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Abstract. We prove that any monotone switching network solving directed connectivity on N

vertices must have size N
Ω(log N)

1. Introduction

L versus NL, the problem of whether non-determinism helps in logarithmic space bounded com-
putation, is a longstanding open question in computational complexity. At present, only a few
results are known. It is known that the problem is equivalent to the question of whether there is a
log-space algorithm for the directed connectivity problem, namely given an N vertex directed graph
G and pair of vertices s, t, find out if there is a directed path from s to t in G. In 1970, Savitch
[9] gave an O(log2 N)-space deterministic algorithm for directed connectivity, thus proving that
NSPACE(g(n)) ⊆ DSPACE((g(n)2)) for every space constructable function g. In 1987 and 1988,
Immerman [3] and Szelepcsenyi [10] independently gave an O(log N)-space non-deterministic algo-
rithm for directed non-connectivity, thus proving that NL = co-NL. For the problem of undirected
connectivity (i.e. where the input graph G is undirected), a probabalistic algorithm was shown in
1979 using random walks by Aleliunas, Karp, Lipton, Lovász, and Rackoff [1], and in 2005, Reingold
[8] gave a deterministic O(log N)-space algorithm for the same problem, showing that undirected
connectivity is in L. Trifonov [11] independently gave an O(lg N lg lg N) algorithm for undirected
connectiivty.

In terms of monotone computation, in 1988 Karchmer and Wigderson [4] showed that any monotone
circuit solving directed connectivity must have superlogarithmic depth, showing that monotone-
NC1 ( monotone-L. In 1997 Raz and McKenzie [6] proved that monotone-NC 6= monotone-P and
for any i, monotone-NCi 6= monotone-NCi+1.

So far, most of the work trying to show that L 6= NL has been done using branching programs or
the JAG model, introduced in [5] and [2] respectively. Instead, we explore trying to prove L 6= NL
using the switching network model, described in [7]. This model can be applied to any problem,
and a general definition is given in Section 2. In this paper, we focus on switching networks solving
directed connectivity.

The best way to describe what such a switching network is through an example, see Figure 1
and the accompanying explanation. A formal specialized definition is given below:

Definition 1.1. A switching network solving directed connectivity on a set V (G) of vertices with
distinguished vertices s, t is a tuple < G′, s′, t′, µ′ > where G′ is an undirected multi-graph with dis-
tinguished vertices s′,t′ and µ′ is a labeling function such that:
1. Each edge e′ ∈ E(G′) has a label of the form v1 → v2 or ¬(v1 → v2) for some vertices
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s → a

s
′

s → b
a → t

a → b

s → b

b → t

b → a

s → a

a → t

b → t

t
′

s → t

Figure 1. A switching network solving directed connectivity is an undirected
multi-graph G′ that takes a directed graph G and tells us if there is a path from s
to t in G as follows: If an edge in G′ has a label a → b for some vertices a and b in
G, then we can take it if and only if the edge a → b is in G. Similarly, if an edge in
G′ has a label ¬(a → b), we can take it if and only if the edge a → b is not in G.
Under these conditions, there is a path from s′ to t′ in G′ if and only if there is a
path from s to t in G.
In this figure, we have a switching network that solves directed connectivity when
G has four vertices, s, t, a, and b. As needed, there is a path from s′ to t′ in G′

if and only if there is a path from s to t in G. For example, if we have the edges
s → a, a → b, and b → t in G, so there is a path from s to t in G, then in G′,
starting from s′, we can take the edge labeled s → a, then the edge labeled a → b,
then the edge labeled s → a, and finally the edge labeled b → t, and we will reach
t′. If in G we have the edges s → a, a → b, b → a, and s → b and no other edges,
so there is no path from s to t, then in G′ there is no edge that we can take to t′,
so there is no path from s′ to t′.

v1, v2 ∈ V (G).
2. Given a directed graph G with vertex set V (G), there is a path in G′ from s′ to t′ such that all of
the labels are consistent with G, i.e. of the form e for some edge e ∈ E(G) or ¬e for some e /∈ E(G),
if and only if there is a path from s to t in G.
We say that such a switching network solves directed connectivity on N vertices, where N = |V (G)|,
and we take its size to be |V (G′)|. A switching network solving directed connectivity is monotone if
it has no labels of the form ¬(v1 → v2).

Notation: In this paper, we use lower case letters (i.e. a, e, f) to denote vertices, edges, and functions,
and we use upper case letters (i.e. G,V,E) to denote graphs and sets of vertices and edges. We
use unprimed symbols to denote vertices, edges, etc. in the directed graph G, and we use primed
symbols to denote vertices, edges, etc. in the switching network G′.

1.1. Our Results. In Section 2, we give a proof that if there is no polynomial-sized switching
network solving directed connectivity, then L 6= NL. Thus, our goal is to prove a superpolynomial
lower size bound on switching networks solving directed connectivity. In this paper, we focus on
showing lower size bounds for monotone switching networks solving directed connectivity.

We can view the vertices of a switching network solving directed connectivity as encoding how
much we know about the directed graph G, where at s′ we know nothing about G and at t′ we
know there is a path from s to t in G. When we move from one vertex in the switching network
to another, it represents a change in our knowledge, which is allowed because the fact that we can
make this move gives us information about G.



BOUNDS ON MONOTONE SWITCHING NETWORKS FOR DIRECTED CONNECTIVITY 3

The key property of moving in switching networks is that everything is reversible. Thus, it is natural
to start by restricting ourselves to simple states of knowledge and some basic reversible operations
for getting from one state of knowledge to another.
In Section 3, we implement these ideas by defining a subclass of monotone switching networks solv-
ing directed connectivity, which we call certain-knowledge switching networks. We first show that
certain-knowledge switching networks can capture a variant of Savitch’s algorithm, which implies
that there is a certain-knowledge switching network of size NO(log N) solving directed connectivity.
We then show that this is tight with the following theorem:

Theorem 1.2. Any certain-knowledge switching network solving directed connectivity on N vertices
has size at least NΩ(log N).

In Section 4, we analyze general monotone switching networks solving directed connectivity. We
give a useful simplification of monotone switching networks that can be accomplished by increasing
the size of the switching network by a factor of at most N , and we show a theorem that in a weak
sense reduces monotone switching networks to certain-knowledge switching networks.
In Section 5, we introduce a Fourier transformation technique. We then use this technique to prove
an Ω(N2) lower size bound on monotone switching networks solving directed connectivity, and we
give a condition that is sufficient to prove a superpolynomial bound.
In Section 6, we give Fourier analogues of results in Sections 3 and 4 and use these to prove the
above condition, thus proving a superpolynomial bound on monotone switching networks solving
directed connectivity.
Finally, in Section 7, we modify and expand our techniques slightly to prove the main result:

Theorem 1.3. Any monotone swtiching network solving directed connectivity on N vertices has
size at least NΩ(log N)

1.2. Proof Overview. We now give a high level informal overview of the proof, ignoring details
and subtleties.
The main idea involved in proving lower size bounds for monotone switching networks solving di-
rected connectivity is as follows. Since G′ solves directed connectivity, for every path P in G from
s to t, there is a path P ′ in G′ from s′ to t′ that uses only the edges of P . We show that this P ′

must include a vertex a′
P that gives significant information about P , i.e. there cannot be too many

paths P1, P2, · · · in G such that each pair of paths Pi, Pj has very few vertices in common and all of
these share the same vertex a′ in G′. Then if we can find a large collection of paths such that each
pair of paths has very few vertices in common, this will give a good lower bound on the number of
vertices in G′.
In Section 3, we apply this approach to prove Theorem 1.2, that any certain-knowledge switching
network solving directed connectivity on N vertices has size at least NΩ(log N). Lemma 3.8 shows
if we have a path P ′ from s′ to t′ in G′ that uses only the edges of some path P from s to t in G,
then we can pick a vertex a′

P in P ′ which tells us at least log k of the vertices in P , where k is the
length of P . Thus, if two paths P1 and P2 of length k in G have less than log k vertices in common,
then a′

P1
cannot be the same as a′

P2
, so each such path gives a distinct vertex in G′. It is not hard

to find a large collection of paths from s to t in G of length k such that each pair of paths has less
than log k vertices in common, and this completes the proof.
However, the way that a′

P gives information about P in certain-knowledge switching networks is
somewhat artificial and cannot be extended to general monotone switching networks solving di-
rected connectivity. In Section 5, we introduce a fourier transformation technique and assign each
vertex a′ in G′ a function Ja′ : C → R, where C is the set of all possible cuts of G.
In Section 6, we prove Theorem 6.1, showing that for each directed path P in G we can find a function
gP : C → R such that if P ′ is a path from s′ to t′ using only the edges of P , then

∑

a′∈V (P ′) |Ja′ · gP |
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is relatively large. Moreover, if P1 and P2 have very few vertices in common, then gP1
and gP2

are orthogonal. In this way, the vertices of P ′ give significant information about P . As shown in
Theorem 5.23, this is sufficient to show a superpolynomial lower size bound.
Finally, in Section 7, we refine the above arguments to prove Theorem 1.3, that any monotone
switching networks solving directed connectivity on N vertices has size at least NΩ(log N).

2. Switching-and-rectifier Networks and Switching Networks

In this section, we give a proof that if there is no polynomial-sized switching network solving directed
connectivity, then L 6= NL. Although the results in this section are not new, we include them for
the sake of completeness.

To see how switching networks capture logspace computation, it is useful to first look at how a
related model, switching-and-rectifier networks, captures non-deterministic logspace computation.
Accordingly, we give the following definition from [7]:

Definition 2.1. A switching-and-rectifier network is a tuple < G, s, t, µ > where G is a directed
graph with distinguished vertices s, t and µ is a labeling function that associates with some edges
e ∈ E(G) a label µ(e) of the form xi = 1 or xi = 0 for some i between 1 and n. We say that this
network computes the function f : {0, 1}n → 0, 1, where f(x) = 1 if and only if there is a path from
s to t such that each edge of this path either has no label or has a label that is consistent with x.
We take the size of a switching-and-rectifier network to be |V (G)|, and for a function f : {0, 1}n →
0, 1, we define RS(f)(n) to be size of the smallest switching-and-rectifier network computing f .

Proposition 2.2. If f ∈ NSPACE(g(n)) where g(n) is at least logarithmic in n, then RS(f)(n)
is at most 2O(g(n))

Proof. Let T be a non-deterministic Turing machine with a read/write tape and an input tape
computing f using g(n) space. To create the corresponding switching-and-rectifier network, first
create a vertex vj for each possible configuration cj of T , where a configuration includes the state of
the Turing machine and all of the bits on the read/write tape. Now add edges in the obvious way,
adding an edge from vj1 to vj2 if the Turing machine could go from cj1 to cj2 . If there is a dependence
on the input, put the appropriate label on this edge. Finally, merge all accepting configuarations
into one vertex t. It is easily verified that the resulting switching-and-rectifier network computes f
and has size at most 2O(g(n)), as needed. �

We give the general definition of switching networks below.

Definition 2.3. A switching network is a tuple < G′, s′, t′, µ′ > where G′ is an undirected graph with
distinguished vertices s′, t′ and µ′ is a labeling function that associates with each edge e′ ∈ E(G′)
a label µ(e′) of the form xi = 1 or xi = 0 for some i between 1 and n. We say that this network
computes the function f : {0, 1}n → 0, 1, where f(x) = 1 if and only if there is a path from s′ to t′

such that each edge of this path has a label that is consistent with x.
We take the size of a switching network to be |V (G′)|, and for a function f : {0, 1}n → 0, 1, we
define S(f)(n) to be size of the smallest switching network computing f .

Remark 2.4. Note that switching networks are the same as switching-and-rectifier networks except
that all edges are now undirected and we cannot have edges with no label. However, allowing edges
with no label does not increase the power of switching networks, as we can immediately contract all
such edges to obtain an equivalent switching network where each edge is labeled. Also, note that
switching networks solving directed connectivity are just switching networks where the input is taken
to be the adjacency matrix of a directed graph G.
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Theorem 2.5. If f ∈ DSPACE(g(n)) where g(n) is at least logarithmic in n, then S(f)(n) is at
most 2O(g(n)).

Proof. We can start by treating the Turing machine as non-deterministic and taking the switching-
and-rectifier network as in Proposition 2.2. Now note that for a given input x, since the Turing
machine is deterministic, each vertex has at most one edge going out from it. This means that G
has the structure of a forest where the root of each tree is either t, a vertex corresponding to a
rejecting configuration, or a directed cycle. But then whether or not there is a path from s to t is
unaffected by making all of the edges undirected. Thus, we can obtain a switching network that
computes f simply by making all of the edges of this switching-and-rectifier network undirected.
The result follows immediately. �

Corollary 2.6. If there is no switching network of polynomial size solving directed connectivity,
then L 6= NL.

3. certain-knowledge Switching Networks

In this section, we consider a subclass of monotone switching networks solving directed connectivity,
which we call certain-knowledge switching networks, where we can assign each vertex a′ ∈ V (G′)
a simple state of knowledge and there are simple reversible rules for moving from one state of
knowledge to another. We show that certain-knowledge switching networks can capture a variant
of Savitch’s algorithm, so there is a certain-knowledge switching network of size at most N O(log N)

solving directed connectivity on N vertices. We then prove Theorem 1.2, showing that any certain-
knowledge switching network solving directed connectivity on N vertices has size at least NΩ(log N),
and this bound is tight.

We make the following definitions:

Definition 3.1. A knowledge set K is a directed graph with V (K) = V (G), and we represent K by
the set of its edges.

Given a knowledge set K, we can form a knowledge set K̄ as follows:
If there is no path from s to t in K, then K̄ = {v1 → v2 : there is a path from v1 to v2 in K}.
If there is a path from s to t in K, then K̄ is the complete directed graph on V (G).
Call K̄ the transitive closure of K.

Each transitive closure represents an equivalence class of knowledge sets. We say K1 = K2 if
K̄1 = K̄2 and we say K1 ⊆ K2 if K̄1 ⊆ K̄2.

Remark 3.2. We will try to label each vertex a′ in the switching network with a knowledge set Ka′

so that if v1 → v2 ∈ Ka′ and there is a path from s′ to a′ in G′ using only edges in G, then we know
that either there is a path from v1 to v2 in G or there is a path from s to t in G, in which case we
do not care which other paths are in G. In this way, Ka′ represents our knowledge about G when
we are at the vertex a′.

If there is no path from s to t in K, then K and K̄ represent exactly the same knowledge about
G, so they are equivalent. If Ka′ contains a path from s to t, then if there is a path from s′ to a′ in
G′ using only edges in G, we know there is a path from s to t in G. Thus, we may as well merge a′

and t′. To do this, we make all knowledge sets with a path from s to t equivalent by giving them the
same transitive closure, the complete directed graph on V (G).
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s
′

s → a

s → b

s → c

a → t

a → t

b → t

b → t

c → t

c → t

a → b

a → c

b → a

c → a
b → c

c → b

s → t

s → c

b → t

s → a

a → t

s → b

s → c

t
′

s → a

c → t

s → b

s → a

s → b

s → c

s → a, s → b

s → a, s → c

s → b, s → c

Figure 2. A certain-knowledge switching network that solves directed connectivity
with five vertices, s, t, a, b, and c. The label inside each vertex represents the K
for that vertex.

Remark 3.3. The statement K1 ⊆ K2 does not imply that every edge in K1 is in K2. For example,
if K1 = {s → a, s → b} and K2 = {s → a, a → b}, then K̄1 = K1 and K̄2 = {s → a, a → b, s → b},
so K̄1 ⊆ K̄2 and thus K1 ⊆ K2. It is best to think of the statement K1 ⊆ K2 as saying that the
knowledge K1 respresents is included in the knowledge K2 respresents.

We would like to label each vertex in the switching network with a knowledge set. In order for these
labels to be meaningful, we must know that for any a′, b′ ∈ V (G′) and v1, v2 ∈ V (G), if we are at a′

and use an edge with label v1 → v2 to reach vertex b′, then knowing there is a path from v1 → v2

in G and having the knowledge represented by Ka′ are sufficient to give the knowledge represented
by Kb′ . This leads naturally to the following definition:

Definition 3.4. We say a monotone switching network solving directed connectivity is a certain-
knowledge switching network if we can assign a Ka′ to each vertex a′ ∈ V (G′) such that the following
conditions hold:
1. Ks′ = {} and Kt′ = {s → t}.
2. If there is an edge with label v1 → v2 between vertices a′ and b′, then
Kb′ ⊆ Ka′ ∪ {v1 → v2} and Ka′ ⊆ Kb′ ∪ {v1 → v2}

Proposition 3.5. The condition that Kb′ ⊆ Ka′∪{v1 → v2} and Ka′ ⊆ Kb′∪{v1 → v2} is equivalent
to the condition that we can obtain Kb′ from Ka′ using only the following reversible operations:
Operation 1: Add or remove v1 → v2.
Operation 2: If v3 → v4, v4 → v5 are both in K, add or remove v3 → v5 from K.
Operation 3: If s → t is in K, add or remove any edge except s → t from K
If this condition is satisfied, we say we can get from Ka′ to Kb′ with the edge v1 → v2.

Remark 3.6. The operations in Proposition 3.5 are not a good starting point for definitions, but they
are very effective for analyzing certain knowledge switching networks solving directed connectivity.
The reader would do very well to understand these operations thoroughly. In particular, note that
each of these operations is reversible. This reflects the undirected nature of the switching network;
we can undo any move that we make.
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3.1. certain-knowledge switching networks and Savitch’s Theorem. While this model is
restricted, it is not trivial. In particular, it is capable of capturing the following variant of Savitch’s
algorithm:

Savitch’s algorithm works as follows. To check if there is a path of length at most k between
vertices s and t, we go through all of the possible midpoints m and recursively check whether there
is a path of length at most k

2 from s to m and whether there is a path of length at most k+1
2 from

m to t. If k = 1, then we check the adjacency matrix of the graph directly. There is a path from s
to t in G if and only if both subpaths are in G for some m.

This algorithm reaches depth at most log N and stores one vertex at each level, so it requires
O((log N)2) space.

Savitch’s algorithm implicitly keeps track of a knowledge set K of which paths are in G. Each
time the algorithm checks for and finds a path, it adds it to K. If we check for and find a path of
length 1 between v1 and v2 in the adjacency matrix, we can add v1 → v2 to K using operation 1 of
3.5. If we check for and find a longer path, we have found the subpaths from v1 to m and from m
to v2 for some m, so we can add v1 → v2 to K using operation 2 of Proposition 3.5.

The problem is that in checking for a longer path from v1 to v2, after finding the paths from
v1 to m and m to v2, the original algorithm only keeps the path from v1 to v2 in K and discards
the paths from v1 to m and from m to v2 from K. Similarly, if a path from v1 to m is found but
no path from m to v2 is found, the algorithm immediately discards v1 → m from K. This is not
allowed under the rules of Proposition 3.5, as discarding information is not reversible.

We fix this by modifying the algorithm so that whenever the algorithm wants to remove a path
v1 → v2 of length greater than 1 from K, it must first check for and find this path again. This gives
us the subpaths v1 → m and m → v2 so that we can remove the path v1 → v2 using the operations
in Proposition 3.5.

With this modification, whenever we go from one K to another, we are using only the operations in
Proposition 3.5. Moreover, at each level, we add at most 3 paths, v1 → m, m → v2, and v1 → v2,
so there are at most N (O(log N)) possible K that we could reach.

We can create a certain-knowledge switching network from this by creating one vertex a′
K for each

possible K we could reach and adding all possible labeled edges that satisfy condition 2 of Definition
3.4. When we run the modified Savitch’s algorithm, we can follow its progress in the switching
network, and if the algorithm finds a path from s to t, we will be at t′. Since the algorithm finds all
possible paths, this certain-knowledge switching network successfully solves directed connectivity on
N vertices. This immediately gives the following thoerem:

Theorem 3.7. There is a certain-knowledge switching network of size N O(log N) that solves directed
connectivity on N vertices.

3.2. Lower size bound on certain-knowledge switching networks solving directed con-

nectivity. We now prove Theorem 1.2, showing that this bound is tight.

Theorem 1.2. Any certain-knowledge switching network that solves directed graph connectivity on
N vertices has size at least NΩ(log N).
We will first show that the result follows from the following lemma. We will then prove the lemma.
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Lemma 3.8. If the input consists of a path P in the directed graph s → v1, v1 → v2, · · · , v2k → t
and no other edges, then any path P ′ in G′ from s′ to t′ must pass through at least one vertex a′ such
that Ka′ 6= Kt′ and the union of the endpoints of the edges in Ka′ is a subset of {s, v1, v2, · · · , v2k , t}
that contains at least k + 1 of v1, v2, · · · , v2k .

Proof of Theorem 1.2 using Lemma 3.8. For any prime p, if k < p, if we take all of the polynomi-
als in Zp[x] of degree at most k, then any two distinct polynomials will have at most k values in
common. Thus, if p > 2k, given a polynomial f(x) of degree at most k, if we take vi to be vertex
p · (i − 1) + f(i) of G for i = 1 to 2k, then the corresponding paths will share at most k vertices in
common.

However, by Lemma 3.8, we can associate a vertex in G′ to each such path, and no two such
paths can share the same vertex. Hence, there are at least pk+1 vertices in G′, and we can do this
as long as N ≥ p2 + 2 and k < log p. The result follows immediately. �

Proof of Lemma 3.8.

Definition 3.9. Call the vertices L = {v1, · · · , v2k−1} the left half of P and the vertices R =
{v2k−1+1, · · · , v2k} the right half of P .

Definition 3.10. K satisfies the lemma for the left half if the union of the endpoints of the edges
in K contains at least k of the vertices in L.
We define satisfying the lemma for the right half in a similar way.

We begin by giving an informal version of the proof. We prove this lemma by induction. If there
is a path P ′ = s′ → v′

1 → v′
2 → · · · → v′

r → t′ in G′ using only the edges in P , consider the
sequence Ks′ ,Kv′

1
, · · ·Kv′

r
,Kt′ . We get from each K to the next K using only the operations given

by Proposition 3.5. Thus, we are trying to use these operations to obtain an edge from s to t (which
represents a path from s to t in G).

To obtain an edge from s to t using only these operations, it is necessary (but not sufficient) to
first obtain an edge from s to a vertex r ∈ R ∪ {t} and an edge from a vertex l ∈ L ∪ {s} to t. By
the inductive hypothesis, to obtain an edge from s to a vertex r ∈ R∪{t}, we must first reach a Kv′

i

that satisfies the lemma for the left half. If the union of the endpoints of the edges in Kv′

i
contains

even one vertex in R, Kv′

i
will satisfy the lemma. If not, then either Kv′

i
already has an edge from

a vertex l ∈ L ∪ {s} to t or there is neither an edge from l ∈ L ∪ {s} to a vertex r ∈ R ∪ {t} nor
an edge from a vertex r ∈ R to t, so there is no progress towards obtaining an edge from a ver-
tex l ∈ L∪{s} to t. A similar argument holds if we try to obtain an edge from a vertex l ∈ L∪{s} to t.

If in trying to obtain an edge from s to a vertex r ∈ R∪ {t} or an edge from a vertex l ∈ L∪ {s} to
t, when we reach such a Kv′

i
, we always have no progress towards obtaining the other required edge,

then we will never obtain an edge from s → t. Thus, we can only obtain an edge from s to t if we
reach such a Kv′

i
and the other required edge has already been obtained. But this means that we

have reached a Kv′

j
such that either Kv′

j
contains an edge from s to a vertex r ∈ R and the union of

the endpoints of the edges in Kv′

j
does not contain any vertex in L or Kv′

j
contains an edge from a

vertex l ∈ L to t and the union of the endpoints of the edges in Kv′

j
does not contain any vertex in R.

If we could reach such a Kv′

j
, we would indeed be close to obtaining the path s → t. However,

reaching such a Kv′

j
without going through a Kv′

i
satisfying the lemma is impossible for the follow-

ing reason:
When we first obtain an edge from s to a vertex r ∈ R, we must have the edges s → l and l → r
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s′

s → a

t′

s → a, s → b s → c, s → ds → c

b′

v′g

s → a, s → b, s → c s → a, s → c

s → a

a → b

a → b

b → c s → a

c → d d → t

Figure 3. An example of a possible path P ′ in G′ from s′ to t′ corresponding to
an input which only has the edges s → a, a → b, b → c, c → d, and d → t. The K
for each vertex is given above or below that vertex. In this example, if we project
on the left half, Kv′

g
= {} and Kb′ = {s → a, s → b}, and we can get from Kb′ to

K = {s → t} with the edge b → c (as c = t). Also note that in this example, a′ = b′

and for every v′ in the path between b′ and v′
g, Kv′ includes the left-jumping edge

s → c.

for some l ∈ L. Removing these edges is just as difficult as obtaining them, which means that to
remove them, we must pass through a Kv′

i
such that Kv′

i
satisfies the lemma for the left half. But if

we also hold on to the edge s → r, then Kv′

i
also contains a vertex in R, so Kv′

i
satisfies the lemma.

A similar argument holds if we try to obtain an edge from a vertex l ∈ L to t.

We now make this argument rigorous:

First add all labeled edges allowed by condition 2 of Definition 3.4 to G’. Now note that the only
way to introduce vertices besides s, t, and v1, · · · , v2k is through operation 3 of Proposition 3.5. But
if we are at a point where we could use operation 3, then we could instead immediately go to t′.
Thus, we may assume P’ does not use operation 3, and we do not need to worry about any vertices
in G except s, t, and v1, · · · , v2k .

We now introduce several useful definitions:

Definition 3.11. Define reducing to the left half as follows:
1. Make all vertices in the right half of G equal to t. This applies to the K of all vertices in G′.
We define reducing to the right half in a similar way.

Proposition 3.12. If we reduce to either half, G′ still satisfies both conditions of Definition 3.4.

Definition 3.13. Define projecting on the left half as follows:
1. Remove t′ and all vertices with K = Kt′ from G′.
2. For all vertices v′ ∈ V (G′), if we can get from Kv′ to Kt′ with the edge v1 → v2, then remove all
edges with label v1 → v2 that are incident with v′.
3. Make all vertices in the right half of P equal to t. This applies to the K of all vertices in G′.
4. For each K, remove the edge {s → t} if it is there.
We define projecting on the right half in a similar way.

Proposition 3.14. If we project on either half, G′ still satisfies condition 2 of Definition 3.4.

Remark 3.15. Reducing to the left half or the right half allows us to focus on the process of obtain-
ing an edge across that half.

If we have an edge from s to a vertex in the right half, this cannot help us add or remove edges
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with an endpoint in the left half unless operation 3 of Proposition 3.5 is used. The first two steps
of projecting on the left half eliminate this possibility. Thus, projecting on the left half allows us
to focus on the process of adding or removing edges with an endpoint in the left half regardless of
whether or not we have an edge that crosses the left half. Projecting on the right half has a similar
effect.

We prove Lemma 3.8 by induction. The base case k = 0 is trivial. Assume the lemma is true for
k − 1. We will show that it is impossible to have a path P ′ in G′ from s′ to a vertex v′

g such that
Kv′

g
satisfies any of the following three conditions unless P ′ passes through a vertex a′ such that

Ka′ satisfies the lemma:

1. Kv′

g
= Kt′ .

2. Kv′

g
has an edge from s to a vertex in the right half, and it has no edges with an endpoint in the

left half. Kv′

g
6= Kt′ .

3. Kv′

g
has an edge from a vertex in the left half to t, and it has no edges with an endpoint in the

right half. Kv′

g
6= Kt′ .

Assume there is a path P ′ in G′ from s′ to a vertex v′
g such that Kv′

g
is of type 1 and P ′ does

not pass through a vertex that satisfies the lemma or has a K of type 1, 2, or 3.

Let b′ be the last vertex on P ′ before v′
g is reached such that for one of the left half or the right half,

if we reduce to that half, then Kb′ satisfies the lemma for that half.

We may assume without loss of generality that it is the right half. If Kb′ does not satisfy the
lemma, then there are no edges in Kb′ with an endpoint in the left half. Now reduce to the left half.
Kb′ = {s → t} or Kb′ = {}. If Kb′ = {s → t}, then Kb′ was originally of type 1 or 2. Contradiction.
Kb′ = {}. But Kt′ = {s → t}. By the inductive hypothesis, there must be a vertex a′ on the path
from b′ to v′

g such that Ka′ satisfies the lemma for the left half. But this contradicts the definition
of b′. Contradiction.

The only case remaining is if b′ does not exist. However, reducing to either half it is clear that
this is impossible.

Thus, it is impossible to reach a vertex whose K is of type 1 without first going through a ver-
tex that satisfies the lemma or has a K of type 1, 2, or 3.

Assume there is a path P ′ from s′ to a vertex v′
g in G′ with a K of type 2 that does not pass

through a vertex that satisfies the lemma or has a K of type 1, 2, or 3.

If we project on the left half and a vertex in P ′ is removed, this vertex had a K of type one.
Contradiction. If an edge from v′

1 to v′
2 in this path is deleted, then we could have instead gone

directly from v′
1 to t′, which would give us a path from s′ to t′ that does not pass through a vertex

that satisfies the lemma or has a K of type 1, 2, or 3. From the above, this is impossible. Thus, the
entire path is preserved when projecting on the left half. This also implies that we are only using
operations 1 and 2 of Proposition 3.5.

Call an edge from s to a vertex in the right half (this vertex cannot be t) a left-jumping edge.

Let P ′ = s′ → v′
1 → v′

2 → · · · → v′
r → v′

g. We can start with K = Ks′ and then go from
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each Kv′

i
to Kv′

i+1
using only operations 1 and 2 in Proposition 3.5. Choose one possible sequence

of such operations and look at the last time in that we add or remove a left-jumping edge from K
without having a shorter left-jumping edge. We know that we do this at least once because Kv′

g

has a left-jumping edge. Note that the only way to add or remove a left-jumping edge is to use
operation 2, so at this point we must have edges s → vi and vi → vj , where j > 2k−1. If s → vi is
a left-jumping edge, then we have a shorter left-jumping edge. Thus, we may assume i ≤ 2k−1. At
this point, if we project on the left half, we have a K that includes s → t. This occurs in the middle
of a transition between some vertices v′

1 and v′
2 using some edge vl → vl+1, which implies that if we

project on the left half, we can go from Kv′

1
or Kv′

2
to Kt′ using the edge vl → vl+1. Let b′ = v′

2.
b′ 6= v′

g.

Projecting on the left half, Kv′

g
= {} and we can get from Kb′ to Kt′ with the edge vl → vl+1.

By the inductive hypothesis, there must be a vertex a′ (which may be equal to b′ but cannot equal
v′

g) on P ′ from v′
g to b′ such that Ka′ satisfies the lemma for the left half.

Since once we reach b′ we never remove the shortest left-jumping edge that we have and Kv′

g
has

a left-jumping edge, all vertices from b′ onwards also have at least one left-jumping edge. Thus, a′

satisfies the lemma.

Thus, it is impossible to reach a vertex whose K is of type 2 without first reaching a vertex that
satisfies the lemma or has a K of type 1, 2, or 3. Similar logic applies if we want to get to a K of
type 3, and this completes the proof. �

4. Preliminary Results on Monotone Switching Networks

In this section, we begin our analysis of general monotone switching networks solving directed con-
nectivity. We give a definition for monotone switching networks solving directed connectivity that
generalizes the definition of certain-knowledge switching networks. We then give a useful simplifi-
cation of monotone switching networks solving directed connectivity that can be accomplished by
increasing the size of the switching network by a factor of at most N . Finally, we prove Theorem
4.6, showing that in some sense, monotone switching networks solving directed connectivity can be
reduced to certain-knowledge switching networks.

Not every monotone switching network solving directed connectivity is a certain-knowledge switch-
ing network. The monotone switching networks shown in Figures 1 and 4 are not certain-knowledge
switching networks. The reason why they are not certain-knowledge switching networks is because
at the vertices in these switching networks, a depth-1 monotone formula (only ANDs) is insufficient
to describe our knowledge about G. Instead, we need a depth-2 monotone formula (ORs of ANDs).

Definition 4.1. A state of knowledge J is a set {K1, · · · ,Km} of knowledge sets.
Let J1 = {K11,K12, · · · ,K1m} and let J2 = {K21,K22, · · · ,K2n}. We say J1 ⊆ J2 if for every j
there exists a i such that K1i ⊆ K2j.
We say J1 = J2 if J1 ⊆ J2 and J2 ⊆ J1.
Let J = {K1, · · · ,Km}. Define J ∪ {v1 → v2} to be {K1 ∪ {v1 → v2}, · · · ,Km ∪ {v1 → v2}}.
We say that we can get from J1 to J2 with the edge v1 → v2 if
J2 ⊆ J1 ∪ {v1 → v2} and J1 ⊆ J2 ∪ {v1 → v2}
Remark 4.2. The state of knowledge J = {K1, · · · ,Km} represents knowing that the paths in K1

are in G OR the paths in K2 are in G OR · · · OR the paths in Km are in G OR there is a path
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s
′

s → a

s → b

s → c

a → t

b → t

c → t

t
′

s → a

s → c

a → t

c → t
a → b

a → c

b → a

b → c

c → a

c → b

a → t

b → t

c → t

a → b

s → b

c → b

b → a

s → a

c → a

a → c

s → c

b → c

s → t

s → a

s → b, s → c

s → b, s → c

s → b, s → c

s → b, s → c

s → a, s → b

s → a, s → b
s → a, s → b

s → a, s → b

s → a, s → c

s → a, s → c

s → a, s → c

s → a, s → c
s → b

s → c

Figure 4. A monotone switching network that solves directed connectivity with
five vertices, s, t, a, b, and c. The label inside each vertex gives the J for that
vertex, with each line corresponding to one of its K.

from s to t in G. Thus, J is characterized by its least informative K. The condition for J1 ⊆ J2

ensures that J2 represents at least as much information about G as J1.

Proposition 4.3. We can get from J1 to J2 with the edge v1 → v2 if and only if for every i
there exists a j such that K2j ⊆ K1i ∪ {v1 → v2} and for every j there exists a i such that K1i ⊆
K2j ∪ {v1 → v2}.
To do this, the following 4 reversible operations are sufficient:
Operation 1: Add or remove v1 → v2 from any Ki.
Operation 2: If v3 → v4, v4 → v5 are both in Ki, add or remove v3 → v5 from Ki.
Operation 3: If s → t is in Ki, add or remove any path except s → t from Ki

Operation 4a: If Ki ⊆ Ki′ for some i, i′, remove Ki′ from J .
Operation 4b: If for some knowledge set K and some i, Ki ⊆ K, add K to J .

Proposition 4.4. For any monotone switching network solving directed connectivity, we can assign
a Ja′ to each a′ ∈ V (G′) so that the following properties hold:
1. Js′ = {{}} and Jt′ = {{s → t}}.
2. If there is an edge with label v1 → v2 between a′ and b′, then it is possible to get from Ja′ to Jb′

with the edge v1 → v2.

Proof. For each vertex a′ ∈ V (G′), take Ja′ to be the set of all K such that using the edges of K,
it is possible to reach a′ from s′ in G′. It is easy to check that both of the above properties are
satisfied. �

We will now describe a useful simplification for monotone switching networks that can be accom-
plished with an increase of at most a factor of N in the size of the network.

Theorem 4.5. If there is a monotone switching network (G′, s′, t′, µ′) solving directed connectivity
on N vertices, then there is a monotone switching network (G′′, s′′, t′′, µ′′) with |V (G′′)| ≤ N |V (G′)|
such that for any vertex a′′ of G′′, for any K in Ja′′ , K consists only of edges of the form s → v for
some v ∈ V (G).

Proof. We construct G′′ by taking N copies of G′ and making the s′ of each copy equal to the t′ of
the previous copy. We take s′′ to be the s′ of the first copy and t′′ to be the t′ of the last copy.
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Now for a vertex a′′ we construct Ja′′ as follows. For a given path from s′′ to a′′ in G′′, create
a K for that path as follows:

1. Let ei be the ith edge in G that this path uses. Edges can be repeated.
2. Start with a set X0 = {S} of vertices in G.
3. If ei is the edge from v to w, let Xi = Xi−1 if v /∈ Xi−1 and let Xi = Xi−1 ∪ w if v ∈ Xi−1. Let
X be the set obtained after taking the final edge in the path.
4. Set K = ∪v∈X{s → v}.

Now take Ja′′ to be the set of all such K.

It is easy to check that G′′ satisfies property 2 of Proposition 4.4. To see that G′′ satisfies property
1, note that for each time a path goes through a copy of G′, at least one new vertex must be added
to X. Thus, for any path from s′′ go t′′, we must have that X contains every vertex including t.
Thus, Jt′′ = {{s → t}}, as needed. �

Finally, we prove a theorem that shows that in some sense, monotone switching networks can be
reduced to certain-knowledge switching networks. Although this theorem is not strong enough to
prove any lower size bounds, the reduction used in this theorem is very deep and will play a crucial
role in Section 6.

Theorem 4.6. For any monotone switching network, if there is a path in G′ from s′ to t′ using
only edges that have a label in a subset E of E(G), then there is a sequence of Ki, 0 ≤ i ≤ m with
the following properties:
1. K0 = {}. Km = {s → t}.
2. For all i, there exists an edge ei ∈ E such that it is possible to go from Ki to Ki+1 using the edge
ei and the three given operations.
3. For all i, there exists a vertex a′

i on this path such that Ki is the union of some subset of Ja′

i
.

Proof. For each edge e′ in this path, do the following:

Let e be the label of e′, and let a′ and b′ be the endpoints of e′. For each Ka′i ∈ Ja′ , there is
a Kb′j ∈ Jb′ such that Kb′j ⊆ Ka′i ∪ e. Draw an orange arrow from each Ka′i to one such Kb′j .
Similarly, for each Kb′j ∈ Jb′ , there is a Ka′i ∈ Ja′ such that Ka′i ⊆ Kb′j ∪ e. Draw an orange
arrow from each Kb′j to one such Ka′i. We now have a set of directed cycles with tails. Take one
representative Ka′i and one representative Kb′j from each directed cycle.

Now draw a black arrow from each Ka′i to the unique Kb′j such that there is a path of orange
arrows from Ka′i to Kb′j and Kb′j is a representative of a cycle. Similarly, draw a black arrow from
each Kb′j to the unique Ka′i such that there is a path of orange arrows from Kb′j to Ka′i and Ka′i

is a representative of a cycle.

Looking only at the black arrows, the following properties hold:
1. If there is an arrow going from Ka′i to Kb′j , then Kb′j ⊆ Ka′i ∪ e.
2. If there is an arrow going from Kb′i to Ka′j , then Ka′j ⊆ Kb′i ∪ e.
3. If we there are arrows going both ways between Ka′i and Kb′j , we can get from Ka′i to Kb′j with e.

Finally, for each vertex a′, order the Ka′ .
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s → a s → ts → c, s → d

s → b s → b

s → c

s → c

s → c

s → a a → b b → c c → d d → t

∅

s
′

s → c, s → ds → c
s → b s → c
s → c

s → bs → a

t
′s → a a → b b → c c → d d → t

a
′

b
′

c
′

d
′

s
′

a
′

b
′ c

′ d
′ t

′

Figure 5. This is an illustration of the ideas used in the proof of Theorem 4.6.
Above, we have the original path from s′ to t′, where the J for each vertex is given
below that vertex. Below, we have the relations between all of the K, where each
box has one K. To get from s′ to t′ we have the following sequence of Ki: K0 = {}
at s′, K1 = {s → a} at a′, K2 = {s → a, s → b} at a′, K3 = {s → b} at a′,
K4 = {s → b} at b′, K5 = {s → b, s → c} at b′, K6 = {s → b, s → c} at a′,
K7 = {s → a, s → b, s → c} at a′, K8 = {s → a, s → c} at a′, K9 = {s → c}
at a′, K10 = {s → c} at b′, K11 = {s → c} at c′, K12 = {s → c, s → d} at d′,
K13 = {s → t} at t′

Now we will try to travel from s′ to t′ on this path while always keeping a subset of the K of
the vertex we are on. When attempting to go from a vertex a′ to a vertex b′, we will allow only the
following operation:

If every Ka′i we have is the representative of a cycle as described above, then travel to b′ and
replace each Ka′i with the corresponding Kb′j . If not, then do the following:
1. For each Ka′i we have that is the representative of a cycle, replace it by the corresponding Kb′j .
2. Take the earliest Ka′i we have that is not the representative of a cycle. Take the Kb′j that the
arrow going from this Ka′i is pointing to. Remove this Kb′j if it is in our set and add it if it is not.
3. For each Kb′j we have, replace it by the corresponding Ka′i.

Note that for each of these steps, we can get from the union of the K before that step to the
union of the K afterwards with some edge e ∈ E. Thus, if we use only this operation, the resulting
sequence of Ki will obey the given rules.

Also note that each such operation is reversible and if we are at a vertex in the middle of the
path, we have exactly two choices for where to go next regardless of which subset we have. However,
if we are at s′ or t′, our subset is fixed and we only have one choice for where to go next. Thus, we
must be able to get from s′ to t′ using only the given operation, and this completes the proof. �

5. Fourier Analysis on Monotone Switiching Networks

Unfortunately, the above results are insufficient to prove a superpolynomial lower size bound on
monotone switching networks solving directed connectivity. To prove a good lower size bound, more
sophisticated techniques are needed. In this section, we introduce a fourier transformation technique
for monotone switching networks solving directed connectivity. We then use this technique to prove
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an Ω(N2) lower size bound. Finally, we give a condition which is sufficient to prove a superpolyno-
mial lower size bound.

An alternate way of solving directed connectivity is to look at cuts of G. There is a path from
s to t if and only if there is no cut C = (V1, V2) such that s ∈ V1, t ∈ V2, and there is no edge from
a vertex in V1 to a vertex in V2. Thus, instead of describing each state of knowledge J in terms of
paths in G, we can describe each J as a function of the cuts of G. We do this below.

5.1. Definitions and Basic Properties.

Definition 5.1. We define an s-t cut (below we use cut for short) of G to be a subset C of V (G)
such that s ∈ C and t /∈ C. We denote the complement of C by Cc, and we say an edge v1 → v2

crosses C if v1 ∈ C and v2 ∈ Cc.
Let C denote the set of all cuts C. |C| = 2N−2.

Given a state of knowledge J , we want J(C) to be 1 if given the information J represents we know
that G contains an edge crossing C and −1 otherwise. This leads to the following definitions:

Definition 5.2. Given a cut C and a set of edges K, define K(C) to be 1 if there is an edge in K
that crosses C and −1 otherwise.

Definition 5.3. Given a cut C and a state of knowledge J = {K1, · · · ,Km}, define J(C) to be 1 if
for all i, Ki(C) = 1 and −1 otherwise.

It is easy to verify that for every knowledge set K and state of knowledge J , K(C) and J(C) are
well-defined, i.e. if K = K ′, K(C) = K ′(C) and if J = J ′, J(C) = J ′(C).
Note that for all C, Js′(C) = −1 and Jt′(C) = 1.
We define basis functions as follows:

Definition 5.4. Given a set of vertices V ⊆ V (G) that does not include s or t, define eV (C) =
(−1)|V ∩C|.

We define the dot product as follows:

Definition 5.5. Given two functions f, g : C → R, f · g = 22−N
∑

C∈C f(C)g(C)

Note that eV (C)eV ′(C) = (−1)(V ∆V ′)∩C for every cut C, where ∆ denotes the symmetric difference
of two sets, and hence the functions {eV } form an orthonormal basis for the vector space RC with
the standard dot product f · g = 22−N

∑

C∈C f(C)g(C).
We define Fourier coefficients as follows:

Definition 5.6. f̂V = f · eV

Proposition 5.7. For any function f , f =
∑

V f̂V eV and f · f =
∑

V f̂V

2
, where we are summing

over all subsets V of V (G) such that s, t /∈ V .

Proposition 5.8. Given a monotone switching network G′, if there an edge with label v1 → v2

between vertices a′ and b′, then for any cut C, if v1 /∈ C or v2 /∈ Cc, then Ja′(C) = Jb′(C).
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s
′

s → c, s → ds → c
s → b s → c
s → c

s → bs → a

t
′s → a a → b b → c c → d d → t

a
′

b
′

c
′ d

′

Figure 6. This is a possible path in G′ from s′ to t′. Below, we express the six
functions Js′ , Ja′ , Jb′ , Jc′ , Jd′ , and Jt′ in terms of the basis functions:
Js′ = −e{}.

Ja′ = − 3
4e{} + 1

4e{a} + 1
4e{b} + 1

4e{a,b} + 1
4e{c} + 1

4e{a,c} + 1
4e{b,c} + 1

4e{a,b,c}.

Jb′ = − 1
2e{} + 1

2e{a} + 1
2e{b} + 1

2e{a,b}.
Jc′ = e{c}.

Jd′ = 1
2e{} + 1

2e{a} + 1
2e{b} − 1

2e{a,b}.
Jt′ = e{}.

5.2. Warm-up: linear and quadratic lower size bounds. We will now use the Fourier trans-
formation technique to show an Ω(N 2) lower size bound on monotone switching networks solving
directed connectivity.

To do this, we will consider linear combinations of the Jv′ functions.

Proposition 5.9. If span{Jv′} has rank at least m, then G′ has at least m + 1 vertices.

Proof. The vector space of linear combinations of Js′ and Jt′ has rank 1. Each new vertex can add
at most 1 to the rank of the vector space, and this completes the proof. �

Definition 5.10. Given a directed walk P ′ from v′
1 to v′

2 in G′ and a label e, define d(P ′, e) ∈ RC

to be 1
2 (

∑

v′∈Vsink
Jv′ − ∑

v′∈Vsource
Jv′), where Vsink is the set of vertices in G′ with an edge in P ′

with label e going into it and Vsource is the set of vertices in G′ with an edge in P ′ with label e going
out from it, counted with multiplicity.

Remark 5.11. Together, all of the edges in P ′ allow us to go from v′
1 to v′

2, and the change in our
knowledge is Jv′

2
−Jv′

1
. d(P ′, e) measures the contribution to this change made by edges with label e.

Clearly, for any P ′ and e, d(P ′, e) is in span{Jv′}.

Theorem 5.12. If G′ is a monotone switching network solving directed connectivity on N vertices,
then G′ has at least N vertices.

Proof. We obtain this lower size bound by combining several simple statements.

Proposition 5.13. If P ′ is a directed path in G′ from s′ to t′ using only edges with labels s → a
and a → t, then for a cut C, d(P ′, s → a)(C) is 1 if a ∈ Cc and 0 otherwise.

Proof of Proposition 5.13. For a cut C, if a ∈ C then using Proposition 5.8, d(P ′, s → a)(C) = 0.
If a ∈ Cc, then using Proposition 5.8, d(P ′, a → t)(C) = 0. Since
d(P ′, s → a)(C) + d(P ′, a → t)(C) = 1

2 (Jt′(C) − Js′(C)) = 1, d(P ′, s → a)(C) = 1.
�

Proposition 5.14. If P ′ is a directed path in G′ from s′ to t′ using only edges with labels s → a
and a → t, then for a cut C, d(P ′, a → t)(C) is 1 if a ∈ C and 0 otherwise.
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Proof of Proposition 5.14. For a cut C, if a ∈ Cc then using Proposition 5.8, d(P ′, a → t)(C) = 0.
If a ∈ C, then using Proposition 5.8, d(P ′, s → a)(c) = 0. Since
d(P ′, s → a)(C) + d(P ′, a → t)(C) = 1

2 (Jt′(C) − Js′(C)) = 1, d(P ′, a → t)(C) = 1.
�

Corollary 5.15. Let f = d(P ′, s → a) − d(P ′, a → t). Then f̂{a} = 1, and all other Fourier
coefficients are zero.

Proof of Theorem 5.12 using Corollary 5.15. For each of the N − 2 vertices v that are not equal to
s or t, we can create a linear combination of Jv′ such that the resulting function f has all Fourier

coefficients 0 except for f̂{v}, which is nonzero. Also, if f = 1
2 (Jt′ −Js′), f̂{} = 1 and all other fourier

coefficients are zero. Thus, these N − 1 functions are linearly independent, and the result follows
from Proposition 5.9. �

�

Theorem 5.16. If G′ is a monotone switching network solving directed connectivity on N vertices,

then G′ has at least (N−2)(N−3)
2 + N vertices.

Proof. Again, we obtain this lower size bound by combining several simple statements.

Proposition 5.17. If P ′ is a directed path in G′ from s′ to t′ using only edges with labels s → a,
a → b, and b → t, then for a cut C, d(P ′, a → b)(C) is 1 if a ∈ C and b ∈ Cc and 0 otherwise.

Proof of Proposition 5.17. For a cut C, if a /∈ C or b /∈ Cc then using Proposition 5.8, d(P ′, a →
b)(c) = 0. If a ∈ C and b ∈ Cc, then using Proposition 5.8, d(P ′, s → a)(C) + d(P ′, b → t)(C) = 0.
Since
d(P ′, s → a)(C)+d(P ′, a → b)(C)+d(P ′, b → t)(C) = 1

2 (Jt′(C)−Js′(C)) = 1, d(P ′, a → b)(C) = 1.
�

Proposition 5.18. If P ′ is a directed path in G′ from s′ to t′ using only edges with labels labels
s → a, a → b, and b → t, then for a cut C, d(P ′, s → a) + d(P ′, b → t)(C) is 0 if a ∈ C and b ∈ Cc

and 1 otherwise.

Proof of Proposition 5.18. For a cut C, if a ∈ C and b ∈ Cc then using Proposition 5.8, d(P ′, a →
t)(C) + d(P ′, b → t)(C) = 0. If not, then using Proposition 5.8, d(P ′, a → b)(C) = 0. Since
d(P ′, s → a)(C) + d(P ′, a → b)(C) + d(P ′, b → t)(C) = 1

2 (Jt′(C) − Js′(C)) = 1, d(P ′, a → t)(C) +
d(P ′, b → t)(C) = 1.

�

Corollary 5.19. Let f = d(P ′, s → a) − d(P ′, a → b) + d(P ′, b → t). Then f̂{} = 1
2 , f̂{a} = 1

2 ,

f̂{b} = − 1
2 , f̂{a,b} = 1

2 , and all other Fourier coefficients are zero.

Proof of Theorem 5.16 using Corollary 5.19. For each pair of vertices {v1, v2} not equal to s or t,

as shown above, we can create a function where f̂{v1,v2} 6= 0. As long as each pair of vertices is used

only once, this will be the only function for which this is true. In this way, we can obtain (N−2)(N−3)
2

linearly independent functions. After this, we can still use the same N − 1 functions from before, so

this gives us a total of (N−2)(N−3)
2 + N − 1 linearly independent functions. Again, the result follows

from Proposition 5.9.
�

�
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5.3. General techniques for obtaining lower size bounds. In this subsection, we show how
more general lower size bounds can be obtained.

Definition 5.20. Given a directed walk P ′ from v′
1 to v′

2 in G′ using only the edges of some directed
path P in G from s to t and a partition of the edges of P into two sets, E1 and E2, let fP ′,P,E1,E2

=
∑

e∈E1
d(P ′, e) −

∑

e∈E2
d(P ′, e).

Definition 5.21. We say a cut C is (P,E1, E2)-invariant if all edges e in P that cross C are in
E1 or all edges e in P that cross C are in E2. We say a function g : C → R is (P,E1, E2)-invariant
if fP ′,P,E1,E2

· g is the same for all switching networks G′ solving directed connectivity on V (G)
and paths P ′ in G′ from s′ to t′ using only the edges of P . If g is (P,E1, E2)-invariant, define
z(g, P,E1, E2) to be this constant.

Proposition 5.22. A function g : C → R is (P,E1, E2)-invariant if and only if g(C) = 0 for every
C that is not (P,E1, E2)-invariant.

Proof. For any cut C that is not (P,E1, E2)-invariant, we can change the value of fP ′,P,E1,E2
(C)

without changing fP ′,P,E1,E2
(C ′) for any other cut C ′. To see this, given a G′, create a new G′ by

creating a new s′. Let a′ be the old s′ and for each edge e such that e crosses C, create an edge
with label e between s′ and a′. This is still a valid monotone switching network solving directed
connectivity on V (G) and for all vertices v′ except s′, Jv′(C) = 1. Also, Ja′(C ′) = 1 if C ′ = C and
−1 otherwise. Thus, we can change fP ′,P,E1,E2

(C) without changing fP ′,P,E1,E2
(C ′) for any other

C ′ by choosing whether to use an edge with label in E1 or E2 to go from s′ to a′. Thus, if g(C) 6= 0,
then g cannot be (P,E1, E2)-invariant.
Let P ′ be a path in G′ from s′ to t′ using only the edges of P . If C cannot be crossed by any edge in E1,
then

∑

e∈E1
d(P ′, e)(C) = 0. Again,

∑

e∈E1
d(P ′, e)(C)+

∑

e∈E2
d(P ′, e)(C) = 1

2 (Jt′(C) − Js′(C)) =

1, so
∑

e∈E2
d(P ′, e)(C) = 1, and fP ′,P,E1,E2

(C) = −1. Similarly, if C cannot be crossed by any

edge in E2, then fP ′,P,E1,E2
(C) = 1. Thus, if g(C) = 0 for every C that is not (P,E1, E2)-invariant,

then fP ′,P,E1,E2
· g is the same for all G′ and all paths P ′ in G′ from s′ to t′ using only the edges of

P , as needed. �

For paths P of length 2 and 3, we were able to choose E1 and E2 so that for all cuts C, fP ′,P,E1,E2
(C)

is the same for all G′ and all paths P ′ in G′ from s′ to t′ using only the edges of P . Unfortunately,
for longer paths, this is no longer possible. This makes proving linear independence much harder.
To end this section, we show that a lower size bound can be obtained from these techniques even
without using linear independence.

Theorem 5.23. If when V (G) = {s, v1, · · · , vk1
, t} and P is the path s → v1 → · · · → vk1

→ t,
we have a partition of the edges of P into two groups E1 and E2 and a function gP such that gP is
(P,E1, E2)-invariant, z(gP , P, E1, E2) is nonzero, and ĝP V = 0 for any set of vertices V such that
|V | < k2, then any monotone switching network solving directed connectivity on N vertices has size

at least Ω(N
k2
2 ).

Proof. Without loss of generality, we may assume gP · gP = 1. Given such a gP , note that if we add
vertices to V (G) so that |V (G)| = N , we can keep the same gP (expressed in fourier coefficients) and
it will still be (P,E1, E2)-invariant and have the same z(gP , P, E1, E2). Let M = z(gP , P, E1, E2).
If we have another path P2 from s to t of length k1 + 1, by symmetry, we have a function gP2

and a partion (E3, E4) of the edges of P2 so that gP2
· gP2

= 1, gP2
is (P2, E3, E4)-invariant, and

z(gP2
, P2, E3, E4) = M . Moreover, if P and P2 have less than k2 vertices in common (excluding s

and t), then gP · gP2
= 0. If we have K paths P1, · · · , PK of length k1 + 1 from s to t in G such

that any pair of them have less than k2 vertices in common (excluding s and t), then we have K
orthonormal functions {gPi

}.
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Now assume G′ solves directed connectivity on N vertices, and let N ′ be the number of vertices in
G′. We wish to bound N ′ from below. Note that given any set of orthonormal functions {gi},

N ′ ≥
∑

i

(
∑

a′∈V (G′)

|Ja′ · gi|2) (1)

Using Cauchy-Schwarz (specifically
∑N ′

j=1 |cj |2 ≥ 1
N ′

(
∑N ′

j=1 |cj |)2 for any c1, · · · , cN ′),

N ′ ≥
∑

i

(
∑

a′∈V (G′)

|Ja′ · gi|2) (2)

N ′ ≥ 1

N ′

∑

i

(
∑

a′∈V (G′)

|Ja′ · gi|)2 (3)

N ′ ≥
√

∑

i

(
∑

a′∈V (G′)

|Ja′ · gi|)2 (4)

If P ′ is a path in G′ from s′ to t′ using only the edges of P , by the definition of fP ′,P,E1,E2
,

M = |fP ′,P,E1,E2
· gP | ≤

∑

a′∈V (P ′)

|Ja′ · gP | (5)

Also, we clearly have that
∑

a′∈V (P ′)

|Ja′ · gP | ≤
∑

a′∈V (G′)

|Ja′ · gP | (6)

Combining 5 and 6, we get that
∑

a′∈V (G′)

|Ja′ · gP | ≥ M (7)

(
∑

a′∈V (G′)

|Ja′ · gP |)2 ≥ M2 (8)

By symmetry, 8 holds for each gPi
. Plugging 8 into 4,

N ′ ≥
√

KM2 = M
√

K (9)

Following similar logic as in the proof of Theorem 1.2, we can easily obtain make K at least Ω(N k2),

so N ′ is at least Ω(N
k2
2 ), as needed. �

Corollary 5.24. If for all k, when V (G) = {s, v1, · · · , v2k , t} and P is the path s → v1 · · · → v2k →
t, there exists a partition of the edges of P into two groups E1 and E2 and a function gP such
that gP is (P,E1, E2)-invariant, z(gP , P, E1, E2) is nonzero, and ĝP V = 0 for any set of vertices
V such that |V | ≤ k, then any monotone switching network solving directed connectivity must have
superpolynomial size.

Proof. Applying Theorem 5.23 for a fixed k gives that any monotone switching network solving

directed connectivity must have size at least c(k)(N
k+1

2 ), where c(k) is a constant depending on k.
Thus, the size of a monotone switching network solving directed connectivity grows faster than any
polynomial, as needed. �

Remark 5.25. Without a bound on c(k), we cannot give an explicit lower bound on the size of a
switching network solving directed connectivity, we can only say that it is superpolynomial. These
bounds will be given in Section 7.
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6. A Superpolynomial Bound

In this section, we use Fourier analogues of results in Sections 3 and 4 to prove the following theorem:

Theorem 6.1. For all k, if V (G) = {s, v1, · · · , v2k , t} and P is the path s → v1 · · · → v2k → t,
there exists a partition of the edges of P into two groups E1 and E2 and a function gP such that
gP is (P,E1, E2)-invariant, z(gP , P, E1, E2) is nonzero, and ĝP V = 0 for any set of vertices V such
that |V | ≤ k.

By Corollary 5.24, this is sufficient to prove a superpolynomial lower size bound on monotone
switching networks solving directed connectivity.

6.1. Proof Overview. We now give an informal overview of the proof of Theorem 6.1.

It is instructive to first note how this function gP relates to certain-knowledge switching networks
and Lemma 3.8. If we let W be the set of all a′ such that the union of the endpoints of Ka′ contains
at least k + 1 vertices, then Lemma 3.8 says that any path P ′ in G′ from s to t using only the edges
of P must pass through at least one vertex w′ ∈ W . We can think of W as a barrier preventing
us from easily going from s′ to t′. The function gP describes this barrier more precisely, as if we
let W ′ be the set of all vertices a′ such that Ka′ · gP,E1,E2

6= 0 and the union of the endpoints of
Ka′ contains no vertices not in P , then P ′ must pass through at least one vertex w′ ∈ W ′. Also,
W ′ ⊆ W .
Thus, the existence of such a gP implies Lemma 3.8. Roughly speaking, we want to show the
converse, that the existence of such a barrier for certain-knowledge switching networks implies the
existence of such a gP .
To show that a function g : C → R is (P,E1, E2)-invariant, we either need to show that g(C) = 0
for all cuts C that are not (P,E1, E2)-invariant, or we need to show that fP ′,P,E1,E2

· g is the same
for all G′ and all paths P ′ from s′ to t′. If we had an explicit formula for g(C), it would be easiest
to use the first approach. However, since we do not have such a general formula, we use the second
approach.
Lemma 6.4, the Fourier analogue of Theorem 4.5, shows that it is sufficient to consider only G′

where each Ja′ contains only knowledge sets such that all edges in the knowledge set are of the form
s → v. Theorem 6.5, the Fourier analogue of Theorem 4.6, shows that if we add the condition that
fL′,P,E1,E2

· gP = 0 for all directed cycles L′ of G′ using only the edges of P , then it is sufficient
to consider only certain-knowledge switching networks. Combining these results, we have Theorem
6.3, which says that with the added condition, we only need to consider certain-knowledge switching
networks such that all knowledge sets contain only edges of the form s → v.

Since there are now at most 22k

+1 knowledge sets and we must have Jt′ = −Js′ , as noted in Lemma
6.12, we can arbitrarily choose the values g ·Ja′ for all a′ ∈ V (G′) except t′. Lemma 6.13 shows that
if we can split the vertices of G′ into 4 groups with a mapping b : V (G′) → {0, 1} × {0, 1} that has
ceratin properties, then using this freedom, we can create a g that satisfies the conditions given by
Theorem 6.3 and is thus (P,E1, E2)-invariant. Moreover, z(gP , P, E1, E2) is nonzero and ĝP V = 0
for any set of vertices V such that |V | ≤ k. Lemma 6.15 shows that if we have a barrier W similar
to the one provided by Lemma 3.8 with one additional property, then we can create a mapping
b : V (G′) → {0, 1} × {0, 1} as required by Lemma 6.13. Finally, Lemma 6.17 modifies Lemma 3.8
so that it provides the barrier W with the needed additional property. Putting everything together,
we can create a function gP satisfying Theorem 6.1.

6.2. Reduction to certain-knowledge Switching Networks. In this subsection, we prove The-
orem 6.3, showing that to prove a function g : C → R is (P,E1, E2)-invariant, it is sufficient to look
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at the behavior of g on certain-knowledge switching networks G′ where all knowledge sets contain
only edges of the form s → v.

Remark 6.2. Throughout this subsection, we will always assume that we have a directed path P in
G from s to t and a partition (E1, E2) of the edges of P , and we will not consider any directed paths
or cycles in G′ that use an edge not in P .

Theorem 6.3. If for a function g : C → R, for any certain-knowledge G′ such that all knowledge
sets contain only edges of the form s → v, fP ′,P,E1,E2

· g is the same for all paths P ′ in G′ from s′

to t′ and fL′,P,E1,E2
· g = 0 for all directed cycles L′ in G′, then g is (P,E1, E2)-invariant.

Proof. We begin with the following analogue of Theorem 4.5:

Lemma 6.4. If for a function g : C → R, for all G′ such that each Ja′ contains only knowledge sets
such that each edge in the knowledge set is of the form s → v, fP ′,P,E1,E2

·g is the same for all paths
P ′ in G′ from s′ to t′, then g is (P,E1, E2)-invariant.

Proof of Lemma 6.4. Assume g is not (P,E1, E2)-invariant. Then there is a cut C such that C is
not (P,E1, E2)-invariant and g(C) 6= 0.
Let v1, · · · , vm be the vertices in C and let w1, · · · , wk be the vertices in Cc. Let K = {s → v1, s →
v2, · · · , s → vm}. For each possible state of knowledge J that contains only knowledge sets such
that each edge in the knowledge set is of the form s → v, create a vertex v′ with state of knowledge
Jv′ = J . Add all labeled edges allowed by property 2 of Proposition 4.4.
Let a′ be the vertex with state of knowledge Ja′ = {K}. Let b′ be the vertex with state of knowledge
Jb′ = {K ∪ s → w1,K ∪ s → w2, · · · ,K ∪ s → wk}.
Now note that Jb′(C) = 1, Ja′(C) = 0 and if C ′ 6= C, then Jb′(C

′) = Ja′(C ′). We can easily find a
path P ′ in G′ from s′ to t′ using only edges in P that has an edge e′ from a′ to b′. We can choose
whether e′ has a label in E1 or E2, and this will change the value of fP ′,P,E1,E2

· g. This completes
the proof. �

We now give the following analogue of Theorem 4.6:

Theorem 6.5. If for a function g : C → R, for any certain-knowledge G′, fP ′,P,E1,E2
· g is the

same for all paths P ′ from s′ to t′ and fL′,P,E1,E2
· g = 0 for all directed cycles L′ in G′, then g is

(P,E1, E2)-invariant.

Proof of Theorem 6.5.

Proposition 6.6. If J = {K1,K2, · · · ,Km} where m 6= 0, then
J(C)−Js′(C) =

∑

I (−1)|I|+1((∪i∈IKi)(C) − Js′(C)) where I ranges over all of the possible subsets
of {1, 2, · · ·m}.
Proof of Proposition 6.6. J(C) − Js′(C) = 2 if Ki(C) = 1 for every i and 0 otherwise.

If Ki(C) = −1 for some i, then we can add or remove i from I without affecting (∪i∈IKi)(C)−Js′(C).
But then the sum on the right is automatically 0.
If Ki(C) = 1 for all i, then unless I is empty, (∪i∈IKi)(C)− Js′(C) = 2. From this, it is easy to see
that the right hand side is 2, as needed. This completes the proof. �

Lemma 6.7. Jb′ − Ja′ =
∑

moves Kend − Kstart, where both Kstart and Kend are unions of subsets
of {Ka′i} or unions of subsets of {Kb′j} and the moves are as described in Theorem 4.6. We give
each move a direction by requiring that Kstart is either the union of an odd number of Ka′i or the
union of an even number of Kb′j and Kend is either the union of an even number of Ka′i or the
union of an odd number of Kb′j.
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Proof of Lemma 6.7. Recall that the moves in Theorem 4.6 are as follows: If we are at a vertex a′

with a subset of the {Ka′i} and we want to move to the vertex b′, do the following:

If every Ka′i we have is the representative of a cycle, then travel to b′ and replace each Ka′i with
the corresponding Kb′j . If not, then do the following:
1. For each Ka′i we have that is the representative of a cycle, replace it by the corresponding Kb′j .
2. Take the earliest Ka′i that is not the representative of a cylce. Take the Kb′j that the arrow
going from this Ka′i is pointing to. Remove this Kb′j if it is in our set and add it if it is not.
3. For each Kb′j we have, replace it by the corresponding Ka′i.

Note that every move either changes where we are or changes the number of knowledge sets by
1. Thus, if we look at the pairs of K that are connected by a move, then one of them will be in
Kstart and the other will be in Kend. Thus, we can give each move a direction as described. Also,
note that for each possible Kstart, there is exactly one move from it and for each possible Kend,
there is exactly one possible move to it. Thus, each possible Kstart or Kend is counted exactly once.
The result now follows immediately from Proposition 6.6. �

Proof of Theorem 6.5 from Lemma 6.7. Now for each vertex a′ in P ′ not equal to s′ or t′, for each
possible nonempty subset of the {Ka′i}, create a vertex. This corresponds to being at a′ and having
that subset. Create a vertex s′′ corresponding to being at s′ and having K = {} and create one
vertex t′′ corresponding to being at t′ and having K = {s → t}. For each move, create an edge
between the corresponding vertices. Call the resulting graph H ′.
After we are done, every vertex excluding s′′ and t′′ has degree 2. Thus, this graph consists of a
path between s′′ and t′′ and cycles. Note that for each move, we are starting at one vertex in P ′ and
attempting to move to an adjacent vertex in P ′. Thus, we can give each move a direction according
to Lemma 6.7. For a given vertex a′ in P ′ not equal to s′ or t′ and subset of the knowledge sets in
Ja′ , one move from it attempts to go to the next vertex in P ′ and the other move attempts to go to
the previous vertex in P ′. Thus, after we make the edges directed, each vertex in H ′ except s′′ and
t′′ has indegree 1 and outdegree 1. H ′ consists of a directed path P ′

H′ from s′′ to t′′ and directed
cycles.

Definition 6.8. Given an edge e′ in G′ and a direction for this edge, define dG′(e′) to be Jv′

sink
−

Jv′

source
, where v′

sink is the vertex in G′ that e′ goes to and v′
source is the vertex in G′ that e′ comes

from.

Corollary 6.9. For any edge e′ in P ′,
dG′(e′) =

∑

e′∈Ee′
dH′(e′), where Ee′ is the set of all edges in H ′ that correspond to e′.

Proof. This follows immediately from Lemma 6.7 and the definition of H ′. �

Corollary 6.10. d(P ′, e) = d(P ′
H′ , e) +

∑

L′∈H′ d(L′, e)

Proof. This follows immediately from Corollary 6.9 and the definitions. �

Theorem 6.5 follows directly from Corollary 6.10, and this completes the proof. �

�

Proof of Theorem 6.3 from Lemma 6.4 and Theorem 6.5. To prove Theorem 6.3, first use Lemma
6.4 and then use the exact same argument as in Theorem 6.5. Since we now start with a G′ such
that all edges in the knowledge sets have the form s → v, when we create H ′, all of the knowledge
sets in H ′ will only contain paths of the form s → v, and this completes the proof. �
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s′ t′

s → a
s → b, s → c

s → b, s → a
s → b, s → c

b′a′

s → a a → b b → t

s′ t′

s → a s → b, s → a

b′a′s → a a → b b → t

s → b, s → cs → b, s → c

s → a, s → b, s → cs → a, s → b, s → c

s → a

a → b

a → b

b → t

a′

a′ b′

b′e1 e2 e3

e4 e5 e6

e7

e8

e9

e10

Figure 7. This figure illustrates the ideas used in the proof of Theorem 6.5. P ′

is shown above, and H ′ is shown below. The labels inside the vertices of H ′ show
which vertex in P ′ we are on at that point, and the labels next to the vertices of
H ′ show which K we have at that point. Take
K1 = {s → a}, K2 = {s → a, s → b}, K3 = {s → b, s → c}, and
K4 = K1 ∪ K3 = K2 ∪ K3 = {s → a, s → b, s → c}.
e4 and e10 correspond to e1, and
dG′(e1) = Ja′ − Js′ = (K1 − Ks′) + (K3 − K4) = dH′(e4) + dH′(e10).
e5, e7, and e9 correspond to e2, and
dG′(e2) = Jb′ − Ja′ = (K2 + K3 − K4) − (K1 + K3 − K4) = (K2 − K1) + (K3 −
K3) + (K4 − K4) = dH′(e5) + dH′(e7) + dH′(e9).
e6 and e8 correspond to e3, and
dG′(e3) = Jt′ − Jb′ = (Kt′ − K2) + (K4 − K3) = dH′(e6) + dH′(e8).

�

6.3. Construction of gP . In this subsection, we complete the proof of Theorem 6.1 by constructing
a function gP : C → R with the given properties.

Looking at certain-knowledge G′ where each knowledge set only has paths of the form s → v,

there are only 22k

+ 1 possible knowledge sets: s → t and anything of the form ∪v∈V {s → v} for
some set of vertices V . Denote each such K by KV .

Proposition 6.11. For all subsets V, V ′ of V (G) not containing s or t, eV ·KV 6= 0 and if V ′ 6⊂ V ,
then eV ′ · KV = 0.

Lemma 6.12. For any set of values {aV }, there is a function g : C → R such that for all subsets V
of V (G) not containing s or t, g · KV = aV . Furthermore, if there is a k such that if |V | ≤ k, then
g · KV = 0, then writing g =

∑

V ′ cV ′eV ′ , if |V ′| ≤ k then cV ′ = 0.

Proof of Lemma 6.12. To see the first part of the lemma, pick an ordering of the V such that no V
is a subset of an earlier V . Now pick each cV in that order. Since if V ′ 6⊂ V , then eV ′ ·KV = 0 and
eV ·KV 6= 0, this means that when we pick each cV , we can change the value of aV without affecting
any earlier aV . Thus, we can freely choose each aV .
To see the second part of the lemma, let V be a set such that cV 6= 0 and for all proper subsets V ′

of V , cV ′ = 0. Then by the above proposition, aV 6= 0, as needed. This completes the proof. �
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Lemma 6.13. If we have a directed path P in G, a partition of the edges of P into two sets E1 and
E2, and a mapping b : V (G′) → {0, 1} × {0, 1} such that if we write b(v′) = (b1(v

′), b2(v
′)), then:

1. b1(s
′) = b2(s

′) = 0.
2. b1(t

′) = b2(t
′) = 1.

3. If bi(v
′
1) 6= bi(v

′
2), i ∈ {1, 2}, then there is no edge with label in Ei between v′

1 and v′
2.

Then if we also have a g : C → R such that g · Jv′ = b2(v
′) − b1(v

′) for all v′ ∈ V (G′), then for any
directed cycle L′ in G′ using only the edges of P , fL′,P,E1,E2

· g = 0 and for any path P ′ in G′ from
s′ to t′ using only the edges of P , fP ′,P,E1,E2

· g = 1.

Proof of Lemma 6.13. This follows immediately from the following proposition:

Proposition 6.14. With the above conditions, if P ′′ is a path in G′ from s′ to a′, then
1
2 (

∑

e∈E1
d(P ′′, e) − ∑

e∈E2
d(P ′′, e)) · g = 1

2 (b2(a
′) + b1(a

′))

Proof of Proposition 6.14. We prove this by induction. It is clearly true for paths of length 0. As-
sume we have a path P ′′ from s′ to some vertex v′

1 ∈ V (G′) for which the proposition is true and
an additional edge e′ from v′

1 to some vertex v′
2 ∈ V (G′). Let P ′′′ be P ′′ with the edge e′ added.

If e′ has a label in E1, then b1(v
′
2) = b1(v

′
1), so

1
2 (

∑

e∈E1
d(P ′′′, e)−∑

e∈E2
d(P ′′′, e))·g = 1

2 (
∑

e∈E1
d(P ′′, e)−∑

e∈E2
d(P ′′, e))·g+ 1

2 (g·Jv′

2
)− 1

2 (g·Jv′

1
)

= 1
2 (b2(v

′
1) + b1(v

′
1)) + 1

2 (b2(v
′
2) − b1(v

′
2)) − 1

2 (b2(v
′
1) − b1(v

′
1))

= 1
2 (b2(v

′
2) + b1(v

′
2)), as needed.

Similarly, if e′ has a label in E2, then b2(v
′
2) = b2(v

′
1), so

1
2 (

∑

e∈E1
d(P ′′′, e)−∑

e∈E2
d(P ′′′, e))·g = 1

2 (
∑

e∈E1
d(P ′′, e)−∑

e∈E2
d(P ′′, e))·g− 1

2 (g·Jv′

2
)+ 1

2 (g·Jv′

1
)

= 1
2 (b2(v

′
1) + b1(v

′
1)) + 1

2 (−b2(v
′
2) + b1(v

′
2)) − 1

2 (−b2(v
′
1) + b1(v

′
1))

= 1
2 (b2(v

′
2) + b1(v

′
2)), as needed.

This completes the proof. �

�

Lemma 6.15. If there is a set of vertices W in G′ such that any path P ′ from s′ to t′ using only
edges with labels in P contains a vertex w′ ∈ W incident with both an edge in P ′ with label in E1

and an edge in P ′ with label in E2, then it is possible to find a mapping b : V (G′) → {0, 1} × {0, 1}
as described in Lemma 6.13 so that all vertices v′ such that b1(v

′) 6= b2(v
′) are in W .

Proof of Lemma 6.15. Delete all edges in G′ whose labels are not in P . Treat all edges in E1 as
equivalent and treat all edges in E2 as equivalent.
Let W ′ be a subset of W for which the same condition holds and if we remove any vertex from W ′,
this condition no longer holds.
If for some a′, b′, c′, and i ∈ {1, 2} there is an edge between vertex a′ and b′ with label in Ei and an
edge between vertex b′ and c′ with label in Ei, then add an edge with label in Ei between a′ and c′.
Keep on doing this until doing so does not add any new edges.

Remark 6.16. Such a step cannot affect the given condition. To see this, assume this creates a
new path P ′ violating the condition. P ′ must contain this new edge. But then we can replace this
new edge by the two old edges to obtain a path we already had that still violates the condition

If a′ and b′ are two adjacent vertices in V (G′) that are not in W ′, then we require that b(a′) = b(b′).
This partitions the vertices of G′ that are not in W ′ into connected components. Since any path
from s′ to t′ contains a vertex in W ′, s′ and t′ are in different componenets. Set b(s′) = (0, 0) and
b(t′) = (1, 1). Call the component with s′ the starting component and call the component with t′

the ending component. For all vertices v′ in the starting component, b(v′) = (0, 0). For all vertices
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a, b, c, d

a, b, d

a, c, d

c c, d

d a, d

b, d

a, c

a, b, c

b, c, d

a

b a, b

b, c

s′ t′

b = (0, 0)

b = (1, 1)

b = (0, 1)

b = (1, 0)

Figure 8. This is a partition of the vertices in G′ into 4 groups with a mapping
b : V (G′) → {0, 1} × {0, 1} as described in Lemma 6.13, where G′ is a certain-
knowledge switching network such that all knowledge sets contain only edges of the
form s → v, P = s → a → b → c → d → t, E1 = {s → a, b → c, d → t}, and
E2 = {a → b, c → d}. In this diagram, each vertex has knowledge set KV , where V
is the set of vertices inside of the vertex. Edges with label in E1 are blue and edges
with label in E2 are red. Taking g = 4e{a,b,c} − 4e{b,c,d}, g · Ja′ = b2(a

′) − b1(a
′).

v′ in the ending component, b(v′) = (1, 1).

For each vertex w′ ∈ W ′, there is a path P ′
W ′ in G′ from s′ to t′ containing w′ where w′ is incident

with both an edge in P ′
w′ with label in E1 and an edge in P ′

w′ with label in E2 and this is true for
no other vertex in W ′. Otherwise, we could have removed w′ from W ′ and the condition would still
hold. Now note that if P ′

w′ contains any other vertices in W ′, they can be bypassed using the added
edges. Thus, we can obtain a P ′

w′ containing w′ and no other vertices in W ′. Thus, each w′ ∈ W ′

is adjacent to at least one vertex in the starting component and one vertex in the ending component.

Given a vertex v′
1 in the starting component that is adjacent to w′ and a vertex v′

2 in the end-
ing component that is adjacent to w′, we can create a path P ′

w′ by taking the path from s′ to v′
1,

taking the edge e′1 from v′
1 to w′, taking the edge e′2 from w′ to v′

2, and taking the path from v′
2 to

t′. e′1 and e′2 must have different labels, or else we could bypass w′ entirely.

Note that the label of e′1 cannot depend on the choice of v′
1, or else we could choose it to have



26 AARON POTECHIN

the same label as e′2. Similarly, the label of e′2 cannot depend on the choice of v′
2. If e′1 has label in

E1 and e′2 has label in E2, then set b(w′) = (0, 1). If e′1 has label in E2 and e′2 has label in E1, then
set b(w′) = (1, 0). We have now chosen b(w′) for all w′ ∈ W ′.

If two vertices w′
1 and w′

2 in W ′ are adjacent, then with the added edges, there must be a ver-
tex v′ of G′ that is in the starting or ending component and is adjacent to both w′

1 and w′
2. From

the above, we must have that b(w′
1) = b(w′

2).

It is now easy to verify that at this point, all conditions of Lemma 6.13 are satisfied:
1. If v′ and w′ are adjacent, b(v′) = (0, 0), and b(w′) = (0, 1), then because of the way b(w′) was
chosen, the edge between them must have label in E1.
2. If v′ and w′ are adjacent, b(v′) = (0, 0), and b(w′) = (1, 0), then because of the way b(w′) was
chosen, the edge between them must have label in E2.
3. If v′ and w′ are adjacent, b(v′) = (1, 1), and b(w′) = (0, 1), then because of the way b(w′) was
chosen, the edge between them must have label in E2.
4. If v′ and w′ are adjacent, b(v′) = (1, 1), and b(w′) = (1, 0), then because of the way b(w′) was
chosen, the edge between them must have label in E1.
5. No vertex in the starting component is adjacent to a vertex in the ending component.
6. If w′

1, w
′
2 ∈ W ′ are adjacent, then b(w′

1) = b(w′
2).

If there is a vertex v′ such that b(v′) has not yet been determined, then v′ cannot be adjacent
to any vertices in the starting component or the ending component. Also, v′ cannot be adjacent
to any vertices in W ′, as otherwise with the added edges v′ would be adjacent to a vertex in the
starting component or a vertex in the ending component. We can set b(v′) = (0, 0) for all such v′,
and all of the conditions of Lemma 6.13 will still be satisifed. This completes the proof. �

The final Lemma we need is a slight modification of Lemma 3.8:

Lemma 6.17. If P is the path s → v1, v1 → v2, · · · , v2k → t, then setting s = v0, t = v2k+1, taking
E1 to be all edges of the form vi → vi+1 where i is even and taking E2 to be the remaining edges, then
if G′ is a certain-knowledge switching network, any path P ′ in G′ from s′ to t′ using only the edges
in P must pass through at least one vertex a′ such that Ka′ 6= Kt′ and the union of the endpoints
of the edges in Ka′ contains at least k + 1 of v1, v2, · · · , v2k and contains no other vertices except s
and t. Furthermore, a′ is incident with both an edge in P ′ with label in E1 and an edge in P ′ with
label in E2.

Proof of Lemma 6.17. The proof is identical to the proof of Lemma 3.8, except that in the inductive
hypothesis we also require that a′ is incident with both an edge in P ′ with label in E1 and an edge
in P ′ with label in E2. �

Proof of Theorem 6.1. We put everything together as follows. Let V (G) = {s, v1, · · · , v2k , t} and let
P be the path s → v1, v1 → v2, · · · , v2k → t. Using Lemma 6.17, we obtain a W which we can use
in Lemma 6.15. This gives us a mapping b : V (G′) → {0, 1} × {0, 1} which we can use in Lemma
6.13. By Lemma 6.12, we can obtain a function gP : C → R that satisfies all of the conditions of
Lemma 6.13, so for any directed cycle L′ in G′ using only the edges of P , fL′,P,E1,E2

· gP = 0 and
for any path P ′ in G′ from s′ to t′ using only the edges of P , fP ′,P,E1,E2

· gP = 1. Also, by Lemma
6.12, if |V | ≤ k, ĝP V = 0. Using Theorem 6.3, gP is (P,E1, E2)-invariant and z(gP , P, E1, E2) = 1,
as needed.

�



BOUNDS ON MONOTONE SWITCHING NETWORKS FOR DIRECTED CONNECTIVITY 27

7. Proof of the Main Result

We will now modify the above ideas slightly to prove Theorem 1.3.

Throughout this section, we will take partitions (W1,W2) of the vertices of G, where s ∈ W1

and t ∈ W2. Also, in this section, unless we state that G′ solves directed connectivity on V (G), we
do not require that there is a path from s′ to t′ in G′ if and only if there is a path from s to t in G.
Instead, we only require that if there is a path from s′ to t′ in G′, then there must be a path from
s to t in G. It is easily verified that this is true if and only if we can assign states of knowledge to
the vertices of G′ so that G′ satisfies the properties of Proposition 4.4

Theorem 7.1. Given a switching network G′ solving directed connectivity on V (G), we can create
a switching network G′′ such that:
1. |V (G′′)| ≤ N |V (G′)|.
2. All of the edges except s → t in the knowledge sets of G′′ have the form s → v for some v ∈ W1

or v → t for some v ∈ W2.
3. If P is a path in G from s to t that does not have any edges of the form a → b where a ∈ W2 and
b ∈ W1, then there is a path from s′′ to t′′ in G′′ using only the edges of P .

Proof. The proof is similar to the proof of Theorem 4.5. First, for each edge e′ with label of the
form a → b where a ∈ W2 and b ∈ W1 in G′, replace it with two edges, one with label s → b and
the other with label a → t. After these replacements, we still have that if there is a path from s′ to
t′ in G′, then there must be a path from s to t in G.

Again, construct G′′ by taking N copies of G′ and making the s′ for each copy equal to the t′

of the previous copy. Take s′′ to be the s′ of the first copy and take t′ to be the t′ of the last copy.
Now for each path in G′′, we keep track of a state of knowledge J as follows:

1. If we use an edge of the form a → b where a, b ∈ W1, then for each knowledge set K in J
that includes the edge s → a, add the edge s → b.
2. If we use an edge of the form a → b where a ∈ W1 and b ∈ W2, then for each knowledge set K in
J that includes the edges s → a and b → t, add the edge s → t.
3. If we use an edge of the form a → b where a, b ∈ W2, then for each knowledge set K in J that
includes the edge b → t, add the edge a → t.
Take the J for each vertex to be the union of all J that could be obtained in this way. It is easily
verified that property 2 of Proposition 4.4 is satisfied.

For each time a path goes through a copy of G′, each K in J must obtain the edge s → t or
at least one new edge of the form s → v for some v ∈ W1 or v → t for some v ∈ W2. Thus,
Jt′′ = {{s → t}}, as needed. This completes the proof. �

Lemma 7.2. If for a function g : C → R, a directed path P in G from s to t that does not use any
edges of the form v → w where v ∈ W2 and w ∈ W1, and a partition (E1, E2) of the edges of P ,
fP ′,P,E1,E2

·g is the same for all G′ such that for all of its states of knowledge, each of the knowledge
sets contains only edges of the form s → v for some v ∈ W1 or v → t for some v ∈ W2 and all paths
P ′ from s′ to t′ in G′, then g is (P,E1, E2)-invariant.

Proof. This can be proved in the same way as Lemma 6.4. �
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Theorem 7.3. If for a function g : C → R, a directed path P in G that does not use any edges of
the form v → w where v ∈ W2 and w ∈ W1, and a partition (E1, E2) of the edges of P , for any
certain-knowledge G′ such that all of the edges in the knowledge sets have the form s → v for some
v ∈ W1 or v → T for some v ∈ W2, fP ′,P,E1,E2

· g is the same for all P ′ and fL′,P,E1,E2
· g = 0for

all directed cycles L′ in G′ using only the edges of P , then for any G′, f · g is the same for all P ′.

Proof. First, use Lemma 7.2. Then apply the reasoning used in the proof of Theorem 6.5. This
completes the proof. �

Definition 7.4. For a set of vertices I that does not contain s or t, define KI to be the knowledge set
{s → v1, · · · , s → vk, w1 → t, · · · , wl → t}, where v1, · · · vk are the vertices in I ∩ W1 and w1, · · ·wl

are the vertices in I ∩ W2.

Definition 7.5. If I is nonempty, define gI(C) to be:
0 if there exists a vertex v such that v /∈ I and v ∈ W1 ∩ C or v ∈ W2 ∩ Cc

2N−3(−1)1+|I∩W1∩Cc|+|I∩W2∩C| otherwise
Define g{}(C) to be:

2N−3 if C is W1 or W2

0 otherwise

Lemma 7.6. gI is the unique function such that gI · KI′ = 1 if I = I ′ and 0 otherwise.

Proof. If I is nonempty,
gI ·KI′ = (gI · e{})− 23−N

∑

C∈CI′
gI(C), where CI′ is the set of all cuts C such that KI′(C) = −1.

gI · e{} = 0, so

gI · KI′ = −23−N
∑

C∈CI′
gI(C).

KI′(C) = −1 if and only if for all vertices v ∈ I ′, v ∈ W1 ∩ C or v ∈ W2 ∩ Cc. Thus, CI′ is
the set of all cuts such that for all vertices v ∈ I ′, v ∈ W1 ∩ C or v ∈ W2 ∩ Cc.

Let DI be the set of all cuts such that there no vertex v such that v /∈ I and v ∈ W1 ∩ C or
v ∈ W2 ∩ Cc. If C /∈ DI , then gI(C) = 0.

gI · KI′ =
∑

C∈(CI′∩DI) (−1)|I∩W1∩Cc|+|I∩W2∩C|.

If I ′ contains a vertex not in I, then CI′ ∩ DI is empty. If I ′ is a subset of I and I contains a
vertex v not in I ′, then v can either be in C or Cc, and these cuts cancel out, so gI ·KI′ = 0. Finally,
if I = I ′, then gI · KI′ = 1, as needed.

For any nonempty I ′, KI′(C) = −1 if C = W1 and KI′(C) = −1 if C = W2. Thus, we clearly
have that g{} · KI′ = 0, and it is easily checked that g{} · K{} = 1.

Assume these functions are not unique. Then there is a g such that g 6= 0 and g · KI = 0 for
all I. But the given gI must be linearly independent, so they form a basis for RC , so if g · KI = 0
for all I, then g = 0. Contradiction. This completes the proof. �

Proof of Theorem 1.3. Take N = 2k + 2. Let m = 2k. Regardless of what W1 and W2 are, we can
find a path P in G from s to t of length 2k +1 that does not have any edge of the form a → b where
a ∈ W2 and b ∈ W1. By Lemma 6.17, taking the usual E1 and E2, if W is the set all KI such that
|I| > k, then any path P ′ from s′ to t′ in G′ must go through a vertex in W incident with both an
edge with label in E1 and an edge with label in E2.
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Now note that we can remove all KI such that |I| > 2k + 1 from W and it will still be valid.
To see this, note that it is impossible to go from a KI where |I| ≤ k to a KI with |I| > 2k + 1
without either going through t′ or using an edge from both E1 and E2.

Combining Lemma 6.15 and Lemma 6.13, using Lemma 7.6 to find the corresponding g, we have
that g · g ≤ 2m(m6)m4k ≤ 2mm5k for large enough m. If C differs by more than 2k + 1 from the C
where C = W2, then g(C) = 0. Also,

∑

a′∈V (G′) |Ja′ · g| ≥ 1.

Let M2 = 1
g·g , and let g′ = Mg. Now

∑

a′∈V (G′) |Ja′ · g| ≥ M .

Since we can freely choose W1 and W2, from basic coding theory, we can create at least 2m

m5k mutually

orthonormal g′, where each M2 ≥ 1
2mm5k .

Now if we add more vertices to G, we can still use these same paths using these m vertices and
the corresponding g′. If m ≤ N

1
3 , then we can pick at least N

1
2
k distinct subsets of size m of

V (G)\s\t such that any two subsets have at most k vertices in common.

Thus, in total, we have K = N
1
2
k 2m

m5k orthonormal g′. If G′ solves directed connectivity on N

vertices, following the same reasoning as in the proof of Theorem 5.23, N ′ ≥
√

KM2 = N
1
4

k

m5k .

Taking m to be about N
1
40 , we have that

N ′ ≥ N
1

320
log N for large enough N . This completes the proof. �
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