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Abstract

We study Locally Testable Codes (LTCs) that can be tested by making two

queries to the tested word using an a�ne test. That is, we consider LTCs over a

�nite �eld F, with codeword testers that only use tests of the form avi + bvj = c,

where v is the tested word and a, b, c ∈ F.
We show that such LTCs, with high minimal distance, must be of constant

size. Speci�cally, we show that every 2-query LTC with a�ne tests over F, that
has minimal distance at least 9

10 , completeness at least 1 − ε, and soundness at

most 1− 3ε, is of size at most |F|.
Our main motivation in studying LTCs with a�ne tests is the Unique Games

Conjecture (UGC ), and the close connection between LTCs and PCPs. We men-

tion that all known PCP constructions use LTCs with corresponding properties

as building blocks, and that many of the LTCs used in PCP constructions are

a�ne. Furthermore, the UGC was shown to be equivalent to the UGC with a�ne

tests [13], thus the UGC implies the existence of a low-error 2-query PCP with

a�ne tests.

1 Introduction

1.1 Locally Testable Codes

Locally Testable Codes (LTC s) are error correcting codes for which the proximity of a

given word to a codeword can be probabilistically tested with good con�dence. The
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test should be done by an e�cient procedure (a �tester �) that only reads a constant

number of locations in the given word. We say that a tester has completeness 1− ε, if
it accepts every codeword with probability at least 1− ε. The tester has soundness s,
if it accepts any word that is �far� from every codeword with probability at most s.

We mention that one of the main motivations in studying LTCs is their central role

in PCP constructions.

1.1.1 Unique Locally Testable Codes

In [16] we study the Unique Games Conjecture by examining LTCs with testers that

only read two locations in the tested word, and only use unique tests. That is, given

the value read from the �rst queried location, there is a unique value for the second

location that makes the tester accept, and vice versa.

In other words, if T is a tester for an LTC C ⊆ Σn, we require that for every pair of

coordinates (i, j) ∈ [n]2 that may be queried by T there exists a permutation πij over Σ

for which the following holds. If v ∈ Σn is the tested word, then after querying vi

and vj, T accepts if and only if vj = πij (vi).

1.1.2 A�ne Locally Testable Codes

In this work we consider the special case of LTCs with unique tests, where the tests

are also a�ne. That is, we assume that the alphabet set is a �nite �eld Σ = F, and
require every permutation πij to be of the form πij (x) = ax + b, where a, b ∈ F. In

other words, the tests carried out by the testers are of the form avi + bvj = c, where

v ∈ Fn is the tested word, i, j ∈ [n], and a, b, c ∈ F.
We next give the formal de�nition of an a�ne LTC. We use the following notations.

For a natural number t ∈ N, denote [t] = {1, ..., t}. Let F be a �nite �eld, and

let n ∈ N be a natural number. The distance between two words u,w ∈ Fn is de�ned

as ∆ (u,w) = 1
n
|{i ∈ [n] | ui 6= wi}|. A subset C ⊆ Fn is called a code. The relative

distance of the code C is minu6=w∈C {∆ (u,w)}, and the distance of a word v ∈ Fn from

the code C is ∆ (v, C) = minu∈C {∆ (v, u)}. Let AF be the set of all a�ne functions

over F, AF = {f : F→ F | f (x) = ax+ b, a, b ∈ F, a 6= 0}.

De�nition 1 (A�ne Local Tester, A�ne LTC). Let F be a �nite �eld, n ∈ N be

a natural number, and C ⊆ Fn be a code. Let ε, s ∈ [0, 1) be real numbers. Assume

that T is a probabilistic, non-adaptive, oracle machine with access to a string v ∈ Fn. In
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addition, assume that T makes at most two queries to v, and outputs either accept or

reject. Then, T is an (ε, s)-a�ne local tester for C if it satis�es the following conditions:

• A�neness: For every pair of coordinates (i, j) ∈ [n]2 that may be queried by T in

a single execution, there exists an a�ne function fij ∈ AF such that the following

holds. After querying vi and vj, T outputs accept if and only if vj = fij (vi).

In addition, if T makes a single query to coordinate i ∈ [n], then there exits a ∈ F
such that the following holds. After querying vi, T outputs accept if and only if

vi = a.

• Completeness: If v ∈ C, then Pr [T v = accept] ≥ 1− ε.

• Soundness: If ∆ (v, C) ≥ 1
5
, then Pr [T v = accept] < s. In other words, if

Pr [T v = accept] ≥ s, then there exists a codeword u such that ∆ (v, u) < 1
5
.

A code C is an (α, ε, s)-a�ne LTC if it has relative distance at least 1− α, and has an

(ε, s)-a�ne local tester.

1.2 Motivation

1.2.1 The PCP Theorem and the Unique Games Conjecture

The celebrated PCP Theorem, discovered in 1992 [3, 9, 2, 1], states that any NP mem-

bership statement (e.g., ϕ ∈ SAT ) has a proof that can be probabilistically checked with
good con�dence. The check can be performed by an e�cient procedure (a �veri�er �)

that only reads a constant number of locations in the proof.

The PCP Theorem was a major turning point in the research of hardness of approx-

imation. However, for some fundamental problems, optimal inapproximability results

are still not known. To cope with such problems, a strengthening of the PCP Theo-

rem, called the Unique Games Conjecture (UGC ), was introduced by Subhash Khot

in 2002 [12]. The conjecture, or variants of it, was shown to imply many improved

inapproximability results [12, 15, 17, 7, 8, 13, 14, 18].

The UGC considers a special type of PCP veri�ers: veri�ers that read at most two

locations in the proof, and only make unique tests. The conjecture predicts the existence

of such a veri�er, that errs (rejects a correct proof or accepts a false statement) with

arbitrarily small probability. We mention that the UGC with a�ne tests is equivalent

to the UGC [13].
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1.2.2 The Relations Between PCPs and LTCs

As mentioned above, LTCs and PCPs are closely related. All known PCP construc-

tions use LTCs as building blocks. For example, variants of Reed-Muller, Hadamard,

and the Long Code are codes that have been extensively used in PCP constructions.

Furthermore, to obtain PCPs with certain properties, one usually uses LTCs with cor-

responding properties.

In the opposite direction, some PCP constructions were shown to imply LTCs [10].

Moreover, the existence of a special type of PCP, called PCP of Proximity (PCPP),

is known to imply LTCs [4]. For further discussion of the relations between PCPs and

LTCs, see [10].

In light of the strong connection between PCPs and LTCs, in [16] we study LTCs

analogues to the UGC. Speci�cally, we consider LTCs with testers that only use unique

tests. Roughly speaking, we show that such LTCs with low error are of constant size.

In this work we consider the special case of LTCs with unique tests, where the tests

are also a�ne. Roughly speaking, we show that such LTCs are of constant size, even if

the error is a large constant. As mentioned above, the special case of UGC with a�ne

tests was shown to be equivalent to the UGC [13]. In addition, many of the LTCs used

in PCP constructions are a�ne, e.g., variants of Reed-Muller, Hadamard, and the Long

Code.

1.3 Our Result

The main result of this paper is the following Theorem 2. The theorem states that

every a�ne LTC with minimal distance at least 9
10
, completeness at least 1 − ε, and

soundness at most 1− 3ε, is of size at most |F|.

Theorem 2 (Main). Let ε ∈
[
0, 1

3

)
be a real number, F be a �nite �eld, and n ∈ N be a

natural number. Then, every
(

1
10
, ε, 1− 3ε

)
-a�ne locally testable code C ⊆ Fn satis�es

|C| ≤ |F|.

Remark. The upper bound on the size of the code suggested by the theorem is tight:

Let F be a �nite �eld, and n ∈ N be a natural number. Consider the code C =

{an}a∈F ⊆ Fn, and the following a�ne local tester for C: Randomly select (i, j) ∈ [n]2,

and test vi = vj. The code has minimal distance 1, completeness 1, and constant

soundness s < 1, and |C| = |F |.
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1.4 Previous Works

Unique Locally Testable Codes. In [16] we consider LTCs with properties sim-

ilar to the ones required from a PCP by the UGC. Speci�cally, we study LTCs with

arbitrarily small constant error (soundness close to 0), that only make unique tests.

We show that such LTCs must be of constant size where the constant depends on the

alphabet size, the completeness and the soundness.

The current work shows that in the a�ne case, even LTCs with large constant error

(soundness close to 1), are of constant size. Furthermore, it gives a better upper bound

on the size of such LTCs. The bound only depends on the alphabet size. We mention

that the current work uses a di�erent (and simpler) technique.

Linear 2-Query Locally Testable Codes. In [5], linear 2-query LTCs with con-

stant minimal distance 1 − α are studied, where linear means that the code is a lin-

ear subspace of the vector space Fn. It is shown that such codes must be of size at

most |F|
3

1−α .

We mention that, w.l.o.g., every tester of a linear LTC is a�ne [6]. However, there

are non-linear LTCs that have a�ne testers, e.g., the Long Code. Thus, our notion of

an a�ne tester is more general. Furthermore, we achieve a better upper bound on the

size of the code (for a certain range of the parameters).

General 2-Query Locally Testable Codes. The same bound of |F|
3

1−α is obtained

in [5] also for general (non-linear) 2-query LTCs, when perfect completeness and binary

alphabet are assumed. In [11], binary 2-query LTCs with almost-perfect completeness

(say 1−ε, for ε approaching 0) are investigated. It is shown that such codes must either

have a constant size, or have soundness s = 1−O(ε).

These results are incomparable to ours. On the one hand, we consider the more gen-

eral case of LTCs over arbitrarily large alphabet sets, and allow imperfect completeness.

On the other hand, we only consider LTCs with a�ne tests.

2 De�nitions

An a�ne constraint graph (ACG) is a quadruple G = (H = (V,E) ,F, A, S), where H is

an undirected multigraph (we allow parallel edges), F is a �nite �eld, A : E → AF is

a function mapping edges to a�ne functions, and S ⊆ [n] × F is a multiset (we allow
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duplicate values) satisfying |{a ∈ F | (i, a) ∈ S}| ≤ 1 for every i ∈ [n]. We will refer

to S as the unitary constraint multiset. We denote V (G) = V , E (G) = E, A (G) = A,

and S (G) = S. The constraints set of G is cons (G) = E (G) ∪ S (G).

For a �nite �eld F, and a �nite set V , we denote by FV the set of all |V |-element

vectors over F, indexed by the elements of V . Let G = (H = (V,E) ,F, A, S) be an

ACG, and let v ∈ FV be a word. Let e = (i, j) ∈ E be an edge of G, and let fij be the

a�ne function that e is mapped to by A. We say that v satis�es e if vj = fij(vi). Let

s = (i, a) ∈ S. We say that v satis�es s if vi = a. We say that v satis�es G if v satis�es

every constraint in cons (G).

Let T be an a�ne local tester for a code C ⊆ Fn, and let v ∈ Fn be a given word.

When testing v, the tester T queries at most two coordinates of v and runs an a�ne

test on the answers. Assume that each test is carried out with an equal probability.

Then, T gives rise to the following natural ACG, called GT . The vertex set of GT is [n],

and its �eld is F. The pair (i, j) ∈ [n]2 is in E (GT ) if T may run an a�ne test on vi

and vj. In this case, the function A (GT ) maps the edge (i, j) to the a�ne function fij

promised by the a�neness property of T . The pair (i, a) ∈ [n] × F is in S (GT ) if T

may run the test vi = a.

If T performs di�erent tests with di�erent probabilities, then the number of edges

between (i, j) ∈ [n]2 in the multiset E (GT ), and the number of occurrences of the

pair (i, a) ∈ [n] × F in the multiset S (GT ), are proportional to the probability of the

corresponding tests being carried out.

Note that GT fully characterizes the behavior of T , as T can be thought of as

operating as follows: Randomly select a constraint from cons (GT ). Query the necessary

coordinates of v, and accept if v satis�es the chosen constraint.

3 Proof of Main Theorem

In this section we prove our main result, Theorem 2. We assume to be given a(
1
10
, ε, 1− 3ε

)
-a�ne LTC C ⊆ Fn, where ε ∈

[
0, 1

3

)
is a real number, F is a �nite �eld,

and n ∈ N is a natural number. We denote by T an (ε, 1− 3ε)-a�ne local tester T

for C. For simplicity of notations, we denote p = |F|. Our goal is to show that |C| ≤ p.

In order to prove Theorem 2, we show the following two lemmas. The lemmas use

following de�nitions. Let G = (H = (V,E) ,F, A, S) and G′ = (H ′ = (V ′, E ′) ,F, A′, S ′)
be a pair of ACGs. We say that G′ is a subgraph of G if V ′ ⊆ V , E ′ ⊆ E ∩ (V ′)2, A′
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is the restriction of A to E ′, and S ′ ⊆ S ∩ (V ′ × F). If, in addition, V = V ′ then G′ is

called an edges subgraph of G.

LetG = (H = (V,E) ,F, A, S) be an ACG, and let U ⊆ V be a connected component

of G. We denote by GU the subgraph of G induced by U . That is, the vertex set of GU

is U , the edge set is E ∩ U2, the mapping of edges to a�ne functions is the restriction

of A to E∩U2, and the unitary constraint set is S∩ (U × F). We call U un�xed if there

are at least two di�erent words in FU that satisfy GU . Otherwise, U is called �xed.

The following lemma shows that any un�xed connected component of a subgraph

of GT is satis�ed by p di�erent words (rather than only two).

Lemma 3. Let G be a subgraph of GT , and let U be an un�xed connected component

of G. Then, there are exactly p words in FU satisfying GU . Furthermore, any two such

words di�er on every coordinate.

Proof. The graph GU induces a system of linear equations over F: Every pair (i, a) ∈
S (GU) induces the equation vi = a. Every edge (i, j) ∈ E (GU) induces the equation

vj = avi + b, where fij (x) = ax + b is the a�ne function that (i, j) is mapped to

by A (GU).

Since U is un�xed, the system is guaranteed to have at least two solutions. There-

fore, the system has at least one free variable. This variable can be set to any of the p

�eld elements, and still allow a solution.

Since U is a connected component of G, an assignment to one of the system's

variables, determines the assignment to the rest of the variables. Thus, there are

exactly p solutions to the system, and any two such solutions assign a di�erent value

to each of the variables.

A connected component of an ACG G is called large if it contains more than half of

G's vertices. The following lemma shows that any edges subgraph of GT , that contains

a su�ciently large fraction of GT 's constraints and is satis�ed by at least two codewords,

has a large connected component.

Lemma 4. Let G be an edges subgraph of GT satisfying |cons (G)| ≥ (1− 3ε) |cons (GT )|.
Assume that G is satis�ed by at least two di�erent codewords. Then, G has exactly one

large un�xed connected component.

Proof. We denote by fix (G) the set of all vertices that are contained in �xed connected

components of G. We �rst claim that |fix (G)| < 4
5
n. Assume for contradiction that
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|fix (G)| ≥ 4
5
n. Let u and u′ be two di�erent codewords satisfying G. Since u and u′

must agree on fix (G), it holds that ∆(u, u′) ≤ 1
5
. But this is impossible, as the minimal

distance of the code is 9
10
, and u and u′ are di�erent codewords.

Let U1, ..., Uk be all the un�xed connected components ofG. Observe that
∣∣∣⋃t∈[k] Ut

∣∣∣ =

|[n] \fix (G)| > 1
5
n. Assume for contradiction that none of the components U1, ..., Uk is

large, i.e., |Ut| ≤ 1
2
n for every t ∈ [k]. In this case, there exists a subset K ⊆ [k] such

that W =
⋃

t∈K Ut satis�es
1
5
n < |W | ≤

(
1
5

+ 1
2

)
n = 7

10
n.

For every t ∈ K, the connected component Ut is un�xed. Therefore, using Lemma 3,

there exists a word xt ∈ FUt that satis�es GUt and di�ers from u on every coordinate

of Ut. We construct a new word v ∈ Fn using u as follows: For every i ∈ [n] \W , let

vi = ui. For every t ∈ K and i ∈ Ut, let vi = xt
i. Note that ∆ (u, v) = |W |

n
.

Since v satis�es G, it is accepted by T with probability at least 1− 3ε. Due to T 's

soundness, there exists a codewords w such that ∆ (v, w) < 1
5
. Therefore,

∆ (u,w) ≥ ∆ (u, v)−∆ (v, w) >
1

5
− 1

5
= 0,

implying u 6= w. Since the relative distance of the code is at least 9
10
, and u and w are

di�erent codewords, it must holds that ∆ (u,w) ≥ 9
10
. But,

∆ (u,w) ≤ ∆ (u, v) + ∆ (v, w) <
7

10
+

1

5
=

9

10
,

a contradiction. We conclude that one of the un�xed connected components U1, ..., Uk

is large.

Let G be an ACG, and let v be a word. We denote by G (v) the edges subgraph

of G containing all edges and unitary constraints of G satis�ed by v. Let G1 and G2 be

a pair of subgraphs of G. We denote by G1 ∩G2 the subgraph of G whose vertex set is

V (G1)∩V (G2), edge set is E (G1)∩E (G2), mapping of edges to a�ne functions is the

restriction of A (G) to E (G1) ∩ E (G2), and unitary constraint set is S (G1) ∩ S (G2).

We are now ready to prove our main theorem.

Proof of Theorem 2. Let u and u′ be a pair of di�erent codewords, and let G =

G (u)∩G (u′). Due to T 's completeness, it holds that |cons (G)| ≥ (1− 2ε) |cons (GT )|.
Let U be the large un�xed connected component of G promised by Lemma 4. Using

Lemma 3, there exist p words x1, ..., xp ∈ FU that di�er on every coordinate and sat-

isfy GU . We construct p di�erent words v1, ..., vp ∈ Fn. For t ∈ [p], the word vt is
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constructed as follows: For every i ∈ [n] \U , let vt
i = ui. For every i ∈ U , let vt

i = xt
i.

For every t ∈ [p], the word vt is accepted by T with probability at least 1− 2ε, as vt

satis�es G. Let ut be the codeword satisfying ∆ (vt, ut) < 1
5
promised by T 's soundness.

Let w be a codeword. We next show that there exits t ∈ [p] such that w = ut and

conclude |C| ≤ p.

Consider G′ = G ∩ G (w). Due to T 's completeness, it holds that |cons (G′)| ≥
(1− 3ε) |cons (GT )|. Let U ′ be the large un�xed connected component of G′ promised

by Lemma 4. Note that U ∩ U ′ 6= φ, as both U,U ′ ⊆ [n] and each contains more

than 1
2
n vertices. Let i ∈ U ∩ U ′. For t 6= r ∈ [p], it holds that vt

i 6= vr
i , as x

t
i 6= xr

i .

Therefore, the set {v1
i , ..., v

p
i } contains p di�erent values. Speci�cally, there exists t ∈ [p]

such that wi = vt
i . Recall that U

′ is a connected component of G′, and that w and vt

both satisfy G′. Therefore, w and vt must agree on every coordinate of U ′, implying

∆ (w, vt) < 1
2
. It holds that

∆(w, ut) ≤ ∆
(
w, vt

)
+ ∆

(
vt, ut

)
<

1

2
+

1

5
<

9

10
.

Since the relative distance of the code is at least 9
10
, and both w and ut are codewords,

it must be the case that w = ut.

Remark. We note that the a�neness property of T was only used in the proof of

Lemma 3. Therefore, a more general version of Theorem 2, requiring the tester to

satisfy the claim of Lemma 3 instead of the a�neness property, holds.
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