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Abstract

The main purpose of this work is to formally define monotone expanders and mo-
tivate their study with (known and new) connections to other graphs and to several
computational and pseudorandomness problems. In particular we explain how mono-
tone expanders of constant degree lead to:

1. Constant degree dimension expanders in finite fields, resolving a question of
[BISW04].

2. O(1)-page and O(1)-pushdown expanders, resolving a question of [GKS86], and
leading to tight lower bounds on simulation time for certain Turing Machines.

Bourgain [Bou09] gave recently an ingenious construction of such constant degree
monotone expanders. The first application (1) above follows from a reduction in [DS08].
We give a short exposition of both construction and reduction.

The new contributions of this paper are simple. First, we explain the observation
leading to the second application (2) above, and some of its consequences. Second, we
observe that a variant of the zig-zag graph product preserves monotonicity, and use it
to give a simple alternative construction of monotone expanders, with near-constant
degree.

1 Introduction

Expander graphs are families of highly connected sparse graphs. These combinatorial objects
have found numerous applications in diverse areas of mathematics and computer science and
have drawn an enormous amount of attention in past years (see [HLW06] for a survey). Many
of the applications require explicit constructions of such graphs. It is easy to show that a
random sparse graph is an expander, but proving that some ‘specific’ graph is an expander is
considerably harder. Today there are many known constructions of expander graphs ranging
from group theoretic constructions (e.g. [LPS88, MKN06]) to purely combinatorial ones
[RVW02, ASS08].

∗Institute for advanced study, Princeton, NJ. Research partially supported by NSF grants CCF-0832797
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The question of whether restricted classes of graphs can be expanders of constant degree
has also received attention, and there are many negative examples for natural classes, e.g.
planar graphs (and graphs with other excluded minors) [LT80, AST90] and Cayley graphs
of Abelian and near-Abelian groups [Kla84, LW93]. More relevant to us are the classes of
k-page graphs and k-pushdown graphs (which we define later) that arise as computation
graphs of Turing machines, for which the expansion question remained open and is key to
resolving some complexity questions [GKS86, San01].

The focus of this paper are monotone graphs and their expansion properties. Monotone
graphs are defined by monotone mappings. Throughout the paper the vertex set of graphs
will be [n], the first n integers with their natural ordering. A partial monotone function
f : [n] → [n] satisfies f(x) > f(y) for all pairs x > y for which the function is defined. such a
function defines a 1-monotone graph whose edges are simply all (i, f(i)) for all i ∈ Dom(f).
Similarly, d (partial) monotone functions define a d-monotone graph. Note that such graphs
have degree at most d. The most natural way to think of these graphs is as bipartite directed
graphs with n left vertices and n right vertices and edges going from left to right1. In this
setting a graph is expanding if every set of left vertices of size t ≤ n/2 has at least (1+α) · t
neighbors for some constant α > 0. Monotonicity (with degree d) is equivalent to saying
that the graph edges can be partitioned into d disjoint monotone matchings (that is, in each
matching the edges do not cross).

Unlike the question in general graphs, there is no obvious way of even proving the ex-
istence of d-monotone expanders for small d. Attempting the probabilistic method one if
faced with the choice of distribution on monotone mappings, and then with the analysis. One
fundamental problem seems to be that there are only exp(O(n)) partial monotone mappings
on [n], whereas there are exp(n log(n)) unrestricted mappings. While It is trivial to prove
that O(1) random mappings create an expander with high probability, we have no analogous
result for monotone mappings. To give an example of the difficulty of analyzing a random
monotone construction consider the following natural way of sampling a monotone mapping:
pick two sets S, T ⊂ [n] of size n/2 uniformly at random and map S onto T in a one-to-one
way (mapping the i’th element of S to the i’th element of T ). It is easy to see that the set
[1, t] will not expand w.h.p for t = Ω(n) since this set will have all of its neighbors in the

interval
[
1, t+O(

√
(n))

]
with high probability.

Lets return to explicit constructions (which are anyway more interesting for applications).
The first construction of monotone expanders was given in [DS08] in connection with dimen-
sion expanders (we elaborate on this connection below). This construction has logarithmic
degree and is composed mainly of shift maps (that is, maps of the form f(x) = x + i).
This construction was recently significantly improved independently in two works. One in
the current paper, in which we construct O(log(c) n)-monotone expanders for every integer c
(with log(c)(·) denotes the c-times iterated logarithm). The second is by Bourgain [Bou09],
achieving the optimal O(1)-monotone expanders. Bourgain’s construction is quite involved

1One can easily make the transition to the usual undirected case by including the inverse functions as
well.
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mathematically, using in particular the recent breakthrough on the “Tits Alternative” by
Breuillard [Bre08], and its analysis is even more involved, extending work on spectral gaps
on the unitary group SU(2) by Bourgain and Gamburd [BG07] to the group SL2(R) (the
paper [Bou09] contains only sketches of the construction and analysis). In Section 6 we
provide some more details on the workings behind this theorem.

Theorem 1.1 ([Bou09]). There exists an explicit family of constant degree monotone ex-
panders.

We will give our (suboptimal) construction here for two reasons. First, it is simple: it
uses an iterated replacement product [RVW02], observing that with appropriate ordering
of vertices it preserves monotonicity of its components. Second, it shows that any (even
nonconstructive) existence proof of O(1)-monotone expanders can be used as a base graph
(in the style of [ASS08]) to make our construction a fully explicit one of O(1)-monotone
expanders.

1.1 Monotone expanders and dimension expanders

Monotone graphs, and the question of their expansion for small d arose implicitly in the
paper of Dvir and Shpilka [DS08]. They reduce the problem of constructing degree d di-
mension expanders (a linear-algebraic extension of expander graphs proposed by [BISW04])
to the construction of O(d)-monotone expanders, and moreover give explicit construction of
O(log n)-monotone expanders of size n, leaving possible improvements as an open question.
Since this connection was never given explicitly, we sketch it below.

A degree d dimension expander is a set of d linear mappings T1, . . . , Td : Fn 7→ Fn such
that for every linear subspace V ⊂ Fn with dim(V ) ≤ n/2 we have

dim

(
d∑
i=1

Ai(V )

)
≥ (1 + α) · dim(V ).

Here, F is a field, possible finite, and α is a positive constant independent of n. The proba-
bilistic method shows that families of constant degree dimension expanders exist. An explicit
construction over fields of characteristic zero was given in [LZ08]. In [DS08] an approach to-
ward constructing dimension expanders over finite fields was given. This approach involved
applying a monotone expander graph on the coordinates (that is, permute the coordinates
using d monotone mappings).

Theorem 1.2 ([DS08]). If there exists an explicit construction of d-monotone expander
graphs than there is an explicit construction of degree d dimension expanders over any field
F.

Proof. Let e1, . . . , en ∈ Fn denote the standard basis vectors. For each monotone partial
function f : [n] 7→ [n] in the expander we define a linear map Lf : Fn 7→ Fn as follows:
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Lf (ei) = ef(i) if f(i) is defined and Lf (ei) = 0 otherwise. To see why these linear maps
are a dimension expander consider a vector space V ⊂ Fn of dimension t ≤ n/2. For a
non-zero vector v ∈ Fn denote by π(v) ∈ [n] the largest non zero coordinate of v. Similarly,
let π(V ) = {π(v)|v ∈ V }. Observe that |π(V )| = dim(V ) = t. Monotonicity implies that

π(Lf (V )) = f(π(V ))

and so, using expansion we get that∣∣∣∣∣π
(

d∑
i=1

Lfi(V )

)∣∣∣∣∣ ≥ (1 + α) · t

giving the required bound on the dimension.

This theorem combined with Bourgain’s construction gives explicit constant degree di-
mension expanders over any field.

Corollary 1.3. Over any field F, there exists an explicit family of constant degree dimension
expanders.

1.2 Monotone graphs and multi-pushdown graphs

The second contribution of this paper is the observation of a simple connection between
d-monotone graphs and d-pushdown graphs: if the former are expanding then so are the
latter (for the same d). This is of consequence since the question of whether O(1)-pushdown
graphs have small separators (and thus cannot be expanders) is intimately related (and
in some cases equivalent) to several questions in Turing machine complexity. With this
observation, Bourgain’s result simultaneously proves some conjectures and refutes others in
one shot. The fundamental connection to complexity arises from the basic fact [HPV77] that
computation graphs of certain Turing machines are O(1)-pushdown graphs. We describe this
connection and its consequences below.

A d-pushdown graph [Pip82, PPST83] is a graph on an ordered set of vertices such that,
if we order the vertices along the spine of a book, the edges can be drawn on d-pages of the
book such that in each page, the edges do not touch (even not at a vertex). These graphs
come up naturally as the computation graphs of Turing machines with d tapes and are also
a natural subclass of d-page graphs [BS84].

Let us recall the definition of a separator: A separator S is a subset of the vertices of
graph G on n vertices such that the vertices outside S can be partitioned into two disjoint
sets A and B each of size at most 2n/3 and such that there are no edges between A and B.
Observe that a graph with sub-linear size separator is not an expander. The planar separator
theorem [LT79] says that a planar graph has a O(

√
(n)) size separator. Since d-pushdown

graphs are generalizations of planar graph it is natural to question whether such graphs
also have o(n) separators. This question (conjectured to be true in [Pip82]) turns out to
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be related to the time needed to simulate a deterministic TM by a non deterministic one2.
A ‘segregator’ theorem (proving the existence of a weaker object than a separator) is the
combinatorial ‘heart’ of the celebrated separation [PPST83] of non deterministic linear time
from deterministic linear time (see also [San01] for more recent results in this spirit).

In [GKS86] it was shown that there exist 3-pushdown graphs which are ‘almost’ ex-
panders, in the sense that every separator must be of size Ω(n/ log(c)(n)) for any constant c.
In fact, their construction is very similar to our construction of degree log(c)(n) monotone
expanders, and is probably one of the earliest occurrence of what is now referred to as an
iterative ‘Zig-Zag’ construction. In this paper we observe that d-monotone expanders can be
transformed easily into d-pushdown expanders with d equal to the degree of the graph. Com-
bining this observation with Bourgain’s result we get that there are (explicit) d-pushdown
graphs which are expanders, settling an old open problem. We prove the following theorem
in Section 5.

Theorem 1.4. If there exists (explicit) d-monotone expanders than there exists (explicit)
d-pushdown expanders.

In [San01] the assumption that the class of d-pushdown graphs have sub-linear separators
was used to derive several complexity theoretic results. In particular, it was shown in [San01]
that this assumption implies the separation

NTIME(t) ̸= Σ4−TIME(t)

for all time bounds t. The existence of expanding d-pushdown graphs shows that this ap-
proach to prove such separation can not succeed.

Lower bounds on simulation time. It was shown in [GKS86] that the question of
whether d-pushdown graphs are separable or not (i.e if these graphs have sub-linear size
separators) is equivalent to a question regarding the simulation time of certain Turing ma-
chines. More formally, let t(n) denote the time it takes a 1-tape online non-deterministic
TM to simulate a two tape real-time non-deterministic TM 3. One can easily show that
t(n) = O(n2). The question of whether or not t(n) = o(n2) was shown in [GKS86] to be
equivalent to whether or not d-pushdown graphs have small (sub-linear) separators. Com-
bining Bourgain’s result with Theorem 1.4 above we have the following corollary.

Corollary 1.5. In the notation above, we have t(n) = Θ(n2).

2These results apply only to sequential access Turing machines. Stronger models allowing random access
are not captured by these methods.

3A real time TM reads a new symbol at each step and an on-line TM is such that the input tape is
one-way.
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1.3 Organization

In Section 2 we give formal definitions and notation that will be used later on. In Section 3 we
give the analysis of the replacement product for monotone graphs. In Section 4 we describe
our iterative construction of near-constant degree monotone expanders. In Section 5 we
explain the connection between monotone and multi-pushdown graphs. Section 6 contains
a brief outline of Bourgain’s construction of monotone expanders. We conclude in Section 7
with some open problems and directions for future research.

2 Preliminaries and notations

We denote [n] = {1, 2, . . . , n}. All logarithms are base 2 unless otherwise noted.

Let V be a finite totally ordered set. We denote by Part[V ] the set of partial functions
f : V 7→ V ∪ {⊥} on the set V (f(x) = ⊥ means that f is undefined at x). We say that
f ∈ Part[V ] is monotone if, whenever f is defined at two distinct points x < y ∈ V , we have
f(x) < f(y) (in this paper we use ‘monotone’ to mean ‘strictly increasing’). Notice that if f
is monotone it is also injective and so there exists a (partial) inverse f−1 ∈ Part[V ] which is
also monotone. Also, if f, g ∈ Part[V ] are monotone then we can define their composition
f ◦ g which is also monotone (the composition is defined on those points x where g(x) ̸= ⊥
and f(g(x)) ̸= ⊥). We denote the set of monotone partial functions on V as Mon[V ].

An ordered directed graph is a pair G = (V, (f1, . . . , fd)) with V a finite totally ordered set
and fi ∈ Part[V ] where we think of fi(x) as mapping x to its i’th neighbor (if one exists).
In the following we will refer to these simply as ‘graphs’. We will call d the degree of the
graph. A graph G = (V, (f1, . . . , fd)) is monotone if for all i ∈ [d], fi is monotone (w.r.t
the ordering of V ). Notice that if G is monotone then for all x ∈ V , din(x) ≤ d (since the
functions fi are injective). Let G = (V, (f1, . . . , fd)) be a monotone graph. We say that G
is inverse-closed if d is even and for all i ∈ [d/2], f2i = f−1

2i−1 (that is, G is composed of d/2
neighbor functions and their d/2 inverses).

For a graph G = (V, (f1, . . . , fd)) and a subset S ⊂ V we denote the boundary of S in G
as

∂GS , {(x, i)|x ∈ S, fi(x) ∈ V \ S},

(we omit the subscript G if it is clear from the context). The edge-expansion of G is denoted
by

h(G) , min
S⊂V,|S|≤ 1

2
|V |

|∂GS|
d · |S|

.

Another notion of expansion is vertex-expansion. For S ⊂ V let

ΓG(S) , {y ∈ V |∃x ∈ S, i ∈ [d], fi(x) = y}.
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The vertex expansion of G, denoted µ(G), is

µ(G) , min
S⊂[n],|S|≤ 1

2
|V |

|ΓG(S) \ S|
|S|

.

Claim 2.1. If G is monotone then µ(G) ≥ h(G).

Proof. Let |S| ≤ |V |/2. Then S has at least h(G) · d · |S| edges leaving it. Since G is
monotone, the in-degree of a vertex is at most d and so there have to be at least h(G) · |S|
neighbors of S that are not in S.

We will require the following simple claim.

Claim 2.2. If G = (V, (f1, . . . , fd)) is a monotone inverse-closed graph, then for all sets
S ⊂ V we have

|∂GS| ≥ h(G) · d ·min{|S|, |V | − |S|}.

Proof. The inequality follows from the definition of h(G) and from the fact that, in an
inverse-closed graph, the number of edges from any set S to its complement is equal to the
number of edges in the opposite direction.

3 The replacement product of monotone graphs

Let V1, V2 be two finite totally ordered sets. The reverse lexicographical ordering of the set
V1 × V2 is defined as follows: (a1, a2) > (b1, b2) if a2 > b2 or, a2 = b2 and a1 > b1.

Let G1 = (V1, (f1, . . . , fD)) and G2 = (V2, (g1, . . . , gd)) be two graphs such that |V2| = D.
The replacement product G1 ◦ G2 is a graph with vertex set V1 × V2, ordered according
to reverse lexicographical ordering and with 2d neighbor functions s1, . . . , sd, t1, . . . , td ∈
Part[V1 × V2] defined as follows: For i ∈ [d],

si(a1, a2) = (a1, gi(a2))

(if gi(a2) = ⊥ then si(a1, a2) = ⊥). The functions t1, . . . , td are all equal to the same function

t(a1, a2) = (fa2(a1), a2),

where the set V2 is identified in some arbitrary one-to-one way with [D] (again, if fa2(a1) = ⊥
then t(a1, a2) = ⊥). It is clear from the definitions that, if G1 and G2 are monotone, then
so is their product G1 ◦G2.

The proof of the following lemma, bounding the edge-expansion of the replacement prod-
uct, is essentially the same as the proof for undirected graphs appearing in [ASS08]. Since
our definitions are more involved we retrace the argument below.
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Lemma 3.1 (Replacement product of two monotone expanders). Let G1 = (V1, (f1, . . . , fD))
and G2 = (V2, (g1, . . . , gd)) be two monotone inverse-closed graphs such that |V2| = D. Let
H = G1 ◦G2. Then H is a monotone graph (w.r.t reverse lexicographical ordering) and

h(H) ≥ 1

80
· h(G1)

2 · h(G2).

Proof. As was observed before, if G1 and G2 are monotone then so is G1 ◦G2. We are thus
concerned only with bounding the edge expansion.

Let us denote n = |V1|, δ1 = h(G1), δ2 = h(G2). Let S ⊂ V1 × V2 be such that |S| ≤
1
2
|V1×V2| = 1

2
·nD. Since the degree of H is 2d we need to show that |∂S| ≥ 1

80
δ21δ2 · 2d · |S|.

For x ∈ V1 we define Sx = S ∩ ({x} × V2). Let

I ′ = {x ∈ V1||Sx| ≤ (1− δ1/4)D}

and let I ′′ = V1 \ I ′. We partition the set S into two parts, S ′ =
∪
x∈I′ Sx and S ′′ = S \ S ′.

We separate the analysis into two cases. The first is when |S ′| ≥ 1
10
δ1|S|. In this case we

will get expansion using the mappings that act on the disjoint copies of V2. For every x ∈ I ′

we have (using Claim 2.2) that

|∂G2Sx| ≥ δ2 · d ·min{|Sx|, D − |Sx|} ≥ 1

4
δ1δ2 · d|Sx|,

(we abuse notation and treat Sx as a subset of V2). Therefore, using the bound on |S ′|, we
get that

|∂HS| ≥
1

4
δ1δ2 · |S ′| ≥ 1

80
· δ21δ2 · 2d · |S|.

We now turn to the case when |S ′| < 1
10
δ1|S|. In this case we have |S ′′| ≥ (1− 1

10
δ1) · |S|.

We will get expansion using the d identical copies of the map t(x, y) = (fy(x), y). Since for
all x ∈ I ′′ we have |Sx| > (1− 1

4
δ1) ·D we get that

|S ′′|
D

≤ |I ′′| ≤ |S ′′|
(1− 1

4
δ1) ·D

.

In particular, since |S ′′| ≤ |S| ≤ 1
2
· nD, we have |I ′′| ≤ 2

3
· n. Therefore, by Claim 2.2, we

have

M = |∂G1I
′′| ≥ 1

2
δ1 ·D · |I ′′|.

Consider the corresponding d ·M edges in H. Of these d ·M edges at most 1
4
δ1dD · |I ′′|

come from outside S ′′ and so there are at least 1
4
δ1dD · |I ′′| edges from S ′′. Among these

edges, at most d · |S ′| can land in S ′ (here we rely on the fact that G1 is monotone and so
the mappings acting on the copies of V1 are injective). We can bound this number of edges
by

d · |S ′| ≤ 1

10
δ1 · d · |S| ≤

1

6
δ1 · dD|I ′′|.
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We can therefore conclude that the number of edges from S ′′ to the complement of S is at
least

1

4
δ1 · dD · |I ′′| − 1

6
δ1 · dD · |I ′′| = 1

12
δ1 · dD · |I ′′|.

As |I ′′| ≥ |S ′′|/D and |S ′′| ≥ 1
2
|S| we have at least 1

48
δ1 · 2d · |S| edges in H leaving S.

4 An iterative construction with near optimal degree

In this section we describe a simple iterative construction of monotone expanders with almost
constant degree. We give our construction in two parts: The first (Section 4.1) gives a
construction of a monotone expander with logarithmic degree and the second (Section 4.2)
shows how to iterate the construction, using the tools from Section 3, and reduce the degree
to log(c)(n) for any constant c.

4.1 The base graph

In this section we describe a construction of a monotone expander graph with poly-logarithmic
degree which will be the basis of the full construction. The graph we will use is similar to
the one used in [DS08]. However, since we are shooting for a strongly explicit graph, we will
refrain from using the base graph from [WX06] (which is not strongly explicit) and will use
the expanders of [AIK+90, RSW93] instead. The degree of these graphs is poly-logarithmic
(instead of logarithmic in [WX06]) but this difference will ‘disappear’ in the recursion done
in the next section.

Theorem 4.1 ([AIK+90, RSW93] Expanders for Zn). There exists a constant h0 > 0 and a
strongly explicit family of graphs

An = ({0, 1, . . . , n− 1}, (f1, . . . , fd))

with d = log(n)O(1), h(G) ≥ h0 and such that for each i there exists an integer ai such that
fi(x) = x+ ai mod n.

We now turn the above graph into a monotone expander in a similar manner to [DS08].
In fact, the proof of the following theorem implies that any Cayley expander for Zn with
degree d gives a monotone expander with degree 2d.

Theorem 4.2 (Monotone expander with poly-log degree). There exists a constant h1 > 0
and a strongly explicit family of monotone, inverse-closed graphs

Bn = ({0, 1, . . . , n− 1}, (g1, . . . , gd))

with d = log(n)O(1) and h(G) ≥ h1.
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Proof. W.l.o.g suppose n is even (otherwise we can run the construction on n − 1 vertices
and then connect a single vertex arbitrarily). Let m = n/2 and let Am = ({0, 1, . . . ,m −
1}, (f1, . . . , fd′)) be the graph given by Theorem 4.1. Let a1, . . . , ad′ be integers such that,
for 0 ≤ x ≤ m− 1,

fi(x) = x+ ai mod m.

We define the graph Bn on vertex set {0, 1, . . . , n − 1} to have d = 2d′ neighbor functions.
The first d′ functions, call them g1, . . . , gd′ will be defined as

gi(x) =

{
x+ ai , x ≤ m− 1;

⊥ , o/w.

Since we can assume w.l.o.g that the integers ai are smaller thanm we have that the mappings
gi, i ∈ [d′] are indeed monotone. We now add to Bn another d

′ mappings gd′+1, . . . , g2d′ which
will all be the same and will be defined as

gi(x) =

{
x−m ,x ≥ m;

⊥ , o/w.

It is clear that the graphs Bn are monotone, have degree log(n)O(1) and are strongly explicit.
We can also assume w.l.o.g that Bn is inverse closed simply by adding all the inverses (this
will decrease the edge expansion by at most half). We now bound the edge expansion of Bn.

Let S ⊂ {0, 1, . . . , n− 1} be such that |S| ≤ n/2. We will show that the number of edges
leaving S is at least 1

16
· h0 · d · |S|. Define S1 = S ∩ {0, 1, . . . ,m− 1} and S2 = S \ S1. We

separate the analysis into two cases based on the size of the set

I = S2 \ (S1 +m).

If |I| ≥ h0
8
· |S| then there will be at least d′ · |I| ≥ h0

16
· d · |S| edges of the form x 7→ x−m

from S2 to the outside of S1 and so we are done.

We now deal with the case when |I| < h0
8
· |S|. In this case we must have

|S1| ≥
(
1

2
− h0

8

)
· |S|,

for otherwise |I| can be bounded from below by |S2| − |S1| > h0
4
· |S|. We now use the

expansion of Am to claim that there are at least h0 ·d′ · |S1| ≥ h0 ·d/2 · (1/2−h0/8) · |S| edges
from S1 to the complement of S1 ∪ (S1 +m). Of these edges, at most d′ · |I| ≤ d/2 · h0

8
· |S|

can land in S2. Therefore, there are at least

1

2
·
[
h0 ·

(
1

2
− h0

8

)
− h0

8

]
· d · |S| ≥ h0

16
· d · |S|

edges from S to its complement in this case. This concludes the proof of the theorem.
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4.2 The iterative construction

We now combine Lemma 3.1 with Theorem 4.2 to give a construction of monotone expanders
with degree close to constant. We denote by log(c)(n) the log function iterated c-times.

Theorem 4.3 (Monotone expanders with degree log(c)(n)). For every c > 0 there exists a
strongly explicit family of monotone graphs Mk = (Vk, (f1, . . . , fdk)) such that

1. |Vk| = Θ(k).

2. dk ≤ O(log(c)(k)).

3. h(Mk) ≥ Ω(exp exp(c)−1).

Proof. We describe an algorithm for producing Mk in c iterations. We start with a graph
G1 that has degree O(log(k)) and at each iteration decrease the degree to the logarithm of
the previous degree using the replacement product.

Set G1 to be Bk - the graph given by Theorem 4.2 on input k. Let D1 be the degree of
G1, so D1 = log(k)O(1). Let BD1 be given again by Theorem 4.2, this time on D1 vertices
and with degree D2 = O(log(D1)). We can take the replacement product

G2 = G1 ◦BD1 .

From Lemma 3.1 we see that G2 is a monotone graph on k ·D1 vertices with degree 2D2 =
O(log log(k)) and

h(G2) ≥
1

80
· h(G1)

2 · h(BD1) ≥
1

80
· h31,

where h1 > 0 is the constant given by Theorem 4.3.

We can continue in this manner c-times. At the j’th iteration we are given a graph Gj

with degree Dj = O(log(j)(k)) and we take its replacement product with BDj
. If we denote

by hj the edges expansion at the j’th iteration we see that

hj ≥
1

80
h2j−1 · h1 ≥ (h1/80)

3j

and so, after c iterations we will have expansion at least Ω(exp exp(c))−1.

Tracing the growth of the vertex set size we conclude that the size of the final graph is
some explicit function of k of the form ≈ k · log(k) · log log(k) · · · log(c)(k). We can choose a
starting integer k′, slightly smaller than k, so that the final graph will have size θ(k).

The part of the theorem claiming strong explicitness can be easily verified by induction
on the number of iterations (since the base graph is strongly explicit).

From this last proof we see that, if had an existence proof of constant degree monotone
expanders, we could transform it into an explicit construction in the following manner: start
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with two iterations of the replacement products as we did above, then, do an exhaustive
search for a constant degree monotone expander on log log(n) vertices (this can be done in
polynomial time) and use it in the last replacement product. This approach (introduced in
[ASS08] to give a simple explicit construction of expander graphs) can be summarized in the
next corollary.

Corollary 4.4. If there exist constant degree monotone expanders then they can be found
efficiently (i.e there exists an explicit construction).

Notice that the only reason this last corollary is of any interest is that it doesn’t rely
on Bourgain’s proof (which shows independently that there is an explicit construction). We
hope that a simple existence proof can be found and used in conjunction with this corollary
to give a simple explicit construction.

5 Connection to multi-pushdown graphs

In this section we deal with both monotone ordered directed graphs (as defined in Section 2)
and with undirected graphs (in the usual sense). Our goal is to show that the existence of
degree d monotone expanders imply the existence of expanders that are d-pushdown graphs.
We start by giving a formal definition of these graphs, which are a special case of d-page
graphs (for more on this interesting family of graphs and its applications see [BK79, CLR87]).

Definition 5.1 (d-page graphs). A 1-page graph is an undirected graph with ordered vertex
set V = [n] such that for every pair of edges (a, b), (c, d) ∈ [n]2 in the graph, we have that
c ∈ [a, b] iff d ∈ [a, b]. In other words, if we write down the vertices in a vertical ordered line,
we could draw all the edges on the right side of this line without having intersections between
edges. A d-page graph is a union of at most d 1-page graphs on the same set of vertices.

A d-pushdown graph is a d-page graph such that in each page the degree of each vertex
is at most one. It is easy to see where these graphs get their name from – they describe a
sequence of insertions/deletions from d pushdown stacks (“First in last out”).

Definition 5.2 (d-pushdown graphs). A 1-pushdown graph is a 1-page graph in which the
degree of each vertex is at most one. A d-pushdown graph is a union of at most d 1-pushdown
graphs.

The next Claim shows how a monotone graph of degree d can be transformed into a
d-pushdown graph with roughly the same expansion (the vertex expansion of an undirected
graph is defined in a similar way to the directed case).

Claim 5.3. Let G = ([n], {f1, . . . , fd}) be a monotone inverse-closed graph with f1 = id.
Define H to be an undirected graph on vertex set [2n] as follows: for every i ∈ [d] and every
a ∈ [n] such that fi(a) ̸= ⊥, H contains the undirected edge (a, 2n− fi(a)). Then

12



1. H is a d-pushdown graph.

2. µ(H) ≥ 1
2
· µ(G).

Proof. 1. Each set of edges in H coming from a single fi will give us a 1-pushdown graph
since two edges (a, 2n − fi(a)) and (b, 2n − fi(b)) with a < b will satisfy a < b <
2n− fi(b) < 2n− fi(a) and so the edges will not cross each other.

2. Denote by α = µ(G). Let S ⊂ [2n] be a set of vertices of size k ≤ n. We will show
that S has at least |S| · (1 + α/2) neighbors (including vertices in S). This will prove
that µ(H) ≥ α/2 as was required. We will rely on the fact that the identity mapping
belongs to the graph G. Let S1 = S ∩ [n] and S2 = S \ S1. Let k1 = |S1| and k2 = |S2|
so that k = k1 + k2. Assume w.l.o.g that k1 ≥ k2. Notice that the neighbors of S1

belong to the set [n + 1, 2n] and that the neighbors of S2 are in [n]. If k2 ≤ k1 ≤ n/2
than we have that S1 has at least (1 + α)k1 neighbors in [n + 1, 2n] and that S2 has
at least (1 + α)k2 neighbors in [n]. Put together we have at least (1 + α)k neighbors
for the set S. The other case to consider is when k1 > n/2. Then S1 has at least
(1 + α)(n/2) neighbors in [n+ 1, 2n] and so the set of neighbors of S contains at least

k1 + (1 + α)(n/2) ≥ n/2 + (1 + α)(n/2) ≥ n(1 + α/2) ≥ k(1 + α/2)

vertices, as was required.

Combining Claim 5.3 with Bourgain’s construction of constant degree monotone ex-
panders [Bou09] we get the following corollary.

Corollary 5.4. There exists an integer d0 and a family of n-vertex undirected graphs Gn,
with n going to infinity such that Gn is a d0-pushdown graph and µ(Gn) ≥ α0 for α0 > 0
independent of n. Furthermore, the family Gn is explicit (can be computed in polynomial
time).

6 Bourgain’s monotone expanders

We give here a brief outline of Bourgain’s construction of monotone expanders. Let SL2(R)
denote the group of 2×2 real matrices with determinant 1. This group acts4 on the projective
line P1 = R ∪ {∞} in the following way: with each matrix

A =

(
a b
c d

)
4A group action on a space S is a homomorphism from the group to the set of automorphisms of S. That

is, we identify the group elements with invertible mappings on S such that the group action corresponds to
composition of these mappings.
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we associate the Moebius transformation

ψA(x) =
ax+ b

cx+ d

(the inclusion of ∞ allows for division by zero). One can verify that this is indeed a group
action. Furthermore, the derivative of these mappings is given by

ψ′
A(x) =

1

(cx+ d)2

and so, these are all monotone increasing functions on any interval not containing −d/c.
Bourgain’s construction proceeds to find (explicitly) a set of finite size in SL2(R) (in fact,

with rational entries) that, roughly speaking, satisfies the following two conditions:

1. The matrices in the set are all close to the identity matrix and so their associated
mappings do not move any point in P1 by much.

2. They satisfy a so-called ‘restricted spectral gap’ property. This property ensures that
applying their associated maps on ‘nice’ subsets in P1 will expand their measure by a
constant factor.

Combining these two properties and limiting our attention to a specific interval (which
is possible due to Property 1.) one gets the following ’continuous’ analog of monotone
expanders.

Theorem 6.1 ([Bou09]). There exists α > 0 and an explicit finite family Ψ of smooth
increasing maps ψ : [0, 1] 7→ [0, 1] such that for any measurable subset A of [0, 1], if |A| < 1/2
we have

max
ψ∈Ψ

|ψ(A) \ A| ≥ α|A|.

The final step in the construction is to discretize the interval [0, 1] into n intervals of size
1/n and to associate to each smooth mapping a discrete mapping from [n] to [n] in a natural
way so that expansion in measure is transformed into expansion in set size. The property of
‘strong’ monotonicity (no collisions) is obtained by observing that, since the derivatives of
the smooth mappings ψ used in the construction are bounded from below, one does not have
more than a constant number of edges mapping to a single vertex. This allows one to ‘break
up’ each weakly monotone mapping into a constant number of strongly monotone (partial)
mappings, while preserving expansion.

7 Conclusions and Open Problems

This paper wishes to popularize some facts we find remarkable: explicit constant degree
expanders exist, whose graph structure is extremely restricted: the vertices are ordered, and
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edges decompose into few monotone maps, or few legal parenthesis sequences. In particular,
these graphs are “nearly planar” in a precise sense. It would be interesting to explore the
limitations of the expansion of these graphs. For example, can a constant-degree monotone
graph be a lossless expander? a Ramanujan graph? Unique neighbor expander?

Consequence of these constructions are new explicit pseudorandom objects (dimension
expanders) as well as a better understanding of the computation graphs of various Turing
machines. We believe that more applications of these expanders will be found. Specifically,
algorithms on restricted models, especially operating with limited access to input, may use
be able to utilize these new expanders.

Another remarkable feature of these expanders is that while they have an explicit con-
struction, no known direct (and simpler) existence proof is known. Few pseudorandom
structures are known which have an explicit construction but whose existence does not fol-
low from some application of the probabilistic method. We find the question of providing
new existence proof of constant-degree monotone expanders very appealing mathematically.
Here we also motivate it by showing how any such proof (even highly nonconstructive) di-
rectly implies a simple, strongly explicit construction. This reduction uses the Zig-Zag graph
product adapted to monotone graphs, further revealing the generality of this paradigm.

In a different direction, while constant degree monotone expanders lead to constant degree
dimension expanders via the reduction of Dvir-Shpilka [DS08], in some sense this construction
is not very natural. A possibly more natural construction was conjectured by Wigderson in
[Wig04], and we conclude this section with a formal statement of it. Recall the definition of
dimension expanders from the introduction 1.1.

Conjecture 7.1. [Wig04] Let G be a finite group, S a symmetric set of generators, and as-
sume that the associated Cayley graph Cay(G;S) is an expander – formally the (normalized)
2nd largest eigenvalue of its adjacency matrix is 1/2 (say). Let F be any field of characteristic
0 or positive characteristic relatively prime to |G|. Let ρ be any irreducible representation of
G over F, and denote its dimension by n. Assume S = {g1, g2, · · · , gk} and define Ti = ρ(gi)
for all i ∈ [k]. Then T1, T2, · · · , Tk : Fn → Fn form a dimension expander.

We note that the paper of Lubotzky and Zelmanov [LZ08] mentioned above constructs
constant degree dimension expanders over fields of characteristic 0 precisely by proving
the conjecture above for such fields (and then using any group with a constant number
of expanding generators and high dimensional irreducible representations, e.g. SL2(p)). The
same paper gives purely algebraic motivations for resolving this conjecture for finite fields.
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