere dense in [11]. Let us call a class
effectively somewhere dense if, given a graph H , a depth-d image IH ∈ C of H in a graph GH ∈ C
can be computed in polynomial time.
4.1 Theorem. If C is closed under sub-graphs and effectively somewhere dense then MC(FO, C) 6∈ FPT

unless FPT= AW[∗].
To prove the theorem we will show that first-order model-checking on the class of all graphs,

which is AW[∗] complete, is parameterized reducible to first-order model-checking on any effectively
somewhere dense class closed under sub-graphs. We find it convenient to state this in terms of a
first-order interpretations. See e.g. [9].
4.2 Definition. Let σ := {E} be the signature of graphs, whereE is a binary relation symbol. A (one-
dimensional) interpretation from σ-structures to σ-structures is a triple Γ := (ϕuniv(x), ϕvalid, ϕE(x, y))
of FO[σ]-formulas.

For every σ-structure T with T |= ϕvalid we define a graph G := Γ(T ) as the graph with vertex
set V (G) := {u ∈ V (T ) : T |= ϕuniv(v)} and edge set E(G) := {{u, v} ∈ V (G) : T |= ϕE(u, v)}.

If C is a class of σ-structures we define Γ(C) := {Γ(T ) : T ∈ C, T |= ϕvalid}.
Every interpretation naturally defines a mapping from FO[σ]-formulas ϕ to FO[σ]-formulas ϕ∗ :=

Γ(ϕ). Here, ϕ∗ is obtained from ϕ by recursively replacing

• first-order quantifiers ∃xϕ and ∀xϕ by ∃x(ϕuniv(x)∧ϕ∗) and ∀x(ϕuniv(x)→ ϕ∗) respectively,
and

• atoms E(x, y) by ϕE(x, y).

The following lemma is easily proved (see [9]).
4.3 Lemma (interpretation lemma). Let Γ be an FO-interpretation from σ-structures to σ-structures.
Then for all FO-formulas and all σ-structures G |= ϕvalid

G |= Γ(ϕ) ⇐⇒ Γ(G) |= ϕ.

4.4 Definition. Let C,D be classes of σ-structures. A first-order reduction (Γ, f) from C toD consists
of a first-order interpretation Γ of C in D together with a polynomial-time computable function f :
C → D such that for all G ∈ C and all ϕ ∈ FO[σ],

G |= ϕ if, and only if, f(G) |= Γ(ϕ).
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The following lemma follows immediately from the definitions.
4.5 Lemma. Let C,D be two classes of graphs and let (Γ, f) be a first-order reduction from C to D.
Then (Γ, f) is a parameterized reduction from MC(FO, C) to MC(FO,D). In particular, if MC(FO,D) ∈
FPT then MC(FO, C) ∈ FPT.

Let G be the class of all graphs and let C be an effectively somewhere dense class of graphs closed
under sub-graphs. Let r be the radius as above such that every graph occurs as a depth r minor of
some graph in G. We first define the function f : G → C.

Let H ∈ G be a graph. We construct a graph H ′ as follows. Let I ⊆ V (H) be the set of isolated
vertices in H and let V := V (H) \ I .

For every vertex v ∈ V we add the following gadget ρ(v) := (Vv, Ev) to H ′: Vv := {v, v1, v2}
and Ev :=

{
{v, v1}, {v, v2}

}
. Hence, essentially, we take v and add two new neighbours of degree

1. For every edge {u, v} ∈ E(H) we add a path of length 2r linking v and u in H ′. Formally, we fix
an ordering ≤H on V (H) and let

V (H ′) := V (H)∪̇{v1, v2 : v ∈ V (H) \ I} ∪̇
{ei(v,w) : 1 ≤ i ≤ 2r, {u, v} ∈ E(H), u ≤H v}

and

E(H ′) :=
{
{v, e1(v,w)}, {w, e

2r
(v,w)}, {e

i
(v,w), e

i+1
(v,w)} :

1 ≤ i < 2r, v ≤H w,
{v, w} ∈ E(H)

}
∪{

{v, v1}, {v, v2} : v ∈ V (H) \ I
}

Now, let GH′ be a depth d image of H ′ in a graph G ∈ C. As C is closed under sub-graphs, GH′ ∈ C
and, as C is effectively somewhere dense, given H , we can compute GH′ in polynomial time. We
define f(H) := GH′ .

To complete the reduction we define a first-order interpretation of G in C. For this, we let ϕuniv(x)
be the formula that says x is an isolated vertex or x has degree at least 3 and there are two disjoint
paths of length at most r from x to vertices of degree 1. Now let H be a graph and let G := f(H)
be the image of H ′ in C. Then ϕuniv(x) will be true at all vertices in G which are copies of vertices
v ∈ V (H). Now to define the edges we take the formula ϕE(x, y) which says that x, y satisfy ϕuniv
and there is a path between x and y of length at most 2r2. Finally, we let ϕvalid be the formula that
says every vertex either satisfies ϕuniv or lies on a path of length at most 4r2 between two vertices
satisfying ϕuniv and has degree 2.

Now clearly, for all graphs G ∈ G, Γ(f(G)) ∼= G and hence, by the interpretation lemma, G |= ϕ
if, and only if, f(G) |= Γ(ϕ).

Theorem 4.1 now follows immediately from the fact that MC(FO,G) is AW[∗]-complete (see
e.g.[7]).

A further consequence of this construction is the following
4.6 Corollary. If C is a somewhere dense class of graphs closed under sub-graphs then ThFO(C) is
undecidable.
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