
Near-optimal extractors against quantum storage

Anindya De∗ Thomas Vidick†

December 9, 2009

Abstract

We give near-optimal constructions of extractors secure against quantum bounded-storage ad-
versaries. One instantiation gives the first such extractor to achieve an output length Θ(K − b),
where K is the source’s entropy and b the adversary’s storage, depending linearly on the adver-
sary’s amount of storage, together with a poly-logarithmic seed length. Another instantiation
achieves a logarithmic key length, with a slightly smaller output length Θ((K − b)/Kγ) for any
γ > 0. In contrast, the previous best construction [Ts09] could only extract (K/b)1/15 bits.

Our construction follows Trevisan’s general reconstruction paradigm [Tre01], and in fact our
proof of security shows that essentially all extractors constructed using this paradigm are secure
against quantum storage, with optimal parameters. Our argument is based on bounds for a
generalization of quantum random access codes, which we call quantum functional access codes.
This is crucial as it lets us avoid the local list-decoding algorithm central to the approach in [Ts09],
which was the source of the multiplicative overhead.

Some of our constructions have the additional advantage that every bit of the output is a
function of only a polylogarithmic number of bits from the source, which is crucial for some
cryptographic applications.
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1 Introduction

Randomness extractors are fundamental building blocks in pseudorandomness theory, with many
applications to derandomization, error-correcting codes, and expanders, among others. They are also
of central importance in cryptography, where they are often used to build key generation primitives.
In this context, one usually has the notion of an adversary, a malicious observer who is trying to
discover a bit of the honest player’s output. The most prominent model for adversaries is the bounded
storage model, introduced by Maurer [Mau92], in which the adversary is allowed to store a limited
amount of information about the extractor’s input.

Formally, we say that a function Ext : {0, 1}N × {0, 1}t → {0, 1}m is a (k, ε) strong extractor if for
every distribution X with min-entropy at least k (X is called the source) and uniformly random
Y (called the seed), the distribution Ext(X,Y ) is ε-close to uniform in statistical distance. The
extractor is said to be secure against b bits of storage if Ext(X,Y ) is ε-close to uniform even to
an adversary who has been allowed to store b bits of information about X, and has also later been
revealed the seed Y .

Constructions of extractors are known that are almost-optimal in all parameters, even in the presence
of the adversary (in fact, a result by Lu [Lu04] shows that any strong (k, ε) extractor is essentially a
(k+b, ε) extractor secure against b bits of storage). Nevertheless, in a world in which no adversary can
be trusted, König et al. [KMR05] introduced the following interesting twist: what if the adversary
is allowed quantum memory? In this setting, the fundamental difficulty that arises is a familiar one,
with a long history: how much information can be encoded in a quantum state?

The fact that this question can admit very different answers depending on its precise formulation
is reflected in the fact that not all classical extractor constructions are secure in the presence of a
quantum adversary, as was shown in [GKK+07]. Nevertheless, many constructions have been shown
to be sound on a case-by-case basis [KMR05, KT08, FS08, Ts09]. All these constructions, however,
have parameters that are far from optimal either in terms of seed length or of output length.

In order to explore this question, we first describe a construct which we call quantum functional access
codes (QFAC). QFACs will be central in the proofs of correctness of our extractor constructions.

Quantum functional access codes. Holevo [Hol73] was the first to tackle the question of the
information capacity of a quantum state, showing that one needs at least n qubits in order to encode
n bits of information. However, this bound only holds when it is required that the whole n bits be
recoverable from the quantum storage. As such, it is generally not applicable in a cryptographic
context, where typically even partial information is important. Instead of asking for the whole input
x ∈ {0, 1}n to be recoverable from its encoding Ψ(x), Ambainis et al. [ANTsV02] consider encodings
in which it is only required that any bit of x can be recovered from Ψ(x) with probability 1/2+ε (over
the measurement’s randomness), and they call such encodings ‘random access codes’ (RACs). Note
that, since the encoding is quantum, the recovarability of any one bit does not imply the recovarability
of the whole string x, so that Holevo’s bound does not apply. Nevertheless, Ambainis et al. showed
that RACs require essentially (1 − H(1/2 + ε))n qubits to encode n bits, providing a linear lower
bound for fixed ε. These bounds have proved instrumental in many results in information theory.
In fact, as pointed out in [Ts09], random access codes provide a way to construct one-bit extractors
that are secure against quantum storage.

We push this question even further: what if, instead of asking that the encoding lets us recover
any bit of the input, we asked that it lets us recover some fixed set of functions of the input? For
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example, we could ask about encodings that let us recover the XOR of any k bits of the input1, but
one can also consider more general settings.

One might ask about the relevance of such encodings, when we already know that there are strong
linear lower bounds on RACs – surely, these will extend to any encoding which lets us recover more
than any single bit of the input. The key point here is that, even though both Holevo’s bound and
the RAC lower bounds are linear in the input length when the success probability p is fixed, the two
bounds scale very differently when one considers the dependence on p: while Holevo’s lower bound
scales as n − log 1/p, the RAC bound scales as (4ε2/ ln 2)n for small ε = 2p − 1. So we are asking,
how does the length of the code scale with the set of functions that we are trying to recover?

Define a (n, b, ε) QFAC for a set of n-bit strings A and a set of functions C from A to {0, 1} as
a b-qubit encoding of strings x ∈ A such that, for any function f ∈ C, one can recover f(x) from
its encoding with success probability 1/2 + ε.2 Intuitively, the more the set of functions C is error
resilient (i.e., the more spread-out the images (f(x))f∈C ∈ {0, 1}|C|), the stronger the lower bound
should be on the length of the encoding. For example, using a simple reduction to known results we
can show that any (n, b, ε) QFAC for the set C = {fy : x 7→ x · y mod 2, y ∈ {0, 1}n} must have
length n− log 1/ε. If one simply used the fact that such a QFAC can be used to recover any bit of
x with probability 1/2 + ε, the resulting bound would be the much weaker O(ε2n).

We believe that QFACs constitute a primitive that should be of wide interest in studying the prop-
erties of quantum states from an information-theoretic point of view. In this paper, we demonstrate
the relevance of this construct by showing how good bounds on some QFACs can be used to prove the
security of an extractor against quantum storage with almost-optimal parameters. In fact, many pre-
vious constructions of extractors against quantum storage can be seen as implicitly proving bounds
on QFACs. For example, the construction in [KMR05] shows that any (n, b, ε) QFAC for a set of
2-universal hashing functions must have length b ≥ n− log 1/2ε.

Techniques. In this section we give an overview of our proof technique, explaining the connection
between extractors and QFACs in the context of Trevisan’s general construction paradigm [Tre01].
To describe this, let us first give a brief conceptual overview of the main steps that go into the proof
of the construction by Ta-Shma [Ts09].

The construction proceeds by encoding the weakly random source x ∼ X using a locally list-decodable
code C [STV01]. This is followed by an application of the Nisan-Wigderson generator [NW94],
interpreting C(x) as the truth table of the “hard” function.

The proof of correctness for this construction, as the first part of ours, follows the general recon-
struction framework of [Tre01]. For the sake of contradiction, assume that there is a statistical test
T which uses the adversary’s quantum information Ψ(x) to distinguish the output from uniform
with advantage ε. A Markov argument shows that for at least an ε/2 fraction of the samplings x
from the source (call them bad samplings), T can distinguish the output (when the source is x) from
uniform by at least ε/2. Consider any such bad sampling x. A standard hybrid argument, along
with properties of the Nisan-Wigderson generator, allows us to construct a circuit T ′ (using little
non-uniformity about x) which predicts a random position of C(x) with probability 1

2 + δ where
δ = ε

m . Further, T ′ makes exactly one query to T .

At this stage, we have constructed a small circuit T ′, which uses the adversary’s quantum information
in order to predict the bits of C(x) with some small success probability. The proof in [Ts09] follows

1Such codes were introduced in [BARdW08], where they are called XOR-QRACs
2A RAC is then simply a QFAC for the set of index functions fi : x 7→ xi.
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that in [Tre01] by showing how, from such a circuit, one can give another circuit which predicts any
position of x with probability 0.99 and queries T ′ at most q = (1/δ)c times (c = 15 for the code
in [Ts09]). This gives a random access code for x; however since it makes q measurements on the
quantum state Ψ(x), the no-cloning theorem forces us to see it as having a length of q · b qubits. The
main drawback of this method, when transferred to the quantum setting, is thus that the quantum
state needs to be copied a large number of times in order to get a RAC – thus yielding a weaker
bound than one might hope for.

Our proof departs fundamentally from the usual reconstruction paradigm at this point: instead of
using a short RAC for C(x) to construct a longer RAC for x, we give a direct analytical argument
showing that a RAC for C(x) must have large length. Note that a RAC for x is simply a QFAC
for the class of functions fi : x 7→ C(x)i. Intuitively, such a QFAC cannot be short, even though its
success probability 1/2+ε/m is small. If the QFAC is classical (CFAC), this is easy to show: assume
that there existed a short CFAC for this problem. One can just repeat the recovery procedure to
get a string y that agrees with C(x) at a fraction 1/2 + ε/m of positions, and then one can use the
good list-decoding properties of C to argue that the CFAC essentially lets us recover the whole input
x, and hence must be long. In the quantum setting, however, it is far from obvious if this is true.
The primary problem is that we cannot repeat the recovery procedure y, because quantum states
are fragile.

In order to overcome this difficulty, we directly prove an analytical lower bound on the QFAC derived
from the code. This lets us derive a contradiction, proving that our extractor is safe against quantum
storage. The idea for the lower bound consists in seeing any good QFAC as an adversary which uses
small memory, and is able to predict codeword positions. By using the fact that good list-decodable
codes give rise to classical one-bit strong extractors, we can transform the adversary into a quantum
adversary for a specific one-bit extractor. Finally, a result by Koenig and Terhal [KT08] shows that
such an adversary would imply a classical adversary with similar storage, which we know does not
exist.

Our results. We show that any extractor based on Trevisan’s reconstruction paradigm [Tre01] is
also safe against a quantum bounded-storage adversary, with near-optimal parameters. Rather than
give the full technical result here (see Theorem 4.6), we discuss instantiations with two specific codes.

We first use a code from [GHSZ02], which is obtained through the concatenation of the Reed-Solomon
code and the Hadamard code. This lets us prove the following:

Theorem 1.1 For any γ > 0 and K = Ω(1/poly(N)), ε = 1/poly(N), there is a polynomial-time
computable function Ext : {0, 1}N × {0, 1}t → {0, 1}m which is a (K, 2ε) extractor against b qubits
of quantum storage, where t = O(logN) and m = Ω

(
K−b
Kγ

)
.

We note that the construction in [Ts09] uses the concatenation of a Reed-Muller code with the
Hadamard code, the parameters of the Reed-Muller code being chosen so that one can do local list-
decoding. In contrast, our analysis just needs a good list-decoding radius, but no local list-decoding
property. Hence our result carries over to [Ts09] and in particular implies that the construction
in [Ts09] has much better output length than the one shown in that paper, which was Ω((K/b)1/15).

This first construction does not have the desirable property of local computability. By using a different
code, we can also show the following:

Theorem 1.2 For any α > 0 and ε = 1/poly(N), there is a function Ex : {0, 1}N × {0, 1}t →
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{0, 1}m which is a (αN, 2ε) extractor against b qubits of quantum storage, where t = O(log4N) and
m = Ω(αN − b). Moreover, each bit output by the extractor is computable in poly logN time.

Even though it has a slightly larger key length (note however that its output length is the optimal
Θ(αN −b)), a major advantage of this extractor is its simplicity: each bit of the output is simply the
XOR of O(logN) bits of the source, chosen based on the seed. In particular, it is locally computable3.
On the other hand, that construction is restricted to extracting from linear entropy rates. This is
inevitable, as lower bounds by Viola [Vio04] show that locally computable extractors cannot extract
from sources with entropy less than N0.99 using a polylogarithmic seed length.

The QFACs at the heart of this second construction are in fact the XOR-QRACs from [BARdW08].
A by-product of our proof is an improvement of the lower bound proved in that paper on the length
of such codes (see Corollary 3.10).

A nice side feature of both these constructions, especially if one is interested in cryptographic appli-
cations, is that it is possible to achieve an arbitrary inverse polynomial statistical distance from the
uniform distribution, while paying only a polylogarithmic cost in terms of output length and seed
length (this will be apparent from the more detailed statement of Theorem 1.1 given in Section 4).
Only the first property was known to hold for previous short seed extractor constructions against
quantum storage.

Applications to cryptography. Our results are of direct applicability to the following key expan-
sion scenario. Alice and Bob share a small secret uniformly random keyK. They would like to expand
it into a longer key K ′ in order to communicate in presence of an adversary Eve. A public source of
weak randomness R (assume that R has min-entropy at least k) is available to all parties. When the
string R is broadcast, Eve is allowed to compute an arbitrary function Ψ : {0, 1}|R| → {0, 1}b and
store the result. However, once she stores Ψ(R), her access to R is cut off. Indeed, Eve is assumed
to have a bounded storage capacity and so she can only store a limited amount of information about
R. The goal is to come up with an efficient function Ext which can be used by Alice and Bob to
compute the shared string K ′ = Ext(R,K). The required security condition is that K ′ is close to
being uniformly random to Eve, even given her knowledge of Ψ(R). In fact, we would like K ′ to
remain random even if K is later revealed to Eve (after Ψ(R) is computed and access to R has been
cut off).

For this application, it is important that Ext be locally computable, i.e. individual bits of the output
should be a function of a polylogarithmic number of bits of the source R. Indeed, since we are
putting a cap on the adversary’s storage it would be unreasonable not to put a similar cap on the
memory used by the honest parties Alice and Bob to compute bits of their shared key.

Our second construction has the property of being locally computable: every bit of the output is a
function of polylogarithmically many bits from the source. While various constructions of classical
locally computable extractors are already known [DM04, Lu04, Vad04, DT09], ours are the first to
be proved secure against quantum adversaries. This makes them particularly suitable for use in the
context of bounded storage cryptography.

Organization of the paper. We start with some preliminaries in Section 2. In Section 3 we
introduce quantum functional access codes and give bounds for some specific families of these codes.

3For this to hold, we also need to check that the bits to be XOR-ed can be chosen in poly-logarithmic time, which
is the case in this construction.
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In Section 4 we describe our construction and state its parameters. Finally, the proof of security is
given in Section 5.

2 Notation and Preliminaries

The following notations are used throughout the paper. For x ∈ {0, 1}n, xi denotes the ith bit of x. A
tuple (y1, y2, . . . , yk) is denoted by ⊗ki=1yi, or sometimes simply y. The concatenation of two strings
x and y is denoted by x ◦ y. If x and y are tuples, then x ◦ y represents the bigger tuple formed by
concatenating x and y. For z1, . . . , zk ∈ {0, 1}, ⊕ki=1zi denotes the XOR of z1, . . . , zk. We use ∆(x, y)
for normalized Hamming distance between x and y. Db denotes the set of all density matrices on b
qubits, while Ob is the set of all ±1-valued observables on b qubits. All logarithms are taken in base
2. Throughout, H will denote the binary entropy function H(x) = −x log x− (1− x) log(1− x) for
0 < x < 1.

Distributions. The uniform distribution on {0, 1}n is denoted by Un. We will manipulate random
variables that have both classical and quantum parts. In general, given two random variables X, Y ,
X◦Y is the same as the random variable (X,Y ). Given two states ρ, σ, ρ◦σ is just ρ⊗σ. Finally, given
a random variable X : Ω→ {0, 1}n and a state ρ, X ◦ ρ denotes the state Ew∈Ω [|X(w)〉〈X(w)| ⊗ ρ].
The statistical distance between two distributions D1 and D2 (or, more generally, the trace distance
when these distributions involve quantum components) is denoted by ‖D1 −D2‖.

Definition 2.1 A (classical) distribution X is said to have min-entropy at least k (denoted H∞(X) ≥
k) if ∀x, Pr[X = x] ≤ 2−k.

Extractors. We first give the the formal definition of a strong extractor.

Definition 2.2 Ext : {0, 1}N × {0, 1}t → {0, 1}m is said to be a (k, ε) strong extractor if for every
distribution X with min-entropy at least k, we have that ‖Um+t − Ext(X,Ut) ◦ Ut‖ ≤ ε. Here both
Ut’s in the second expression correspond to the same sampling.

X is usually called the source (and N its length), while the extractor’s second input is called the seed
(of length t).

We now extend this definition to that of a strong extractor secure against a bounded-storage quantum
adversary.

Definition 2.3 Ext : {0, 1}N × {0, 1}t → {0, 1}m is said to be a (k, ε) strong extractor against b
qubits of quantum storage if for every map Ψ : {0, 1}N → Db which maps N bits to a quantum state
over b qubits and every distribution X such that H∞(X) ≥ k

‖Um ◦Ψ(X) ◦ Ut − Ext(X,Ut) ◦Ψ(X) ◦ Ut‖ ≤ ε (1)

where both Ut’s in the second expression correspond to the same sampling.

We note that condition (1) above is equivalent to requiring that for any statistical test T : {0, 1}m×
Db × {0, 1}t → {0, 1},∣∣∣∣ P

x∼X,y∼Ut,u∼Um
[T (u,Ψ(x), y) = 1]− P

x∼X,y∼Ut
[T (Ext(x, y),Ψ(X), y) = 1]

∣∣∣∣ ≤ ε
5



Since we can always assume that any measurements performed by T are done at the end, this is
equivalent to saying that for any M : {0, 1}m+t → Ob,∣∣∣Ex∼X,y∼Ut [Tr

(
Eu∈{0,1}m [M(u, y)] Ψ(x)

)
− Tr(M(Ext(f, y), y)Ψ(x))

] ∣∣∣ ≤ 2ε

Quantum codes. A (n, b) quantum encoding is a map Ψ : {0, 1}n → Db mapping x to a density
matrix Ψ(x). A fundamental theorem due to Holevo essentially states that Ψ(x) cannot contain
more information about x than a classical string of b bits:

Theorem 2.4 [Hol73] Let X be any distribution on {0, 1}n and Ψ(X) = Ex∈XΨ(x). For a particular
measurement M , let YM denote the random variable resulting from applying the measurement on
Ψ(X). If I(X : Y ) denotes the mutual information of X and Y and S(Ψ(X)) denotes the von
Neumann entropy of Ψ(X), then I(X : Y ) ≤ S(Ψ(X)).

Oracle circuits. Our proofs of security will involve the construction of oracle circuits. If A is an
oracle circuit, we denote by AB the circuit that uses B as the oracle. Further, let C be an oracle
machine which uses A as an oracle (denoted by CA). Then it is understood that when C calls A,

then A calls the appropriate oracle B. Thus AC ≡ ACB . We will also use the following easy claim:

Claim 2.5 Let B be any oracle such that oracle circuit A can be constructed using at most t1 bits
of advice and A queries B at most q1 times. Again let C be an oracle circuit which queries A and
C can be constructed using at most t2 bits of advice. Further, C queries A at most q2 times. Then
C can be considered as an oracle circuit which queries B at most q1q2 times and can be constructed
using at most t1 + t2 bits of advice.

3 Quantum Functional Access Codes

Consider the following problem from the theory of classical error-correcting codes. Let C : {0, 1}n →
{0, 1}m be a code which is (ε, L) list-decodable i.e. for any x ∈ {0, 1}m, there are at most L
codewords y such that the relative Hamming distance between x and y is less than (1

2 − ε)m. Let
A = {C(x) : x ∈ {0, 1}n} be the set of all codewords, and consider Enc : A→ {0, 1}b, a probabilistic
encoding such that for every z ∈ A, zi can be recovered from Enc(z) with probability 1

2 + 2ε, on
average over the choice of i ∈ [m]. Given Enc(z), by performing the recovery procedure for every
index i, we obtain a string y which will agrees with z on at least a 1

2 +ε fraction of the positions with
high probability. But then the exact element z can be recovered using just an additional log |L| bits
of advice (as per the list-decodability property of C). Hence, Enc can be seen as a high-probability
encoding of any codeword, using only b + log |L| bits. However, the obvious information-theoretic

bounds shows that this must be at least log |C| bits, implying that b ≥ log |C||L| . This is much better

than the usual random access code bound b ≥ O(ε2 log |C|/ log n) for small ε, that one gets if there
is no guarantee on the structure of the set C.

To model this situation more precisely, note that the recovery procedure lets us recover any bit of C(x)
with non-trivial probability. As such, Enc can be seen as a probabilistic encoding of every x ∈ {0, 1}n
which lets us evaluate a class of functions C = {gi : x 7→ C(x)i, i ∈ [n]}. This is a generalization of
the usual random access codes, introduced in [ANTsV99], for which C = C1 = {gi : x 7→ xi, i ∈ [n]}.
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It is natural to expect that lower bounds for this more demanding kind of random access code would
be tighter than more general lower bounds, in a way that depends on the structure of C. We introduce
the following definition:

Definition 3.1 Let A ⊂ {0, 1}n, and C ⊂ {f : A → {0, 1}} be a set of functions defined on A. For
ε ∈ (0, 1/2], a (n, b, ε) quantum functional access code, or QFAC, for (A, C) is a map Ψ : A→ Db such
that, for every f ∈ C, there is an observable Mf such that for every x ∈ A, (−1)f(x)Tr(MfΨ(x)) ≥ 2ε.

The discussion above shows that a classical functional access code for a set of functions C = {gi :
x 7→ C(x)i, i ∈ [n]} that is derived from a good list-decodable code C will have a strong lower bound
on its length. However, the classical argument cannot be extended in a straightforward manner
to the quantum case, as it is dependent upon performing successive measurements on the classical
encoding. If the encoding is quantum, the first such measurement will destroy the state, and we will
not be able to proceed further.

Nevertheless, we are able to prove bounds in some specific cases. We start with the standard
setting of random access codes, for which Theorem 4.1 in [ANTsV99] implies the following (see also
Theorem 3.2 in [Ts09]):

Lemma 3.2 Let A ⊂ {0, 1}n, 0 < ε ≤ 1
2 and Ψ : {0, 1}n → Db be a (n, b, ε) quantum functional

access code for (A, C1). Then log |A| ≤ O
(
b logn
ε2

)
.4

Central to this work is the fact that functional access codes for larger classes of functions than the
simple coordinate functions C1 enjoy much stronger lower bounds, with a weaker dependence on the
success probability ε. König, Maurer and Renner [KMR05] show the following:

Theorem 3.3 ([KMR05], Theorem 12 and Corollary 13) Let C be the set of all functions from
{0, 1}n to {0, 1}. Then any (n, b, ε) QFAC for (A, C) satisfies log |A| ≤ b+ 2 log 1/2ε. Moreover, the
same bound holds if C is any family of two-universal hash functions, and the decoding procedure is
only required to be correct on average over the choice of both x and f .

There is an obvious connection between lower bounds on the length of QFACs and lower bounds on
one-way quantum communication complexity, even though results in the latter setting usually do not
focus on the error dependence as much as is needed for our applications. Nevertheless, the following
bound easily follows from known results in communication complexity:

Lemma 3.4 Let C = {gy : x 7→ x ·y mod 2, y ∈ {0, 1}n}. If there exists a (n, b, ε) QFAC for (A, C),
then log |A| ≤ b+ 2 log(1/2ε).

Proof: Note that any (n, b, ε) QFAC for (A, C) implies a one-way quantum protocol for the
communication problem in which Alice is given x ∈ A, Bob is given y ∈ {0, 1}n, and their goal
is to output x · y mod 2. Using a reduction from [CDNT98], any such protocol communicating b
qubits and succeeding with probability 1/2 + ε can be transformed into a protocol that sends any
x ∈ A to Bob, using b qubits, with success probability 4ε2. Theorem 1.1 in [NS06] then shows that
b ≥ log |A| − log(1/4ε2).

4As noted in [Ts09], the loss of a factor logn is inevitable. Note however that this can be removed in the case where
A = {0, 1}n by following the proof for quantum random access codes in [ANTsV02].
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Families of two-universal hash functions over {0, 1}n, as well as the Hadamard code, both have size
Ω(2n), which makes them unsuitable for our purposes. Indeed, in our applications to extractors we
will use the seed to select a few random functions from a family C and apply them to the source in
order to obtain the output. However, using any of the last two function families would require a seed
of size n, where n is the length of the source, whereas we would like the seed to be poly-logarithmic
in the source length5.

In order to get good extractor constructions, it is crucial to prove strong lower bounds on QFACs
for smaller classes of efficiently computable functions. Our main result is based on the fact, proved
below, that there are no short QFACs for families of functions that are defined from list-decodable
codes. This extends the discussion introducing this section to the case of quantum encodings, and
in fact we will get essentially the same bound as stated there —even though, as we argued was
necessary, the proof will be very different. It will be useful to consider approximately list-decodable
codes, which we define as follows:

Definition 3.5 A code C : {0, 1}N → {0, 1}N is (ε, δ, L) approximately list-decodable if for every

x ∈ {0, 1}N , there exists at most L strings {yi}Li=1 ∈ {0, 1}N , such that for any string z ∈ {0, 1}N
satisfying ∆(x,C(z)) < 1/2 − ε, ∃i ∈ [L] such that ∆(z, yi) ≤ δ. If C is (ε, 0, L) approximately-list
decodable then we simply say that C is (ε, L) list-decodable.

Proposition 3.6 Let N,N,L, b ∈ N, and ε, δ > 0. Let C : {0, 1}N → {0, 1}N be a (ε, δ, L) approxi-
mately list-decodable code, and C = {fi : x 7→ C(x)i, i ∈ [N ]}. Let A ⊆ {0, 1}N , and Ψ be a (N, b, ε)
QFAC for (A, C). Then

log |A| < H(δ)N + b+ logL+O(log 1/ε)

Moreover, this bound holds even when we only require the QFAC to have success probability 1/2 + ε
on average over the choice of g ∈ C, instead of for all g.

The proof crucially relies on the result by König and Terhal [KT08] that strong one-bit extractors are
automatically safe against quantum adversaries, in some range of parameters. It proceeds through
the following three steps:

1. Show that the any (ε, δ, L) approximately list-decodable code C defines a good 1-bit classical
strong extractor.

2. Use Theorem III.1 from [KT08] to show that the previous extractor is automatically safe against
quantum adversaries that are allowed some amount of storage.

3. Conclude by showing how the security against quantum storage implies a lower bound on any
QFAC for C.

We proceed with the details.

Proof: Let t = logN (assume it an integer for notational simplicity) and consider the following
1-bit extractor

E : {0, 1}N × {0, 1}t → {0, 1}
(x, y) 7→ C(x)y

The following claim proves item 1 above.

5Note that usually we use N to denote the length of the source.
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Claim 3.7 E : {0, 1}N × {0, 1}t → {0, 1} as defined above is a (K, ε) strong extractor for any
K > H(δ)N + logL+ log 2

ε .

Proof: Assume for the sake of contradiction that E is not a (K, ε) strong extractor. Then there
is a distribution D with min-entropy K, and a statistical test T such that the following holds.

| P
y∼Ut,x∼D

[T (y) = C(x)y]−
1

2
| ≥ ε

With a possible flip in the output of circuit T , we get a new test T ′ such that

P
y∼Ut,x∼D

[T ′(y) = C(x)y] ≥
1

2
+ ε

By a Markov argument, there is a set BAD ⊆ {0, 1}N such that for every x ∈ BAD,

P
y∼Ut

[T ′(y) = C(x)y] ≥
1

2
+
ε

2

and Px∼D[x ∈ BAD] ≥ ε/2. Evaluating T ′ on every possible y ∈ {0, 1}t results in a string x′ such
that

P
y∈{0,1}t

[x′y = C(x)y] ≥
1

2
+
ε

2
(2)

We can now use the (ε, δ, L) list-decodability properties of C. For any x′ satisfying (2) we can get a
set of k ≤ L strings x1, . . . , xk such that at least one of them satisfies that

P
y∼UN

[xiy = xy] ≥ 1− δ (3)

Note that process of finding x1, . . . , xk need not be polynomial time, but we only require existence
here; the important point is that the list of xi is uniquely determined by x′ (take the lexicographically
smallest list satisfying the conditions in the fact). If x1, . . . , xk are known, then we require at most
logL bits to specify i ∈ [t] such that xi satisfies (3). Once xi is specified, we know that x must be
among one of the at most 2H(δ)N possible N -bit strings which are δ-close to x. Hence we require
an additional H(δ)N bits to fully specify x. Thus, the total amount of bits used to specify x is
logL+H(δ)N , which in turn implies that the size of the set BAD is bounded by L · 2H(δ)N .

To conclude the argument, observe that every element in BAD is sampled with probability at most
2−K and hence PX∈D[X ∈ BAD] ≤ (L · 2K+H(δ)N ). However, this is a contradiction if

L · 2−K+H(δ)N <
ε

2
i.e. K > H(δ)N + logL+ log

2

ε

which gives the bound stated in the claim.

Let η > 0 be an error parameter, A ⊆ {0, 1}N , and UA the uniform distribution on A. Theorem III.1
in [KT08] implies that, as long as

log |A| − b ≥ K + log 1/η, (4)

the function E is automatically a (log |A|, 3√η) extractor that is secure against b qubits of quantum
storage (see Definition 2.3). This means that, for any collection of quantum states Ψ(x) ∈ Db,
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knowledge of y and Ψ(x) cannot help distinguish E(x, y) from a uniformly random bit with advantage
more than 3

√
η (over the choice of x in A, and uniform y). In particular, we have that for any

collection of ±1 observables (My)y∈{0,1}t on Db,

Ex∈A, y∈{0,1}t
[
(−1)C(x)yTr(MyΨ(x))

]
≤ 3
√
η

By definition, any (N, b, ε) QFAC for (A, C), even one that is only correct on average over the choice
of y, contradicts this conclusion for η = 4ε2/9. Hence our assumption (4) on the size of A must be
contradicted, i.e. any such QFAC must be such that log |A| < K + b + log 9/4ε2. Setting K to be
the smallest possible value satisfying the condition in Claim 3.7, we get

log |A| < H(δ)N + b+ logL+O(log 1/ε)

We will use two instantiations of this proposition, for specific families of codes. The first one, which
will let us get an extractor with optimal seed length, is based on the following from [GHSZ02]:

Fact 3.8 For any N ∈ N, ε > 0, there exists a polynomial-time computable binary code CR :
{0, 1}N → {0, 1}N , where N = O(N/ε4), that is (ε,O(1/ε2)) list-decodable.

These codes lead to the following, the proof of which follows immediately from Proposition 3.6:

Corollary 3.9 Let CR be the code from Fact 3.8, and CR = {fi : x 7→ C(x)i, i ∈ [N ]}. Then any
(N, b, ε) QFAC for (A, CR) is such that

log |A| < b+O(log 1/ε)

Moreover, this bound holds even when we only require the QFAC to have success probability 1/2 + ε
on average over the choice of g ∈ CR, instead of for all g.

Our second main construction uses a QFAC for the class Ck = {g : x 7→
⊕k

j=1 xij , (i1, . . . , ik) ∈ [n]}.
QFACs for this class of functions were introduced in [BARdW08], where they are called XOR-QRACs.
That paper shows a bound on the length of such codes using a generalization of the hypercontractive
inequality to matrix-valued functions. We improve their result by showing the following:

Corollary 3.10 Let k,N be integers, and ε > 2k2/2N . Let A ⊂ {0, 1}N . If there exists a (N, b, ε)
QFAC for (A, Ck), then

log |A| < b+H

(
1

k
ln

2

ε

)
N +O

(
log

1

ε

)
Moreover, this bound holds even when we only require the QFAC to have success probability 1/2 + ε
on average over the choice of g ∈ Ck, instead of for all g.

By generalizing the proof of Theorem 7 in [BARdW08] (which is only stated for A = {0, 1}N in that
paper), we can get the bound log |A| ≤ b+

(
1− 1

2 ln 2

)
N +O

(
log 1

ε

)
. This would lead to an extractor

construction which only works for sources with min-entropy γN for γ > 0.28, and our improvement
on their bound gets rid of this constraint.
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Proof: The following fact (for a reference, see [IJK06], Lemma 42) shows that the XOR code is
(ε, (1/k) ln(2/ε), 4/ε2) approximately list-decodable for any ε > 2k2/2N .

Fact 3.11 For every ε > 2k2/2N and z′ ∈ ({0, 1}N )k, there is a list of t ≤ 4/ε2 elements x1, . . . , xt ∈
{0, 1}N such that the following holds: for every z ∈ {0, 1}N which satisfies

P
{y1,...,yk}∈(Nk )

[z′(y1,...,yk) = ⊕ki=1zyi ] ≥
1

2
+ ε

there is an i ∈ [t] such that

P
y∼UN

[xiy = zy] ≥ 1− δ

with δ = (1/k) ln(2/ε).

Note that in [IJK06] the lemma is proved for tuples instead of sets, and has a t ≤ 1/ε2. However,
since most tuples are sets, it is straightforward to get the above version for sets. Plugging the list-
decoding parameters from this Fact in the bound of Proposition 3.6 immediately gives the result.

4 Overview of the construction

Our construction is inspired by the construction by Trevisan [Tre01] and its subsequent adaptation
against quantum storage by Ta-shma [Ts09]. However, our proof technique differs from that of [Ts09]
in that it avoids constructing random access codes by copying the adversary’s storage many times.
Rather, we use the much stronger bounds on QFACs proved in Section 3. This is crucial in allowing
us to prove an additive, rather than multiplicative, dependence of the output on the adversary’s
storage.

We first describe a few standard tools that are used in the construction, before giving it in detail.
Its correctness will be proved in Section 5.

4.1 Preliminaries

Definition 4.1 A collection of subsets S1, . . . , Sm ⊂ [l] is called a (l, n,m, ρ) weak design if for all
i, |Si| = n and for all j,

∑
i<j 2|Si∩Sj | ≤ ρ(m− 1).

The following theorem is due to Raz, Reingold and Vadhan [RRV99].

Theorem 4.2 For every m, l ∈ N and ρ ≥ 2, there is a (l, n,m, ρ) design which is computable in

time (ml)O(1) with l = O( n2

log ρ).

Note that the value of l blows up when ρ approaches 1. In order to keep l bounded even as ρ
approaches 1, we can use a construction given in [RRV99]. Even though the construction is com-
putable in polynomial time, it does not meet many finer notions of efficiency which are of interest to
us. Hartman and Raz [HR03] achieved similar parameters with a better efficiency:

Theorem 4.3 For every m, l ∈ N such that m > nlogn and 0 < γ < 1
2 , there is a (l, n,m, 1 + γ)

design such that l = O(n2 log 1
γ ). Further, each individual design can be output in time polynomial

in l and n.
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For the purposes of this paper, let l(n, ρ) denote the smallest value of l for which Theorems 4.2 or 4.3
guarantee the existence of a weak (l, n,m, ρ) design. Whether we use Theorem 4.2 or 4.3 depends
on how small we want ρ to be.

Our last tool is the Nisan-Wigderson generator with respect to a function f : {0, 1}n → {0, 1}.

Definition 4.4 Let S1, . . . , Sm be a (l, n,m, ρ) weak-design guaranteed by Theorem 4.2 or 4.3. Let
x ∈ {0, 1}2n. Then NW x : {0, 1}l → {0, 1}m is defined as

NW x(y) = xyS1 ◦ . . . ◦ xySm

Here ySj denotes the restriction of y to the indices in Sj.

4.2 Description of the construction

Let C : {0, 1}N → {0, 1}N be a code with good (possibly approximate) list-decoding capabilities,
t the extractor’s seed length, m its ouptut length, and ρ > 0 a parameter of the construction.
Let (S1, . . . , Sm) be a (t, logN,m, ρ) design as discussed above. Define a key-expansion function
g as the function implicit in the Nisan-Wigderson generator: g maps y ∈ {0, 1}t to the m-tuple
(yS1 , . . . , ySm) ∈ ([N ])m. Then the extractor can be succintly described as

ExtC : {0, 1}N × {0, 1}t → {0, 1}m

(x, y) 7→ NWC(x)(y)

Remark 4.5 The local computability properties of the extractor will depend on those of the code
C. Even if every bit of C(x) can be computed in time poly(logN), one additionally requires that
any individual design be computable in time poly(logm, logN). While this is true for the design in
Theorem 4.3 when ρ is very close to 1, it is not true for the design from Theorem 4.2, which we will
nevertheless use in order to get a smaller key length. However, the cost of computing the designs can
be considered as a one-time cost, as they can be pre-computed if desired. Further, the entire design
can be computed in time in polynomial in m. So, irrespective of whether or not individual bits can
be computed in polylogarithmic time, the extractor remains polynomial-time computable.

4.3 Main theorem

Our main result is the following:

Theorem 4.6 Let δ > 0, N,N,K, b ∈ N, 1 < ρ < N0.02, and ε = 1/poly(N). Define

m =
K − b−H(δ)N − Ω(log(1/ε) + log2N)

1 + ρ

If C : {0, 1}N → {0, 1}N is a (ε/m, δ, L) approximately list-decodable code such that L = poly(m/ε),
then the function ExtC : {0, 1}N ×{0, 1}t → {0, 1}m is a (K, 2ε) extractor secure against b qubits of
quantum storage, where t = l(logN, ρ).

We give two instantiations of this result. The first one uses the codes from Fact 3.8, and lets us achieve
optimal seed length. We obtain it by setting ρ = Kγ , for any γ > 0, and using the combinatorial
designs guaranteed by Theorem 4.2:
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Corollary 4.7 Let 0 < γ < 1 be any constant, N ∈ N, and ε = 1/poly(N). Let CR be the code from
Fact 3.8. The function ExtCR : {0, 1}N ×{0, 1}t → {0, 1}m is a (K, 2ε) extractor against b qubits of
quantum storage for any K = Ω(1/poly(N)), where t = O(logN) and m = Ω

(
K−b
Kγ

)
.

An inconvenient of this construction, particularly relevant in cryptography, is that, even though the
extractor is polynomial-time computable, it is not locally computable. Indeed, any bit of the output
may require polynomial time to be computed, whereas one might wish for it to be computable in

polylogarithmic time. We achieve such an extractor by taking C = Ck : {0, 1}N → {0, 1}(
N
k ) the

XOR code Ck(x)y1,...,yk = xy1 ⊕ . . . ⊕ xyk . By using these codes together with the designs from
Theorem 4.3, the bound from Corollary 3.10 gives the following:

Corollary 4.8 Let α, δ > 0 be any constants, N, b ∈ N, and ε = 1/poly(N). For all large enough N ,
the function ExtCk : {0, 1}N × {0, 1}t → {0, 1}m is a (αN, 2ε) extractor against b qubits of quantum
storage where t = O(log4N), m = 1

2((α− 2δ)N − b), and we have set k = O(log(m/ε)/δ2).

Note that this extractor is locally computable, and every individual bit of the output can be computed
in polylogarithmic time, as the designs in Theorem 4.3 are locally computable. Note also that the
extractor only works for linear entropy rates: this is inevitable, as lower bounds by Viola [Vio04]
show that locally computable extractors cannot extract from sources with entropy less than N0.99

using a polylogarithmic seed length.

Remark 4.9 The seed length of this construction can be improved to t = O(log3N) by using
designs from Theorem 4.2. In this case, however, the output length is slightly reduced to m =

Ω
(

(γ−δ)N−b−log(1/ε)
Nγ

)
for any γ > 0. In that case, even though the extractor is locally computable,

individual bits are not computable in poly logN time because the computation of even one element
of the design in Theorem 4.2 requires poly(m) time.

5 Proof of security

We give the proof of security of our construction. The first steps of the proof follow the general
reconstruction paradigm from [Tre01], and we give them first.

5.1 Proofs in the reconstruction paradigm

We start with the following standard observation.

Observation 5.1 In order to prove that Ext : {0, 1}N × {0, 1}t → {0, 1}m is a (K, 2ε) strong
extractor against b qubits of storage, it suffices to prove that for any function M : {0, 1}m+t → Ob
and Ψ : {0, 1}N → Db, there are at most ε2K strings x ∈ {0, 1}N such that∣∣Ey∈{0,1}t [Tr(Eu∈{0,1}m [M(y, u)] Ψ(x))− Tr(M(y,Ext(x, y))Ψ(x))

]∣∣ > 2ε (5)

where, for every x, Ψ(x) is a state on b qubits representing the adversary’s memory after having seen
the input x.
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Proof: Assume for contradiction that Ext : {0, 1}N × {0, 1}t → {0, 1}m is not a (K, 2ε) strong
extractor against b qubits of quantum storage. By definition, there exists M : {0, 1}m+t → Ob such
that ∣∣Ex∼X,y∼Ut [Tr

(
Eu∈{0,1}m [Mu,y] Ψ(x)

)
− Tr(MExt(x,y),yΨ(x))

]∣∣ > 4ε

where X is the source’s distribution. Since it has min-entropy at least K, it must be true that for
at least ε2K inputs x,∣∣Ey∼Ut [Tr(Eu∈{0,1}m [My,u] Ψ(x))− Tr(MExt(x,y),yΨ(x))

]∣∣ > 2ε

Fix M : {0, 1}t+m → Ob. The previous observation shows that, in order to show that Ext is a strong
extractor, it suffices to bound the number of strings x such that (5) holds. For this, we use the
reconstruction approach in [Tre01]. For a fixed x, define Mx : {0, 1}m+t → {0, 1} as the probabilistic
procedure which, on input (y, u) ∈ {0, 1}t+m, outputs 1 with probability 1/2 + Tr(M(y, u)Ψ(x))/2,
where Ψ(x) is the state of the adversary’s storage on x. Mx implicitly depends on the adversary’s
storage Ψ(x), but for the most part our proofs will be oblivious to this fact, and will simply treat
Mx as a probabilistic oracle. Moreover, all probabilities that we write involving Mx, or other oracle
circuits making calls to Mx, will implicitly be taken over Mx’s internal randomness. We will however
carefully keep track of the number of calls made to Mx, as the quality of the final bound will depend
crucially on it.

Once such a Mx has been fixed, the first step is to use the standard hybrid argument followed by
Yao’s distinguisher versus predictor lemma to get an oracle circuit T which queries Mx exactly once,
and is such that T predicts Ext(x, y)i with some advantage over a random guess when y as well as
the value of x on some related points are given as input. We skip the (by now, standard) argument
and state the final result (see [Tre01] for details).

Lemma 5.2 Let M,x, ε be such that (5) is satisfied, and Ext(x, y)i be the ith bit of the extractor’s
output on (x, y). Then using m + logm + 3 bits of classical advice, we can get a circuit T which
makes one query to Mx and is such that for some 1 ≤ i ≤ m, T satisfies:

Pry∈Ut [T
Mx(y,⊗i−1

j=1Ext(x, y)j) = Ext(x, y)i] >
1

2
+

ε

m
(6)

Our next step is to construct a small circuit Rx which predicts the value of C(x) at any position y
with some non-negligible correlation, leading to the following technical lemma:

Lemma 5.3 Let M : {0, 1}m+t → Ob, x ∈ {0, 1}N , and ε > 0 such that (5) holds. Then using
classical advice s of length m(1 + ρ) + logm+ t+O(1), we can construct an oracle circuit Rx, which
makes one call to Mx and predicts C(x)z with probability 1/2 + ε/m, on average over the choice of

z ∈ {0, 1}N .

Proof: By Lemma 5.2, for any M,x satisfying (5) for ε > 0, using m+ logm+ 3 bits of advice, we
can get an oracle circuit T which makes exactly one query to Mx and for some 1 ≤ i ≤ m satisfies

P
y
[TMx(y, C(x)yS1 , . . . , C(x)ySi−1

) = C(x)ySi ] ≥
1

2
+

ε

m
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Let us split y into two parts z = ySi and w = y[l]−Si . Let ySj now be denoted by hj(z, w). The above
probability can then be rewritten as

P
z◦w

[TMx(z, w,C(x)h1(z,w), . . . , C(x)hi−1(z,w)) = C(x)z] ≥
1

2
+

ε

m

By an averaging argument, we can fix a w (using at most t bits of advice) such that the above in-
equality holds with the probability taken over z. Let us hardwire all the possible values of C(x)hj(z,w)

(for the fixed value of w), as z varies over {0, 1}N and j varies between 1 and i− 1, into the circuit
T . By the definition of a weak design, there are at most (m − 1)ρ bits that need to be hardwired.
Let Rx be the circuit with all the hardwired values. Rx satisfies the following equation

P
z
[RMx

x (z) = C(x)z] ≥
1

2
+

ε

m
(7)

The total classical advice taken so far is m+ logm+ t+mρ+O(1).

5.2 Security against quantum storage from lower bounds on QFACs

Assume for contradiction that there is an adversary to Ext, which can distinguish its output from
uniform given access to the seed y and some partial quantum information Ψ(x) ∈ Db about the source.
Such an adversary can be described by the mapping Ψ, together with a function M : {0, 1}t+m → Ob
describing the adversary’s measurement on his quantum information Ψ(x), when provided with the
seed and the extractor’s output6.

For a fixed x, let Mx : {0, 1}m+t → {0, 1} as in Section 5.1. By Observation 5.1, to prove that Ext is
a (K, 2ε) strong extractor secure against b qubits of quantum storage, it suffices to prove that there
are at most ε2K strings x such that∣∣Ey∈{0,1}t, u∈{0,1}m [Mx(y, u)−Mx(y,Ext(x, y))]

∣∣ > ε (5)

At this point, the key conceptual step in our proof is to observe that from the circuit Rx given by
Lemma 5.3, we can construct a QFAC for the family C = {fi : x 7→ C(x)i, i ∈ [N ]} of codeword
positions, and the set A of all x satisfying (5). The strong lower bounds we proved in Section 3 then
let us bound the set A, as a function of the adversary’s storage and the list-decoding properties of
C. The following claim makes this connection formal.

Claim 5.4 Let A ⊆ {0, 1}N be such that, for any x ∈ A, using only c bits of classical advice and b
qubits of quantum advice, we can construct a circuit Rx which is such that for a random y, it predicts
C(x)y with probability 1/2 + ε. Then the cardinality of A is at most s · 2c, where s is the maximum
size of a set B such that there exists a (N, b, ε) QFAC for (B, C).

Proof: The c advice bits partition the set A into 2c sets As, for s ∈ {0, 1}c. Fix such a s and
consider the set As. Since s has been fixed, all x ∈ As have the same circuit Rx; only the b-qubit
quantum state Ψ(x) on which it operates depends on x. Hence there is a fixed set of measurements
such that, for a random y, the measurement My on Ψ(x) outputs C(x)y with probability 1/2 + ε.
This means we have a (N, b, p) QFAC for (As, C). Hence the size of As is bounded by the maximum
size of any set for which such a code exists. This gives us the promised bound on A.

6This describes the most general situation, as we can always assume that any measurement made by the adversary
is done at the end of his recovery procedure.
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To finish the proof of Theorem 4.6, note that by Proposition 3.6 and our assumption that C is
(ε/m, δ, poly(m/ε)) list-decodable, any (N, b, ε/m) QFAC for (A, C) satisfies

log |A| ≤ b+H(δ)N +O(logm/ε)

Applying Claim 5.4 to the advice circuit promised by Lemma 5.3, we deduce that the number of
strings x such that (5) holds is at most 2b+H(δ)N+O(log(m/ε)) · 2m(1+ρ)+logm+t+O(1). and using t =

O(log2N) and log(m) = O(logN), this expression can be upper-bounded by 2b+H(δ)N+m(1+ρ)+O(log(1/ε)+log2N).
Using the bound on m given in Theorem 4.6, we immediately get that this expression is upper-
bounded by ε2K , finishing the proof of the Theorem.
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