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Abstract

In this paper we study the possibility of proving the existence of one-way
functions based on average case hardness. It is well-known that if there ex-
ists a polynomial-time sampler that outputs instance-solution pairs such that
the distribution on the instances is hard on average, then one-way functions
exist. We study the possibility of constructing such a sampler based on the
assumption that there exists a sampler that outputs only instances, where the
distribution on the instances is hard on the average. Namely, we study the
possibility of ”modifying” an ordinary sampler S that outputs (only) hard in-
stances of some search problem R, to a sampler that outputs instance-solution
pairs of the same search problem R. We show that under some restriction,
not every sampler can be so modified. That is, we show that if some hard
problem with certain properties exists (which, in particular is implied by the
existence of one-way permutations), then for every polynomial λ, there ex-
ists a search problem R and a polynomial-time sampler S such that (1) R
is hard under the distribution induced by S, and (2) there is no sampler S∗

with randomness complexity bounded by λ, that outputs instance-solution
pairs of R, where the distribution on the instances of S∗ is closely related
to that of S (i.e., dominates it). A possible interpretation of our result is
that a generic approach for transforming samplers of instances to samplers of
instance-solution pairs cannot succeed.

1 Introduction

The existence of one-way functions is a necessary condition for nearly all crypto-
graphic applications, and is sufficient for a large portion of them. Since establish-
ing the existence of one-way functions does not seem reachable these days, as it
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implies that P 6= NP , a line of papers studied the possibility of proving the exis-
tence of one-way functions based on the assumption thatP 6= NP ([3],[4],[2],[1]).
These works presented limitations on possible reductions of the security of one-
way functions to NP-hardness. Specifically, these works show that, under certain
assumptions, certain reductions of this type do not exist.

The starting point of this paper is the observation that the transformations stud-
ied by these papers are actually supposed to overcome two gaps at once: (1) the
gap between average-case hardness and worst-case hardness; and (2) the gap be-
tween one-way functions and average-case hardness, where ”average case hard-
ness” refers to a search problem R and a sampler S such that the search problem
R is hard on average under the distribution induced by S. Since the problem of
basing average-case hardness on worst-case hardness is hard by itself, it is inviting
to study the seemingly more modest task of basing one-way functions on average-
case hardness.

The assumption that average case hardness exists (as defined above), implies
the existence of objects (namely, R and S as above) one can hope to base a con-
struction of a one-way function upon (while to the best of our understanding, the
assumption that P 6= NP does not seem to imply such objects). Indeed, this paper
concentrates on the question of constructing a one-way function from average case
hardness, rather than on proving the security of one-way functions based on aver-
age case hardness. Our result gives limitations on a certain approach to achieve
this construction. Informally, our result implies that (under some restriction), this
approach cannot work for any R and S as above.

1.1 Main Result

Before describing our result, let us describe the approach we refer to above. How
can one base the construction of a one-way function on the existence of average
case hardness? As aforesaid, the assumption implies a search problem R and a
polynomial-time sampler S where the search problem R is hard under the distribu-
tion induced by S. A natural way to go is to use the following known fact, stated
informally (for more details see [5], Section 7.1.1.):

Observation 1.1 If there exists a search problem R and a polynomial-time sam-
pler S∗ that outputs instance-solution pairs of R, such that the distribution of S∗

restricted to the instances is hard on average, then one-way functions exist.

Using this fact, one can try to construct a new sampler S∗, that ”behaves” sim-
ilarly to S, but instead of outputting only instances, S∗ outputs instance-solution
pairs (under R). That is, the distribution induced by S∗, when restricted to the
instances only, is similar to the distribution of S. Thus, the sampler S∗ ”inherits”
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its hardness from S. In fact, in order for S∗ to inherit the hardness of S, it is suffi-
cient that the (restricted) distribution of S∗ dominates that of S (see Section 2 for
definitions). Upon constructing such S∗, one can use Observation 1.1 to construct
the one-way function. Thus, this approach of basing one-way functions on average
case hardness calls for the following challenge:
Desired Construction:
Given a search problem R and a polynomial-time sampler S, where R is hard
under the distribution induced by S, construct a polynomial-time sampler S∗ that
outputs instance-solution pairs of R, such that the distribution of S∗ restricted to
the instances, dominates the distribution of S.

Informally, our main result is that for any fixed polynomial bounding the ran-
domness complexity of S∗, the Desired Construction cannot always exist. That is,
under plausible assumptions (which in particular are implied by the existence of
one-way permutations), for any polynomial λ there exists a search problem R and
a polynomial time sampler S such that R is hard under S, but where a sampler S∗

as in the Desired Construction with randomness complexity bounded by λ, does
not exist.

We note, that the search problem R we construct is polynomially bounded
(i.e., the lengths of the solutions are polynomially bounded in the lengths of the
instances), but not polynomial time verifiable. Rather, it can be verified in arbi-
trarily small super-polynomial time. This still leaves open the possibility that for
any R and S, where R is polynomial time verifiable, the Desired Construction ex-
ists (even for some universal polynomial randomness complexity of S∗). However,
we note that in order for the Desired Construction to yield a one-way function,
there is no need that R be polynomial time verifiable. Thus, one might hope that
the construction exists also when R is not polynomial time verifiable. While we
cannot eliminate this possibility, we can give arbitrarily strong polynomial lower
bounds on the randomness complexity of S∗ that achieves this construction. (For a
discussion on this issue see Section 4.2.)

We also note that placing no restrictions on R and S, the result is trivial (even
without fixing the randomness complexity of S∗):

• If the lengths of the solutions in R is not polynomially bounded in the lengths
of the instances, then trivially no such S∗ exists simply because it cannot
write the solutions in polynomial time.

• If the lengths of the solutions in R is polynomially bounded in the lengths of
the instances, but R is super-exponentially (worst-case) hard, then again no
such S∗ exists: take S to be an ”onto sampler” (i.e., a sampler that outputs
any instance with positive probability). Then the assumption that a sam-
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pler S∗ as above exists implies that R can be solved in the worst case in
exponential time, in contradiction: Given some instance x, one can find an
instance-solution pair where the instance is x, by performing an exhaustive
search on the randomness for S∗ until it outputs an appropriate pair (notice
that S∗ outputs for every x a pair where the instance is x, since the distribu-
tion on the instances in S∗ should dominate S).

While for the first case above such R and S can be constructed (simply by padding)
from the basic assumption that hardness on average exists (as defined above), the
second case seems to require a stronger assumption regarding the hardness on av-
erage.

1.2 Technique

In the following we explain informally the idea of our proof. Suppose, as a mental
experiment, that for some R and S there does exist S∗ as in the Desired Construc-
tion. Then, although R is hard under S, using S∗ one can sample random instance-
solution pairs of R. Intuitively, given a specific instance one cannot find a solution,
but one can always easily find a random instance together with a solution. More-
over, one can obtain instance-solution pairs that relate to arbitrary coin-vectors for
S∗ at his choice. In light of these observations, the basic idea in our proof is the
following. Given some R′, S′, we construct R and S such that:

• If R′ is hard under S′ then R is hard under S (that is, the pair (R, S) ”inherit”
the hardness of the pair (R′, S′)). This is achieved by ”embedding” R′ in R
and S′ in S. That is, any instance of R′ is embedded in some instance of R,
and any solution for an instance x of R ”embeds” a solution for the instance
of R′ that is embedded in x. Moreover, roughly speaking, S imposes the
distribution of S′ on the embedded instances of R′.

• If an S∗ exists for (R, S) then, if (x, y) ∈ R, the solution y helps find-
ing pairs (x̂, ŷ) for x̂’s that are ”close” to x. That is, for any x̂ that is a
neighbour of x under some (Hamming-like) metric, the solution y contains
a coin-vector for S∗ that yield an instance-solution pair of the form (x̂, ŷ).
Thus, on input a specific instance x for which one wants to find a solution,
through repeated invocations of S∗, one can start from an arbitrary instance-
solution pair, and go through a sequence of pairs, where the instance in each
pair is closer to x than the preceding one by one unit under the aforemen-
tioned metric, until reaching x. By choosing an appropriate coin-vector for
S∗ from the solution in each pair, one can indeed have the instance in the
next pair closer to x.
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Thus, the assumption that S∗ exists for (R, S), yields that it is easy to find an
instance-solution pair with respect to R, for any specific instance. It follows that R
is easy in the worst case. Now, since R ”embeds” R′, it follows that R′ is also easy
in the worst case, in contradiction.

It should be noted, however, that in order for this idea to work, some techni-
calities need to be dealt with, and these yield some restrictions on R′ and S′ (but,
as aforementioned, in particular, the assumption that one-way permutations exist
yields R′ and S′ as required for our proof).

2 Preliminaries

Standard Notation and Conventions For 1 ≤ i ≤ ` we define e`
i , 0i−110`−i.

Given a TM M we denote by 〈M〉 the code of M . We say that a function f is
noticeable if there exists a positive polynomial q such that for large enough n’s,
f(n) ≥ 1/q(n). Given a string x we denote by |x| the length of x. We use in-
terchangeably the terms search problem and relation. Given a search problem R
we say that x is a YES-instance of R if x has a solution under R, that is, if there
exists y such that (x, y) ∈ R. We say that a search problem is total if all strings
are YES-instances of that problem. We say that a search problem is polynomially
bounded if there exists some polynomial q such that for every y which is a solution
for x, it holds that |y| ≤ q(|x|). When defining strings in the form (·), (·, ·) etc., we
implicitly assume some 1-1, onto, efficient, efficiently invertible encoding1 from⋃

n∈N (Σ∗)n to Σ∗. We will use the term support in relation to an ensemble of ran-
dom variables to denote the sequence of supports of the variables in the ensemble.

In our proof we would like to enumerate all samplers. However, since any rea-
sonable definition of a sampler assumes some structural properties (for example, to
the least the requirement that it always halt), it is not clear how one can enumerate
all samplers. Instead, we enumerate a superset of the set of samplers, which we
call potential samplers, which are basically just probabilistic TM’s.

Definition 2.1 (Potential Sampler) A potential sampler is a TM with 2 input tapes.
The input to the first tape is simply called ”input”, and the input to the second tape
is called ”randomness”.

We implicitly assume some enumeration on all such machines. We explain
how we interpret a potential sampler. The run of a potential sampler on some

1For simplicity we assume |(x, y)| = |x| + |y|. While this is not the case, it will make the
presentation clearer. Clearly, this technicality can be handled, without any essential change in the
statements and proofs.
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input, when not stating explicitly the randomness, is defined as a random variable
(ranging over all strings plus a special ”not halting” symbol), which is the result
of running the machine on a random infinite vector of coins (equivalently, one
can think of the machine as flipping coins on the fly). We define the output of
a potential sampler given some input and some explicit randomness as the output
on that input and randomness, and for sake of completeness, we define the output
in the case the sampler requires more coins than the explicit randomness, as the
failure symbol ⊥.

Definition 2.2 (Sampler) A sampler is a potential sampler that on input 1n, with
probability 1 halts and outputs a string of length n.

We explain how we interpret a sampler. Typically we will run a sampler on in-
puts of the form 1n (which will be referred to as ”input”). In such a case, for a sam-
pler S, the term S(1n) will be a random variable with values from Σn. Thus, any
sampler S defines an ensemble of random variables {S(1n)}n∈N. When needed,
we will relate explicitly to the randomness as (a second) input to the sampler.

We note, that our rigorous definition of a sampler is for sake of formality of the
proof, and is arbitrary. To the best of our knowledge, if there exists a sampler under
any ”reasonable” definition that generates hard instances of R, then there exists a
sampler under our definition that generates hard instances of R (see definition of
hardness below).

Definition 2.3 (Onto Sampler) A sampler is an onto sampler if it outputs every
string with positive probability. Formally, a sampler is an onto sampler if its sup-
port is {{0, 1}n}n∈N.

Definition 2.4 (Randomness Complexity of a Potential Sampler) We say that
the function f is the randomness complexity of some potential sampler, if on input
1n, the maximal number of coins it uses is f(n).

We also define the following transformation, that transforms any machine M
that output pairs of strings, to a machine M̃ such that on any input and randomness
for which M outputs a pair, M̃ outputs only the first element in the pair:
Unpairing Transformation:
On input 〈M〉 (a code of a potential sampler), the transformation outputs the code
of the following potential sampler M̃ :
On input x and randomness r, the machine M̃ runs M on x with randomness r, if
it halts it checks if the output is a pair, and if it is, it deletes the second element in
the pair.
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It is easy to see that the transformation is efficiently computable and that the
running time of M̃ is linearly related to that of M . From now on, given a potential
sampler M , we denote by M̃ the potential sampler who’s code is the result of
applying the transformation on 〈M〉.

Definition 2.5 (Pairs-Sampler) A pairs-sampler is a potential sampler M that on
every input and randomness outputs a pair, and where M̃ is a sampler according
to Definition 2.2 (that is, on input 1n, with probability 1 M halts and outputs a pair
where the first element is of length n).

Throughout the paper we consider search problems that are not total, along
with samplers that may not output only YES-instances (for these search problems).
The following definition relates to this setting. It states that in the aforementioned
setting, a potential solver A fails on a search problem R under the sampler S if
when running A on random instances output by S, the event that a YES-instance
is output and A does not respond with a correct solution, is noticeable. (Trivially,
it implies that S must output YES-instances with noticeable probability.) We then
say that R is hard under S if every potential probabilistic polynomial time solver
A fails on R under S.

Definition 2.6 (Failure of a Solver, Hardness of a Search Problem Under a
Sampler) For an algorithm A, a search problem R and a sampler S we say that A
fails on R under S if:

Pr
x←S(1n)

[(x,A(x)) 6∈ R ∧ ∃y(x, y) ∈ R]

is noticeable (where the probability is taken both over the randomness of S, and
the randomness of A).

We say that R is hard under S if every probabilistic polynomial time algorithm
fails on R under S.

We note that one can alternatively define the failure of a solver, instead of fail-
ing with noticeable probability (on the aforementioned distribution), as not failing
with negligible probability. The difference is that now we only require that the
solver fail infinitely often, and not on every n. Our main result is true also under
that definition, and the changes in the proof are minor.

Definition 2.7 (Domination) Given two ensembles of random variables {Xn}n∈N
and {X ′

n}n∈N, we say that {Xn} dominates {X ′
n} if there exists a positive polyno-

mial q such that for any n and any x ∈ X ′
n, Pr[Xn = x] ≥ (1/q(n)) Pr[X ′

n = x].
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As aforementioned, every sampler induces an ensemble of random variables.
For brevity, sometimes we will say that a sampler S dominates a sampler S′ to
mean that the ensemble induced by S dominates that of S′.

The following facts, which will be used through the paper, are straightforward:

Fact 2.8 If a sampler S dominates a sampler S′ and S′ is an onto sampler then so
is S.

Fact 2.9 Let {Xn}n∈N be an ensemble that dominates the ensemble {X ′
n}n∈N and

let {Sn}n∈N be a sequence of sets. Suppose Pr[X ′
n ∈ Sn] is noticeable. Then

Pr[Xn ∈ Sn] is noticeable.

3 Main Result

Theorem 3.1 Suppose that there exists a polynomially bounded total search prob-
lem R′ that is hard under some polynomial time onto sampler. Then, for any super-
polynomial, time-constructible function τ , and every polynomial λ(n) ≥ n, there
exists a search problem R and a polynomial time sampler S such that:

• R is hard under S.

• There is no polynomial time pairs-sampler S∗ with randomness complex-
ity bounded by λ, such that the first elements in the pairs output by S∗ are
distributed in a distribution that dominates {S(1n)}n∈N, and the second ele-
ment in every pair is a solution for the first element with respect to R if such
a solution exists, and any string otherwise.

• The relation R is polynomially bounded, and can be verified in time τ(n)
using one oracle call to a verifier for R′.

We note that the resulted search problem R is not total, and that the sampler S
does not output only YES-instances. Nevertheless, the existence of a pairs-sampler
S∗ as (asserted not to exist) in the theorem for such R and S implies the existence
of one-way functions.
Proof: Let R′ be a search problem that is hard under the polynomial time sam-
pler S′, from the hypothesis. Let τ be some super polynomial time-constructible
function (for sake of concreteness one can think of τ(n) = nlog∗(n)). Let τ ′ be a
(smaller) super polynomial time-constructible function to be defined later. Let λ
be a polynomial. We define S and R as follows:
Definition of R:
((〈M〉, x), (w, r1, . . . , r|x|)) ∈ R if and only if the following conditions hold:
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• (x,w) ∈ R′

• For all 1 ≤ i ≤ |x| it holds that |ri| ≤ λ(|〈M〉|+ |x|).
• For all 1 ≤ i ≤ |x|, on input 1|〈M〉|+|x| and randomness ri, the potential

sampler M̃ outputs (〈M〉, x⊕ e
|x|
i ) in at most τ ′(|〈M〉|+ |x|) steps.

In the following we describe the main ideas behind the definitions (disregard-
ing issues of running time and randomness complexity, which will be dealt later).
Suppose that M is some potential sampler (we will eventually consider M = S∗).
Then, if (w, r1, . . . , r|x|) is a solution for (〈M〉, x), then the ri’s, when used as
randomness for M (with the appropriate input length), output an instance-solution
pair where in the instance, the first element (the machine code) is again the code
of the same machine M , and the second element in the instance is x with the i-th
bit flipped. Thus, using the appropriate ri from the solution as randomness for
M , one can basically ”flip any bit of x at his choice” without changing the (code
of) the machine in the instance. Now, suppose the machine M is guaranteed to
always output legal pairs with respect to R, when the instance in the pair is a YES-
instance. Then, if the new instance (with the ”flipped” bit) is a YES-instance, the
new pair output by M is again a legal pair. It follows, that if all involved instances
are YES-instances, then by repeated invocations of M (each time using the appro-
priate ri from the last solution), one can sequentially flip bit after bit, and arrive
at any desired x′. We then note that if (w, r1, . . . , r|x|) is a solution for (〈M〉, x)
under R, then w is a solution for x under R′. Thus, once arriving at such x′ (i.e.,
once having M output a pair ((〈M〉, x′), (w, r1, . . . , r|x|)), indeed w is a solution
for x′ under R′. It follows that R′ can be efficiently solved (in the worst case), in
contradiction to the hardness of R′ under S′.

The following definition of S, together with the hypotheses of the theorem,
guarantee that if a sampler S∗ exists, the idea outlined above works. It also guar-
antees that R is hard under S, as required. We elaborate. Since we would like to
diagonalize against all possible S∗’s, roughly speaking, we let S output (the code
of) any machine (in the left part of the instance) with noticeable probability (see
Claim 3.2). This implies (by the hypothesis of the theorem) that any potential S∗

must also output (the code of) any machine with noticeable probability (as it is
required to dominate S). If follows that one can efficiently (i.e., in expected poly-
nomial time), find randomness for S∗ that yield any desired machine. In particular,
one can efficiently find randomness for S∗ that will make it output its own code
(and again, this is true for any possible S∗). Since S∗ is assumed to output only
legal pairs with respect to R when these exist, the process described above can
then be performed, provided that legal solutions always exist. We will show that
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Since S̃∗ must be an onto-sampler (since S is an onto sampler and S̃∗ dominates
it), and since R′ is total, throughout the process described above solutions indeed
will always exist. Moreover, since the right side of the instances output by S are
distributed similar to S′, it follows that R together with S ”inherit” the hardness of
R′ under S′.
Definition of S:
On input 1n:

1. Choose i uniformly from [0, n].

2. Choose a potential sampler 〈M〉 uniformly from {0, 1}i.

3. Run S′ on 1n−i (supplying it with random coins from the randomness tape
of S itself) and denote the output by x.

4. Output (〈M〉, x).

We now formalize the ideas described above. We will use the following simple
fact, that states that every potential sampler is output by S with noticeable proba-
bility:

Fact 3.2 For every fixed potential sampler M0, the probability that S(1n) = (〈M0〉, ·)
is noticeable.

Proof: By our definition, on input 1`+|〈M0〉| the sampler S outputs a tuple (〈M〉, ·)
where |〈M〉| = |〈M0〉| with probability 1/(` + |〈M0〉|+ 1). Given that this event
occurs, the probability that 〈M〉 = 〈M0〉 is fixed (namely, it is 2−|〈M0〉|). Thus, S
outputs a tuple of the form (〈M0〉, ·) with noticeable probability. 2

In the following we show that R and S are as required. Since R′ is polyno-
mially bounded, and λ is a fixed polynomial, it is straightforward that R too is
polynomially bounded. It is easy to see that for some polynomial q (i.e., which de-
pends on the model of computation) the relation R can be verified in time q(τ ′(n))
using one oracle call to a verifier for R′. Setting τ ′ = q−1(τ) we have that the
relation R can be verified in time τ(n) using one oracle call to a verifier for R′.
Since τ is super polynomial and time-constructible, it follows that q−1(τ) is also
super polynomial and time-constructible.

We show that R is hard under S. We first explain informally the idea of the
proof. Let S0 be some polynomial time onto sampler with randomness complexity
bounded by λ. By Fact 3.2 any such S0 is chosen by S with noticeable probabil-
ity. As we will show, since R′ is total, and since τ ′ is super-polynomial, for long
enough x’s, any instance of the form (〈S0〉, x) is a YES-instance of R (and thus
a solver should succeed on it). The second element in the pair, x, is chosen by S
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(independently from the first) according to the distribution of S′. It follows that
conditioned on some noticeable event:

• The distribution on the x’s is identical to the distribution of S′.

• The instances are always YES-instances.

Now, if a solver B does not fail on R under S (according to Definition 2.6), it
does not fail on R under S conditioned on this event. This follows from (1) the
fact that when this event occurs the instance is a YES-instance (2) the event is
noticeable. Thus, failure on R under the distribution of S conditioned on this event
implies failure on R under S (with no conditioning). Moreover, according to the
definition of R, a solution for the instance (〈S0〉, x) under R contains a solution
for the instance x under R′. From all the above it follows that if B solves R under
S, it implicitly solves in particular R′ under S′. Thus the solver B can be used to
solve R′ under S′, in contradiction.

We elaborate. Let S0 be some polynomial time onto sampler with randomness
complexity bounded by λ (for example, the sampler that on input 1n outputs the
first n coins from the randomness tape, which has randomness complexity bounded
by λ since λ(n) ≥ n). Let pS̃0

be a polynomial bounding the running time of S̃0.
By Fact 3.2, S outputs a tuple of the form (〈S0〉, x) with noticeable probability.
Let n0 be such that for any n ≥ n0 it holds that τ ′(n + |〈S0〉|) ≥ pS̃0

(n + |〈S0〉|)
(clearly such number exists as τ ′ is super-polynomial).

Claim 3.3 Any instance of the form (〈S0〉, x) where |x| ≥ n0, is a YES-instance
of R.

Proof: The claim follows from the following facts:

• Every x has a w such that (x,w) ∈ R′, as R′ is total.

• S0 is an onto sampler, thus there are r1, . . . , r|x| such that for all 1 ≤ i ≤ |x|,
on input 1|〈S0〉|+|x| and randomness ri, the sampler S̃0 outputs (〈S0〉, x ⊕
e
|x|
i ).

• Since the randomness complexity of S0 is bounded by λ, it follows that for
all 1 ≤ i ≤ |x|, the randomness ri can be taken such that |ri| ≤ λ(|〈S0〉| +
|x|).

• Since |x| ≥ n0 it follows that pS̃0
(|x| + |〈S0〉|) ≤ τ ′(|x| + |〈S0〉|), thus S0

halts on the ri’s in at most τ ′(|〈S0〉|+ |x|) steps as required.
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2

Now, suppose to the contrary there exists an algorithm B that succeeds on R
under S. That is,

Pr
(〈M〉,x)←S(1n)

[((〈M〉, x), B((〈M〉, x))) 6∈ R ∧ ∃y((〈M〉, x), y) ∈ R]

is not noticeable. Then (for n ≥ |〈S0〉|):
Pr

(〈M〉,x)←S(1n)
[((〈M〉, x), B((〈M〉, x))) 6∈ R∧∃y((〈M〉, x), y) ∈ R|〈M〉 = 〈S0〉]

is also not noticeable, as we condition on a noticeable event (by Fact 3.2). More-
over, for large enough n’s

Pr
(〈M〉,x)←S(1n)

[((〈M〉, x), B((〈M〉, x))) 6∈ R ∧ ∃y((〈M〉, x), y) ∈ R|〈M〉 = 〈S0〉]
= Pr

(〈M〉,x)←S(1n)
[((〈M〉, x), B((〈M〉, x))) 6∈ R|〈M〉 = 〈S0〉],

as for large enough n’s, when 〈M〉 = 〈S0〉 there is always a solution (by Claim
3.3). Since S chooses the second element (independent of the first) according to
the distribution of S′, it follows that for large enough n’s, the last term equals

Pr
x←S′(1n−|〈S0〉|)

[((〈S0〉, x), B((〈S0〉, x))) 6∈ R].

Let B1 denote the algorithm that behaves similar to B but outputs only the first
element (out of the pair) output by B. Then the last term, which by the above is
not noticeable, upper bounds

Pr
x←S′(1n−|〈S0〉|)

[(x, B1((〈S0〉, x))) 6∈ R′],

since if B succeeds on the instance (〈S0〉, x) then the first element output by B is
a solution for x under R′. Finally, trivially

Pr
x←S′(1n−|〈S0〉|)

[(x, B1((〈S0〉, x))) 6∈ R′]

≥ Pr
x←S′(1n−|〈S0〉|)

[(x, B1((〈S0〉, x))) 6∈ R′ ∧ ∃w(x, w) ∈ R′]

(in fact equality holds here as R′ is total), and we conclude that the algorithm
B1((〈S0〉, ·)) does not fail with noticeable probability on R′ under S′, in contra-
diction to the hardness of R′ under S′. We conclude that R is hard under S.

We now prove the main claim, i.e., that there does not exist a sampler S∗ as
above. Assume towards contradiction that a sampler S∗ as above does exist. Then,
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we use (the code of) S∗ to construct an algorithm A that succeeds (i.e., does not
fail with noticeable probability) on R′ under S′, in contradiction to the assumed
hardness of R′ under S′. In fact, A will solve R′ in the worst case, in expected
polynomial time. We note, that this part of the proof only uses the fact that S∗ is
an onto sampler (which follows from the fact that the sampler S we construct is an
onto sampler). Following is the definition of A. (See elucidating remarks below.)
Definition of A:
Let pS̃∗ be a polynomial bounding the running time of S̃∗. Let n0 be such that
for any n ≥ n0 it holds that τ ′(n) ≥ pS̃∗(n) (clearly such number exists as τ ′ is
super-polynomial).

On input x of length n (an instance of R′):

1. If n + |〈S∗〉| < n0 output the answer out of a pre-computed (fixed) table.

2. Invoke S∗(1n+|〈S∗〉|) (supplying it with random coins). Denote the output
by ((〈M〉, x(0)), y).

3. If 〈M〉 6= 〈S∗〉 go back to 2. Else, If 〈M〉 = 〈S∗〉, proceed (note that in that
case |x(0)| = |x| = n).

4. Parse y to (w(0), r
(0)
1 , . . . , r

(0)
n ) (the fact that y can be so parsed will be

proven later).

5. Let i1, . . . , ih be the locations of the bits that are different between x and
x(0).
For j = 1 to h:

Use r
(j−1)
ij

as randomness for S∗(1n+|〈S∗〉|) to obtain output ((〈M〉, x(j)), (w(j), r
(j)
1 , . . . , r

(j)
n ))

(Again, the fact that the second element in the output of S∗ can be so
parsed will be proven later. Also, we will show that it must hold that 〈M〉 =
〈S∗〉 and x(j) = x(j−1) ⊕ en

ij
.)

6. Output w(h).

Before proving the correctness and the running time of the algorithm, let us
explain informally its idea. In Lines 2 and 3 the algorithm invokes S∗ (with appro-
priate input-length) until it outputs an instance-solution pair where the instance is
of the form (〈S∗〉, x(0)) (where, due to the choice of the input-length, the length
of x(0) is |x|). As we will show, this part takes expected polynomial time. The
idea is that once such an instance is output, the string y that accompanies it is a
solution with respect to R (since the instance is a YES-instance and S∗ is assumed
to output solutions when they exist). Moreover, this solution relates to the ma-
chine S∗ itself. That is, y is of the form (w(0), r

(0)
1 , . . . , r

(0)
n ), where the r

(0)
i ’s can

13



be used as randomness for S∗ to ”flip” the i-th bit of x(0), and obtain a new pair
((〈S∗〉, x(1)), (w(1), r

(1)
1 , . . . , r

(1)
n )), where x(1) is Hamming-closer to x by one bit.

Then, the same idea is repeated in the loop in Line 5. At each step j the algorithm
chooses the j-th bit that is different between x(0) and x, and using the appropriate
randomness from the previous solution (i.e., r(j−1)

ij
) ”flips” it to become Hamming-

closer to x by one bit. After reaching x (that is, after having S∗ output a pair where
the instance is (〈S∗〉, x)), in Line 6, the algorithm outputs w(h), which, by the def-
inition of R, and since S∗ always outputs legal solutions with respect to R when
these exist, is a solution for x under R′.

We proceed to a formal proof.

Claim 3.4 The algorithm A runs in expected polynomial time.

Proof: We first show that the algorithm reaches Line 4 in expected polynomial
time. By Fact 3.2 the probability of the event that on input 1n+|〈S∗〉| the sampler S
outputs (〈S∗〉, x(0)) (for some x(0) with |x(0)| = n) is noticeable in n.

Since by assumption S̃∗ dominates S, it follows that the event that on input
1n+|〈S∗〉| the sampler S∗ outputs (〈S∗〉, x(0)) (for some x(0) with |x(0)| = n = |x|)
is also noticeable in n. It follows that the algorithm reaches Line 4 in expected
polynomial time. It is easy to see (considering that the running time of S∗ is poly-
nomial) that Lines 5,6 run in (strict) polynomial time. The claim follows. 2

We now prove the correctness of the algorithm. That is, we show that the output
of the algorithm A on input x is always a solution for x under R′.

Claim 3.5 If the algorithm A reaches Line 4, then y is a valid solution for (〈M〉, x(0))
under R.

Proof: We show that when the algorithm reaches Line 4, (〈M〉, x(0)) is a YES-
instance, and therefore y is a valid solution for (〈M〉, x(0)) (as by assumption the
second element in every pair output by S∗ is a solution for the first element with
respect to R if such exists).

The proof resembles the proof of Claim 3.3. Note that if the algorithm reaches
Line 4 then 〈M〉 = 〈S∗〉. We then note that:

• x(0) has a w such that (x(0), w) ∈ R′, as R′ is total.

• S̃∗ is an onto sampler since S is an onto sampler, and S̃∗ dominates S. Thus,
there are r

(0)
1 , . . . , r

(0)
|x| such that for all 1 ≤ i ≤ |x|, on input 1|〈S∗〉|+n and

randomness r
(0)
i , the sampler S̃∗ outputs (〈S∗〉, x⊕ e

|x|
i ).
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• Since the randomness complexity of S∗ is assumed to be bounded by λ, it
follows that for all 1 ≤ i ≤ |x|, the randomness r

(0)
i can be taken such that

|r(0)
i | ≤ λ(|〈S∗〉|+ n).

• If A reaches Line 4 then n + |〈S∗〉| ≥ n0 (because of Line 1), thus τ ′(n +
|〈S∗〉|) ≥ pS̃∗(n+ |〈S∗〉|). Thus S̃∗ halts on the r

(0)
i ’s in at most τ ′(|〈S∗〉|+

n) steps as required.

The claim follows. 2

Finally, we show that the algorithm outputs the correct output. First we note:

Claim 3.6 The second element in the output of S∗ in each step j in the loop in
Line 5 is a valid solution for (〈M〉, x(j)) with respect to R.

The proof is identical to the proof of Claim 3.5.

Claim 3.7 For every j, at the end of step j in the loop in Line 5 the Hamming
distance between x(j) and x is h− j.

Proof: By Claims 3.5 and 3.6, and since by assumption the second element in
every pair output by S∗ is a solution for the first element with respect to R if such
exists, it follows that throughout the algorithm, ”all r

(j)
i ’s are correct” (formally,

for every 0 ≤ j ≤ h and every 1 ≤ i ≤ n, any r
(j)
i is such that S∗(1n+|〈S∗〉|) with

randomness r
(j)
i outputs a pair of the form ((〈S∗〉, x(j) ⊕ en

i ), ·)). Since in step j

the algorithm A chooses to run S∗ on r
(j−1)
ij

, where ij is the j-th bit that is different

between x(0) and x, it follows that x(j+1) is Hamming-closer to x than x(j) by one
bit. The claim follows. 2

It follows that x(h) = x. Since (w(h), r
(h)
1 , . . . , r

(h)
n ) is a solution for (〈M〉, x(h))

under R (again, by Claim 3.6), by the definition of R it follows that w(h) is a solu-
tion for x(h) = x under R′. The theorem follows. 2

4 Conclusion

4.1 On Our Assumptions

We have shown that if there exists a polynomially bounded total search problem
that is hard under some polynomial time onto sampler, then there exist efficiently
samplable distributions that are hard on average, but that cannot be transformed
into one-way functions (in the manner we described).
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We note that the hypothesis of the theorem is implied by the existence of one-
way permutations, is further implied by the weaker assumption of the existence of
onto one-way functions (where by ”onto” we mean that the function’s image is Σ∗),
and is even weaker than the latter. Thus, our assumptions are plausible. In fact,
one does not even have to assume that S′ is an onto sampler. If S′ is a sampler with
the property that size of its image is noticeable, it can be made onto by standard
(straightforward) techniques without harming the hardness of any search problem
under this sampler.

It might seem contradictory at first sight that we mention that our hypothesis
is implied by an assumption that in fact yields the existence of one-way functions.
But, our result is essentially about approaches to construct one-way functions, and
not about their existence. Thus, a way to interpret the result, is that if onto one-
way functions exist, then a certain way to prove the existence of one-way functions
cannot work (although one-way functions in fact do exist under this assumption).

4.2 On Restricting the Randomness Complexity of S∗

To the best of our knowledge, it is unknown if restricting the randomness of the
pairs-sampler S∗ is with loss of generality. It is fairly easy to see that if the answer
to the following (open, to the best of our knowledge) question is affirmative, then
restricting the randomness of the pairs-sampler S∗ is without loss of generality.

Open Question 4.1 There exists a (universal) polynomial q such that for every
pairs-sampler S∗ such that S̃∗ is an onto sampler, there exists a pairs-sampler S∗∗

such that S̃∗∗ is an onto sampler and such that:

• For every n, it holds that support(S∗∗(1n)) ⊆ support(S∗(1n)).

• The sampler S̃∗∗ dominates S̃∗.

• The randomness complexity of S∗∗ is bounded by q.

4.3 Possible Interpretations of Our Result

First we note that the conclusion of our theorem can be presented in a different
way: For any polynomials q and λ there exists a polynomial time verifiable search
problem R and a polynomial time sampler S such that R is hard under S, but
where any sampler S∗ as in the Desired Construction must run in time exceeding
q and use randomness exceeding λ. It is easy to modify the proof accordingly
(basically, one just has to change the function τ in the definition of R, to q).

A possible interpretation of our result is as an indication for the generality of
the classes for which one can achieve the Desired Construction. Following the
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discussion in the Introduction, the most generic manner to achieve the Desired
Construction is to achieve it for any R and S where R is hard under S, and where
R is polynomially bounded and exponential time verifiable. Under the restriction
on the randomness complexity of S∗, we eliminate the possibility to achieve this
generic construction.

We note, however, that our result does not imply that any ”generic” approach
to achieve the Desired Construction cannot succeed (where by ”generic” we mean
a transformation that works for a wide class of pairs (R, S)). The two main reasons
for this statement (besides the loss of generality implied by the restriction on the
randomness complexity of S∗) are:

• The search problem we construct is not polynomial time verifiable (but is
”nearly polynomial time verifiable”). This still leaves open the possibility
that any polynomial time verifiable search problem that is hard on average
under some efficient sampler can be transformed to a one-way function (via
the Desired Construction we refer to).

• We require that the desired S∗ relates strictly to R and S. A slightly different
approach could be to first transform R and S to some R1 and S1, and then
construct S∗ for R1 and S1. Our result does not eliminate the possibility that
this approach can work for a wide class of pairs (R, S).
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