
Random CNFs require spacious Polynomial Calculus refutations

Massimo Lauria ∗

lauria@di.uniroma1.it

December 14, 2009

Abstract

We study the space required by Polynomial Calculus refutations of random k-CNFs. We
are interested in how many monomials one needs to keep in memory to carry on a refutation.
More precisely we show that for k ≥ 4 a refutation of a random k-CNF of ∆n clauses and n
variables requires monomial space Ω(n∆−

1+ε
k−3−ε) with high probability. For constant ∆ we

prove that monomial space complexity is Θ(n) with high probability. This solves a problem
left open in Alekhnovich et al. (STOC, 2000) and in Ben-Sasson, Galesi (FOCS, 2001;
Random Struct. Algorithms, 2003).

We study the twofold matching game: it is a prover-delayer game on a bipartite graph
in which the prover wants to show that the left side has no pair of disjoint matching sets on
the right side. The prover has a bounded amount of memory. We show that any delayer’s
winning strategy against such prover is also a strategy to satisfy all equations in a bounded
memory polynomial calculus refutation.

We show that a random k-CNF with k ≥ 4 has large enough expansion with high prob-
ability. This allows lower bounds on the memory of a winning prover in the corresponding
twofold matching game. A lower bound on the monomial space required to refute the formula
follows.

We claim without proof that our result also applies to pigeonhole principles on bipartite
graphs.

∗Dipartimento di Informatica, Sapienza - Università di Roma.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 137 (2009)

1 Introduction

Proof complexity studies the computational feasibility of logical proofs. This study has strong
theoretical motivations: it is easy to prove membership for an NP language; on the other hand
proving that propositional formula is a tautology is a co-NP complete task. Cook and Reckhow
[17] outline the following program to show NP 6=co-NP (and P6=NP): show that increasingly
strong proof systems require super polynomial size proofs for some tautologies. Eventually we
may understand how to prove it for any proof system. Several lower bounds have been proved:
contradictions based on Pigeonhole principle [21, 8, 25], randomly distributed CNF [15, 7, 13]
and parity principles [28] require exponential size refutations in the famous Resolution proof
system.

There are also practical motivations for proof complexity theory. SAT solvers and DPLL
algorithms of widespread usage are in fact flavours of Resolution. With these applications in
mind it is worth to study resources beyond proof length. How much memory is required to
carry on the refutation? How complex proof lines must be? Notice that the latter question
influences the efficiency of proof search techniques. In this paper we ignore the important topic
of proof search, we just focus on proof existence.

In propositional proof complexity it is customary to study the dual of proving tautologies:
we want to prove that a formula in conjunctive normal form (CNF) is unsatisfiable (i.e. we
want to refute such a formula). In this setting the clauses of the CNF are added to the proof
system as axioms. If we deduce an explicit contradiction it means that the CNF is unsatisfiable.

We study Polynomial Calculus (PC) proof system: proof lines are polynomial equations;
a refutation in PC is a deduction of 1 = 0 from a set of polynomials with no common roots.
It is easy to encode CNF unsatisfiability in this framework. Polynomial Calculus has been
introduced [6, 16] as a preliminary effort to study systems where proof lines are AC0[p] circuits.
It is also worth to mention that Gröbner basis algorithms [18] for solving polynomial equations
implicitly define PC refutations. So there are both theoretical and practical motivations for the
study of this proof system.

Lower bounds for PC are mostly focused on the degree which must appear in a refutation
of a given unsatisfiable CNF. Degree lower bounds have been proved for pigeonhole principles
[24, 22, 4], random CNFs [10, 4] and ordering principles [20]. The study of degree has two
merits: (1) the higher the degree requirement, the bigger the search space for Gröbner basis
algorithms; (2) there is a relation between minimal size S of a PC refutation and its minimum
degree D: D ≤ O(

√
n logS) where n is the number of variables [10, 3]. Several size lower

bounds are obtained using this relation. Unfortunately this technique cannot be improved [20].

Space complexity is well studied in Resolution. It has been introduced in [19] and some
lower bounds has been given for specific formulae [27, 2]. Ben-Sasson and Galesi [9] obtain
lower bounds for random k-CNFs with k ≥ 3. Their technique has been extended in [5] to show
that width lower bounds imply space lower bounds. Recently the works [11, 12] clarified several
other aspects of space in Resolution.

Very little is known about space complexity of Polynomial Calculus. There are some lower
bounds for CNFs with many variables in each clause, like the pigeonhole principle [2]. This is
unsatisfactory because the most interesting cases have small clauses. Our paper tries to increase
the poor understanding of space in Polynomial Calculus.

1

1.1 Our results

We model the space complexity in Polynomial Calculus as the number of monomials in memory
at each stage of a refutation. We show that for k ≥ 4 a refutation of a random k-CNFs on n

variables with ∆n clauses requires monomial space Ω(n∆−
1+ε

k−3−ε) with high probability. We get
as corollary that for constant ∆ the space complexity is Θ(n) with high probability. In order to
prove such result we show a lower bound for the memory required to win the twofold matching
game, and we show that the monomial space is at least such quantity. We claim without proof
that our result also applies to the pigeonhole principle on bipartite graphs. We comment about
a possible relation between monomial space complexity and degree complexity in polynomial
calculus refutations.

1.2 Paper organization

In Section 2 we give basic definitions of Polynomial Calculus systems, random CNFs, matchings
and bipartite expanders. In Section 3 we introduce the twofold matching game, a tool we use to
prove the main theorem of the paper. In Section 4 we prove the monomial space lower bounds
for random k-CNF with k ≥ 4. In Section 5 we discuss the behaviour of degree and space in
some alternative polynomial calculi for which our techniques do not seem to work. Some open
problems are left in Section 6.

2 Preliminaries

We denote the set of integers {i : 1 ≤ i ≤ u} as [u]. We denote variables as x1, x2 . . . and
y1, y2, . . .; variables are always assumed to have values in some algebraic representation of the
booleans. Literals x and ¬x (also denoted as x̄) evaluate respectively to the value of x and to
its negation. A clause is a disjunction of literals l1 ∨ l2 . . . which is true if at least one of the
literals is true. A conjunctive normal form (CNF) formula

∧
j Cj is a conjunction of clauses

which is true when all of them are true. We usually index variables with i and clauses with j. A
k-CNF is a CNF in which all clauses have at most k literals. Usually we consider propositional
formulae on n variables and m clauses. In this paper we also deal with sequences of memory
configurations: usually t denotes the length of the sequence and s is used as index.

2.1 Algebraic proof systems

In our proof systems we use algebraic reasoning to prove facts on propositional formulae. In
this context any line in the proof is a polynomial equation. In a refutation the aim is to deduce
the trivial algebraic contradiction 1 = 0.

Polynomial Calculus (PC) has been defined in [16]. It is a refutational system based on
the polynomial ring F[x1, . . . , xn] for a fixed field F. We always consider equations of the form
p = 0, and we simply denote them as p. The equations are intended to hold on {0, 1}n thus the
system contains the following axioms:

x2
i − xi, i ∈ [n]

There are two inference rules. For any α, β ∈ F and polynomials p, q:
p q

αp+ βq
Sum Rule

p

pq
Product Rule

A PC proof of a polynomial g from a set of initial polynomials f1, . . . , fm (denoted by f1, . . . , fm `
g) is a sequence of polynomials where each one is either an fj , an axiom of the system or is
obtained by inference rules from previous polynomials.

2

PC is sound and complete, in the sense that f1, . . . , fm ` g if and only if g(~x) = 0 for
every ~x ∈ {0, 1}n which is also a common zero of f1, . . . , fm. A PC refutation is a proof that
f1, . . . , fm ` 1, which is possible if and only if f1, . . . , fm have no common zeros. Completeness
of PC comes as a corollary of Hilbert’s Nullstellensatz (see [18]) or from complete algorithms
based on Gröebner basis (see [16, 18]).

Consider a PC proof Π: the degree of Π, deg(Π), is the maximal degree of a polynomial in
the proof; the size of Π, S(Π), is the number of monomials in the proof, the length of Π, |Π|,
is the number of equations in the proof. The degree, size, length complexity of an unsatisfiable
set φ of polynomial equations are respectively the smallest degree, size, length possible for a
PC refutation of φ. In case of satisfiable φ we say that degree, size, length complexity are ∞.

Polynomial Calculus with Resolution (PCR) [3] is a refutational system which extends PC
to polynomials in the ring F[x1, . . . , xn, x̄1, . . . , x̄n], where x̄1, . . . , x̄n are new formal variables.
PCR includes the axioms and rules of PC plus a new set of axioms

1− xi − x̄i i ∈ [n]

to force x̄ variables to have the opposite values of x variables. We extend to PCR the defini-
tions of proof, refutation, degree, size and length given for PC. Observe that using the linear
transformation x̄ 7→ 1− x, any PCR refutation can be converted into a PC refutation without
increasing the degree. Notice that such transformation could cause an exponential increase in
size. Moreover any Resolution refutation can be easily transformed in a PCR refutation of
degree equal to the width of the original one, and comparable size.

Polynomial Calculus in Fourier Basis is a variant of PC we want to briefly mention: the
boolean values true and false are mapped respectively to −1 and +1. This proof system has
the same rules of PC, but the axioms are

x2
i = 1 i ∈ [n]

Notice that equations in Fourier basis can be converted in classic PC equations by the mapping
x 7→ x+1

2 . This mapping can cause an exponential blow up in size, too.

Clause encoding. Our main interest is to refute CNFs. In PC and PCR the usual
convention is to represent true with 0 and false with 1. Literals x and ¬x are represented
respectively as x and (1 − x) and the disjunction is represented as multiplication. Notice that
a clause with many negated literals has exponential size representation in PC. PCR has been
introduced for this reason: ¬x can be represented by the algebraic variable x̄ and any clause
can be represented as a monomial equation. In the paper we almost ignore Fourier basis, which
has not even an efficient encoding for propositional clauses.

Multilinear Polynomial Calculus. In all algebraic interpretations of the booleans shown
so far, any monomial is logically equivalent to a square free one. Such equivalence can be proved
by using an axiom rule, a product rule and a sum rule, and it is possible to efficiently remove
the squares from a proof as soon as they appear. In the standard basis this process is equivalent
to map xc 7→ x for any c > 0. In the Fourier base this is equivalent to map x2n+b 7→ xb for
b ∈ {0, 1}. This “multilinearization” process can be done explicitly with negligible increase in
proof length, size and degree. We denote as η the appropriate multilinearization map for the
proof system in hand and we substitute the product rule with the following

p

η(pq)
Multilinear Product Rule

It is an easy fact that any refutation in our algebraic systems can be efficiently turned into a
square free refutation with the aid of the multilinear product rule.

3

2.2 Monomial Space complexity of a refutation

To study the memory requirements for a refutation we study the number of distinct mono-
mials contained in memory at any step of the computation. We are ignoring the fact that
there could be several copies of the same monomial in memory. Since we are interested in lower
bounds this makes our results stronger. We view a refutation Π as a sequence of configurations
M0,M1, . . .Mt which are sets of polynomials; M0 = ∅ and every Ms+1 follows from Ms by one
of the following rules:

Download Ms+1 = Ms∪{p} where p is either an axiom of the proof system or the algebraic encoding
of a clause in the CNF to refute.

Erasure Ms+1 = Ms − {p} for some p ∈Mi.

Inference Ms+1 = Ms ∪ {p} where p is obtained with an application of either multilinear product
rule or sum rule to some polynomials contained in Ms.

We say that a sequence of memory configurations proves p if p ∈Mt. We define Space(Ms)
as the monomial space complexity of a configuration Ms, which is the number of distinct
monomials contained in all polynomials in Ms. The monomial space complexity of a refutation
Π = (M0, . . . ,Mt) is Space(Π) = maxts=1 Space(Ms). The monomial space complexity of a
CNF φ, denoted as Space(φ), is the smallest monomial space complexity of a PCR refutation
of φ. It φ is satisfiable we say it is ∞. In this paper we are mostly interested in studying the
value of Space(φ) for random φ. We restrict our attention to square free refutations. Notice
that the use of multilinear product rule instead of standard product rule reduces at most by half
the space requirements, so this is not an issue for our results. Also consider that no reasonable
implementation of PC or PCR would implement multilinearization as an explicit inference.

2.3 Random k-CNFs

We consider CNFs over boolean variables x1 . . . xn. For any CNF there is a natural bipartite
underlying graph which expresses the variables involved in each constraint. We define a dis-
tribution on random formulae and the corresponding distribution on the underlying bipartite
graphs.

Definition 1. Fix k > 0 and ∆ > 0. We define Fk∆n,n to be the distribution over k-CNFs
C1 ∧ . . . ∧ C∆n where each Cj is distributed according to the following probabilistic process:
choose uniformly at random a subset of k variables {y1 . . . yk} ⊆ {x1 . . . xn}. For 1 ≤ i ≤ k fix
li to be either yi or ¬yi with uniform probability. Set Cj := l1 ∨ . . . ∨ lk.

Definition 2. Fix k > 0 and ∆ > 0. We define a distribution Gk∆n,n on bipartite graphs
G = (L,R,E) with L = [∆n] and R = [n]. Each vertex j ∈ L has a set chosen uniformly at
random of k distinct neighbours in R.

It is clear that the underlying graph of a CNF distributed according to Fk∆n,n is itself
distributed according to Gk∆n,n. Such distribution of formulae is a well studied model (see
[15, 7, 13, 10, 9, 26, 1] among many others)

2.4 Matching and Expansion

We define important structural concepts about bipartite graphs. A partial matching of a bi-
partite graph G = (L,R,E) is a subset E′ ⊆ E such that G′ = (L,R,E′) has degree at most
one. A perfect matching is a partial matching with no isolated vertices. We say that some set

4

U ⊆ L∪R can be matched if there is a partial matching in which all elements of U have degree
one. For U ⊆ L ∪ R we define its neighbourhood to be N(U) = {v : v 6∈ U, {u, v} ∈ E}. For a
single vertex u ∈ L∪R we set N(u) := N({u}). The most important and useful theorem in the
context of matching is

Hall’s Matching Theorem. For a bipartite graph G = (L,R,E), a set of vertices L′ ⊆ L can
be matched if and only if for any L′′ ⊆ L′ it holds that |N(L′′)| ≥ |L′′|.

The following is an easy generalization of Hall’s Theorem.

k-fold Matching Theorem. Fix a bipartite graph G = (L,R,E), and a set of vertices L′ ⊆ L.
A k-fold matching for L′ is a subset E′ ⊆ E such that in G′ = (L,R,E′) all vertices in L′ have
degree k and vertices in R have degree at most 1. L′ can be k-fold matched if and only if for
any L′′ ⊆ L′ it holds that |N(L′′)| ≥ k|L′′|.

Proof. The condition is clearly necessary. For the sufficiency consider a graph H with k copies
of the left side L1 ∪ L2 ∪ . . . Lk and one copy of R. Consider the k copies of L′. Consider any
subset U ⊆ L′1 ∪ L′2 ∪ . . . ∪ L′k, and assume wlog that |U ∩ L′1| ≥

|U |
k . Then we have

|N(U)| = |N(U ∩ L′1) ∪ . . . ∪N(U ∩ L′k)| ≥ |N(U ∩ L′1)| ≥ k|U ∩ L′1| ≥ |U |

In the second inequality we used the condition on the size of the neighbourhood. By Hall’s
Matching Theorem L′1 ∪ . . . ∪ L′k has a matching in H. This means that L′ has a k-fold
matching in G.

The expansion on bipartite graphs is also deeply related with matchings.

Definition 3. We say that a bipartite graph G = (L,R,E) is an (r, c)-expander when for any
set L′ ⊆ L of size at most r it holds that |N(L′)| ≥ c|L′|.

Hall’s Matching Theorem pairs with expander graph definition: any set of at most r left
vertices has a matching if and only if the graph is an (r, 1)-expander, and has a k-fold matching
if and only if the graph is an (r, k)-expander.

3 Twofold Matching game

We describe a game we are going to use to prove the monomial space lower bound for random k-
CNF refutations in PCR. Diana (the delayer) claims that a formula is satisfiable and Paula
(the prover) challenges such claim. Paula asks questions to Diana and she must answer
consistently. Paula wins the game if she eventually catches Diana in contradiction. Diana wins
if she has a strategy for playing infinitely long without being caught.

To study space complexity in proof systems we enforce that Paula can remember a bounded
amount of previous answers. Diana is caught only if she is inconsistent with answers which
Paula remembers. We show a relation between the amount on memory Paula needs to win the
game and the number of monomials needed to be kept in memory in a PCR refutation.

Twofold Matching Game. Consider a bipartite graph G = (L,R,E): the status of the
game at step s is encoded by a graph Gs = (L,R,Es) where Es is a subset of E. We set E0 = ∅.
Paula has two options at each step s:

• Paula asks some l ∈ L which is isolated in Gs−1. Diana must answer with two distinct
vertices r1, r2 ∈ R which are both neighbours of l in G but are isolated in Gs−1. If
no such vertices exist then Diana loses the game, otherwise Gs is updated by setting
Es := Es−1 ∪ {{l, r1}, {l, r2}}.

5

• Paula removes some edges from Gs−1. More precisely she chooses Es ⊆ Es−1 to be the
edge set of Gs.

Original Matching Game. The game is defined in [9]. It is similar to the twofold matching
game. The only difference is that Diana has to answer with just one neighbour to each of Paula’s
requests.

A gameplay of t moves on a graph G characterizes a sequence of subgraphs G0, . . . , Gt of G.
The matching complexity of this gameplay is maxts=0 |Es|. The matching complexity of G is the
smallest complexity of a winning gameplay for Paula on G: we denote it as MSpace(G) for the
original matching game and TMSpace(G) for the twofold matching game. There are graphs
(e.g. the bipartite complete Kn,2n) for which Diana can play consistently for infinitely long
and there is no winning gameplay for Paula. In such cases we say that the (twofold) matching
complexity is infinite.

Lemma 1. For any k ≥ 4 and 0 < ε ≤ 1/2 a random graph G distributed according to Gk∆n,n
requires twofold matching space complexity Ω(n∆−

1+ε
k−3−ε) with probability 1− o(1).

Proof. We are interested in the expansion properties of the graph G. Thus we use the following
Expansion Lemma which is a variant of Lemma 11 in [7] and Lemma 5.1 in [9].

Expansion Lemma (See proof in Appendix). For each k ≥ 4 and 0 < ε ≤ 1/2,
there exist a constant c depending only on k and ε such that the following holds: a
random graph distributed according to Gk∆n,n is a

(
cn∆−

1+ε
k−3−ε , 2 + ε

)
-expander.

From now on we fix r = cn∆−
1+ε

k−3−ε as in the Expansion Lemma. We assume G to be an
(r, 2 + ε)-expander. We are going to prove that

TMSpace(G) ≥ ε

4 + ε
r

Define G′ = (L1∪L2, R,E1∪E2) where Li = {ui : u ∈ L} and Ei = {{ui, v} : u ∈ L, {u, v} ∈ E}
for i ∈ {1, 2}. G′ is essentially a bipartite graph with two copies of L and one of R.

We show G′ is an (r, 1 + ε
2)-expander: consider any sets A1 ⊆ L1 and A2 ⊆ L2 such that

|A1 ∪A2| ≤ r. We may assume without loss of generality that u2 ∈ A2 implies u1 ∈ A1 because
u1 and u2 can be exchanged. It follows that |A2| ≤ |A1| and N(A2) ⊆ N(A1). So we have that

|N(A1 ∪A2)| = |N(A1)| ≥ (2 + ε)|A1| ≥ (1 +
ε

2
)|A1 ∪A2|

We now apply the following theorem:

Theorem (see [9]). Let be G′ and (r, 1 + α)-expander, then MSpace(G′) ≥ α
2+αr.

The twofold matching game on G is essentially a special case of the original matching game on
G′ in which Paula always asks u1 and u2 consecutively. This means that a winning strategy for
Diana for original matching game on G′ is also a winning strategy for twofold matching game
for G. So we get

TMSpace(G) ≥MSpace(G′) ≥ ε/2
2 + ε/2

r =
ε

4 + ε
r

6

4 Space complexity for Random k-CNFs

The main theorem of this section and of the paper is a bound on the number of monomials that
any PCR refutation of random k-CNFs must keep in memory simultaneously.

Theorem 1. For any k ≥ 4 and ∆ > 0, a random k-CNF distributed according to Fk∆n,n has

monomial space complexity Ω(n∆−
1+ε

k−3−ε) with probability 1− o(1).

Theorem 1 easily follows from the next lemma which we prove later.

Lemma 2. For any F =
∧m
j=1Cj in conjunctive normal form on variables {x1, . . . , xn}, con-

sider the bipartite graph G = ([m], [n], E) where {j, i} ∈ E if and only if variable xi occurs in
clause Cj. Then

Space(F) ≥ TMSpace(G)
4

Proof of Theorem 1. Fix m = ∆n, and pick a random formula

F =
∧

1≤j≤m
Cj

distributed according to Fkm,n. Consider the bipartite graph G = ([m], [n], E) where E =
{{j, i} : xi occurs in Cj}. Notice that G is distributed according to Gk∆n,n thus

TMSpace(G) = Ω(n∆−
1+ε

k−3−ε)

holds with probability 1−o(1) because of Lemma 1. Then the lower bound for Space(F) follows
because of Lemma 2.

Corollary 1. Fix k ≥ 4 and constant ∆ > 0. A random k-CNF distributed according to Fk∆n,n
has monomial space complexity Θ(n) with probability 1− o(1).

Proof. The lower bound is a direct application of Theorem 1. The upper bound is a standard
tree like refutation of size 2n. For any variable x we will denote the literals x and x̄ as x1 and
x0 respectively. In this notation

∏n
i=1 x

αi
i = 1 if and only α ∈ {0, 1}n is assigned to {x1 . . . xn}.

We now show that for any 0 ≤ l ≤ n and for any fixed α we can deduce
∏l
i=1 x

αi
i = 0 with

at most n − l + 6 monomials simultaneously in memory. The equation corresponding to l = 0
is intended to be 1 = 0.

If l = n then the monomial follows by an application of the product rule to some clause of F
falsified by α. This require two monomials in memory. If l < n then by assume we can deduce
xα1

1 · · ·x
αl
l xl+1 = 0 and xα1

1 · · ·x
αl
l x̄l+1 = 0 with n−l+5 monomials in memory each. We deduce

the former and we keep it in memory, erasing any intermediate step. We then deduce the latter
in the same space. The whole process requires space n− l+6. Now we clear the memory to have
only 2 monomials. By using axiom 1 − xl+1 − x̄l+1 and never more that 6 distinct monomials
in memory, we can deduce xα1

1 · · ·x
αl
l = 0 from those. By backward induction the statement is

true for l = 0.

The rest of the section will be devoted to prove the Lemma 2.

Proof of Lemma 2. LetG be the graph underlying F as in the statement. Fix b := TMSpace(G).
Consider a sequence of memory configurations M0, . . . ,Mt deducible in PCR from F , such that
|Ms| < b

4 for all 0 ≤ s ≤ t. We will define a gameplay G0, . . . , Gt for the twofold matching game
on G and a sequences of 2-CNFs A0, . . . , At such that:

7

• The number of clauses in As are less than or equal to 2|Ms|.

• The variables in As are the right side vertices in Gs with degree 1.

• Any variable occurs at most once in As (i.e. clauses are variable disjoint).

• As logically implies all polynomial equations in Ms.

This will conclude the proof: all such 2-CNFs are satisfiable thus there is no empty clause
in any of the Ms. We set M0 = ∅, G0 to have no edges and A0 to be the empty CNF which is
trivially satisfiable. From Gs and As with the desired properties we define As+1 conditioning
on the rule used to go from Ms to Ms+1.

Erasure/Inference: As implies the truth of all equations in Ms and in case of an equation
erasure or of an inference rule the configuration Ms+1 is a semantic consequences of Ms. We
know that As already implies Ms+1 but it could be larger than 2|Ms+1| in case of an erasure,
so we need a smaller 2-CNF. We use the following Locality Lemma shown in [2].

Locality Lemma (rephrased from Lemma 4.14 in [2], see proof in Appendix).
Let F be a 2-CNF with no common variables among two clauses. Let E be a set
of polynomial equations containing h distinct monomials. Assume that F logically
implies E. Then there exists a 2-CNF F ′ such that:

• F ′ has at most 2h clauses;

• variable of F ′ are all contained in F .

• no two clauses in F ′ share a variable;

• F ′ logically implies E;

We choose As+1 to be the 2-CNF given by the previous lemma. The variables appearing in
As+1 are a subset of the variables appearing in As, thus the removal of the edges corresponding
to such variables from Gs is a legitimate move in the twofold matching game which defines
Gs+1.

Axiom download: Consider Ms+1 to be equal to Ms ∪ {Cj} for some j. If As already
implies Cj we are done. Otherwise we consider all the edges appearing Gs. Those are exactly
2|As| ≤ 4|Ms| ≤ b− 4, thus in the twofold matching game position Gs Diana is able to answer
to the left side vertex j with two isolated right side vertices i1 and i2. The edges of Gs+1 are
Es∪{{j, i1}, {j, i2}}. Let l1 and l2 be the corresponding literals in Cj , then As+1 := As∧(l1∨l2).
Clearly As+1 has at most 2|Ms+1| clauses and it logically implies Ms+1 since As implies Ms and
l1 ∨ l2 implies Cj .

4.1 Space bound for Pigeonhole principles on graphs

For the lack of space we omit the discussion about pigeonhole principles on bipartite graph. It
is easy to see that the same reasoning used to develop our space lower bound for k-CNF can be
used for pigeonhole principles with ∆n pigeons and n holes on a random bipartite with minimal
degree 4. The reduction from a twofold matching strategy to a monomial space lower bound is
identical to the one of Theorem 1.

8

5 Space complexity of PC compared to Resolution

The main motivations for studying PC/PCR are that PCR is strictly stronger than Resolution
yet it is not difficult to implement. Furthermore several intuitions behind lower bounds in
Resolution are also useful in variants of polynomial calculus. In particular there is a resemblance
between Resolution width1 and PC degree. There seems to be a general “meta theorem”: if
expansion properties of formulae imply high width [15, 13] then something similar holds for PC
degree [10, 4]. In particular this is true for random CNF. There is a similar trade-off between
Size vs Width in Resolution [13, 14] and Size vs Degree in PC/PCR [16, 3, 20].

Notice that the Resolution space lower bound for random CNFs has been proved using
expansion properties [9]. This is not coincidence because later it has been proved in [5] that
space is always bigger than width in Resolution. Then we have this “meta-relation” in resolution

ExpansionR w WidthR ≤ SpaceR

It is natural to ask if such correspondence between degree and Resolution width also extends
to the relation with space complexity. In [10] it is shown that ExpansionPC w WidthPC and
Theorem 1 itself hints of a possible relation ExpansionPC w SpacePC . It is natural to ask
whether something along the lines of DegreePC w SpacePC holds.

5.1 Barriers to a Degree ≤ Space relation

In this subsection we argue that any Degree vs Space relation cannot be very simple or general.
The key point of our space lower bound is the Locality Lemma which is used to compress a small
memory configuration with a low complexity formula. This essentially means that monomials
in memory do not convey a lot of information. This is not the case in general for PCR: an high
degree monomial equation can encode a full assignment in a single unit of space. In Resolution
a partial assignment requires a unit of space for each assigned variable. Let us consider an
example:

Fact 1. Fix constant k ≥ 3, and any constant ∆ > 0, let G be a bipartite graph distributed
according to Gk∆n,n. Let b = (b1 . . . , b∆n) ∈ {0, 1}∆n be distributed uniformly. Consider the
linear system ∑

u∈N(j)

u = bj (mod 2)

It holds with high probability that

• There exists a degree one refutations in PC over any field F with characteristic 2.

• Any such refutation requires linear space.

• There exists a constant space in PC over any field in the Fourier basis.

• Any such refutation requires linear degree.

This fact follows from [10]: in characteristic 2 you just sum a subset of equations which
gives 1 = 0; the lower bounds comes because of expansion. For the Fourier basis just notice
that sum modulo 2 can be simulated by multiplication. Such cases suggest a trade off between
degree and space. Maybe there are formulae with refutations either of large degree and small

1the smallest number of literals appearing in the largest clause of a refutation

9

space or of small degree and large space, but not small space and degree. It is a useful remark2

that any PC/PCR refutation which is achievable in space s and degree d can be simulated in
resolution with width less than O(sd).

6 Open problems

We leave several interesting open problems:

1. In Section 5 we argued that the relation between degree and space in PC is not clear. We
would like to know Space ≥ Degree holds. There may be formulae requiring high degree
but small space, and viceversa small degree and high space like black-white pebbling
tautologies from [23, 11]. There may even be a formula that can be refuted both in small
space and small degree, but not simultaneously. Even better there could be a smooth
trade-off between those measures (i.e. the conjunction of two formulae with different space
and degree complexity does not answer the question). The example given in Section 5.1
does not answer completely, since the two refutations are given in different flavours of PC.

2. We have shown space hardness for k-CNF with k ≥ 4. We weren’t able to prove the
result for the most interesting case: k = 3. We suspect it to be true. Our technique
seems insufficient because it requires 2 + ε expansions to prove Ω(n∆−

1+ε
k−3−ε) monomial

space. In resolution 1 + ε expansion is sufficient to prove Ω(n∆−
1+ε

k−2−ε) clause space, thus
it works for random 3-CNF. It is natural to ask whether our result can be improved to
match resolution one.

3. In [7, 29] there are upper bounds for resolution clause space for a random formulae. In
particular Zito [29] shows that Resolution clause space O(n/∆

1
k−2 is sufficient for random

k-CNF. In the case of resolution this is somehow tight. It is natural to ask if for PCR
either O(n/∆

1
k−3) is sufficient (at least when k ≥ 4) or not. This is the dual of the previous

problem.

4. PCR has been defined in [2] because PC is too inefficient for clause representation. Is it
possible to prove a separation between monomial space in PC and in PCR? Maybe an
exponential one? Of course the interesting cases are CNFs of constant width.

Acknowledgements

The author thanks Jakob Nordström for an introduction to the problem. He also want to thanks
Eli Ben-Sasson, Nicola Galesi and Jakob Nordström for insightful discussions.

References

[1] Michael Alekhnovich. Lower bounds for k-DNF resolution on random 3-CNFs. In Pro-
ceedings of the 37th Annual ACM Symposium on Theory of Computing, pages 251–256,
2005.

[2] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Space
complexity in propositional calculus. In STOC, pages 358–367, 2000.

2It has been mentioned to the author by Eli Ben-Sasson during the “Ramsey Theory in Logic, Combinatorics
and Complexity” in Bertinoro, 2009.

10

[3] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Pseu-
dorandom generators in propositional proof complexity. SIAM J. Comput., 34(1):67–88,
2004.

[4] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial calculus:
Non-binomial case. In 42nd Annual Symposium on Foundations of Computer Science,
pages 190–199, 2001.

[5] Albert Atserias and Vı́ctor Dalmau. A combinatorial characterization of resolution width.
J. Comput. Syst. Sci., 74(3):323–334, 2008.

[6] P. Beame, R. Impagliazzo, J. Kraj́ıcek, T. Pitassi, and P. Pudlák. Lower bounds on hilbert’s
nullstellensatz and propositional proofs. Proceedings of the London Mathematical Society,
73:1–26, 1996.

[7] Paul Beame, Richard M. Karp, Toniann Pitassi, and Michael E. Saks. The efficiency of
resolution and davis–putnam procedures. SIAM J. Comput., 31(4):1048–1075, 2002.

[8] Paul Beame and Toniann Pitassi. Simplified and improved resolution lower bounds. In
37th Annual Symposium on Foundations of Computer Science, pages 274–282. IEEE, 1996.

[9] Eli Ben-Sasson and Nicola Galesi. Space complexity of random formulae in resolution.
Random Struct. Algorithms, 23(1):92–109, 2003.

[10] Eli Ben-Sasson and Russell Impagliazzo. Random CNFs are hard for the polynomial cal-
culus. In 40th Annual Symposium on Foundations of Computer Science, pages 415–421,
1999.

[11] Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious: An optimal separation
of space and length in resolution. In FOCS, pages 709–718, 2008.

[12] Eli Ben-Sasson and Jakob Nordström. Understanding space in resolution: Optimal lower
bounds and exponential trade-offs. Electronic Colloquium on Computational Complexity
(ECCC), 16(034), 2009.

[13] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution made simple. In
Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, pages
517–526, 1999.

[14] Maria Luisa Bonet and Nicola Galesi. Optimality of size-width tradeoffs for resolution.
Computational Complexity, 10(4):261–276, 2001.

[15] Vasek Chvátal and Endre Szemerédi. Many hard examples for resolution. J. ACM,
35(4):759–768, 1988.

[16] Matthew Clegg, Jeff Edmonds, and Russell Impagliazzo. Using the Gröebner basis algo-
rithm to find proofs of unsatisfiability. In Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, pages 174–183, 1996.

[17] Stephen A. Cook, Robert, and A. Reckhow. The relative efficiency of propositional proof
systems. Journal of Symbolic Logic, 44:36–50, 1979.

[18] David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms : An In-
troduction to Computational Algebraic Geometry and Commutative Algebra, 3rd edition.
Springer, 2007.

11

[19] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. In STACS, pages
551–560, 1999.

[20] Nicola Galesi and Massimo Lauria. Optimality of size-degree trade-offs for polynomial
calculus. ACM Transactions on Computational Logic, 2010. To appear.

[21] Armin Haken. The intractability of resolution. Theor. Comput. Sci., 39:297–308, 1985.

[22] Russell Impagliazzo, Pavel Pudlák, and Jiŕı Sgall. Lower bounds for the polynomial calculus
and the gröbner basis algorithm. Computational Complexity, 8(2):127–144, 1999.

[23] Jakob Nordström. Narrow proofs may be spacious: separating space and width in resolu-
tion. In STOC, pages 507–516, 2006.

[24] Alexander A. Razborov. Lower bounds for the polynomial calculus. Computational Com-
plexity, 7(4):291–324, 1998.

[25] Alexander A. Razborov. Resolution lower bounds for the weak functional pigeonhole prin-
ciple. Theor. Comput. Sci., 1(303):233–243, 2003.

[26] Nathan Segerlind, Samuel R. Buss, and Russell Impagliazzo. A switching lemma for small
restrictions and lower bounds for k-DNF resolution. SIAM J. Comput., 33(5):1171–1200,
2004.

[27] Jacobo Torán. Lower bounds for space in resolution. In CSL, pages 362–373, 1999.

[28] Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, 1987.

[29] Michele Zito. An upper bound on the space complexity of random formulae in resolution.
Electronic Colloquium on Computational Complexity (ECCC), 8(079), 2001.

Appendix

The following proofs have appeared elsewhere with some minor differences. We put them here
for completeness.

Locality Lemma (see [2]). Let F be a 2-CNF with no common variables between two clauses.
Let E be a set of polynomial equations containing h distinct monomials. Assume that F logically
implies E. Then there exists a 2-CNF F ′ such that:

• F ′ has at most 2h clauses;

• variable of F ′ are all contained in F .

• no two clauses in F ′ share a variable;

• F ′ logically implies E;

Proof. We denote as |F | the number of clauses in a CNF F . Consider E as a boolean function
on its monomials m1, . . . ,mh. Consider the bipartite graph H where the set L of left vertices
is {m1, . . . ,mh} and the set R of right vertices is the set {C1, . . . , C|F |} of clauses of F . H
contains the edge {mi, Cj} if and only if they share at least a variable.

Let be LN a maximal subset of L such that |N(LN)| < 2|LN |, and LW = L− LN . We also
set RN = N(LN) and RW = N(LW)−N(LN). We define HN to be the subgraph of H induced

12

by LN ∪ RN and HW to be the one LW ∪ RW . Observe that HW is an (|LW |, 2)-expander,
because for any |L′ ⊆ LW | it holds that |N(L′) − N(LN)| ≥ 2|L′|, otherwise LN would not
be maximal. We will define two 2-CNFs FN and FW such that FN ∧ FW implies E and the
conditions required by the theorem.

For FW we consider a twofold matching from LW to RW : it exists because of the expansion
of HW and the 2-fold Matching Theorem in Section 2.4.

Any monomial m in LW is matched with two clauses Am, Bm, with corresponding variables
um and vm both occurring in m. We consider a new clause Cm on um and vm: negations on the
two variables are set in such a way that Cm implies m = 0. We also name the two remaining
variables as am and bm occurring respectively in Am and Bm. We fix

FW :=
∧

m∈LW

Cm FN :=
∧

C∈RN

C F ′ := FN ∧ FW

By construction we have that no variable occurs more than once in F ′, and all variables in F ′ also
occur in F . So we have |F ′| = |FN |+|FW | = |RN |+|LW | = |N(LN)|+|LW | ≤ 2|LN |+|LW | ≤ 2h.

We need to show that F ′ implies E. Fix an assignment α such that F ′(α) is true. We now
define a new assignment α′ by modifying α. Consider the clauses in F which are not in F ′:
either they have no variable in common with E (reassign such variables to satisfies them) or
they come in a pair Am, Bm for some monomial m ∈ LW . We fix am and bm to satisfy them.
The new assignment α′ satisfies F and thus it also satisfies E. We observe that none of these
reassigned variables occurs in a monomial in LN and any monomial m ∈ LW evaluates to zero
in both assignments because Cm remains true. Then we get E(α) = E(α′) (i.e. satisfied).

Expansion Lemma (see [9]). For each k ≥ 4 and 0 < ε ≤ 1/2, there exist a constant c
depending only on k and ε such that the following holds: a random graph distributed according
to Gk∆n,n is a

(
cn∆−

1+ε
k−3−ε , 2 + ε

)
-expander.

Proof. The probability of a set U of size i to have a neighbourhood inside a set V of size (2+ ε)i
is

pi =

(((2+ε)i
k

)(
n
k

))i
≤
(

(2 + ε)i
n

)ki
We upper bound the probability of the existence of such a set (i.e. the event “Fail”) by union
bound over all possible choices of U and V . We use that

(
a
b

)
≤
(
ea
b

)b.
Pr[Fail] ≤

r∑
i=1

(
∆n
i

)(
n

(2 + ε)i

)
pi

≤
r∑
i=1

(
e∆n
i

)i(en

(2 + ε)i

)(2+ε)i((2 + ε)i
n

)ki
≤

r∑
i=1

(
a ·∆ · (i

n
)k−3−ε

)i
fix a = e3+ε(2 + ε)k−2−ε (*)

Fix r = cn∆−
1+ε

k−3−ε and c =
(

1
2a

) 1
k−3−ε . We divide the analysis in cases:

13

Case 1: ∆ ≥ n1/8

Pr[Fail] ≤
r∑
i=1

(
a ·∆ · (i

n
)k−3−ε

)i
≤

r∑
i=1

(
a ·∆ · (r

n
)k−3−ε

)i
≤

r∑
i=1

(
ack−3−ε ·∆ · (n∆−

1+ε
k−3−ε

n
)k−3−ε

)i

≤
r∑
i=1

(
∆−ε

2

)i
≤

r∑
i=1

(
1

2nε/8

)i
−→
n→∞

0

Case 2: ∆ < n1/8 We have that for k ≥ 4 and ε ≤ 1/2, we get r ≥ n5/8. We consider
Pr[Fail] ≤ X + Y where X is the sum of the first

√
n terms of equation (*). Y is the sum of

the terms for
√
n < i ≤ r.

X ≤

√
n∑

i=1

(
a ·∆ · (i

n
)k−3−ε

)i

≤

√
n∑

i=1

(
a · n1/8 · n−

k−3−ε
2

)i
≤

√
n∑

i=1

(
a · n1/8 · n−1/4

)i
≤

√
n∑

i=1

(
a · n−1/8

)i
−→
n→∞

0

Y ≤
r∑

i=
√
n+1

(
a ·∆ · (i

n
)k−3−ε

)i

≤
r∑

i=
√
n+1

(
a ·∆

2a ·∆1+ε

)i

≤ n
(

a ·∆
2a ·∆1+ε

)√n+1

−→
n→∞

0

14

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

