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Abstract. Perfect zero-knowledge (PZK) proofs have been constructed in various settings and they are
also interesting from a complexity theoretic perspective. Yet, virtually nothing is known about them. This
is in contrast to statistical zero-knowledge proofs, where many general results have been proved using an
array of tools, none of which apply to PZK. To overcome this barrier we introduce a new error shifting
technique. This technique helps to achieve perfect simulation and may be useful also in contexts outside
of zero-knowledge. Using this technique, we give the first complete problem for the class of problems
admitting non-interactive perfect zero-knowledge (NIPZK) proofs, and the first hard problem for the class
of problems admitting public-coin PZK proofs. We hope that our technique and complete problems will
facilitate the study of perfect zero-knowledge proofs.

Key words: cryptography, non-interactive, perfect zero-knowledge, perfect simulation, error shifting,
complete problems.

1 Introduction

Perfect zero-knowledge protocols allow one party (the prover) to prove the validity of an assertion to another
party (the verifier), but without leaking any information [15]. This is formalized using the notion of a simu-
lator, and requiring that the simulation error be zero. The notion of perfect zero-knowledge can be relaxed to
statistical zero-knowledge, where the prover leaks a negligible amount of information, and computational
zero-knowledge, where this leakage is not noticeable by computationally bounded verifiers.

In the past few years there has been great progress in proving general results about the class of problems
admitting statistical zero-knowledge (SZK) proofs. These results include complete problems, equivalence
between private and public-coin, honest and malicious verifier, efficient provers, and more ([22, 26, 11,
13, 33, 21]). Various techniques, such as lower-bound protocols [14] and transformations that polarize and
reverse the statistical distance represented by circuits [26], were used in proving these results. Unfortunately,
these and other techniques used in the study of statistical zero-knowledge proofs do not apply to the class
of problems admitting perfect zero-knowledge (PZK) proofs. Intuitively, these techniques manipulate the
protocol in a way that introduces a small error into the simulation. This is not an issue in the case of
statistical zero-knowledge, where a small simulation error is allowed, but it is an issue in the case of perfect
zero-knowledge, where no simulation error is allowed. Consequently, many fundamental questions about
PZK remain open.
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Perfect zero-knowledge protocols have been constructed in various settings and there are many reasons
to study them. From a cryptographic perspective, they provide the maximum level of privacy for the prover.
Under number theoretic assumptions, any language in NP has a perfect zero-knowledge argument [5], and
recently a non-interactive argument was discovered [16]. Their simple definition also makes them ideal to
use as a test bed for studying zero-knowledge in new settings. Recent examples include the local zero-
knowledge protocol of [20] and the quantum zero-knowledge protocol of [35]. Perfect zero-knowledge
proofs are also intriguing from a complexity theoretic perspective. There are well known problems that
unconditionally admit PZK proofs, such as QUADRATIC-RESIDUOUSITY, DISCRETE-LOG, and GRAPH-
ISOMORPHISM [15, 32, 10]. These problems are in NP, but not known to be in P or NP-complete. Moreover,
they all admit 3-round proofs, yet we do not know how to prove that all PZK proofs have a constant number
of rounds (this was recently proven for SZK [23], but again, the techniques do not extend to PZK). Our
goal is to develop new tools that will facilitate the study of perfect zero-knowledge proofs, and apply these
tools to build a complexity theoretic understanding of these proofs.

1.1 Our results

As we mentioned earlier, techniques used in the study of statistical zero-knowledge proofs introduce error
into the simulation, and therefore cannot be applied to perfect zero-knowledge proofs. To overcome this
difficulty we introduce what we call an error shifting technique. Roughly speaking, the idea is to first
identify where the error is coming from, and then shift it forward to the protocol where it does not affect
the simulation. This is in contrast to techniques from the statistical setting, where the error is incorporated
into the constructions, thus leading to simulation errors later on. Notice that the notion of simulation is
central to cryptography. Thus, our general technique can help achieve perfect simulation in contexts outside
of zero-knowledge.

The first domain to which we apply the error shifting technique is complete problems. Recall that a
problem Π is said to be hard for some complexity class C if every problem in the class C efficiently reduces
to it. The problem Π is said to be complete for C if Π is hard for C and Π is in C. Complete problems
are a powerful tool because they represent an entire class. Thus, by proving a result with respect to a
complete problem we get a general result about the entire class. Indeed, most of the study of statistical zero-
knowledge proofs was made possible by first finding complete problems and then using them to prove more
advanced results. This also means that providing complete problems for the perfect setting is an important
step towards translating the results from the statistical setting to the perfect setting.

We obtain complete and hard problems in both the interactive and the non-interactive setting. In the
non-interactive setting we consider STATISTICAL DISTANCE FROM UNIFORM, the complete problem of
Goldreich Sahai and Vadhan [12] (based on [30]) for the class of problems admitting non-interactive sta-
tistical zero-knowledge (NISZK) proofs. Instances of this problem are circuits that represent distributions,
under the convention that the input to the circuit is uniformly distributed. More formally, YES instances
represent distributions that are close to uniform, and NO instances have a small range. Intuitively, we shift
the error from the reduction, through the circuits, and into the protocol. Hence, we obtain the first complete
problem for the class of problems admitting non-interactive perfect zero-knowledge (NIPZK) proofs.

Theorem 1. The problem UNIFORM (UN) is NIPZK-complete.

Our problem UNIFORM is similar to STATISTICAL DISTANCE FROM UNIFORM, except that YES in-
stances of UNIFORM are circuits representing the uniform distribution (the circuits also have an additional
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output bit for shifting the error forward). The difference between the problems is natural as it reflects the
difference between perfect and statistical simulation.

Turning our attention to the interactive model, we consider STATISTICAL-DISTANCE (SD), the complete
problem of Sahai and Vadhan [26] for the class of problems admitting statistical zero-knowledge (SZK)
proofs. Instances of this problem are pairs 〈X,Y 〉 of circuits. As YES instances, X and Y represent
statistically close distributions, and as NO instances, X and Y are represent statistically far distributions.
Again, by applying the error shifting technique to the reduction of [26], we obtain circuits X and Y that are
identically distributed as YES instances, and statistically far as NO instances (our reduction also produces
a third circuit for shifting the error forward). We show that this problem is hard for the class of problem
admitting perfect zero-knowledge (PZK) proofs of the public-coin type.

Theorem 2 (informal). The perfect variant of STATISTICAL-DISTANCE is hard for the class of problems
admitting public-coin-PZK (and public-coin-HVPZK) proofs.

Our theorems and the error shifting technique can facilitate the study of perfect zero-knowledge proofs
in both the interactive and the non-interactive setting. For example, our hard problem was used in [19] to
study the round complexity of perfect zero-knowledge proofs and to prove an equivalence between zero-
knowledge and instance-dependent commitment schemes in the perfect setting (a more meaningful equiva-
lence was recently given [23], but it only applies to the statistical and the computational settings). We give
two additional applications.

The first application shows equivalence between two notions of simulation. Specifically, we show that
the notion of zero-knowledge where the simulator is allowed to fail (also known as abort) is equivalent to the
notion of zero-knowledge where the simulator is not allowed to fail. This result is with respect to any fixed
verifier and strict (as opposed to expected) polynomial-time simulators. Such equivalence was not known
previously, and various works were using different notions of simulation. By providing an equivalence
between these notions of simulation, we make these works comparable. Our idea uses the error shifting
technique and can be applied also to simulators outside of zero-knowledge.

The second application considers closure properties of NIPZK. That is, using UNIFORM, we prove that
NIPZK is closed under the OR operator. The downside of our lemma is that it holds under a strong condition
on the soundness and completeness error of the underlying problem. However, the issues that we encounter
illuminate the difficulties of working with perfect zero-knowledge proofs, and we believe that exploring new
ideas, even if we have to make strong assumptions as a starting point, is useful. We mention that no such
closure result is known in the case of non-interactive statistical zero-knowledge (NISZK) proofs, where
small simulation errors are allowed and more tools and techniques are available (c.f., [30, 12]).

1.2 Related Work

As we mentioned earlier, virtually nothing is known about perfect zero-knowledge proofs. The only excep-
tion is the work of [6], which shows a transformation from honest-verifier PZK proofs to malicious-verifier
PZK proofs. This transformation applies only to constant-round, public-coin proofs.

Our work is inspired by the study of statistical zero-knowledge proofs, and we build on the results
of [26, 12] (based on [8, 1, 30]). Sahai and Vadhan [26] showed a HVPZK-complete problem, but their
problem is unnatural, and defined in terms of the class itself. They also tried to modify the reductions from
the statistical setting so that they apply to the perfect setting, but their idea works only in certain cases
(e.g., when the underlying problem has perfect completeness). Bellare and Rogaway [3] showed other basic
results about NIPZK, but their notion of zero-knowledge allows simulation in expected (as opposed to strict)
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polynomial-time. This notion is disadvantageous, especially when non-interactive protocols are executed as
sub-protocols. The literature offers a variety of NIPZK proofs for specific problems (c.f., [3, 4, 27]) and
other results about NIPZK proofs that apply to problems with special properties (c.f., [27, 28, 29]).

1.3 Organization

We use standard definitions, to be found in Section 2. In Section 3 we present the error shifting technique
and use it to obtain a NIPZK-complete problem. In Section 4 we apply this technique to the interactive
setting, where we obtain a hard problem. In Section 5 we show some applications of these results.

2 Preliminaries

We study complexity classes of promise problems [7], which are a generalization of languages. Formally,
Π def= 〈ΠY, ΠN〉 is a problem if ΠY ∩ ΠN = ∅. The set ΠY contains the YES instances of Π, and the set ΠN

contains the NO instances of Π. We define Π def= 〈ΠN, ΠY〉. Any language L can be defined as a promise
problem 〈L,L〉.

Just like the study of statistical zero-knowledge proofs, our promise problems will be defined in terms
of circuits. A circuit X : {0, 1}m → {0, 1}n is a boolean function, encoded in some way (e.g. [24]), but we
mainly treat X as a distribution, under the convention that the input to the circuit is uniformly distributed.
For example, given a set T , the probability Pr[X ∈ T ] equals Prr[X(r) ∈ T ], where r is uniformly chosen
from {0, 1}m. The statistical distance between circuits, or more generally, the statistical distance between
two discrete distributions X and Y , is defined as ∆(X, Y) def=

∑
α |Pr[X = α]− Pr[Y = α]|.

2.1 Protocols and proofs

We study both interactive and non-interactive perfect zero-knowledge proofs, using standard definitions [9].
We start with the definition of a non-interactive protocol, which we customize for the context of zero-
knowledge proofs.

Definition 2.1 (Non-interactive protocols) A non-interactive protocol 〈c, P, V 〉 is a triplet (or simply a
pair 〈P, V 〉, making c implicit), where P and V are functions, and c ∈ N. We use rP to denote the random
input to P . The interaction between P and V on common input x is the following random process.

1. Uniformly choose rP and a common random string rI ∈ {0, 1}|x|c .

2. Let π = P (x, rI ; rP ), and let m = V (x, rI , π).

3. Output 〈x, rI , π, m〉.

We call 〈P, V 〉(x) def= 〈x, rI , π〉 the view of V on x. We say that V accepts x (respectively, rejects x) if
m = accept (respectively, m = reject).

Definition 2.1 considers a deterministic verifier V , and is equivalent to the definition that considers a
probabilistic verifier [18]. The definition of interactive protocols is a simple extension of the above, except
that there is no common random string, V has random input rV , and P and V exchange messages until one
of them accepts, rejects, or fails. Formally,
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Definition 2.2 (Interactive Protocols) An interactive protocol is a pair 〈P, V 〉 of functions. The interaction
between P and V on common input x is the following random process.

1. Let rP and rV be random inputs to P and V , respectively.

2. repeat the following for i = 1, 2, . . .

(a) If i is odd, let mi = P (x, z, m1, . . . ,mi−1; rP ).

(b) If i is even, let mi = V (x, z,m1, . . . , mi−1; rV ).

(c) If mi ∈ {accept,reject,fail}, then exit loop.

Each interaction yields a transcript 〈x, z, m1, . . . ,mp; rV 〉, and the strings mi are called messages. The
probability space containing all the transcripts is called the view of V on x, and is denoted 〈P, V 〉(x). We
say that V accepts x if mi = accept for an even i.

We say that 〈P, V 〉 is public coin if V always sends independent portions of rV , and its last message is a
deterministic function of the messages exchanged. We say that 〈P, V 〉 is constant round if there is a constant
c such that in any interaction the number of messages exchanged in at most c.

A proof for a problem is a protocol that admits certain properties with respect to the problem. Informally,
the verifier is efficient, with high probability it accepts YES instances of the problem , and with low prob-
ability it accepts NO instances (even if a computationally unbounded prover is cheating). In the following
definition the difference between these probabilities is expressed via a non-negligible function c.

Definition 2.3 (Non-interactive proofs) A non-interactive protocol 〈c, P, V 〉 is a non-interactive proof for
a problem Π if there is a ∈ N and c(n), s(n) : N→ [0, 1] such that 1− c(n) ≥ s(n) + 1/na for any n, and
the following conditions hold.

• Efficiency: V runs in time polynomial in |x|.
• Completeness: V accepts all x ∈ ΠY with probability at least 1− c(|x|) over rI and rP .

• Soundness: PrrI [V (x, rI , P
∗(x, rI)) = accept] ≤ s(|x|) for any function P ∗ and any x ∈ ΠN.

The function c is called the completeness error, and the function s is called the soundness error. We say that
〈P, V 〉 has perfect completeness if c ≡ 0.

Although the completeness and soundness errors are defined using functions, in both the interactive
and the non-interactive model our reductions will actually use c ≡ s ≡ 1

3 . This is without loss of gener-
ality because the reductions consider honest verifiers and therefore the errors can be reduced via parallel
repetition.

Interactive proofs are defined from interactive protocols in exactly the same way, except that there is no
reference string. Formally,

Definition 2.4 (Interactive proofs) Let Π = 〈ΠY , ΠN 〉 be a problem, and let 〈P, V 〉 be an interactive
protocol. We say that 〈P, V 〉 is an interactive proof for Π if there is a, and c(n), s(n) : N→ [0, 1] such that
1− c(n) > s(n) + 1/na for any n, and the following conditions hold.

• Efficiency: V is a probabilistic Turing machine whose running time over the entire interaction is
polynomial in |x| (this implies that the number of messages exchanged is polynomial in |x|).
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• Completeness: if x ∈ ΠY , then V accepts in 〈P, V 〉(x) with probability at least 1 − c(|x|). The
probability is over rP and rV (the randomness for P and V , respectively).

• Soundness: if x ∈ ΠN , then for any function P ∗ it holds that V accepts in 〈P ∗, V 〉(x) with probability
at most s(|x|). The probability is over the randomness rV for V .

2.2 Zero-knowledge

We proceed to the definition of zero-knowledge. Intuitively, a protocol is zero-knowledge if the view of the
verifier can be produced by the verifier itself, without help from the prover. This is formalized using the
notion of a polynomial-time simulator that creates this view. The following definition considers a simulator
that does not fail, but in Section 5 we give an alternative definition where the simulator is allowed to fail,
and show that the two are equivalent.

Definition 2.5 (Non-interactive Zero-knowledge protocols) A non-interactive protocol 〈P, V 〉 is perfect
zero-knowledge (NIPZK) for a problem Π = 〈ΠY,ΠN〉 if there is a strict, probabilistic, polynomial-time
Turing machine S, called the simulator, such that the ensembles

{〈P, V 〉(x)}x∈ΠY
and {S(x)}x∈ΠY

are statistically identical. If these ensembles are statistically indistinguishable, then 〈P, V 〉 is a non-
interactive statistical zero-knowledge (NISZK) protocol for Π. Similarly, if the ensembles are computation-
ally indistinguishable, then 〈P, V 〉 is non-interactive computational zero-knowledge (NICZK) protocol for
Π. The class of problems possessing NIPZK (respectively, NISZK, NICZK) proofs is also denoted NIPZK
(respectively, NISZK, NICZK).

This definition can be extended to the interactive setting in the natural way. In the following, SV ∗

denotes oracle access of S to the Turing machine V ∗.

Definition 2.6 (Zero-knowledge protocols) A protocol 〈P, V 〉 for a problem Π = 〈ΠY , ΠN 〉 is perfect
(respectively, statistical, computational) zero-knowledge if there is a strict, probabilistic, polynomial-time
Turing machine S, called the simulator, such that for any strict, probabilistic, polynomial-time Turing ma-
chine V ∗ it holds that

{〈P, V ∗〉(x)}x∈ΠY
and {SV ∗(x)}x∈ΠY

are statistically-identical (respectively, statistically indistinguishable, computationally indistinguishable.)
The class of problems having perfect (respectively, statistical, computational) zero-knowledge protocols is
denoted PZK (respectively, SZK, CZK.) When the above ensembles are indistinguishable for V ∗ = V we
say that 〈P, V 〉 is honest-verifier, perfect (respectively, statistical, computational) zero-knowledge, and we
denote the respective classes by HVPZK,HVSZK, and HVCZK.

3 A complete problem for NIPZK

In this section we introduce the error shifting technique and use it to obtain the first complete problem for
the class of problems admitting non-interactive perfect zero-knowledge (NIPZK) proofs. The proof system
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that we obtain has interesting characteristics, which we discuss later. We start with motivation, and give
formal definitions and proofs in Section 3.1.

We describe STATISTICAL DISTANCE FROM UNIFORM (SDU), the NISZK-complete problem of [12],
and explain why the reduction and the protocol for this problem cannot be applied to NIPZK. Instances of
SDU are circuits that represent distributions, under the convention that the input to the circuit is uniformly
distributed. Specifically, YES instances are circuits representing a distribution that is close to uniform, and
NO instances are circuits representing a distribution that is far from uniform.

Definition 3.1 SDU def= 〈SDUY ,SDUN 〉, where

SDUY = {X| ∆(X,Un) < 1/n} ,

SDUN = {X| ∆(X,Un) > 1− 1/n} ,

X is a circuit with n output bits, and Un is the uniform distribution on {0, 1}n.

The reduction of [12] (based on [30]) reduces any NISZK problem Π to SDU through a sequence of
reductions. The part of this reduction that we modify is as follows. Let x be an instance of Π and let 〈P, V 〉
be a NISZK proof for Π with a simulator S. The instance x is reduced to a circuit X which executes S(x)
and obtains a transcript. The transcript contains a simulated message of the prover and a simulated reference
string. If the verifier accepts in this transcript, then X outputs the simulated reference string. Otherwise, X
outputs the all-zero string. Intuitively, this reduction works because if x is a YES instance, then the simulated
reference string is almost uniformly distributed, and thus X is a YES instance of SDU. Conversely, if x is a
NO instance, then the verifier rejects on most reference strings, and thus X is a NO instance of SDU.

When we apply the reduction of [12] to NIPZK problems Π, and x is a YES instance, the output of S
perfectly simulates the reference string. Thus, we expect to obtain a circuit X that represents the uniform
distribution. However, if Π does not have perfect completeness, then the verifier may reject x, which skews
the distribution represented by X . This will cause problems later, when we try to construct a proof system
and a simulator for the complete problem. We overcome this issue using the error shifting technique.

The Error Shifting Technique. In its most general form, the error shifting technique shifts into the protocol
errors that would otherwise become simulation errors. This description is very loose, but we chose it because
our technique can be applied in different contexts, and in each of these contexts it takes a different form.
The following application will clarify our technique.

I The first step of the error shifting technique is to identify where the simulation error comes from.
In our case, if the verifier rejects, then the circuit X does not represent the uniform distribution. Thus,
the error comes from the completeness error of the underlying problem. Since we need to shift this error
forward, we first separate it by adding an extra output bit to the circuit X . That is, X executes the simulator
and outputs the simulated reference string followed by an extra bit. This bit takes the value 1 if the verifier
accepts, and 0 if the verifier rejects.

I The second step of the error shifting technique is to shift the error forward, to the completeness or
the soundness error of the protocol. In our case, from the circuit X to the protocol for our complete problem.
This step is not trivial because we cannot just use the protocol of [12] for SDU. Specifically, in this protocol
the prover sends a string r, and the verifier accepts if X(r) equals the reference string. A simple analysis
can show that even if we adapt this idea to our modified circuit, then we will get a simulation error. Thus,
we modify this protocol by starting with the simulator, and constructing the prover based on the simulator.
Informally, the simulator samples the circuit X , and the verifier accepts if the extra bit in this sample is 1.
The prover simply mimics the simulator. This shifts the error from X to the completeness error of the new
protocol. We make this intuition formal in the next section.
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3.1 A complete problem for NIPZK

In this section we formalize the intuition given in the previous section, thus proving that UNIFORM is
NIPZK-complete. Our proof system has interesting characteristics, which we discuss after proving that
UNIFORM is hard for NIPZK.

Theorem 3.2 UNIFORM (UN) is NIPZK-complete.

Recall that instances of UNIFORM are circuits X . Essentially, as a YES instance X represents the
uniform distribution, and as a NO instance X has a small range. However, recall that X also has an extra
rightmost output bit. To formally describe these properties, we use the convention that n + 1 denotes the
number of output bits of X . We use TX to denote the outputs of X that end with the bit 1. Formally,
TX

def= {x1|∃r s.t. X(r) = x1}, where x1 denotes the concatenation of the string x with the bit 1. Also, we
use X ′ to denote the distribution on the n bit prefix of the output of X . That is, X ′ is obtained by picking
a random input r, computing X(r), and taking the n bit prefix of X(r). As we shall see, when X is a YES
instance of UNIFORM, the zero-knowledge and completeness properties would imply that TX is large and
X ′ is the uniform distribution. Conversely, when X is a NO instances of UNIFORM, the soundness property
would imply that |TX | is small.

The problem UNIFORM is defined in terms of TX and X ′. Formally, given a circuit X with n+1 output
bits, we say that X is β-negative if |TX | ≤ β · 2n. That is, TX has at most β · 2n elements. We say that
X is α-positive if X ′ is the uniform distribution on n bits and Prr[X(r) ∈ TX ] ≥ α. This notion is not
symmetric to that of β-negative, but it does imply that TX has at least α · 2n elements.

Definition 3.3 The problem UNIFORM is defined as UN def= 〈UNY, UNN〉, where

UNY = {X|X is 2/3− positive} , and

UNN = {X|X is 1/3− negative} .

The constants 2/3 and 1/3 come from the underlying completeness and soundness errors, and as we
mentioned in Section 2, these can be obtained from the definitions using repetition.

Proceeding to the completeness result, we recall that proving that a problem is complete for a given
class requires proving that the problem is hard for the class (that is, any problem in the class reduces to this
problem) and that it is in the class. Thus, we first show that the reduction from the previous section reduces
every NIPZK problem to UNIFORM.

Lemma 3.4 UNIFORM is NIPZK-hard.

Proof: Let Π = 〈ΠY,ΠN〉 be a NIPZK problem. Fix a non-interactive protocol 〈P, V 〉 for Π with com-
pleteness and soundness errors 1/3. Let rI denote the common reference string in 〈P, V 〉, and fix i such
that |rI | = |x|i for any x ∈ ΠY ∪ ΠN. Fix a simulator S for 〈P, V 〉. Let ` ∈ N, and let S′ denote a circuit
that on input x ∈ ΠY ∪ΠN and randomness rS of length |x|` outputs S′(rS) def= S(x; rS).

We show that Π Karp reduces to UNIFORM. That is, we define a polynomial-time Turing machine that
on input x ∈ ΠY ∪ΠN outputs a circuit X : {0, 1}|x|` → {0, 1}|x|i+1 such that if x ∈ ΠY, then X ∈ UNY,
and if x ∈ ΠN, then X ∈ UNN. On input rS of length |x|` the circuit X executes S′(rS) and obtains
S(x; rS) = 〈x, r′I , m

′〉. If V (x, r′I ,m
′) = accept, then X outputs the string r′I1 (i.e., the concatenation

of r′I and 1), and otherwise it outputs r′I0.
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Now we analyze our reduction. Let x ∈ ΠY, and let X be the output of the above reduction on x.
We show that X is 2/3-positive. Consider the distribution on the output 〈x, r′I ,m

′〉 of S(x). Since S(x)
and 〈P, V 〉(x) are identically distributed, r′I is uniformly distributed. Thus, X ′ (i.e., the distribution on the
first |x|i output bits of X) is uniformly distributed. It remains to show that Pr[X ∈ TX ] ≥ 2/3. This
immediately follows from the perfect zero-knowledge and completeness properties of 〈P, V 〉. That is, the
output of S is identically distributed to 〈P, V 〉(x), and V accepts in 〈P, V 〉 with probability at least 2/3. Let
x ∈ ΠN, and let X be the output of the above reduction on x. We show that X is 1/3-negative. Assume
towards contradiction that X is β-negative for some β > 1/3. We define a prover P ∗ that behaves as follows
on CRS rI . If rI1 ∈ TX , then there is an input rS to X such that X(rS) = rI1. By the construction of
X , there is randomness rS for the simulator such that S(x; rS) = 〈x, rI ,m

′〉, and V (x, rI ,m
′) = 1. In this

case P ∗ sends rS to V . If rI1 /∈ TX , then P ∗ fails. Notice that P ∗ makes V accept on any rI such that
rI1 ∈ TX . Since |TX | > 2|x|i/3, and since rI is uniformly chosen in 〈P ∗, V 〉, the probability that rI1 ∈ TX

is strictly greater than 1/3. Thus, V accepts in 〈P ∗, V 〉(x) with probability strictly greater than 1/3, and
contradiction to the soundness error of 〈P, V 〉. Hence, X is 1/3-negative.

It remains to prove that UNIFORM is in NIPZK, but before describing our proof system we remark that
it exhibits some unusual characteristics. The first characteristic is that the prover and the verifier are actually
constructed based on the simulator. The second characteristic follows from the first, namely, it is possible
that on YES instances there are messages that the prover can send, which will make the verifier accept,
but instead the prover is sending to the verifier a message on which the verifier rejects. To the best of our
knowledge, such characteristics have never been explicitly observed before in the literature.

Lemma 3.5 UNIFORM has a NIPZK proof with a deterministic verifier.

Proof: Our prover and verifier for UNIFORM are based on the simulator, but describing the simulator before
the proof is somewhat counter intuitive. Thus, we start with the proof. On input X : {0, 1}` → {0, 1}n+1

and common reference string rI ∈ {0, 1}n the prover P picks z according to the distribution X such that
the n-bit prefix of z equals rI . Such a z exists because X ′ (i.e., the distribution on the first n bits of X)
is the uniform distribution when X ∈ UNY. The prover uniformly picks r ∈ X−1(z), and sends r to the
verifier V . The deterministic verifier accepts if X(r) = rI1, and rejects otherwise.

Our prover is based on the following simulator. Let S be a probabilistic, polynomial-time Turing ma-
chine that on input X uniformly picks r′ ∈ {0, 1}`, and computes z′ = X(r′). The simulator assigns the n
bit prefix of z′ to r′I (i.e., the simulated reference string), and outputs 〈X, r′I , r

′〉. Let X ∈ ΠY. We show
that S perfectly simulates 〈P, V 〉. Consider the distribution S(X) on simulated transcripts 〈X, r′I , r

′〉, and
the distribution 〈P, V 〉(X) on the view 〈X, rI , r〉 of V . Since X ′ is uniformly distributed over {0, 1}n, the
string r′I obtained by the simulator is uniformly distributed over {0, 1}n. Since rI is uniformly distributed,
r′I and rI are identically distributed. It remains to show that r and r′ are identically distributed conditioned
on rI = r′I . For each y ∈ {0, 1}n, we define By to be the set of all strings r̂ for which the prefix of X(r̂)
is y. Now, for any simulated reference string r′I , the randomness r′ chosen by the simulator is uniformly
distributed in Br′I . Similarly, for any reference string rI the message of the prover is a string r chosen
uniformly from BrI . Hence, conditioned on rI = r′I , the strings r and r′ are identically distributed. We
conclude that S(X) and 〈P, V 〉(X) are identically distributed for any X ∈ ΠY.

Turning our attention to the completeness property, we show that V accepts X with probability at least
2/3. By the zero-knowledge property, the output 〈X, r′I , r

′〉 of S(X) is identically distributed to the view
〈X, rI , r〉 of V on X . Thus, it is enough to show that when choosing a transcript 〈X, r′I , r

′〉 according to
S(x), the probability that V (X, r′I , r

′) = 1 is at least 2/3. Since S uniformly chooses r′, and since X is
2/3-positive, the probability that X(r) ∈ TX is at least 2/3. Thus, the probability that the suffix of X(r) is
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1 is at least 2/3. Hence, V accepts X with probability at least 2/3. The soundness property follows easily.
Let X ∈ UNN. Since X is 1/3-negative, |TX | ≤ 1/3 · 2n. Since rI is uniformly distributed, the probability
that rI1 ∈ TX is at most 1/3. Hence, if X ∈ UNN, then V accepts X with probability at most 1/3.

Theorem 3.2 follows from Lemmas 3.4 and 3.5.

4 A hard problem for public-coin PZK proofs

In this section we give the first hard problem for the class of problems admitting public-coin, honest-verifier
perfect zero-knowledge (HVPZK) proofs. This problem was used in [19] to study the round complexity of
perfect zero-knowledge proofs and to prove an equivalence between zero-knowledge and instance-dependent
commitment schemes. Notice that since PZK ⊆ HVPZK, our problem is also hard for public-coin PZK
proofs.

Starting with motivation, we describe STATISTICAL-DISTANCE (SD), the complete problem of [26]
for SZK. Instances of this problem are pairs 〈X, Y 〉 of circuits. As YES instances, X and Y represent
statistically close distributions, and as NO instances, X and Y are represent statistically far distributions.
More generally, SD def= SD

1
3
, 2
3 , where SDα,β is defined as follows

Definition 4.1 SDα,β def= 〈SDα,β
Y , SDα,β

N 〉, where

SDα,β
Y = {〈X0, X1〉|∆(X0, X1) ≤ α} , and

SDα,β
N = {〈X0, X1〉|∆(X0, X1) ≥ β} .

We remark that SD and SD are referred to in the literature as the same problem because both of them are
complete for SZK and reduce to each other. The reduction of [26] (based on [8, 1]) takes any problem that
admits a public-coin, honest-verifier statistical zero-knowledge (HVSZK) proof and reduces it to SD. The
issue with this reduction is that, when we apply it to the class of problems admitting public-coin, honest-
verifier perfect zero-knowledge (HVPZK) proofs, we get a pair of circuits 〈X0, X1〉 that, as YES instances,
are only statistically close, but not identically distributed. This is unnatural because the closeness between
X0 and X1 reflects the closeness of the simulation. Thus, in the perfect setting we expect X0 and X1 to be
identically distributed, as in SD0, 1

2 .

Definition 4.2 SD0, 1
2

def= 〈SD
0, 1

2
Y , SD

0, 1
2

N 〉, where

SD
0, 1

2
Y = {〈X0, X1〉|∆(X0, X1) = 0} , and

SD
0, 1

2
N = {〈X0, X1〉|∆(X0, X1) ≥ 1

2
}.

In the next section we describe the reduction to SD in more detail and show that, essentially, SD0, 1
2 is

hard for the class of problems admitting public-coin HVPZK proofs.

4.1 A hard problem for public-coin HVPZK proofs

We show that, essentially, SD0, 1
2 is hard for the class of problems admitting public-coin HVPZK proofs.

This is done by applying the error shifting technique to the reduction of [26], which we now describe.
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Let Π be a problem with a public-coin HVPZK proof 〈P, V 〉 and a simulator S. Given a string x, we
use v

def= v(|x|) to denote the number of rounds in the interaction between P and V on input x. That is, in
round i the prover P sends mi and V replies with a random string ri, until P sends its last message mv,
and V accepts or rejects. We denote the output of S(x) by 〈x,m1, r1, . . . ,mv〉. The reduction of [26] maps
instances x of Π to pairs of circuits 〈X ′, Y ′〉. These circuits are constructed from the circuits Xi and Yi,
defined as follows. The circuit Xi chooses randomness, executes S(x) using this randomness, and outputs
the simulated transcript, truncated at the i-th round. That is, Xi obtains 〈x,m1, r1, . . . , mv〉, and outputs
〈m1, r1, . . . ,mi, ri〉. The circuit Yi is defined exactly the same, except that it replaces ri with a truly random
string r′i.

• Xi(r): execute S(x; r) to obtain 〈x,m1, r1, . . . ,mv〉. Output 〈m1, r1, . . . , mi, ri〉.
• Yi(r, r′i): execute S(x; r) to obtain 〈x,m1, r1, . . . , mv〉. Output 〈m1, r1, . . . , mi, r

′
i〉.

Notice that Xi and Yi represent the same distribution when x is a YES instance. This is so because S(x)
perfectly simulates the view of the verifier, and therefore ri is uniformly distributed, just like r′i. Using ⊗ to
denote the concatenation of circuits, let X = X1 ⊗ · · · ⊗ Xv. That is, X executes all the circuits Xi and
outputs the concatenation of their outputs. Similarly, let Y = Y1⊗· · ·⊗Yv. Again, X and Y are identically
distributed when x is a YES instance. Now, the pair 〈X ′, Y ′〉 is defined from 〈X,Y 〉 as follows. The circuit
X ′

1 outputs 1 followed by the output of Y . The circuit X ′
0 outputs the output of Z followed by the output

of X , where Z is the circuit that outputs 1 if with high probability S(x) outputs accepting transcripts, and
0 otherwise. Notice that Z can achieve this by running independent executions of S(x) and estimating the
probability that S(x) output an accepting transcript.

The reduction of [26] does not apply to public-coin HVPZK proofs because on YES instances x it is
possible that V rejects x, which would make the circuit Z output 0 with non-zero probability, and this
leads to a non-zero statistical distance between X ′ and Y ′. We overcome this issue using the error shifting
technique. Recall that the first step of the error shifting technique is to identify where the simulation error
comes from. In this case, the error comes from the circuit Z. Since we need to shift this error forward,
instead of including Z in the circuits X ′ and Y ′, we separate the error and map instances x of Π to triplets
〈X,Y, Z〉. This leads to the following definition.

Definition 4.3 The problem IDENTICAL DISTRIBUTIONS is defined as ID def= 〈IDY, IDN〉, where

IDY = {〈X,Y, Z〉|∆(X, Y) = 0 and Pr[Z = 1] ≥ 2/3} , and

IDN = {〈X,Y, Z〉|∆(X, Y) ≥ 1/2 or Pr[Z = 1] ≤ 1/3} .

By the above discussion, if x is a YES instance, then X and Y are identically distributed, and Z outputs
1 with high probability. Such a triplet is a YES instance of our hard problem. Similarly, by the simulator
analysis from [26] (c.f. [8, 1, 25, 17]), if x is a NO instance, then either X and Y are statistically far, or Z
outputs 0 with a high probability. Such a triplet is a NO instance of our hard problem. Thus, IDENTICAL

DISTRIBUTIONS is hard for the class of problems admitting public-coin HVPZK proofs.

Lemma 4.4 For any problem Π = 〈ΠY,ΠN〉 possessing a public-coin HVPZK proof there is a Karp re-
duction mapping strings x to circuits 〈X, Y, Z〉 with the following properties.

• If x ∈ ΠY , then ∆(X, Y) = 0 and Pr[Z = 1] ≥ 2/3.
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• If x ∈ ΠN , then ∆(X, Y) ≥ 1/2 or Pr[Z = 1] ≤ 1/3.

The second step of the error shifting technique is to shift the error forward, to the completeness or
soundness error of the protocol. However, we do not have a HVPZK proof for IDENTICAL DISTRIBU-
TIONS, and even SD0, 1

2 is not known to have one (this was an open question in [26]). Thus, we show that
given an arbitrary zero-knowledge protocol for SD0, 1

2 , the error can be shifted from the circuit Z to this
protocol. In particular, this shows that any perfect zero-knowledge (PZK) proof for SD0, 1

2 is a PZK proof
for IDENTICAL DISTRIBUTIONS. Furthermore, we will preserve all the properties of the original protocol.

The error is shifted as follows. Let 〈P, V 〉 be an arbitrary zero-knowledge protocol for SD0, 1
2 . We

construct a new protocol 〈P ′, V ′〉 on instances 〈X, Y, Z〉 of ID (instead of a pair 〈X,Y 〉 of SD0, 1
2 ). We let

P ′ = P and define V ′ just like V , except that before the protocol begins, V ′ estimates the value of Pr[Z = 1]
and rejects if this value is at most 1/3. If V ′ did not reject, then P ′ and V ′ execute 〈P, V 〉 on input 〈X, Y 〉.
Analyzing this protocol is straightforward. Notice that V ′ is very unlikely to reject if Pr[Z = 1] ≥ 2/3, and
that if the protocol continues, then either 〈X, Y, Z〉 is a YES instance of our hard problem and ∆(X, Y) = 0,
or 〈X,Y, Z〉 is a NO instance of our hard problem and ∆(X,Y) ≥ 1/2. Hence, in this case the behavior of
P ′ and V ′ on instances of our hard problem is identical to the behavior of P and V on instances of SD0, 1

2 .
This shows that, essentially, SD0, 1

2 is hard for public-coin-HVPZK. In particular, if 〈P, V 〉 is a public-coin
HVPZK proof for SD0, 1

2 , then 〈P ′, V ′〉 is a public-coin HVPZK proof for IDENTICAL DISTRIBUTIONS.
This would imply that our hard problem is actually complete for this class.

5 Applications

Our error shifting technique and hard problem were used in [19] to study perfect zero-knowledge proofs.
In this section we show two additional applications of our results. The first one shows an equivalence
between two notions of simulation. The second shows that, under certain conditions, non-interactive perfect
zero-knowledge (NIPZK) proofs are closed under the OR operator.

5.1 Obtaining simulators that do not fail

Zero-knowledge protocols have been defined in the literature with respect to simulators that are either al-
lowed or not allowed to fail (also known as abort). We show that these notions are equivalent with respect
to any fixed verifier.

We first recall that the definitions of zero-knowledge used in this paper (Definitions 2.5 and 2.6) require
that the output of the simulator be ”close” to the view of the verifier. A relaxation of this notion due to [6]
allows the simulator to fail with probability at most 1

2 , and requires that, conditioned on non-failure, the
output of the simulator be ”close” to the view of the verifier. Notice that the constant 1

2 is arbitrary as any
non-negligible error probability can be reduced via repetition. The formal definition follows.

Definition 5.1 (Zero-knowledge protocols with simulators that can fail) A protocol 〈P, V 〉 for a prob-
lem Π = 〈ΠY , ΠN 〉 is perfect (respectively, statistical, computational) zero-knowledge if there is a proba-
bilistic, polynomial-time Turing machine S, called the simulator, such that for any probabilistic, polynomial-
time Turing machine V ∗ the following holds:

1. There is N ∈ N such that for all x ∈ ΠY with |x| ≥ N it holds that Pr[SV ∗(x) = fail] ≤ 1
2 , where

the probability is over the randomness of S and V ∗.
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2. Letting ŜV ∗(x) denote the distribution on the output of SV ∗(x) conditioned on SV ∗(x) 6= fail, the
following distributions are statistically-identical (respectively, statistically indistinguishable, compu-
tationally indistinguishable)

{〈P, V ∗〉(x)}x∈ΠY
and {ŜV ∗(x)}x∈ΠY

.

It is well known that in the statistical and the computational settings, a simulator S that is allowed to fail
can be converted to a simulator S′ that is not allowed to fail. On common input x this can be done simply
by running |x| executions of S(x), each with a fresh random input, and outputting the first non-fail output.
If all executions fail, then S(x) simply outputs null, but since this happens with probability at most 1/2n,
the error that the null message introduces into the simulation is negligible. Thus, S(x) is indistinguishable
from the view of the verifier. Clearly, this simple idea does not apply to the perfect setting. In fact, since
the simulation error is increased, this idea suggests that perhaps by allowing the simulator to fail, the prover
may leak some knowledge to the verifier. By using the error shifting technique, we overcome this issue
and show that the two notions of simulation are equivalent. In the following lemma we only consider the
interactive setting because the same idea applies to the non-interactive setting.

Lemma 5.2 For any fixed malicious verifier V ∗, a problem Π has a perfect zero-knowledge proof according
to Definition 5.1 if and only if it has a perfect zero-knowledge proof according to Definition 2.6.

Proof: Trivially, Definition 2.6 implies Definition 5.1. In the forward direction, let Π be a problem with a
perfect zero-knowledge protocol 〈P, V 〉 and a simulator S that fails with probability at most 1

2 . The first
step of the error shifting technique is to identify where the error is coming from and isolate it. In this case,
the error comes from the failure probability of the simulator, and it is already separated from the output of
the simulator. Hence, we proceed to the next step of the error shifting technique. That is, we shift the error
into the protocol.

On input x we define a new prover P ′ whose first step is to run |x| executions of S(x). If S(x) fails in all
|x| executions, then P ′(x) sends null to the verifier V and the protocol terminates. Otherwise, it behaves
just like P (x). The new simulator S′ for 〈P ′, V 〉 is modified to run |x| executions of the original simulator
S(x). If all executions fail, then just like P ′, it sends null to the verifier V and the protocol terminates.
Otherwise, one of the outputs of S(x) is not fail, and S′ outputs the first such non-fail output.

We analyze the new simulator S′. Fix a malicious verifier V ∗ and consider all sufficiently long x ∈ ΠY .
The first observation is that S′V ∗(x) never fails. The second observation is that both P ′ and S′V ∗ send
to V ∗ the message null with the same probability. Conditioned on S′ not sending this message, the
output of S′V ∗(x) is identically distributed to the output of SV ∗(x), which, by Definition 5.1, is identically
distributed to the view 〈P, V ∗〉(x) of the malicious verifier. Conditioned on P ′ not sending the null
message, 〈P ′, V ∗〉(x) and 〈P, V ∗〉(x) are identically distributed because P ′ behaves just like P . Thus,
SV ∗(x) and 〈P ′, V ∗〉(x) are identically distributed. We conclude that the two notions are equivalent.

The above proof explains why we need to fix V ∗ in advance. That is, V ∗ is part of S′, which in our
proof is part of P , and since the prover has to be fixed, so does V ∗. Notice that from a practical perspective,
the privacy of the prover can be guaranteed only if the simulator S′ can simulate any malicious verifier V ∗,
not just a fixed V ∗. Our lemma does not provide this guarantee, but it does assure that once the malicious
verifier V ∗ is fixed, the privacy of the prover is guaranteed even if the simulator is allowed to fail. In
particular, Definitions 2.6 and 5.1 are equivalent with respect to the honest verifier V .
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5.2 Under certain restrictions NIPZK is closed under the OR operator

In this section we show that NIPZK is closed under the OR operator. Unfortunately, we could only prove this
lemma by making a strong condition on the soundness and completeness error of the underlying problem.
However, the issues that we encounter illuminate the difficulties of working with perfect zero-knowledge
proofs, and we believe that exploring new ideas, even if we have to make strong assumptions as a first
step, is useful. We mention that no such closure result is known in the case of non-interactive statistical
zero-knowledge (NISZK) proofs (c.f., [30, 12]).

5.2.1 Background

We first recall that a complexity class C is closed under the OR operator (denoted ∨) if for any two problems
Π, Γ ∈ C it holds that Π ∨ Γ ∈ C, where Π ∨ Γ def= 〈(Π ∨ Γ)Y , (Π ∨ Γ)N 〉,

(Π ∨ Γ)Y = {〈x, y〉|x ∈ ΠY ∨ y ∈ ΓY } , and
(Π ∨ Γ)N = {〈x, y〉|x ∈ ΠN ∧ y ∈ ΓN} .

Since we are working with promise-problems, this definition only considers elements that are YES or NO
instances of Π and Γ. Thus, in the definition of (Π ∨ Γ)Y , when one of x, y is not a YES instance, the
intention is that this element is a NO instance of either Π or Γ.

To show that NIPZK is closed under the OR operator, we need to show a non-interactive protocol where
the prover and the verifier are given two instances x of Π and y of Γ, and the prover gives a perfect zero-
knowledge proof that convinces the verifier that at least one of x, y is a YES instance. Since we have a
NIPZK-complete problem, both Π and Γ reduce to it. This simplifies our task because we only need to deal
with circuits X of UNIFORM (UN). That is, the prover and the verifier are given X, Y ∈ UNY ∪UNN , and
the verifier should accept only if X or Y is a YES instance. Otherwise, the verifier should reject.

The first challenge is that no protocol for OR closure is known for the class of problems admitting non-
interactive statistical zero-knowledge (NISZK) proofs. In contrast to our previous results, where we could
build on ideas from the statistical setting, here we have no such advantage. Thus, we try the natural approach
of building a proof based on the difference between YES and NO instances.

As we saw, instances of UN differ in their number of output strings that end with a 1. That is, |TX |+|TY |
is large if either X or Y is a YES instance, and small if both X and Y are NO instances. This suggests that
we should construct a NIPZK proof where the verifier accepts or rejects based on sizes of sets. Indeed, this
idea proved useful in the study of statistical zero-knowledge proofs [22, 13]. Specifically, the lower-bound
protocol of Goldwasser and Sipser [14] (c.f. [31, 2, 1]) was applied by Goldreich and Vadhan [13] to bound
sets defined from circuits (c.f. [22]). Roughly speaking, given a circuit T , the idea is to use a random string
(such as the reference string) to define a hash function h, and let the prover find y such that both h(y) = 0
and y ∈ T . The verifier accepts only if such y exists. By the properties of the hash function, for most
random strings h it holds that h−1(0) is a random set of more or less the same size. Thus, when T is large,
h−1(0) ∩ T is non-empty, and the verifier accepts. Conversely, when T is small, h−1(0) ∩ T is empty, and
the verifier rejects. This protocol can also be simulated. Specifically, the simulator first chooses a random
sample y ∈ T , and then it chooses h uniformly, conditioned on h(y) = 0.

When we apply the lower-bound protocol in our case, the common reference string would define h,
and the prover would choose rX and rY such that h(X(rX), Y (ry)) = 0. The simulator would do the
same, but in reverse order. That is, the simulator would first choose rX and rY , compute X(rX) and (rX),
and finally choose h such that h(X(rX), Y (ry)) = 0. The issue with this simulator is that it defines the
common reference string from h, and h may be only statistically close to uniform. This would only add
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a small error to the simulation, which is why hashing techniques are useful in the study of statistical zero-
knowledge. However, since perfect zero-knowledge protocols allow no error in the simulation, we cannot
use this technique for NIPZK.

5.2.2 The protocol.

We describe our protocol. Recall that the prover and the verifier are given instances X and Y of UN, and the
verifier should accept if X ∈ UNY or Y ∈ UNY. We can assume that both circuits have the same number
of output bits because we can always add input gates that are mapped directly to output gates. This retains
the YES or NO properties of the circuit. We denote the number of output bits in X and Y by n + 1.

Since our main obstacle is achieving perfect zero-knowledge, we take a rather counter intuitive approach,
starting with the simulator. Consider a simulator that uniformly picks rX and rY , and computes z =
X(rX) ⊕ Y (rY ). Since at least one of the circuits is a YES instance, the output of this circuit is uniformly
distributed. Hence, the simulator uses the n-bit prefix of z to define the reference string. This simulator
informs a prover who, on reference string rI , sends rX and rY to the verifier such that the n-bit prefix
of X(rX) ⊕ Y (rY ) equals rI . Intuitively, the simulator demonstrates that by XOR-ing the outputs of the
circuits, the prover does not leak to the verifier which of the circuits is a YES instance.

The challenge now is how to define the verifier so that completeness and soundness are satisfied. We
start by defining a verifier that accepts only if the rightmost bit of both X(rX) and Y (rY ) is 1. This works
when both circuits X and Y are YES instances of UN, but even when both X and Y are NO instances, there
could be many combinations for X(rX)⊕X(rY ). That is, given reference string rI , a cheating prover may
find rX and rY such that the n bit prefix of X(rX)⊕ Y (rY ) equals rI , and the rightmost bit of both X(rX)
and Y (rY ) is 1. This will violate the soundness property. Since we do not know how to overcome this issue,
we restrict the number of such combinations. Turning our attention to the completeness property we observe
that if one of the circuits is a NO instance of UN, then it is possible that all of the strings outputted by this
circuit have 0 as their rightmost bit (e.g, for any rX the rightmost bit of X(rX) is 0), and this will make
V reject. Since we do not know how to overcome this issue without introducing error into the simulation,
we add the restriction that instances of UNY be 1-positive. That is, YES instances always have 1 as the
rightmost bit of their outputs. Notice that the output of NO instances can also have 1 as the rightmost bit.
However, by requiring that YES instances be 1 positive, we help the simulator identify NO instances (because
only NO instances can output a string whose rightmost bit is 0).

We redefine the simulator and the proof based on the above restriction. That is, the simulator uniformly
picks rX and rY , computes z = X(rX) ⊕ Y (rY ), and if both X(rX) and Y (rY ) end with a 1, then the
simulator uses the n-bit prefix of z to simulate the reference string. Otherwise, the rightmost bit of one of
the samples is 0. For example, suppose this sample is X(rX). This implies that Y is a YES instance. In this
case the simulator defines the reference string based on the n bit prefix of Y (rx). To reflect this modification
in the proof, upon receiving 〈rX , rY 〉 from the prover, the verifier accepts if the n-bit prefix of Y (rY ) equals
the reference string and Y (rY ) ends with a 1. The above intuition is formalized in the following lemma.

Lemma 5.3 Let Π and Γ be NIPZK problems. Consider the reduction from these problems to instances of
UNIFORM, and denote by X circuits with n+1 output bits obtained by the reduction. If as YES instances the
circuits X are 1-positive, and as NO instances the circuits X are 2−(1+n/2) negative, then Π ∨ Γ ∈NIPZK.

Proof: Let 〈x0, x1〉 such that xi ∈ ΠY ∪ ΠN for each i ∈ {0, 1}. We construct a NIPZK protocol 〈P, V 〉
for Π ∨ Γ. Initially, P sets i = 0 if both x0 and x1 are YES instances. Otherwise, there is a unique i such
that xi is a NO instance, and P fixes this i. In addition, for each i ∈ {0, 1} both P and V reduce xi to
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an instance Xi of UN. Notice that X0 and X1 may have a different number of output gates. This number
depends on several parameters, such as the length of x0 and x1. However, we can easily make this number
equal. Specifically, if X0 has n output gates and X1 has n − a < n output gates, then we define a new
circuit X ′

1 by adding a input gates to X1. The output of X ′
1 is the values on these a input gates, followed

by the output of X1. This modification guarantees that both circuits have n + 1 output gates and that X ′
1

inherits the properties of X1. That is, for any α and β, if X1 is α-positive, then X ′
1 is α-positive, and if X1

is β-negative, then X ′
1 is β-negative.

Thus, for each i ∈ {0, 1} the circuit Xi has n + 1 output gates and, by the premise, the following
properties hold. If xi is a YES instance of either Π or Γ, then the rightmost bit in the outputs of Xi is 1,
and X ′

i (the distribution on the n bit prefix of Xi) is uniform on {0, 1}n. Conversely, if xi is a NO instance
of either Π or Γ, then |TXi | ≤ 2−(1+n/2) · 2n = 2−1+n/2 (recall that TX is the set of outputs of X whose
rightmost bit is 1).

After the prover sets i, the protocol proceeds as follows. The first step of P is to uniformly choose a
string ri, and assign y the output of Xi(ri), excluding the rightmost bit. Let rI denote the reference string. If
Xi(ri) = y0, then P uniformly chooses ri ∈ X−1

i (rI1), and sends 〈r0, r1〉 to V . Otherwise, Xi(ri) = y1,
in which case P uniformly chooses ri ∈ X−1

i (y1 ⊕ rI1), and sends 〈r0, r1〉 to V . The verifier accepts if
〈r0, r1〉 are correctly computed. Namely, V computes X0(r0) and X1(r1), and if there is i ∈ {0, 1} such
that the rightmost bit of Xi(ri) is 0 and Xi(ri) = rI1, then V accepts. Otherwise, if X0(r0)⊕X1(r1) = rI0
(that is, both X0(r0) and X1(r1) have 1 as the rightmost bit), then V accepts. Otherwise, V rejects.

The completeness property of 〈P, V 〉 follows from its zero-knowledge property. Thus, we start with the
simulator S for 〈P, V 〉. As in 〈P, V 〉, the simulator reduces 〈x0, x1〉 to 〈X0, X1〉. The simulator uniformly
chooses r0 and r1, and computes X0(r0) and X1(r1). If there is i ∈ {0, 1} such that Xi(ri) ends with a 0
(i.e., Xi ∈ UNN), then S outputs 〈〈x0, x1〉, r′I , 〈r0, r1〉〉, where r′I is the n-bit prefix of Xi(ri). Otherwise, S
outputs 〈〈x0, x1〉, r′I , 〈r0, r1〉〉, where r′I is the n-bit prefix of X0(r0)⊕X1(r1). In both cases r′I is uniformly
distributed, and 〈r0, r1〉 are distributed as in 〈P, V 〉. Thus, S perfectly simulates 〈P, V 〉. Since S always
outputs accepting transcripts, 〈P, V 〉 has perfect completeness.

We turn our attention to the soundness property. Let x0, x1 ∈ ΠN, and let 〈r0, r1〉 be the message
received by V . We consider two cases in which V accepts. In the first case there is i ∈ {0, 1} such that
the rightmost bit of Xi(ri) is 0, and Xi(ri) = rI1. Since |TXi

| ≤ 2n/2−1, and rI is uniformly distributed,
it follows that in the first case V accepts with probability at most 2 · PrrI [Xi(ri) = rI1] ≤ 2 · 2−(n/2+1).
Notice that the probability is multiplied by 2 because a cheating P ∗ may use either X0 or X1. In the second
case the suffix of both X0(r0) and X1(r1) is 1, and X0(r0) ⊕ X1(r1) = rI0. In this case the probability
over rI that X0(r0)⊕X1(r1) = rI0 is at most 1/4 because |TX0 | · |TX1 | ≤ 2n/2−1 · 2n/2−1 = 2n/4 and rI

is uniformly distributed. We conclude that in total V accepts with probability at most 1/4 + 2 · 2−(n/2+1),
which is 1/3 for sufficiently large inputs. The lemma follows.

6 Conclusion

Our research was motivated by the fact that there are many general results about statistical zero-knowledge
proofs, but none of them applies to perfect zero-knowledge proofs. Consequently, many fascinating fun-
damental questions about perfect zero-knowledge proofs remain open. For example, can we collapse the
number of rounds in perfect zero-knowledge proofs to a constant? Do perfect and statistical zero-knowledge
coincide (this question motivated the thesis of [34]), and under what implications to complexity theory?

16



Perhaps we are still far from answering fundamental questions, but prior to this paper, virtually nothing
was known about perfect zero-knowledge proofs. In this paper we provided complete and hard problems.
We introduced the error shifting technique, applied it in several places, and showed how it can be used to
achieve perfect simulation. We took one step further and showed two applications, one to the notion of
simulation and the other to the closure of NIPZK. In doing so, we improved the current understanding of
perfect zero-knowledge proofs, provided tools for future work in this area, and illuminated the difficulties
lying ahead. We hope that this insight will facilitate the study of perfect zero-knowledge proofs.
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[5] Gilles Brassard, Claude Crépeau, and Moti Yung. Everything in NP can be argued in perfect zero-
knowledge in a bounded number of rounds (extended abstract). In EUROCRYPT ’89: Proceedings of
the workshop on the theory and application of cryptographic techniques on Advances in cryptology,
pages 192–195, New York, NY, USA, 1990. Springer-Verlag New York, Inc.

[6] Ivan Damgård and Oded Goldreich Avi Wigderson. Hashing functions can simplify zero-knowledge
protocol design (too). Technical Report RS-94-39, BRICS, November 1994.

[7] Shimon Even, Alan L. Selman, and Yacov Yacobi. The complexity of promise problems with applica-
tions to public-key cryptography. Information and Control, 61(2):159–173, May 1984.

[8] Lance Fortnow. The complexity of perfect zero-knowledge. In Silvio Micali, editor, Advances in
Computing Research, volume 5, pages 327–343. JAC Press, Inc., 1989.

[9] Oded Goldreich. Foundations of Cryptography, volume 1. Cambridge University Press, 2001.

[10] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity or all
languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–729, 1991.

[11] Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Honest-verifier statistical zero-knowledge equals
general statistical zero-knowledge. In STOC ’98: Proceedings of the thirtieth annual ACM symposium
on Theory of computing, pages 399–408, New York, NY, USA, 1998. ACM.

[12] Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Can statistical zero knowledge be made non-
interactive? or on the relationship of SZK and NISZK. In CRYPTO ’99: Proceedings of the 19th
Annual International Cryptology Conference on Advances in Cryptology, pages 467–484, London,
UK, 1999. Springer-Verlag.

17



[13] Oded Goldreich and Salil P. Vadhan. Comparing entropies in statistical zero-knowledge with appli-
cations to the structure of SZK. In IEEE Conference on Computational Complexity, pages 54–73,
1999.

[14] S. Goldwasser and M. Sipser. Private-coins versus public-coins in interactive proof systems. In Silvio
Micali, editor, Advances in Computing Research, volume 5, pages 73–90. JAC Press, Inc.,1989.

[15] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof
systems. SIAM J. Comput., 18(1):186–208, 1989.

[16] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP. In
Proceedings of Eurocrypt 2006, volume 4004 of LNCS, pages 339–358. Springer, 2006.

[17] Iftach Haitner, Omer Reingold, Salil P. Vadhan, and Hoeteck Wee. Inaccessible entropy. In Michael
Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 611–620. ACM, 2009.
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