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Abstract

We prove new results regarding the complexity of various complexity classes under random-
ized oracle reductions. We first prove that BPPPrSZK ⊆ AM ∩ coAM, where PrSZK is
the class of promise problems having statistical zero knowledge proofs. This strengthens the
previously known facts that PrSZK is closed under NC1 truth-table reductions (Sahai and
Vadhan, J. ACM ’03) and that PPrSZK ⊆ AM ∩ coAM (Vadhan, personal communication).
Our results imply that for most cryptographically interesting lattice problems, there is a sharp
threshold for the approximation factor below which we do not know if the problems are even in
AM, while above which the problems are in AM ∩ coAM not only via Karp reductions but
also via randomized oracle reductions.

Then we investigate the power of randomized oracle reductions with relation to the notion
of instance checking (Blum and Kannan, J. ACM ’95). We observe that a theorem of Beigel
implies that if any problem in TFNP such as Nash equilibrium is NP-hard under randomized
oracle reductions, then SAT is checkable.

We also observe that Beigel’s theorem can be extended to an average-case setting by relating
checking to the notion of program testing (Blum et al., JCSS ’93). From this, we derive that if
one-way functions can be based on NP-hardness via a randomized oracle reduction, then SAT

is checkable. By showing that NP has a non-uniform tester, we also show that worst-case to
average-case randomized oracle reduction for any relation (or language) R ∈ NP implies that
R has a non-uniform instance checker. These results hold even for adaptive randomized oracle
reductions.
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1 Introduction

In this paper we study various complexity classes under randomized oracle (i.e., Cook) reductions.
Such a reduction is an efficient randomized algorithm with access to an oracle, and the algorithm is
allowed to ask the oracle multiple questions, even adaptively (using the oracle’s answers to generate
new questions). The closure of a complexity class C under randomized oracle reductions, denoted
BPPC , is the class of languages (or, more generally, promise problems) that are decidable using
efficient randomized algorithms with access to an oracle solving a problem in C.

The closure of many complexity classes under randomized oracle reductions is poorly under-
stood. For example, the following questions remain completely open (i.e., resolving them in either
direction would be consistent with standard conjectures about complexity classes, such as P 6= NP):

1. Let PrSZK denote the class of promise problems having statistical zero knowledge proofs.
How big is the class BPPPrSZK? For example, does it contain NP-complete languages like
SAT?

2. Is it possible to use an algorithm computing Nash equilibrium to solve SAT?

3. Is it possible to base one-way functions on NP-hardness?

4. Is it possible to prove that P 6= NP implies the existence of a hard-on-average problem in
NP?

In this paper, we make the following progress on these questions:

1. BPPPrSZK ⊆ AM ∩ coAM. Therefore, SAT /∈ BPPPrSZK unless PH = Σ2 [11].

2. If SAT ∈ BPPTFNP, then SAT has an instance checker. (Recall that computing Nash
equilibrium is in TFNP [38]).

3. If there is a black-box reduction basing one-way functions on NP-hardness, then SAT has
an instance checker.

4. If there is a black-box worst-case to average-case reduction for any relation (or language)
R ∈ NP, then R has a non-uniform instance checker.

Our result about PrSZK improves on the previously known facts that PrSZK is closed under
NC1 truth-table reductions [43] and that PPrSZK ⊆ AM ∩ coAM [45] (where PPrSZK denotes
the closure of PrSZK under deterministic oracle reductions, see Theorem A.1).

Regarding our other results, we use the notion of instance checking (also known as program
checking or checkability) as defined by Blum and Kannan [7]. Intuitively a problem Π is checkable
if there is an efficient randomized algorithm C that uses any program P that purportedly solves Π,
such that for every instance x, CP either decides x correctly or outputs “I don’t know” (with very
high probability).

One of the open questions posed by Blum and Kannan [7] was whether SAT has an instance
checker. This question has remained open for twenty years, and our results imply that, in order
to build a reduction that solves SAT using a TFNP oracle or using an inverting oracle for a
one-way function, one would along the way come up with an instance checker for SAT. Although
there is no widely held belief about whether or not SAT is checkable, nevertheless given that this
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problem has remained unresolved for over twenty years our theorems can be viewed as evidence
that solving SAT using a TFNP oracle or using an inverting oracle will be “hard to prove” via
standard techniques. We credit Holenstein [29] with the observation that connecting the hardness
of various problems to the checkability of SAT is a meaningful statement.

1.1 Difficulties dealing with randomized oracle reductions

We first illustrate the difficulties of understanding randomized oracle reductions. Let AM∩coAM

denote the class of promise problems Π such that both Π and Π have AM proof systems. Suppose
we try to prove that BPPAM∩coAM ⊆ AM ∩ coAM. (Actually this claim is false unless NP ⊆
coAM, but we discuss it anyway as it illustrates well the issues involved.)1 Since BPPAM∩coAM

is closed under complement, it suffices to prove the statement that for every Π ∈ BPPAM∩coAM,
Π is also contained in AM.

The natural strategy: For every Π ∈ BPPAM∩coAM, Π is decidable by an efficient oracle
algorithm A with access to an oracle solving some Π′ ∈ AM ∩ coAM. To prove Π ∈ AM the
natural idea is to construct an AM protocol for Π where on input z, the prover and verifier do the
following:

1. The verifier samples random coins ω for A and sends these to the prover.

2. The prover uses ω to emulate the execution of A. The prover answers any oracle queries “x ∈
Π′?” that the reduction asks. Since Π′ is a promise problem, the prover is allowed to respond
“x does not satisfy the promise”. The prover then sends back these oracle queries/answers
back to the verifier.

3. The verifier checks that, using ω and the oracle answers claimed by the prover, the execution
of A is correct.

4. Since Π′ ∈ AM∩coAM, this means both Π′ = (Π′Y ,Π′N ) and its complement Π′ = (Π′N ,Π′Y )
have AM proofs. Therefore, for every query x satisfying the promise, the verifier asks the
prover for proofs that x ∈ Π′Y or x ∈ Π′N , depending on what the prover claimed previously.

5. If all the checks pass, the verifier outputs whatever A outputs, otherwise the verifier rejects.

One could then hopefully use the correctness of the reduction A to prove completeness and
soundness of this protocol. However to prove the soundness of such a protocol one must ensure
that a cheating prover cannot trick the verifier into accepting NO instances. This is problematic
for the following two reasons:

1. Prover can falsely claim that a query does not satisfy the promise. Since the prover
can respond “x does not satisfy the promise”, and since the verifier cannot check whether or
not x satisfies the promise, the cheating prover may possibly respond “x does not satisfy the
promise” even on queries x that do satisfy the promise.

1The claim is false because Even et al. [14] observed that there is even a deterministic oracle reduction A that can
decide SAT using only an oracle which decides a promise problem in NP ∩ co-NP ⊆ AM ∩ coAM. This implies
that NP ⊆ BPP

AM∩coAM. This claim is false precisely because of the issues discussed above.
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2. Prover can generate responses depending on A’s random coins. There may be
queries x /∈ Π′Y ∪ Π′N such that the prover is able to falsely claim both x ∈ Π′Y and x ∈ Π′N
without being caught. Namely, when the verifier runs the AM proof to verify that x ∈ Π′Y
or y ∈ Π′N , the prover is able to make the verifier accept in both cases. In this case, the
prover may choose to claim that x is a YES or NO instance depending on the random coins
of A. But this means that we cannot use the correctness of the reduction A to argue that
the verifier obtains the correct answer, because the correctness of A only holds with respect
to oracles whose responses are independent of A’s random coins.

Our results overcome these difficulties in two ways. For PrSZK we use additional structure
of PrSZK to force the prover first never to answer “x does not satisfy the promise”, and second
to answer in a way that is independent of A’s random coins. Our results for checkability aim for
the more modest goal of constructing an instance checker for Π, which turns out to be easier than
constructing an AM protocol for Π.

1.2 Complexity of real-valued functions verifiable in AM

Our first main theorem (which will imply our result about PrSZK as a corollary) studies the
power of randomized oracle reductions that use oracle access to a class of real-valued functions that
we call R-TUAM (denoting “real-valued total unique AM”, see Definition 2.5). To understand
R-TUAM, we begin by discussing the well-known class TFNP [32]. The class TFNP is the
following class of search problems: given input x, find y such that (x, y) satisfy a relation R, with
the condition that R is efficiently decidable and R is total, namely for every x, there exists y such
that (x, y) ∈ R.

TFAM is a natural relaxation of TFNP. We still require that R is total, but now we allow
R also to be just verifiable in AM (and not necessarily decidable in P). For functions where in
addition y ∈ R and y is unique up to some small error, we say that the function is in R-TUAM

(see Definition 3.1).
Although to the best of our knowledge this class of functions is not well-studied, many natural

problems can be decided given a R-TUAM oracle. For example, consider the problem of Entropy
Difference ED, which is complete for the class PrSZK [23]. An instance of this problem is a
pair of circuits (X1,X2) that we think of as samplers: the distribution sampled by the circuit
X : {0, 1}m 7→ {0, 1}n is given by the output distribution X1(Um) on uniform input bits. We write
H(X) to denote the Shannon entropy of the distribution sampled by X. A YES instance of ED

satisfies H(X1) ≥ H(X2) + 1, while a NO instance satisfies H(X2) ≥ H(X1) + 1. It is clear that
being able to approximate the function f(X1,X2) = H(X1) − H(X2) is sufficient to decide ED.
It turns out that the entropy of distributions sampled by circuits can be verified using an AM

protocol [17, 1] (see Lemma 3.4) and therefore this function f is in the class R-TUAM.
Our main theorem about R-TUAM is the following:

Theorem 1.1. BPPR-TUAM ⊆ AM ∩ coAM.

Application to PrSZK. Theorem 1.1 and the above discussion showing that the PrSZK-
complete problem ED can be decided using an R-TUAM oracle imply the following.

Corollary 1.2. BPPPrSZK ⊆ AM ∩ coAM.
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Problem Problem is NP-hard Problem in PrSZK via
Karp reduction

GapSVPγ γ any constant [31] γ ≥
√

n/ log n [21]

GapCVPγ γ = n1/ log log n [13] γ ≥
√

n/ log n [21]

GapSIVPγ γ any constant [6] γ ≥ ω(
√

n log n) [41]

Table 1: Hardness of various lattice problems

Proof technique: Theorem 1.1 is proven using the strategy of Section 1.1. A R-TUAM function
is total so the prover can never respond that a query does not satisfy the promise. To prevent the
prover from answering in a way that depends on the random coins chosen by the verifier to emulate
the BPPR-TUAM algorithm, the verifier adds some additional noise to the prover’s responses to
make them “independent” of the random coins.

Application to basing cryptography on lattice problems: much exciting recent work in
cryptography is based on the hardness of various lattice problems [19, 42, 40]. The problems most
often studied are GapSVPγ , GapCVPγ , and GapSIVPγ , where γ = γ(n) is an approximation factor.
We refer the reader to [33], for example, for precise definitions of these problems.

Here, we simply note that the hardness of these problems depends critically on the value of γ.
This is illustrated in Table 1.

Understanding the hardness of these problems is partly motivated by the goal of basing cryp-
tography on NP-hardness. Namely, one might hope to show that there is some function γ such
that say GapSVPγ is NP-hard, and furthermore that we can construct a one-way function based
on the hardness of GapSVPγ . This would be a great breakthrough in cryptography, since all known
cryptosystems are based on much stronger assumptions than NP-hardness.

[21] proved negative evidence suggesting that this goal is unattainable. They observed that
all known constructions of one-way functions from GapSVPγ require γ(n) >

√

n/ log n. [21] then
showed that it is unlikely to prove that GapSVPγ is NP-hard under Karp reductions because since
GapSVPγ ∈ PrSZK, this would imply NP ⊆ PrSZK ⊆ coAM (which is conjectured to be
false since it would imply that PH = Σ2 [11]). However, [21] does not preclude the possibility of
proving that GapSVPγ is NP-hard under randomized reductions. [21, 41] provide similar evidence
for GapCVPγ and GapSIVPγ .

Our result strengthens the negative evidence to also rule out the use of randomized reductions:
notice that saying that GapSVPγ is NP-hard under randomized oracle reductions is equivalent to

saying that NP ∈ BPPGapSVPγ . Since GapSVPγ ∈ PrSZK for γ ≥
√

n/ log n, our Corollary 1.2 im-

plies that proving GapSVPγ is NP-hard under randomized oracle reductions for any γ ≥
√

n/ log n

would imply that NP ⊆ coAM, and is therefore unlikely. On the other hand, for γ(n) <
√

n/ log n,
it is unknown whether GapSVPγ ∈ coAM even if we are considering only Karp reductions.

1.3 Randomized oracle reductions, checkability, and testability

Although we are able to overcome the difficulties discussed in Section 1.1 to prove Theorem 1.1 for
the case of R-TUAM, we do not know how to bypass both difficulties in general. In the following,
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we will instead assume that the cheating prover is a static, fixed (but possibly faulty) oracle. This
by definition prevents the prover from responding in a way that depends on the random coins the
verifier sends, and in the settings we study the prover does not benefit by answering “x does not
satisfy the promise”. The interesting point is that even achieving soundness only against such a
severely restricted static prover will imply that the language is “checkable”.

Checkability was defined by Blum and Kannan [7] and intuitively guarantees the following: C
is an instance checker for a problem Π if, when C is given an instance x and a program P , if P
decides Π correctly (for all inputs, not just x), then C(P, x) outputs the correct answer for x with
high probability, while if P decides x incorrectly then with high probability C(P, x) either outputs
“error” or finds the correct answer despite the incorrectness of P (x). Most instance checkers C
require only oracle access to P and not the code of P .

It was already observed by Blum and Kannan [7] that Π is checkable (with C using only oracle
access to P ) if and only if Π and Π have interactive proofs where the prover answers only queries
of the form “x ∈ Π?” and soundness is only required to hold against static cheating provers of the
kind described above.

1.3.1 An application of Beigel’s theorem

Theorem 1.3 (Beigel, as cited in [7]). Suppose Π is decidable by a randomized reduction A with
oracle access to Π′, and conversely Π′ is decidable by a randomized reduction A′ with oracle access
to Π. Then Π is checkable if and only if Π′ is checkable.

By definition TFNP relations are checkable: given an oracle O, check that (x,O(x)) ∈ R
indeed holds. Because the relation is total, O(x) can never claim that no solution exists.

TFNP contains important problems such as Nash equilibrium [38]. Megiddo and Papadimitriou
[32] observed that PTFNP ⊆ NP ∩ co-NP and therefore no TFNP oracle can be used to decide
SAT under deterministic oracle reductions unless NP = co-NP. Consequently, it is unlikely that
problems such as finding Nash equilibrium are NP-hard under deterministic oracle reductions.
Since TFNP is trivially reducible to NP, as a corollary of Theorem 1.3 we observe the following
about the hardness of TFNP:

Corollary 1.4. If SAT ∈ BPPTFNP, then SAT is checkable.

As discussed above, one consequence is that if finding Nash equilibrium can be used to solve
SAT via a randomized oracle reduction, then SAT is checkable. Corollary 1.4 can be interpreted
as an incomparable version of the theorem of Megiddo and Papadimitriou [32], where our version
handles randomized reductions but arrives at a different (weaker) conclusion.

1.3.2 Extending Beigel’s theorem to testability

So far we have considered worst-case to worst-case reductions, but equally interesting are worst-case
to average-case randomized oracle reductions. Such a reduction is an efficient oracle algorithm A
that is guaranteed to decide Π correctly (on all inputs) given oracle access to O that decides Π′ on
average over an input distribution D, namely when Prx←D[O(x) 6= Π(x)] ≤ 1/poly(n).

A notion of checkability for average-case problems also exists which following Blum et al. [9]
is called testability. We say that C is a tester for Π′ with respect to the input distribution D if
the following holds: whenever C is given a program P that correctly decides all x then C must
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also decide all x. If C is given access to P such that Prx←D[P (x) 6= Π(x)] ≥ δ for some error
parameter δ, then C outputs “error” with high probability. This can even be extended to a notion
of testability for search problems; see Definition 2.7 for a formal definition. We remark that we
allow C to run in time depending on the input length, while the related notion of property testing
[9, 24] typically considers testing algorithms that run in time depending only on 1/δ. Also, typically
C will only use oracle access to P .

Our first observation is that Beigel’s theorem can be extended to encompass testability:

Theorem 1.5 (Extended Beigel’s theorem, informal). Suppose Π is decidable by a worst-case to
average-case randomized reduction A with oracle access to Π′, and conversely Π′ is decidable by a
(worst-case to worst-case) randomized reduction A′ with oracle access to Π. Then if Π′ is testable,
then both Π and Π′ are checkable.

Application to basing one-way functions on NP-hardness. One of the main goals of theo-
retical cryptography is to base the existence of cryptographic primitives on reasonable assumptions.
P 6= NP is a minimal assumption, and it would be ideal if one could construct one-way functions
from this assumption. Such a result might be proved by giving an efficient reduction A that uses an
oracle O that inverts a (candidate) one-way function in order to decide SAT. However, it has been
shown in a series of works [15, 10, 3, 39] that such a hope is most likely false if A is non-adaptive,
since it would imply that NP ⊆ coAM.

We know less about whether or not one can base one-way functions on NP-hardness via an
adaptive reduction. There are certain cryptographic [27, 2, 34] and complexity-theoretic [16, 28, 5]
settings where adaptivity in the reduction buys more power, and so it is important to understand
whether adaptive reductions basing one-way functions on NP-hardness are possible. Brassard
[12] showed that one-way permutations cannot be based on NP-hardness unless NP ⊆ coAM.
Pass [39] showed that if (general) one-way functions can be based on NP-hardness, then certain
witness-hiding protocols do not exist. However Haitner et al. [26] showed that it is unlikely that
known witness-hiding protocols are of the type studied by [39]. More recently, Haitner et al. [25]
study the case of stronger primitives such as collision-resistant hash functions and constant-round
statistically hiding commitments that can be broken by recursive collision finders. Their result for
arbitrarily adaptive reductions states that if such primitives, say collision-resistant hash functions,
can be based on NP-hardness, then there exists an interactive proof system for UNSAT where the
honest prover strategy can be implemented in BPPNP. Using the characterization of checkability
in terms of interactive proofs given in [7], this then implies that SAT is checkable. However we
note that their technique applies only to primitives such as collision-resistant hash functions, and
does not extend to one-way functions.

Here we show using different techniques that an adaptive reduction that bases the existence of
a one-way function on the hardness of SAT would imply that SAT is checkable. The observation
is that a one-way function is testable (for a suitable notion of testability for search problems), and
therefore we can apply Theorem 1.5.

Corollary 1.6 (Joint with Thomas Holenstein). If there is a randomized oracle reduction that uses
an oracle O which inverts a one-way function in order to decide SAT, then SAT is checkable.

We note that the proof that was joint with Holenstein was direct and did not go through the
formalism of testability developed here.
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Application to basing hardness of learning on NP-hardness. It was shown in [4] that if there
exists a reduction uses a PAC learning algorithm to decide SAT (in other words, it bases the
hardness of PAC learning on NP-hardness), then there also exists a reduction that uses an algorithm
that inverts auxiliary-input one-way functions [37] into an algorithm that solves SAT. In the same
way that inverting a one-way function is testable, so is inverting auxiliary-input one-way functions.
Therefore, using Theorem 1.5, we can deduce the following:

Corollary 1.7. If there is a randomized oracle reduction that uses an oracle solving the PAC
learning problem in order to decide SAT, then SAT is checkable.

Application to worst-case to average-case reductions for SAT Bogdanov and Trevisan
[10] prove that non-adaptive worst-case to average-case randomized reductions for NP imply that
NP ⊆ co-NP/poly. The latter implies that PH = Σ3 which is considered implausible. We will
consider the same problem but allow adaptive reductions. Using a technique of [15] we observe
that:

Theorem 1.8. Every language L ∈NP is testable by a non-uniform tester.

Theorem 4.3 states this formally. Combined with Theorem 1.5 this will imply the following.

Corollary 1.9 (Informal). Suppose there is a (possibly adaptive) worst-case to average-case oracle
reduction for the relation R ∈ NP (where R is not necessarily NP-complete). Namely the reduction
uses an oracle O solving R on average in order to decide R on all inputs (with high probability).
Then R has a non-uniform instance checker.

As pointed to us by one of the anonymous reviewers, the original Nisan’s proof to show that
Permanent has a two-prover proof system can be used to eliminate the needed advice in Corollary
1.9 for R = SAT if the worst-case to average-case reduction for R is of a special form. Namely if
the language R is downward self-reducible (which is the case for SAT) and also has a worst-case
to average-case reduction where the reduction never asks queries y of length |y| > n, then R has a
uniform instance checker (see Observation 4.6.)

1.4 Randomized vs. deterministic oracle reductions

As already noted throughout the introduction, if we restrict our attention to deterministic oracle
reductions then all of the results we prove are already known (and indeed in most cases stronger
conclusions hold). We remark that, although it is commonly conjectured that P = BPP [47, 8, 35,
30], the techniques used to prove derandomization under commonly held hardness assumptions do
not necessarily say that for some oracle O, it holds that PO = BPPO. Indeed, there are examples
of O where PO 6= BPPO. Thus one cannot apply the general derandomization theorems above to
the previously known results about, say, PPrSZK and PTFNP to derive our results. We will argue
directly about BPPPrSZK, BPPTFNP, etc. without relying on derandomization assumptions.

2 Preliminaries

For a random variable X, by x ← X we mean that x is sampled according to the distribution of
X. For a set S, by US we mean the random variable with uniform distribution over S. For a set
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S, by x
R← S we mean x ← US. By Un we mean the random variable uniformly distributed over

{0, 1}n. For α ∈ R, by [±α] we mean the interval [−α,+α].
As is standard convention, when we say an event occurs with negligible probability we mean it

occurs with probability n−ω(1) = neg(n) and we say that it occurs with overwhelming probability
if it occurs with probability 1− neg(n). Here, n is the input length. We call an algorithm efficient
if it runs in time poly(n).

We assume that the reader is familiar with the idea of promise problems [14] as well as the
standard complexity classes BPP,NP,PH,SZK,AM, etc., which we take to be classes of promise
problems (and not just languages). We will write simply SZK rather than PrSZK from now on
with this understanding.

For every promise problem Π = (ΠY ,ΠN ) we write Π(x) = 1 if x ∈ ΠY and Π(x) = 0 if x ∈ ΠN .
A language L is simply a promise problem (L,L), where L is the complement of L.

To extend promise decision problems to search problems, we work with promise relations.

Definition 2.1 (Promise relations). Let R = (RY , RN ) where RY ⊆ {0, 1}∗ × {0, 1}∗ and RN ⊆
{0, 1}∗ × {0, 1}∗ such that RY ∩ RN = ∅. We call R a promise relation and sometimes write for
shorthand (x, y) ∈ R to mean (x, y) ∈ RY . We say R is a standard relation if RY = RN .

For any promise relation R = (RY , RN ), define R(x) = {y | (x, y) ∈ RY }. A relation R is total
if for every x, R(x) 6= ∅. Note that the decision problem for total relations is trivial, but the search
problem may still be hard.

In the following, we will consider ∅ to also denote a special symbol signifying the empty set, so
that search algorithms are allowed to output ∅ to mean that the algorithm cannot find a solution.
We will also abuse notation slightly and allow A(x) ∈ R(x) to be a true statement if R(x) is empty
and A(x) outputs the special symbol “∅”.

We say an algorithm A solves the language L (resp. the relation R) if for all x, it holds that
A(x) = L(x) (resp. A(x) ∈ R(x)). If the algorithm A is randomized, the latter should hold with
overwhelming probability (for all x’s).

Relations in NP and AM

Definition 2.2 (NP Relation). A standard relation R ⊆ {0, 1}∗ ×{0, 1}∗ is an NP relation if the
set R is accepted by an efficient algorithm, and for all (x, y) ∈ R, |y| ≤ poly(|x|).

Definition 2.3 (TFNP). A standard relation R ⊆ {0, 1}∗ × {0, 1}∗ is in the class TFNP if R is
an NP relation and R is total.

Definition 2.4 (AM relations). For a promise relation R = (RY , RN ), define the promise problem
MR = {MR

Y ,MR
N} where MR

Y = {(x, y) | (x, y) ∈ RY } and MR
N = {(x, y) | (x, y) ∈ RN}. R is an

AM relation if MR ∈ AM, and also ∀(x, y) ∈ RY it holds that |y| ≤ poly(|x|).

Definition 2.5 (TFAM). A promise relation R = (RY , RN ) is in TFAM if R is a total relation
and also an AM relation.

Since our definition is for promise problems, instances (x, y) /∈ RY ∪RN can behave arbitrarily.
It follows immediately from the definitions that TFNP ⊆ TFAM.
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When are AM relations interesting? In contrast to NP, not every AM decision problem
has an interesting search version. This is because an AM decision problem might not have well-
defined witnesses. For example, consider the standard Graph Non-Isomorphism (GNI) protocol,
where given (G1, G2) the verifier picks random bit b and sends a random permutation of Gb to the
prover, who must then respond with b. There is no fixed “witness” of the non-isomorphism, so the
natural AM relation of Graph Non-Isomorphism is trivial, ((G1, G2), y) ∈ RGNI iff (G1, G2) ∈ GNI,
and the value y is ignored. On the other hand, some interesting problems not known to be in NP

(such as Entropy Difference ED) do have interesting witnesses that are only known to be verifiable
using randomized protocols and not deterministically (see Section 3).

Checkability

Definition 2.6 (Checkability). A relation R is checkable if there exists an efficient randomized
oracle algorithm A such that for all oracles O, the following holds.

• Completeness: Suppose for all x it holds that O(x) ∈ R(x). Then for all x, AO(x) ∈ R(x)
with overwhelming probability.

• Soundness: For any x such that O(x) /∈ R(x), AO(x) with overwhelming probability either
outputs some y ∈ R(x) or outputs a special error symbol ⊥, which indicates O(x) may be
wrong.

This definition coincides with the definition of [7] for checkability of promise problems Π if one
considers the relation (x, y) ∈ R iff Π(x) = y, where y ∈ {0, 1}.

It is known [7, 18] that for any k ≥ 2 and any language L, L is checkable if and only if both L
and L have an interactive proof system with k provers where the provers are asked only L queries.

An average case notion of checkability was defined by Blum et al. [9], which they called “program
testing”. (In the following we keep the convention that Dn is a distribution over {0, 1}n.)

Definition 2.7 (Testability). A relation R is δ-testable over the ensemble of distributions D =
{Dn} if there exists an efficient randomized oracle algorithm A such that for all oracles O the
following holds.

• Completeness: If O(x) ∈ R(x) for all x, then AO(1n) accepts with overwhelming probability.

• Soundness: If Prx←Dn [O(x) 6∈ R(x)] > δ, then AO(1n) outputs ⊥ with overwhelming proba-
bility, indicating that O may not (1− δ)-solve R.

As with checkability, the definition of program testing for decision problems Π follows immedi-
ately by considering the relation (x, y) ∈ R iff Π(x) = y.

Worst-case to average-case reductions

Let Dn be a distribution over {0, 1}n. We say that the ensemble of distributions D = {Dn} is
samplable if there is an efficient randomized algorithm S which the output of S(1n) is distributed
according to Dn. For ρ = ρ(n), we say that an oracle O ρ-solves the relation R over D if for every
n it holds that Prx←Dn [O(x) ∈ R(x)] ≥ ρ.
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Definition 2.8 (Worst-case to average-case reductions.). Let ρ = ρ(n), and let D be an ensemble
of distributions. We say that the relation R reduces to ρ-solving the relation R′ over D if there
is an efficient randomized oracle algorithm A such that Pr[AO(x) ∈ R(x)] = 1 − neg(n) for every
x ∈ {0, 1}n whenever O ρ-solves the relation R′ over D.

Definition 2.9 (Worst-case to average-inverting reductions). Let f = {fn : {0, 1}n → {0, 1}n} be a
family of functions. We say that the relation R reduces to ρ-inverting f if R reduces to ρ-solving the
relation Rf over the ensemble of distributions Df where Rf = {(y, x) : f(x) = y} and Df

n = f(Un).

Note that in both Definitions 2.8 and 2.9, the reduction is allowed to ask oracle queries y of
larger length |y| = poly(|x|) where x is the input to the reduction.

3 Real-valued Total Functions

3.1 Definitions and Preliminaries

We begin by defining the class of relations R-TUAM, which intuitively captures functions f :
{0, 1}∗ → R such that given (x, y), it is possible to verify using an AM protocol that |y − f(x)| is
small.

Definition 3.1 (R-TUAM). A function f : {0, 1}∗ → R is in R-TUAM (denoting “real-valued
total unique AM”) if for every ε ≥ 1/poly(n), the following relation R = (RY , RN ) is in AM:

1. RY = {(x, f(x)) | x ∈ {0, 1}∗}

2. RN = {(x, y) | x ∈ {0, 1}∗, y ∈ R s.t. |y − f(x)| > ε}

We let BPPR-TUAM denote the class of promise problems that are decidable by a randomized
oracle algorithm given oracle access to a real-valued function whose output is verifiable in AM,
formalized as follows.

Definition 3.2 (BPPR-TUAM). Π ∈ BPPR-TUAM if there exists an f ∈ R-TUAM, an oracle
algorithm A, and an ε(n) = 1/poly(n) such that for all oracles O satisfying ∀x, |f(x) − O(x)| ≤
ε(|x|), it holds for all z ∈ ΠY ∪ ΠN that AO(z) = Π(z) with overwhelming probability over the
random coins of A.

Our main interest in studying R-TUAM is its relationship to SZK. We will characterize
SZK by its complete problem: Entropy Difference ED. See e.g., [46] for an introduction and other
definitions of SZK.

Definition 3.3 (SZK and ED, [23]). A promise problem Π is in SZK if and only if it is Karp-
reducible to the following promise problem ED = (EDY ,EDN ). Instances of ED are pairs of circuits
(X1,X2) where each circuit X : {0, 1}m 7→ {0, 1}n is identified by its output distribution X(Um).
Let H(X) = H(X(Um)) denote the Shannon entropy of X(Um). Then:

1. (X1,X2) ∈ EDY iff H(X1) ≥ H(X2) + 1.

2. (X1,X2) ∈ EDN iff H(X2) ≥ H(X1) + 1.

We first recall that the entropy can be estimated using an AM protocol, whose proof we give
in the appendix.
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Lemma 3.4 ([17, 1, 22]). For every ε > 1/poly(n), there is an AM protocol that on input (X, y)
accepts if H(X) = y and rejects if |H(X) − y| > ε.

Proposition 3.5. BPPSZK ⊆ BPPR-TUAM

Proof. We show how to implement an ED oracle using a R-TUAM oracle for any ε < 1. Consider
the function f(X1,X2) = H(X1)−H(X2). This function is in R-TUAM because by Lemma 3.4
the entropy of a circuit can be approximated using an AM protocol.

We claim that given any oracle O that solves (the search problem of) the relation R with up
to ε error, one can decide ED: given (X1,X2), query (X1,X2) from O to get y = O(X1,X2) and
accept iff y > 0. Since we are guaranteed that |(H(X1)−H(X2)) − y| ≤ ε, it therefore holds that
if H(X1) > H(X2) + 1 then y > 1− ε > 0 and if H(X1) < H(X2)− 1 then y < −1 + ε < 0. �

3.2 Power of R-TUAM

We now prove Theorem 1.1, namely BPPR-TUAM ⊆ AM ∩ coAM.

Proof of Theorem 1.1. Fix any Π ∈ BPPR-TUAM, then by definition there exists f ∈ R-TUAM,
an efficient oracle algorithm A, and a parameter ε ≥ 1/poly(n) satisfying Definition 3.2. We
will follow the natural strategy outlined in Section 1.1, but in order to make it work we need
to overcome the two difficulties outlined there. The first difficulty is overcome simply because
R-TUAM is total, and therefore the prover can never respond that a query x does not satisfy the
promise. To overcome the second difficulty, we will exploit the fact that R-TUAM is a unique
relation. By adding some noise to the prover’s responses, which we can check is close to the unique
true answer using the AM proof for the R-TUAM relation, we will prevent it from making its
answers dependent on the verifier’s random coins. We now explain how this is done.

Define the (randomized) oracle Oε as follows. Oε(x) first chooses a uniformly random αx
R←

[−ε/2,+ε/2] which we call the “randomizer” of the query x and takes y = f(x) + αx. Then Oε(x)
will round y and output ⌊y⌉ε where ⌊y⌉ε denotes the integer multiple of ε that is closest to y. Note
that it always holds that Oε ∈ [f(x)± ε], and so by the definition of A and Oε, it holds that

Pr
Oε,A

[AOε(z) = Π(z)] ≥ 1− n−ω(1) (1)

for all z ∈ ΠY ∪ ΠN (where Π(z) = 1 if z ∈ ΠY and Π(z) = 0 if z ∈ ΠN ). The reason is that one
can choose and fix the randomness of Oε first and then Inequality 1 holds by the definition of A.
In the following, let p(n) = poly(n) be an upper bound on the number of oracle queries made by A
and let ω denote random coins used to run A. Without loss of generality we assume that A does
not ask any query x more than once. We also write Oε(x) more explicitly as Oε(x, αx) to denote
the value of the randomizer αx used for the answer to the query x.

To prove that Π ∈ AM it suffices to show an AM protocol where either the verifier catches
the prover cheating and rejects or (if the prover is honest) the output of the verifier is statistically
close to the output of AOε . This way the verifier either catches the cheating prover or gets a good
emulation of AOε which she can use to take her final decision and choose to accept or reject.

The intuition. The idea is that the verifier will select random coins ω for the execution of A
along with real numbers α1, . . . , αp(n) drawn uniformly at random from [±ε/2] and send these to
the prover, and the prover will use ω to run A responding oracle queries according to Oε while
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using αi as the randomizer for the i’th query xi. The prover sends back all the f(xi) to the verifier,
who checks for all i ∈ [p(n)] using f(xi) and αi that the responses ⌊f(xi) + αi⌉ε give a consistent
and accepting execution of the reduction. Furthermore, we assumed that f ∈ R-TUAM, so let R
be the corresponding relation guaranteed by Definition 3.1. Since R is an AM relation, we will
also require that the prover give a proof that all f(xi)’s are correct up to some error δ.

Completeness of this strategy is clear because the honest prover can always prove that (x, f(x)) ∈
R, and so each oracle query x is answered with the same distribution as AOε . Soundness follows as
well. The reason is that the only time the prover can bias the value ⌊f(xi)+αi⌉ε is when (f(xi)+αi

mod ε) ≈ ε/2 for some i, i.e., by slightly perturbing f(xi) the prover can cause f(xi) + αi to be
rounded either up or down. But it is easy to see that this bad situation is unlikely, namely for each
query, Prαi

[(f(xi) + αi mod ε) ∈ [ε/2 ± δ]] = 2δ/ε. By taking δ/ε ≪ 1/p(n), where p(n) is the
total number of queries, the verifier gets an emulation of the reduction which is statistically close
to an honest emulation and therefore the soundness of the protocol follows from the definition of
the reduction.

The AM protocol for the problem Π

Protocol 3.6. Common input: instance z.

1. The verifier VA sends a random seed ω that will be used to execute A. VA also sends random
numbers α1, . . . , αp(n)

R← [−ε/2,+ε/2].

2. The prover PA emulates the execution of A using random coins ω, where the prover answers
the i’th oracle query xi with ⌊yi+αi⌉ε. The prover sends back to the verifier the values (xi, yi)
for all i ∈ [p(n)]. (An honest prover sets yi = f(xi).)

3. In parallel for all i ∈ [p(n)], the verifier engages the prover in the AM protocol that f(xi) = yi

with approximation error δ = ε
np(n) . If any of these protocols reject, then the verifier rejects.

4. The verifier checks for i = 1, . . . , p(n) that emulating A with the i’th query xi answered by
⌊yi + αi⌉ε leads to A asking the i + 1’st query xi+1, and so on, and accepts iff A accepts.

Since BPPR-TUAM is closed under complement, proving that the above protocol decides Π
suffices to prove Theorem 1.1.

Completeness. For any z ∈ ΠY and for any query xi, the honest prover computes yi = f(xi)
and uses ⌊yi + αi⌉ε as the response to xi. Therefore the oracle answers are distributed identically
to Oε(xi, αi), and so by Inequality 1 the verifier accepts with overwhelming probability.

Soundness. Fix any z ∈ ΠN , and let P ′ be a possibly cheating prover. For each query xi let
yi be the claim of P ′ for f(xi). If for any i ∈ [p(n)] it holds that |yi − f(xi)| > ε

np(n) , then with
overwhelming probability one of the AM protocols in Step 3 will fail by the soundness condition
of the R-TUAM relation, and so VA will reject.

So let us suppose that the strategy of P ′ is restricted to always claim some yi such that |yi −
f(xi)| ≤ ε

np(n) . Now look at the oracle answer ⌊y1 + α1⌉ε used for the first query x1 in the

emulation of the reduction. If it holds that (f(x1) + α1 mod ε) /∈ [ε/2 ± δ], then for all y1

satisfying |y1 − f(x1)| ≤ δ, it holds that ⌊y1 + α1⌉ε = ⌊f(x1) + α1⌉ε and so in this case the prover
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is unable to control the value of ⌊y1 + α1⌉ε. But since α1 was chosen at random from [±ε/2], it
holds that:

Pr
α1

R
←[±ε/2]

[(f(x1) + α1 mod ε) ∈ [ε/2 ± δ]] = 2δ/ε .

It means that with probability ≥ 1− 2δ/ε over the choice of α1
R← [±ε/2] the prover does not have

any control over the first oracle answer used in the emulation of the reduction. The same argument
holds for the i’th query for any i ∈ [p(n)].

It follows by the union bound that the total statistical distance between the set of query/answer
pairs generated by AOε and the query/answer pairs generated by (P ′, VA) is bounded by at most
2
n . Therefore, the probability that (P ′, VA) accepts is bounded by at most ≤ 2/n + n−ω(1). By
repeating the overall protocol in parallel one can reduce this error to be negligible. �

Theorem 1.1 and Proposition 3.5 yield Corollary 1.2, namely BPPSZK ⊆ AM ∩ coAM.

4 Reductions that Imply Checkability of SAT

We saw in Section 1.3.1 that a result of Beigel as cited in [7] (Theorem 1.3) along with the fact
that TFNP is trivially checkable implies the following theorem (see Definition 2.3 for a formal
definition of TFNP).

Theorem 4.1. For any relation R ∈ TFNP, if SAT can be reduced to (the search problem of) R
through a randomized reduction, then SAT is checkable.

4.1 Extending Beigel’s theorem to testability

We will prove Theorem 4.2 a variant of Theorem 1.3 for the case in which one of the reductions in
the hypothesis has the extra feature of being worst-case to average case (see Definition 2.8). From
this stronger assumption we conclude a stronger consequence as follows.

Theorem 4.2 (Restating Theorem 1.5, formally). Let δ = δ(n), let R and R′ be two relations, and
let D be an ensemble of distributions. Suppose that solving R reduces to (1 − δ)-solving R′ over
D, and also suppose that there is a randomized (worst-case to worst-case) reduction from R′ to R.
Then if R′ is δ-testable over D (resp. non-uniformly), then R and R′ are both checkable (resp.
non-uniformly).

Proof. (of Theorem 4.2) We first prove the theorem for the uniform case when there is no advice.
Let AR be the randomized oracle reduction from solving R to (1− δ)-solving R′ over D and let

ℓ = poly(n) be an upper-bound on the length of the oracle queries of AR. Notice that, in particular,
AR is also a worst-case to worst-case reduction from R to R′. Let AR′ be the randomized (worst-case
to worst-case) reduction from R′ to R. By Theorem 1.3 and the fact that AR is also a worst-case
to worst-case reduction from R to R′, it follows that R is checkable if and only if R′ is checkable.
Therefore in the following it suffices to show that R is checkable.

One can think of O′ = AOR′ as an oracle which hopefully solves the relation R′ correctly. Given
a perfect oracle O for R, by running the reduction AR′ with oracle access to O one can efficiently
simulate the oracle O′ which solves the relation R′. Suppose w.l.o.g. that ℓ = poly(n) is also an
upper-bound on the length of the oracle queries of AR′ .
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Suppose that TR′ is a δ-tester for R′. Given the input x, and having access to the oracle O
(which is supposed to solve R′) the instance checker COR (x) for the relation R does the following.

• For all i ∈ [ℓ(n)], CR runs the δ-tester TR′ over the oracle O′ = AOR′ to make sure that it
decides R′ with probability at least 1− δ over Di for the input length i. COR (x) outputs ⊥ if
TO

′

R′ (1i) outputs ⊥ for any i ∈ [ℓ].

• Otherwise, CR(x) outputs whatever AO
′

R (x) outputs.

The completeness of CR is immediate, because if O is a perfect oracle for R′ then for each query
y, AOR′(y) ∈ R′(y) holds with overwhelming probability. In this case with overwhelming probability
TR′ will accept also and CR will output z ∈ R(x).

The soundness of CR holds by the soundness of TR′ and the definition of AR. Namely either
O′ = AOR′ (1−δ)-solves R′ over Di for i ≤ ℓ(n), or else TR′ outputs ⊥ with overwhelming probability.
In the first case, by the correctness of AR, the checker CR gives a correct output with overwhelming
probability.

For non-uniform testers, it is clear that the above reduction still holds except one needs to
hardwire into CR the advice strings of TR′ for all input lengths i ≤ ℓ(n). �

Theorem 4.3 (Formal statement of Theorem 1.8). Let R be any NP relation, δ = 1/poly(n), and
Dn be any ensemble of samplable distributions. Then R can be δ-tested over Dn given

⌈

log 2
δ

⌉

=
O(log n) bits of advice. In particular the advice for length n inputs can be any sn such that sn ≤
Pry←Dn [R(y) 6= ∅] ≤ sn + δ/2.

The intuition. Suppose that we are given sn ≈ Pry←Dn [R(y) 6= ∅] (the approximate fraction
of YES instances of R over Dn). If we sample enough points y1, . . . , yk ← Dn, then by Chernoff
we anticipate roughly a sn fraction of yi’s to satisfy R(yi) 6= ∅. As the first step the checker for
R simply verifies that sn ≈ |{i | O(yi) 6= ∅}| /k holds. This yet does not mean that with high
probability over y ← Dn, O(y) returns the right answer. But since R is an NP-relation we can
always make sure that if O(y) returns z 6= ∅, then (y, z) ∈ R. By enforcing this extra check over the
solutions zi = O(yi), the oracle O can be wrong only in “one direction”: to return ∅ for a query y
that R(y) 6= ∅. But if O does so significantly, then it will change its bias Pry←Dn [O(y) 6= ∅]≪ sn

and it can be detected. A very similar trick is used in [15, 10, 3]. The difference between our
setting and [15, 10, 3] is that they deal with provers (rather than oracles) that are stateful and
might cheat more intelligently by answering their queries depending on all the queries that they
are asked. That makes the job of [15, 10, 3] potentially harder, but they bypass this difficulty by
putting strong restrictions on the adaptivity of the reduction (which is not the case for our result).
Also [36, 44] use this technique in another setting where the advice sn ≈ Pry←Dn [O(y) 6= ∅] is used
to construct a non-uniform reduction that (1 − 1/poly(n))-solves R over Dn given access to any
oracle that solves R correctly only with probability ≥ 1/2 + n−1/3+ε.

Proof. (of Theorem 4.3) Let O be the oracle that is going to be tested for the relation R. The
tester TOR acts as follows.

1. Let k = n/δ2. For i ∈ [k] sample xi ← Dn.

2. For i ∈ [k], ask xi from O to get yi = O(xi).
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3. If for any i ∈ [k], it holds that yi 6= ∅ but (xi, yi) 6∈ R (which can be checked efficiently), then
output ⊥.

4. If |{i : O(xi)∈R(x)}|
k < sn − δ

6 then output ⊥, otherwise accept.

Completeness. If O(x) ∈ R(x) for all x ∈ {0, 1}n, then TR never outputs ⊥ in Step 3. We
show that the probability of outputting ⊥ in Step 4 is negligible. Let p = Prx←Dn [R(x) 6= ∅] and

p′ = |{i : O(xi)∈R(x)}|
k be the empirical estimate of p. By Chernoff, it holds that Prx1,...,xk

[|p′ − p| >
ε] < 2e−2kε2

. Now since it is guaranteed that sn ≤ p, therefore it holds that

Pr[p′ < sn − δ/6] ≤ Pr[p′ < p− δ/6] ≤ Pr[|p′ − p| > δ/6]

< 2e−2k(δ/6)2 = 2e−n/18 = neg(n).

Soundness. Suppose Prx←Dn [O(x) 6∈ R(x)] ≥ δ. Then either it holds that Prx←Dn [R(x) =
∅ ∧ O(x) 6= ∅] ≥ δ/6 or it holds that Prx←Dn[R(x) 6= ∅ ∧ O(x) 6∈ R(x)] ≥ 5δ/6. We show that in
both cases TR outputs ⊥ with overwhelming probability.

If Prx←Dn[R(x) = ∅∧O(x) 6= ∅] ≥ δ/6 then with probability at least 1−(1−δ/6)k = 1−neg(n)
one of xi’s is sampled such that R(xi) = ∅ and O(xi) 6= ∅. In this case (xi,O(xi)) /∈ R and so TR

outputs ⊥ in Step 3.
On the other hand if Prx←Dn [R(x) 6= ∅ ∧O(x) 6∈ R(x)] ≥ 5δ/6, because p ≤ sn + δ/2 then

Pr
x←Dn

[O(x) ∈ R(x)] ≤ Pr
x←Dn

[R(x) 6= ∅ ∧ O(x) ∈ R(x)] ≤

Pr
x←Dn

[R(x) 6= ∅]− 5δ/6 = p− 5δ/6 ≤ sn + δ/2 − 5δ/6

= sn − δ/3.

So for each i it holds that Prxi←Dn [O(xi) ∈ R(xi)] ≤ sn − δ/3, and thus by Chernoff it holds
that

Pr[p′ ≥ sn − δ/6] = Pr[p′ ≥ (sn − δ/3) + δ/6] < 2e−2k(δ/6)2

= 2e−n/18 = neg(n).

But if p′ < sn − δ/6, then TR outputs ⊥ in Step 4.
�

Worst-case to average-case reductions for NP

For definitions of worst-case to average-case reductions, see Definition 2.8.

Corollary 4.4 (Formal statement of Corollary 1.9). Let R be an NP-relation, let δ = 1/poly(n)
and let D be any efficiently samplable ensemble of distributions. If R reduces to (1 − δ)-solving R
over D, then R has a non-uniform instance checker.

Corollary 4.5 (Formal statement of Corollary 1.6). Let δ = 1/poly(n), and let f be an efficiently
computable family of functions. If SAT reduces to (1 − δ)-inverting f , then SAT is uniformly
checkable.
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Proof. (of Corollaries 4.4 and 4.5) Since SAT is NP complete, there is a (worst-case to worst-case)
randomized reduction from the NP relation R of Theorem 4.3 to the relation SAT. Therefore
Corollary 4.4 follows from Theorem 4.2 and Theorem 4.3 immediately.

Corollary 4.5 also follows from Theorem 4.2 and Theorem 4.3 similarly by using R = SAT and
using the Cook-Levin reduction (to reduce inverting f to solving a SAT instance). But this time
we do not need the advice because of the following. Even though Rf might not be a total relation,
but it still holds that

Pr
y←Df

i

[Rf (y) 6= ∅] = Pr
y←f(Ui)

[y is invertible] = 1.

Thus here we can use the constants si = 1 as the advice for all the query lengths i ≤ poly(n) that
reduction might ask and apply Theorem 4.3, eliminating the need for advice. �

One of the anonymous reviewers indicated to us that for downward self-reducible relations R
(which are not necessarily in NP) the Corollary 4.4 can be improved to get a uniform instance
checker if the worst-case to average case reduction is of a restricted form:

Observation 4.6 (Nisan, observed by anonymous reviewer). Let R be a downward self-reducible
relation, let δ = 1/poly(n) and let D be any efficiently samplable ensemble of distributions. If R
reduces to (1−δ)-solving R over D by oracle reduction A, and if the reduction A never asks queries
of length ℓ(n) > n from its oracle, then R has a uniform instance checker.

For a sketch of the proof of Observation 4.6 see Appendix A.4
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A Omitted Proofs

A.1 AM protocol for entropy

Proof of Lemma 3.4. We give a simple proof for completeness. Recall the following facts. For two
circuits Y1 and Y2 sampling distributions, let their concatenation Y1Y2 be the joint circuit sampling
the product distribution. For all ε > 0, it is possible given any y > 0 to construct in poly(n, 1/ε)
time a circuit Zy such that |H(Zy)− y| < ε/100.

It is known that ED can be reformulated so that the gap between X1 and X2 is ε/2 rather than
1, and still the problem remains complete for SZK, so let us assume this. Since ED ∈ SZK ⊆ AM

[1, 22], therefore given input (X, y), the verifier can run in parallel the AM protocol for ED on
inputs (XZ1, Zy) and (Zy+1,X) and accept iff both executions accept. �

A.2 Proof sketch of Beigel’s Theorem (Theorem 1.3)

Let CΠ be a checker for Π. In order to check Π′, given the input x, the checker algorithm CΠ′ first
runs the reduction A′(x) and for any query like y that A′(x) wants to ask from its R oracle, CΠ′

does the following. CΠ′ runs the checker algorithm CΠ(y) over the “oracle” AO. If it leads to reject,
CΠ rejects as well, but if it did not reject and returned the output z, CΠ′ safely uses the answer z
for the query y and continues running the reduction A′(x). It is easy to see CΠ’s completeness and
soundness of follow from those of CΠ′ and the definition of reductions A and A′.

A.3 Proof sketch of PSZK ⊆ AM ∩ coAM

Theorem A.1 (Vadhan, Theorem 5.4 in [20]). Let Π = (ΠY ,ΠN ) be such that there exist sets
SY , SN satisfying SY ∪ SN = {0, 1}∗, ΠY ⊆ SY , ΠN ⊆ SN , (SY ,ΠN ) ∈ NP, (SN ,ΠY ) ∈ NP.
Then it holds that PΠ ⊆ NP ∩ co-NP.

This result can be proven the following way (this differs from the proof given in [20]). Consider
problems Π that “extend” to a TFNP search problem in the following way: there exist disjoint
SY , SN containing ΠY ,ΠN respectively such that the relation

(x, bw) ∈ R ⇔ (b = 1 ∧ (x,w) ∈ SY ) ∨ (b = 0 ∧ (x,w) ∈ SN )

is in TFNP. This is equivalent to the hypothesis of Theorem A.1, and solving R immediately
implies solving Π. Now combined with the fact that PTFNP ⊆ NP∩ co-NP one obtains Theorem
A.1.

This definition naturally generalizes to problems Π that “extend” to TFAM problems. As we
argued in Proposition 3.5, the SZK-complete problem entropy difference can be extended to the
TFAM problem of computing f(X1,X2) = H(X1)−H(X2). For the same reason that PTFNP ⊆
NP ∩ co-NP, it also holds that PTFAM ⊆ AM ∩ coAM (Vadhan [45] proved this using a proof
along the lines of the proof of Theorem A.1 given in [20]). Therefore, one concludes that

PSZK = PED ⊆ PTFAM ⊆ AM ∩ coAM

A.4 Proof sketch of Observation 4.6

The proof is along the lines of Nisan’s proof that Permanent has a two-prover proof system (which
is equivalent to a proof system where the prover is stateless and behaves like an oracle).
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We show by induction over the input length k ∈ [n] that R has a δ-tester TR and an instance
checker CR. By a padding argument we can assume without loss of generality that the worst-case
to average-case reduction A always asks queries of the same length as the input length n. Also,
if A is the worst-case to average-case reduction, then the following is a checker (as in the proof of
Theorem 4.2) on inputs of length n: COR first runs TR to check that O (1 − δ)-solves R on inputs
of length n, and if this passes then run AO(x) and output whatever AO outputs.

It suffices therefore to construct a tester TR. Such a tester trivially exists for input length 1.
By induction, we define how TR behaves on input length n assuming we already have a tester for
input lengths n− 1.

1. First run the tester on O for input length n− 1, and reject if it rejects.

2. For i ∈ [n/δ2] sample xi ← Di uniformly.

3. For each sampled xi, run the downward self-reduction of R over xi which will (perhaps
adaptively) generate queries xij of length |xi,j| < |x| for j ≤ poly(n).

4. Run AO on each of the queries xij (which are of length ≤ k − 1).

5. Use the resulting answers along with the downward self-reduction in order to compute the
answer for xi. Call this answer yi.

6. Reject if there exists any xi such that either of the following holds:

(a) O(xi) 6= ∅ and (xi,O(xi)) /∈ R.

(b) O(xi) = ∅ but (xi, yi) ∈ R and yi 6= ∅.

Otherwise, accept.

The analysis of the tester TR is similar to that of Theorem 4.2. Let TIMETR
(n) denote the

running time of TR on inputs of length n. Then it is clear that TIMETR
(n) ≤ TIMETR

(n − 1) +
poly(n), which implies that TIMETR

(n) ≤ poly(n). The reason is that we only run the tester once
for each input length.
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