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Abstract

Let X be randomly chosen from {−1, 1}n, and let Y be randomly chosen from the standard
spherical Gaussian on Rn. For any (possibly unbounded) polytope P formed by the intersection
of k halfspaces, we prove that

|Pr [X ∈ P ]− Pr [Y ∈ P ]| ≤ log8/5 k ·∆,

where ∆ is a parameter that is small for polytopes formed by the intersection of “regular”
halfspaces (i.e., halfspaces with low influence). The novelty of our invariance principle is the
polylogarithmic dependence on k. Previously, only bounds that were at least linear in k were
known.

We give two important applications of our main result:

• A bound of logO(1) k · ε1/6 on the Boolean noise sensitivity of intersections of k “regular”
halfspaces (previous work gave bounds linear in k). This gives a corresponding agnostic
learning algorithm for intersections of regular halfspaces.

• A pseudorandom generator (PRG) with seed length O(log npoly(log k, 1/δ)) that δ-fools
all polytopes with k faces with respect to the Gaussian distribution.

We also obtain PRGs with similar parameters that fool polytopes formed by intersection of
regular halfspaces over the hypercube. Using our PRG constructions, we obtain the first deter-
ministic quasi-polynomial time algorithms for approximately counting the number of solutions
to a broad class of integer programs, including dense covering problems and contingency tables.
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1 Introduction

An important theme in theoretical computer science over the last two decades has been the use-
fulness of translating a combinatorial problem over a discrete domain (e.g., {−1, 1}n) to a problem
in continuous space. The notion of convex relaxation, for example, is now a standard technique in
the design of algorithms for optimization problems. More recently, the study of analytic properties
of Boolean functions (e.g., Fourier spectra and sensitivity) has been a fundamental tool for proving
results in hardness of approximation [Wol08, O’D08] and learning theory [Man94].

The influential work of Mossel, O’Donnell, and Oleszkiewicz [MOO05] proving the “Majority
Is Stablest” conjecture has led to a rich collection of hardness results for constraint satisfaction
problems, most notably for the Max-Cut problem. The crux of their work is an invariance principle
relating the behavior of low-degree polynomials over the uniform measure on {−1, 1}n to their
behavior with respect to Gaussians:

Theorem 1.1 (invariance principle [MOO05]). Let P be a multilinear polynomial such that ‖P‖ =
1. Then, for any t ∈ R, ∣∣∣∣ Pr

x∈u{−1,1}n
[P (x) > t]− Pr

x←Nn
[P (x) > t]

∣∣∣∣ ≤ τ.
Here N n is the standard multivariate spherical Gaussian distribution on Rn; the parameter τ

depends on the coefficients of P and is small if P is “regular” in the sense that the “influence” of
each variable in P is small.

Roughly speaking, the above invariance principle says that the cumulative distribution function
(cdf) of a polynomial over {−1, 1}n is close to the cdf of a polynomial over N n if the coefficients
of the polynomial are sufficiently regular. Although developed in the context of hardness of ap-
proximation, their invariance principle has also found applications in the theory of social choice
[O’D08] and more recently to the construction of pseudorandom generators for polynomial threshold
functions [MZ09].

The main result of this paper is an invariance principle for characteristic functions of polytopes.
Recall that a polytope K is a (possibly unbounded) convex set in Rn formed by the intersection
of some finite number of supporting halfspaces. We refer to K as a k-polytope if it is equal to the
intersection of k halfspaces. Our main theorem is as follows:

Theorem 1.2 (invariance principle for polytopes; see Theorem 3.1 for exact statement). Let K be
a k-polytope. Then, ∣∣∣∣ Pr

x∈u{−1,1}n
[x ∈ K]− Pr

x←Nn
[x ∈ K]

∣∣∣∣ ≤ log8/5 k ·∆.

The parameter ∆ depends on the coefficients of the bounding hyperplanes of K and is small if
these coefficients are sufficiently regular. In particular, if K equals {x | W Tx ≤ θ} for W ∈ Rn×k
and θ ∈ Rk, and each column u of W is ε-regular, i.e., satisfies

∑n
i=1 u

4
i ≤ ε2‖u‖22, then ∆ is less

than ε1/6. Note that there is no restriction on the vector θ. Our invariance principle also holds
more generally for any product distribution that is hypercontractive and whose first four moments
are appropriately bounded.

The novelty of our theorem is the dependence of the error on k. Applying a recent result due to
Mossel [Mos08], it is possible to obtain a statement similar to Theorem 1.2 with an error term that
has a polynomial dependence on k. Achieving polylogarithmic dependence on k, however, is much
harder, and we need to use some nontrivial results from the analysis of convex sets in Gaussian
space.
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The case k = 1, a single halfspace, is equivalent to the classical Berry-Esséen theorem [Fel68],
a fundamental theorem from probability and statistics giving a quantitative version of the Central
Limit Theorem. We can therefore view our principle as a generalization of the Berry-Esséen theorem
for polytopes. Further, understanding the structure of integer points in polytopes (that is, solutions
to integer programs) is an important topic in computer science [BV08], optimization [Zie95], and
combinatorics [BR07], and we believe our invariance principle will find many applications.

In this paper, we use our invariance principle to derive new results in learning theory and
derandomization.

1.1 Results on Noise Sensitivity of Intersections of Halfspaces

Noise sensitivity of Boolean functions introduced in the seminal works of [KKL88], [BKS99] is an
important notion in the analysis of Boolean functions. Roughly speaking, the noise sensitivity of a
Boolean function f measures the probability over a randomly chosen input x that f changes sign
if each bit of x is flipped independently with probability δ.

Bounds on the noise sensitivity of Boolean functions have direct applications in hardness of
approximation [H̊as01, KKMO07], hardness amplification [O’D04], circuit complexity [LMN93], the
theory of social choice [Kal05], and quantum complexity [Shi00]. Here, we focus on applications
in learning theory, where it is known that bounds on the noise sensitivity of a class of Boolean
functions yield learning algorithms that succeed in harsh noise models such as the agnostic model
of learning [KKMS08].

A direct application of our invariance principle Theorem 1.2 gives the following new bound on
the noise sensitivity of intersections of regular halfspaces:

Theorem 1.3 (learning application: noise sensitivity of intersections of halfspaces). Let f be
computed by the intersection of k, ε-regular halfspaces. Then the Boolean noise sensitivity of f for
noise rate ε is at most (log k)O(1) · ε1/6.

Applying a result of Kalai et al. [KKMS08] and Klivans et al. [KOS04], the above theorem
implies that intersections of k, ε-regular halfspaces are agnostically learnable with respect to the
uniform distribution on {−1, 1}n in time n(logO(1) k) for any constant error parameter. In particular,
intersections of {−1, 1} halfspaces (oriented majorities) are ε-regular and fall into this class. The
previous best algorithm for learning this concept class, even in the easier PAC model, ran in time
nO(k2) ([KOS04, KKMS08]).

The current best bound for the noise sensitivity of intersection of k arbitrary halfspaces is
O(k
√
ε). This bound is obtained by starting with the

√
ε noise sensitivity bound for a single

halfspace due to Peres [Per04] and applying a union bound over k halfspaces. On the other hand,
optimal bounds of Θ(

√
log k

√
ε) for the related Gaussian noise sensitivity were obtained recently by

Klivans et al. [KOS08]. We believe that the right order for Boolean noise sensitivity of intersection
of k halfspaces is Θ(

√
log k

√
ε) as well.

Improving the bounds for Boolean noise sensitivity would be of considerable interest, particu-
larly for the learning theory applications, as learning the class of intersections of halfspaces even
with respect to specific distributions such as the uniform distribution over {1,−1}n is an important
open problem in learning theory. We feel that our result is an important step towards improving
noise sensitivity bounds for intersections of arbitrary (not necessarily regular) halfspaces.

1.2 Results on Pseudorandom Generators for Polytopes

Our invariance principle also yields new results for several problems in derandomization. Recall
the following definition of pseudorandom generators (PRGs):
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Definition 1.4. Let µ be a distribution over R. A function G : {0, 1}r → {1,−1}n is said to δ-fool
a polytope K with respect to µ if the following holds.∣∣∣∣ Pr

y∈u{0,1}r
[G(y) ∈ K]− Pr

X←µn
[X ∈ K]

∣∣∣∣ ≤ δ.
Combining our invariance principle with a PRG similar to a recent construction of Meka and

Zuckerman [MZ09], we obtain a black-box algorithm for approximately counting the number of
{−1, 1}n points in polytopes formed by the intersection of regular halfspaces:

Theorem 1.5 (PRGs for regular polytopes and approximate counting). For all δ ∈ (0, 1), there
exists an explicit PRG G : {0, 1}r → {1,−1}n with r = O((log n log k)/ε) that δ-fools all polytopes
formed by the intersection of k ε-regular halfspaces with respect to all proper and hypercontractive
distributions µ for ε = δ5/(log8.1 k)(log(1/δ)).

The constants above depend on the hypercontractivity constants of µ. We define proper and
hypercontractive distributions in the next section and remark that the uniform distribution over
{−1, 1}n is an example of such a distribution.

Theorem 1.5 implies quasi-polynomial time, deterministic, approximate counting algorithms
for a broad class of integer programs. For example, dense covering programs such as dense set-
cover, and {0, 1}-contingency tables correspond to polytopes formed by the intersection of ε-regular
halfspaces. For these types of integer programs, we can deterministically approximate, to within
an additive error ε, the number of integer solutions in quasi-polynomial time.

As stated, our invariance principle applies to polytopes whose bounding hyperplanes have coef-
ficients that are sufficiently regular. In some cases, however, we can randomly rotate an arbitrary
polytope so that all the bounding hyperplanes become regular. As such, after applying a suitable
random transformation (which we derandomize), we can build PRGs for arbitrary polytopes if the
underlying distribution is spherically symmetric (e.g., Gaussian):

Theorem 1.6 (PRGs for Gaussian space). For a universal constant c > 0 and all δ > c log2 k/n1/11,
there exists an explicit PRG GN : {0, 1}r → Rn with r = O((log n)(log9.1 k)/δ5.1) that δ-fools all
k-polytopes with respect to N .

Additionally, we prove an invariance principle for polytopes with respect to the uniform distri-
bution over the n-dimensional sphere Sn−1. This allows us to easily modify our PRG for polytopes
in Gaussian space and build PRGs for intersections of spherical caps:

Theorem 1.7 (PRGs for intersections of spherical caps). For a universal constant c > 0 and all δ >
c log2 k/n1/11, there exists an explicit PRG Gsp : {0, 1}r → Sn−1 with r = O((log n)(log9.1 k)/δ5.1)
that δ-fools all k-polytopes with respect to the uniform distribution over Sn−1.

An immediate consequence of the above PRG construction is a polynomial time derandomiza-
tion of the Goemans-Williamson approximation algorithm for Max-Cut [GW95] and other similar
hyperplane based randomized rounding schemes. Observe that this derandomization is a black-box
derandomization as opposed to some earlier derandomizations of the Goemans-Williamson algo-
rithm, which are instance-specific (e.g., [MH99]).

1.3 Proof Outline

In this section, we give a high level outline of the proof of our invariance principle and contrast it
with the works of Mossel et al. [MOO05] and Mossel [Mos08]. The proof proceeds in two steps.
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Step One: As in Mossel et al. [MOO05] and Mossel [Mos08], we first use the Lindeberg method
(see [PR89]) to prove an invariance principle for smooth functions. By this we mean proving that∣∣∣∣ E

X∈{−1,1}n
[Ψ(`1(X), . . . , `k(X))]− E

Y ∈Nn
[Ψ(`1(Y ), . . . , `k(Y ))]

∣∣∣∣ ≤ γ, (1.1)

where `1, . . . , `k are linear functions (corresponding to the normals of the faces of the k-polytope)
and Ψ is a smoothing function. The value γ will depend on k, the coefficients of the `p’s and the
derivatives of Ψ. The function Ψ is often called a “test” function and is smooth if there is a uniform
bound on its fourth derivative. Notice here that Ψ maps Rk to R; in [MOO05], they were concerned
with the value Ψ(Q(X)) for a low-degree polynomial Q and a univariate test function Ψ.

At this point, we could use the k-wise product of a test function constructed by Mossel et al. to
approximate the logical AND function. Further, Mossel provides a very general framework for
multivariate test functions and gives bounds for the overall error incurred by the hybrid argument.
Here we run into our first difficulty: the standard hybrid argument as used by Mossel et al. and
Mossel results in a bad dependence on the coefficients of the `p’s. In particular, the resulting error
term is not small even for polytopes formed by the intersection of regular halfspaces.

To solve this problem, we use a non-standard hybrid argument that groups the input variables
into blocks. We observe that it is irrelevant in which order we replace Xi’s with Yi’s – in fact a
random order would suffice. Further, we can group the Xi’s into blocks and proceed blockwise with
the hybrid argument. To implement this intuition, we partition [n] randomly into a set of blocks
and replace all the Xi’s within a block by the corresponding Yi’s one block at a time. Proceeding
in this fashion with a random partitioning has a “smoothing effect” on the coefficients of the linear
functions resulting in a much better bound on the error in terms of the coefficients.

Roughly speaking, if `pi denotes the i’th coefficient of `p, then the standard hybrid arguments of
[PR89], [MOO05], [Mos08] incur an error proportional to

∑
i∈[n]

(
maxp∈[k] |`pi|4

)
, which can be as

large as Ω(k) even for regular functions `p. In contrast, our randomized-blockwise-hybrid argument
only suffers an error of (log k) ·maxp∈[k]

∑
i |`pi|4, which is small for regular functions. It turns out

that in the above analysis, we can choose the random partitioning into blocks in a Θ(log k)-wise
independent manner, instead of uniformly at random, and this is crucial for our PRG constructions.

Step Two: Given the above invariance principle for smooth functions, we now aim to translate
the closeness in expectation for smooth functions to closeness in cdf distance. Here the smoothness
of the test function Ψ becomes important, and we run into our second problem: the natural choice
of test function Ψ (the multivariate version of the test function from Mossel et al.) leads to an error
bound on the order of k, rather than poly(log k). To get around this problem, we first observe that in
Mossel’s proof of the multivariate invariance principle as in our randomized-blockwise-hybrid argu-
ment, it suffices to bound the ‘l1-norm’ of the fourth derivative supx∈Rk(

∑
p,q,r,s∈[k] |∂p∂q∂r∂sΨ(x)|),

instead of uniformly bounding the fourth derivative supx∈Rk,p,q,r,s∈[k](|∂p∂q∂r∂sΨ(x)|). Thus, it suf-
fices to obtain a smooth approximation of the AND function for which the former quantity is small.
Fortunately for us, we uncovered a beautiful result due to Bentkus [Ben90], who constructs a smooth
approximation of the AND function with precisely this property.

The final difficulty for translating closeness in expectation as in Equation 1.1 to closeness in cdf
distance is to prove that Ψ differs from the characteristic function only on a set of small Gaussian
measure. To this end, we show that it suffices to bound the Gaussian measure of l∞-neighborhoods
around the boundary of k-polytopes. For an l∞-neighborhood of width λ, a union bound would
imply Gaussian measure on the order of kλ. At this point, however, we can apply a nontrivial
result due to Nazarov [Naz03] on the Gaussian surface area of k-polytopes to get the much better
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bound of
√

log k λ. This result of Nazarov was used before by Klivans et al. [KOS08] in the context
of learning intersections of halfspaces with respect to Gaussian distributions.

We give an outline of the proofs of the applications of the invariance principle to noise sensitivity
and PRGs in the corresponding sections.

1.4 Related Work

As mentioned earlier, the classical Berry-Esséen theorem [Fel71] from probability, a quantitative
version of the Central Limit Theorem, gives an invariance principle for the case of a single halfspace
(i.e., k = 1). More precisely, for any w ∈ Rn, such that ‖w‖ = 1 and each coefficient of w is at
most ε, the Berry-Esséen theorem states that∣∣∣∣ Pr

x∈{−1,1}n
[〈w, x〉 ≥ t]− Pr

x←Nn
[〈w, x〉 ≥ t]

∣∣∣∣ ≤ O(ε).

Bentkus [Ben03] proves a multidimensional Berry-Esséen theorem for sums of vector-valued
random variables each with identity covariance matrix, whose error term depends on the Gaussian
surface area of the test set. Although his paper deals with topics related to our work, his result
seems to have no implications in our setting.

There is a long history of research on approximately counting the number of solutions to integer
programs, especially with regard to contingency tables [JS97, CD03]. However, not much is known
in terms of deterministic algorithms, and we believe that our deterministic quasi-polynomial time
algorithms for dense covering problems and dense set cover instances is the first result of its kind.

Regarding contingency tables, Dyer [Dye03] gave a deterministic, relative-error approximation
for counting solutions to contingency tables that runs in time exponential in the number of rows.
In contrast, we obtain an algorithm that runs in quasi-polynomial time in the number of rows
(however, we do not give a relative-error approximation). Although not stated explicitly before,
it is easy to see that the pseudorandom generator for small space machines of Impagliazzo et
al. [INW94] yields a deterministic algorithm for counting n × k contingency tables with additive
error at most ε and run time 2O(log2(nk/ε)). This is incomparable to our algorithm for contingency
tables which has run time 2(logn)·poly(log k,1/ε). In our case, we obtain a polynomial-time, black-box
derandomization for contingency tables with a constant number of rows (for ε = O(1)).

For PRGs for intersections of halfspaces, recently Gopalan et al. [GOWZ09] and Diakonikolas
et al. [DKN09] gave results incomparable to ours. Gopalan et al. give generators for arbitrary
intersections of k halfspaces with seed length linear in k but logarithmic in 1/δ. Diakonikolas
et al. show that bounded independence fools intersections of quadratic threshold functions and
in particular, get generators with seed length O((log n) · poly(k, 1/ε)) fooling intersections of k
halfspaces. Due to the at least linear dependence on k, the results of the above works do not yield
good algorithms for counting solutions to integer programs, as in this setting k is typically large
(e.g., poly(n)).

2 Notation and Preliminaries

We use the following notation.

1. For W ∈ Rn×k, θ ∈ Rk, K(W, θ) denotes the polytope K(W, θ) = {x : W Tx ≤ θ}. We say a
polytope K(W, θ) as above has k faces.
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2. Unless stated otherwise, we work with the same polytope K(W, θ) and assume that the
columns of the matrix W have norm one. We often shorten K(W, θ) to K if W, θ are clear
from context. We assume that k ≥ 2.

3. For A ∈ Rm1×m2 , AT denotes the transpose of A and for p ∈ [m2], Ap denotes the p’th column
of A.

4. The all ones vector in Rk is denoted by 1k.

5. For u ∈ Rk, define rectangle Rect(u) = (−∞, u1] × (−∞, u2] × · · · × (−∞, uk]. Note that
x ∈ K(W, θ) if and only if W Tx ∈ Rect(θ).

6. N n (where N = N (0, 1)) denotes the standard multivariate spherical Gaussian distribution
over Rn with mean 0 and identity covariance matrix.

7. For a smooth function ψ : Rk → R, let ‖ψ(4)‖1 = sup {
∑

p,q,r,s∈[k] | ∂p∂q∂r∂s ψ(a1, . . . , ak) | :
(a1, . . . , ak) ∈ Rk }.

8. We denote all universal constants by c, C, even when we have in mind different constants in
the same equation.

Definition 2.1 (regularity). A vector u ∈ Rn is ε-regular if
∑

i u
4
i ≤ ε2‖u‖2. A matrix W ∈ Rn×k

is ε-regular if every column of W is ε-regular. A polytope K = K(W, θ) is ε-regular if W is ε-
regular 1.

The main results of this paper are applicable to a large class of product distributions that satisfy
the following two properties.

Definition 2.2 (proper distributions). A distribution µ over R is proper if for X ← µ, E[X] = 0,
E[X2] = 1 and E[X3] = 0.

Definition 2.3 (hypercontractive distributions). A distribution µ over R is hypercontractive, if
there exists a constant c such that the following holds. For any m, vector u ∈ Rm, and any q ≥ 2,(

E
X←µm

[ |〈u,X〉|q ]
)1/q

≤ c√q
(

E
X←µm

[ |〈u,X〉|2 ]
)1/2

.

Two important examples of distributions that are proper and hypercontractive are the uniform
distribution over the hypercube {1,−1}n and the multivariate spherical Gaussian N n.

We also use the following hypercontractivity inequality for degree d multilinear polynomials
over the hypercube (see [O’D08]).

Lemma 2.4 ((2, q)-hypercontractivity). For any q ≥ 2 and any degree d multilinear polynomial
P : {1,−1}n → R, (

E
x∈u{1,−1}n

[ |P (x)|q ]
)1/q

≤ qd/2
(

E
x∈u{1,−1}n

[
|P (x)|2

])1/2

.

1“Regular polytopes” have a different meaning in combinatorics, but for the purpose of this paper, we will abuse
notation and say a polytope is ε-regular if it is formed by the intersection of ε-regular halfspaces as in Definition 2.1.
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3 Invariance Principle for Polytopes

Our main invariance principle for polytopes K(W, t) is as follows:

Theorem 3.1 (invariance principle for polytopes). For any proper and hypercontractive distribution
µ over R there exists a constant C such that the following holds. For any ε-regular k-polytope K,∣∣∣∣ Pr

X←µn
[X ∈ K]− Pr

Y←Nn
[Y ∈ K]

∣∣∣∣ ≤ C (log8/5 k) (ε log(1/ε))1/5. (3.1)

The proof of the theorem can be divided into three parts.

1. We establish an invariance principle for smooth functions on polytopes (Theorem 3.2) using
an extension of Lindeberg’s method; Section 4 is devoted to proving this part.

2. We prove that for random variables A,B over Rk, closeness with respect to smooth func-
tions and anti-concentration bounds for one of the variables imply closeness with respect to
rectangles (Lemma 3.3). To do so, we use a nontrivial result of Bentkus [Ben90] on smooth
approximations for the l∞ norm.

3. We use a result of Nazarov [Naz03] on Gaussian surface area of polytopes to bound the
Gaussian measure of “l∞-neighborhoods” of polytopes in Rn (Lemma 3.4).

We begin by stating an invariance principle for smooth functions ψ : Rk → R. The proof is
involved, making use of the randomized-blockwise-hybrid argument alluded to in the introduction.
For clarity we present the proof in the next section (Section 4).

Theorem 3.2 (invariance principle for smooth functions). For any proper and hypercontractive
distribution µ over R there exists a constant C such that the following holds. For any ε-regular W
and smooth function ψ : Rk → R,∣∣∣∣ E

X←µn
[ψ(W TX)]− E

Y←Nn
[ψ(W TY )]

∣∣∣∣ ≤ C‖ψ(4)‖1 (log3 k) (ε log(1/ε)).

The following lemma shows that for two random variables A,B over Rk, closeness with respect
to smooth functions and anti-concentration bounds for the variable B imply closeness with respect
to rectangles. Note that to use the lemma we do not need anti-concentration bounds for the random
variable A.

Lemma 3.3 (smooth approximation of AND). Let A,B be two random variables over Rk satisfying
the following conditions:

• For all smooth functions ψ : Rk → R, |E[ψ(A)]− E[ψ(B)]| ≤ ∆ ‖ψ(4)‖1.

• For a function gk : [0, 1]→ [0, 1] the following holds:

for all λ ∈ [0, 1], supθ∈Rk (Pr[B ∈ Rect(θ + λ1k) \ Rect(θ) ]) ≤ gk(λ).

Then, for all θ ∈ Rk, 0 < λ < 1, |Pr[A ∈ Rect(θ)]− Pr[B ∈ Rect(θ)] | ≤ C∆ log3 k/λ4 + Cgk(λ).

Finally, we use the following anti-concentration bound that follows from Nazarov’s estimate on
the Gaussian surface area of polytopes [Naz03]:
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Lemma 3.4 (anti-concentration bound for l∞-neighborhood of rectangles). For 0 < λ < 1,

Pr
x←Nn

[
W Tx ∈ Rect(θ) \ Rect(θ − λ1k)

]
= O(λ

√
log k).

We first prove Theorem 3.1 using the above three results and then prove Lemmas 3.3 and 3.4
in Sections 3.1 and 3.2. Theorem 3.2 is then proved in Section 4.

Proof of Theorem 3.1. Let X ← µn, Y ← N n and let random variables A = W TX, B = W TY .
Then, by Lemma 3.4 and Theorem 3.2,

Pr [B ∈ R(θ + λ1k) \ R(θ)] ≤ C
√

log k λ and |E[ψ(A)]− E[ψ(B)]| ≤ C (log3 k) ε log(1/ε) ‖ψ(4)‖1,

where ψ : Rk → R is any smooth function, θ ∈ Rk and λ ∈ (0, 1). Therefore, by Lemma 3.3, for
θ ∈ Rk,

|Pr [A ∈ Rect(θ)]− Pr [B ∈ Rect(θ)]| ≤ C (log6 k) log(1/ε)ε/λ4 + C
√

log k λ.

The theorem now follows by setting λ = (log11/10 k) (ε log(1/ε))1/5.

3.1 Smooth approximation of AND

We now prove Lemma 3.3. For this, we use the following nontrivial result of Bentkus [Ben90] on
smooth approximations for the l∞ norm.

Theorem 3.5 (Bentkus [Ben90]). For every α > 0 and 0 < λ < 1, there exists a function ψ ≡
ψα,λ : Rk → R such that ‖ψ(4)‖1 ≤ C log3 k/λ4 and

ψ(a) =


1 if ‖a‖∞ ≤ α
0 if ‖a‖∞ > α+ λ

∈ [0, 1] otherwise

.

Corollary 3.6. For all u ∈ Rk, 0 < λ < 1, T > ‖u‖∞, there exists a function ψ ≡ ψu,λ,T : Rk → R
such that ‖ψ(4)‖1 ≤ C log3 k/λ4 and

ψ(a) =


1 if ∀l ∈ [k],−T + ul ≤ al ≤ ul
0 if ∃l ∈ [k], al > ul + λ

∈ [0, 1] otherwise

.

Proof. Let ψT/2,λ be the function from Theorem 3.5 with α = T/2. Define ψ ≡ ψu,λ,T : Rk → R by

ψu,λ,T (a1, . . . , ak) = ψT/2,λ(a1 + T/2− u1, a2 + T/2− u2, . . . , ak + T/2− uk).

It is easy to check that ψ satisfies the conditions of the theorem.

Proof of Lemma 3.3. Fix θ ∈ Rk, 0 < λ < 1. Choose T ∈ R large enough so that T > ‖θ‖∞,
Pr[‖A‖∞ ≥ T ] < ∆ and Pr[‖B‖∞ ≥ T ] < ∆. Let ψ : Rk → R be the function obtained from
applying Corollary 3.6 to θ, λ, T . Then,

|Pr [A ∈ Rect(θ)]− Pr [A ∈ RectT (θ)]| ≤ ∆, |Pr [B ∈ Rect(θ)]− Pr [B ∈ RectT (θ)]| ≤ ∆, (3.2)
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where RectT (θ) = [−T + θ1, θ1] × [−T + θ2, θ2] × · · · × [−T + θk, θk] ⊆ Rk. Observe that from the
definition of ψ in Corollary 3.6 and Equation 3.2

Pr [A ∈ Rect(θ)] ≤ E[ψ(A)] + ∆ ≤ E[ψ(B)] + ∆‖ψ(4)‖1 + ∆.

Similarly,

E[ψ(B)] ≤ Pr[B ∈ Rect(θ + λ1k)] = Pr[B ∈ Rect(θ)] + Pr[B ∈ Rect(θ + λ1k) \ Rect(θ)] ≤
Pr[B ∈ Rect(θ)] + gk(λ),

where the last inequality follows from the definition of gk. Combining the above two equations we
get

Pr[A ∈ Rect(θ)] ≤ Pr[B ∈ Rect(θ)] + 2∆‖ψ(4)‖1 + gk(λ) ≤ Pr[B ∈ Rect(θ)] +
C∆ log3 k

λ4
+ gk(λ).

Proceeding similarly for the function ψL : Rk → R obtained by applying Corollary 3.6 to
t− λ1k, λ, T , we get

Pr [A ∈ Rect(θ)] ≥ Pr [B ∈ Rect(θ)]− C∆ log3 k

λ4
− gk(λ).

Therefore,

|Pr [A ∈ Rect(θ)]− Pr [B ∈ Rect(θ)]| ≤ C∆ log3 k

λ4
+ gk(λ).

3.2 Anti-concentration bound for l∞-neighborhood of rectangles

Lemma 3.4 follows straightforwardly from the following result of Nazarov [Naz03]. For a convex
body K ⊆ Rn with boundary ∂K, let Γ(K) denote the Gaussian surface area of K defined by

Γ(K) =
∫
y∈∂K

e
−‖y‖2

2 dσ(y),

where dσ(y) denotes the surface element at y ∈ ∂K.

Theorem 3.7 (Nazarov (see [KOS08, Theorem 20])). For a polytope K with at most k faces,
Γ(K) ≤ C

√
log k.

Proof of Lemma 3.4. Consider an increasing (under set inclusion) family of polytopes Kρ for 0 ≤
ρ ≤ λ such that K0 = {x : W Tx ∈ Rect(θ − λ1k)} and Kλ = {x : W Tx ∈ Rect(θ)}. Then,

Pr
x←Nn

[
W Tx ∈ Rect(θ) \ Rect(θ − λ1k)

]
=
∫ λ

ρ=0
Γ(Kρ)dρ ≤ C

√
log k λ,

where the last inequality follows from Theorem 3.7.
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4 Invariance principle for Smooth Functions over Polytopes

We now prove Theorem 3.2. The proof of the theorem is based on Lindeberg’s method. Let t = 1/ε
and let H = {h : [n] → [t]} be a family of (2 log k)-wise independent functions. That is, for all
I ⊆ [n], |I| ≤ 2 log k and b ∈ [t]I , Prh∈uH[∀i ∈ I, h(i) = bi ] = 1

t|I|
.

We remark that to prove Theorem 3.2 we could take the hash family to be the set of all functions.
However, we work with a (2 log k)-wise independent family as the analysis is no more complicated
and we need to work with such hash families while constructing pseudorandom generators. For
S ⊆ [n], let WS be the matrix formed by the rows of W with indices in S. Define

H(W ) def=
t∑
i=1

E
h

 k∑
p=1

‖W p
h−1(i)

‖4 log k

1/ log k

.

Theorem 3.2 follows immediately from the following two lemmas.

Lemma 4.1. For ε-regular W , H(W ) ≤ C log k (ε log(1/ε)).

Lemma 4.2. For any smooth function ψ : Rk → R,∣∣∣∣ E
X←µn

[
ψ(W TX)

]
− E
Y←Nn

[
ψ(W TY )

]∣∣∣∣ ≤ 4 (log2 k)H(W )‖ψ(4)‖1.

Proof of Lemma 4.1. Fix a l ∈ [t], p ∈ [k]. For i ∈ [n], let Xi be the indicator random variable
that is 1 if h(i) = l and 0 otherwise. Then, Pr[Xi = 1] = 1/t and the variables X1, . . . , Xn are
(2 log k)-wise independent. Further,

Z ′p ≡ ‖W
p
|h−1(l)

‖2 =
n∑
i=1

W 2
ipXi.

Let Yi be i.i.d indicator random variables with Pr[Yi = 1] = 1/t and let Zp =
∑n

i=1W
2
ipYi. Observe

that Z ′p and Zp have identical d’th moments for d ≤ 2 log k. Moreover, by Hoeffding’s inequality
applied to Zp, for any γ > 0,

Pr

[ ∣∣∣∣Zp − 1
t

∣∣∣∣ ≥ γ ] ≤ 2 exp

(
− 2γ2∑n

i=1W
4
ip

)
≤ 2 exp

(
−2γ2

ε2

)
= 2 exp(−2t2γ2).

The above tail bound for Zp implies strong bounds on the moments of Zp by standard arguments.
Setting γ =

√
2 log k log t/t in the above equation, we get

Pr

[
|Zp| ≥

√
3 log k log t

t

]
≤ 1
t2 log k

.

Therefore, from the above equation and the fact that Zp ≤ 1

E[Z2 log k
p ] ≤ (3 log k log t)log k

t2 log k
+ Pr

[
|Zp| ≥

√
3 log k log t

t

]
≤ (4 log k log t)log k

t2 log k
.
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Therefore,

E
h∈uH

[
‖W p
|h−1(l)

‖4 log k
]

= E
[

(Z ′p)
2 log k

]
= E

[
Z2 log k
p

]
≤ (4 log k log t)log k

t2 log k
.

Therefore, from the definition of H(W ) and the above equation,

H(W ) =
t∑
i=1

 k∑
p=1

E
h

[
‖W p

h−1(i)
‖4 log k

]1/ log k

≤ t4 log k log t
t2

= 4(log k)(ε log(1/ε)).

The proof of Lemma 4.2 uses a blockwise hybrid argument and careful applications of hyper-
contractivity as sketched in the proof outline in the introduction.

We use the following form of the standard Taylor series expansion. For a smooth function
ψ : Rk → R, x ∈ Rk and p1, . . . , pr ∈ [k], let ∂p1,...,prψ(x) = ∂p1∂p2 · · · ∂pr ψ(x). For indices
p1, . . . , pr ∈ [k], let (p1, . . . , pr)! = s1!s2! . . . sk!, where, for l ∈ [k], sl denotes the number of
occurrences of l in (p1, . . . , pr).

Fact 4.3 (Multivariate Taylor’s Theorem). For any smooth function ψ : Rk → R, and x, y ∈ Rk,

ψ(x+y) = ψ(x)+
∑
p∈[k]

∂pψ(x) yp+
∑
p,q∈[k]

1
(p, q)!

∂p,qψ(x) ypyq+
∑

p,q,r∈[k]

1
(p, q, r)!

∂p,q,rψ(x) ypyqyr+err(x, y),

where |err(x, y)| ≤ ‖ψ(4)‖1 ·maxp∈[k] |yp|4.

Proof of Lemma 4.2. Let X ← µn and Y ← N n. We first partition [n] into blocks using a random
hash function h ∈u H and then use a blockwise-hybrid argument. Fix a hash function h ∈ H. View
X as X1, . . . , Xt, where each X l = Xh−1(l) is chosen independently and uniformly from µ|h

−1(l)|.
Similarly, view Y as Y 1, . . . , Y t where each Y l = Y h−1(l) is chosen independently and uniformly
from N |h−1(l)|. We prove the claim via a hybrid argument where we replace the blocks X1, . . . , Xt

with Y 1, . . . , Y t one at a time.
For 0 ≤ i ≤ t, let Zi be the distribution with Zi|h−1(j) = Xj for i < j ≤ t and Zi|h−1(j) = Y j for

1 ≤ j ≤ i. Then, Z0 is distributed as µn and Zt is distributed as N n. For l ∈ [t], let

h(W, l) =

 k∑
p=1

‖W p
h−1(l)

‖4 log k

1/ log k

.

Claim 4.4. For 1 ≤ l ≤ t, and fixed h ∈ H,∣∣∣∣ E
X,Y

[
ψ(W TZ l)

]
− E
X,Y

[
ψ(W TZ l−1)

] ∣∣∣∣ ≤ C log2 k ‖ψ(4)‖1 h(W, l).

Proof. Without loss of generality, suppose that h−1(l) = {1, . . . ,m}. Note that Z l, Z l−1 have the
same random variables in positions m+ 1, . . . , n. Let Z l−1 = (X1, . . . , Xm, Zm+1, . . . , Zn) and
Z l = (Y1, . . . , Ym, Zm+1, . . . , Zn) where (X1, . . . , Xm) is uniform over µm and (Y1, . . . , Ym) is uniform
over Nm. Note that (Zm+1, . . . , Zn) is independent of (X1, . . . , Xm), (Y1, . . . , Ym).

Let W1 ∈ Rm×k be the matrix formed by the first m rows of W and similarly let W2 ∈ R(n−m)×k

be the matrix formed by the last n−m rows of W . Lastly, let V = W T
2 (Zm+1, . . . , Zn) and U be
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one of X = (X1, . . . , Xm) or Y = (Y1, . . . , Ym). Now, by using a Taylor expansion of ψ at V as in
Fact 4.3,

ψ(W T (U1, . . . , Um, Zm+1, . . . , Zn)) = ψ(W T
1 U + V )

= ψ(V ) +
∑
p∈[k]

∂pψ(V ) 〈W p
1 , U〉+

∑
p,q∈[k]

1
(p, q)!

∂p,qψ(V ) 〈W p
1 , U〉 〈W

q
1 , U〉

+
∑

p,q,r∈[k]

1
(p, q, r)!

∂p,q,rψ(V ) 〈W p
1 , U〉 〈W

q
1 , U〉 〈W

r
1 , U〉+ err(V,W T

1 U). (4.1)

Now, using the fact that ‖z‖∞ ≤ ‖z‖log k for z ∈ Rk,

∣∣err(V,W T
1 U)

∣∣ ≤ ‖ψ(4)‖1 ·max
p∈[k]
|〈W p

1 , U〉|
4 ≤ ‖ψ(4)‖1

 k∑
p=1

|〈W p
1 , U〉|

4 log k

1/ log k

. (4.2)

Now, by hypercontractivity of µ,

E
X


 k∑
p=1

|〈W p
1 , X〉|

4 log k

1/ log k
 ≤

E
X

 k∑
p=1

|〈W p
1 , X〉|

4 log k

1/ log k

(by power-mean inequality)

=

 k∑
p=1

E
X

[
|〈W p

1 , X〉|
4 log k

]1/ log k

≤

 k∑
p=1

(C log k)2 log k ‖W p
1 ‖

4 log k

1/ log k

(by hypercontractivity of µ)

≤ C(log2 k)h(W, l). (4.3)

Similarly, by hypercontractivity of N ,

E
Y


 k∑
p=1

|〈W p
1 , Y 〉|

4 log k

1/ log k
 ≤ C(log2 k)h(W, l). (4.4)

Since µ is proper, for any u1, u2, u3 ∈ Rm,

E[〈u1, X〉] = E[〈u1, Y 〉], E[〈u1, X〉 〈u2, X〉] = E[〈u1, Y 〉 〈u2, Y 〉]

E[〈u1, X〉 〈u2, X〉 〈u3, X〉] = E[〈u1, Y 〉 〈u2, Y 〉 〈u3, Y 〉].

From the above equations, Equations (4.1), (4.2), (4.3), (4.4) and the fact that X,Y, V are in-
dependent of one another, it follows that

∣∣E [ψ(W TZ l)− ψ(W TZ l−1)
]∣∣ ≤ C(log2 k) ‖ψ(4)‖1h(W, l).

Lemma 4.2 now follows from the above claim, summing from l = 1, . . . , t, and taking expectation
with respect to h ∈u H.
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5 Noise Sensitivity of Intersections of Regular Halfspaces

We now describe how our invariance principle yields a bound on the average and noise sensitivity
of intersections of regular halfspaces. We begin by defining the (Boolean) noise sensitivity of a
Boolean function:

Definition 5.1 (noise sensitivity). Let f be a Boolean function f : {1,−1}n → {1,−1}. For any
δ ∈ (0, 1), let X be a random element of the hypercube {1,−1}n and Z a δ-perturbation of X
defined as follows: for each i independently, Zi is set to Xi with probability 1 − δ and −Xi with
probability δ. The noise sensitivity of f , denoted NSδ(f), for noise δ is then defined as follows:
NSδ(f) = Pr [f(X) 6= f(Z)].

Let f1, . . . , fk : {1,−1}n → {1,−1} be halfspaces with fp(x) = sign(〈W p, x〉 − θp) and let
f∧k : {1,−1}n → {1,−1} be their intersection, f∧k = f1 ∧ f2 ∧ . . . ∧ fk.

Theorem 5.2. For f∧k ε-regular, NSδ(f∧k) ≤ C(log1.6(k/δ)) (ε1/6 + δ1/2).

We prove the theorem by first reducing bounding noise sensitivity of f∧k to bounding the
Boolean volume of l∞-neighborhoods of polytopes. We then use our invariance principle, Theo-
rem 3.1, to prove the required bounds on the Boolean volume of boundaries of polytopes.

As mentioned before, the above theorem implies a nlogO(1) k algorithm for learning intersections
of regular halfspaces in the agnostic model for any constant error rate.

We use the following tail bound that follows from Pinelis’s subgaussian tail estimates [Pin94].

Fact 5.3. There exist absolute constants c1, c2 > 0 such that all w ∈ Rm, t > 0,

Pr
x∈u{1,−1}m

[ |〈w, x〉| > t‖w‖ ] ≤ c1 exp(−c2t2).

The following claim says that for W ε-regular, random x ∈u {1,−1}n, and a δ-perturbation y
of x, W Tx is close to W T y in l∞ distance.

Claim 5.4. For x ∈ {1,−1}n, let y(x) be a random δ-perturbation of y(x) of x. Then,

Pr
x∈u{1,−1}n,y(x)

[
‖W Tx−W T y(x)‖∞ ≥ λ

]
≤ 2δ,

where λ = C log(k/δ)1/2δ1/2 + C log(k/δ)3/4ε1/2.

Proof. Let Y = (Y1, . . . , Yn) be i.i.d indicator variables with Pr[Yi = 1] = δ. Let S(Y ) =
support(Y ). Now, for p ∈ [k], ‖W p

S(Y )‖
2 =

∑n
i=1W

2
ipYi and E[‖W p

S(Y )‖
2] = δ. Further, since

W is ε-regular, by Hoeffding’s inequality, for all t > 0,

Pr
[
|‖W p

S(Y )‖
2 − δ| ≥ γ

]
≤ 2 exp

(
−2γ2∑
iW

4
ip

)
≤ 2 exp

(
−2γ2

ε2

)
.

Thus, by a union bound

Pr
Y

[
∃p ∈ [k], ‖W p

S(Y )‖
2 ≥ δ + 2

√
log(k/δ) ε

]
≤ δ. (5.1)

Note that for a fixed Y and sufficiently large C, by Fact 5.3 and a union bound,

Pr
x∈u{1,−1}n

[
∃p ∈ [k], |〈W p

S(Y ), xS(Y )〉| ≥ C
√

log(k/δ) ‖W p
S(Y )‖

]
≤ δ.
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From Equation 5.1 and the above equation, we get that for a sufficiently large constant C

Pr
x∈u{1,−1}n,Y

[
∃p ∈ [k], |〈W p

S(Y ), xS(Y )〉| ≥ C log(k/δ)1/2δ1/2 + C log(k/δ)3/4ε1/2
]
≤ 2δ. (5.2)

Now, observe that that for x ∈ {1,−1}n, to generate a δ-perturbation of x, y(x), we can first
generate a random Y as above and flip the bits of x in the support of Y . Thus, from Equation 5.2,

Pr
x∈u{1,−1}n,Y

[∃p ∈ [k], |〈W p, x〉 − 〈W p, y(x)〉| ≥ λ ] = Pr
x∈u{1,−1}n,Y

[
∃p ∈ [k], 2 |〈W p

S(Y ), xS(Y )〉| ≥ λ
]

≤ 2δ,

where λ = C log(k/δ)1/2δ1/2 + C log(k/δ)3/4ε1/2. Therefore,

Pr
x∈u{1,−1}n,Y

[
‖W Tx−W T y(x)‖∞ ≥ λ

]
≤ 2δ.

The following claim can be seen as an anti-concentration bound for regular polytopes over the
hypercube and could be of use elsewhere.

Claim 5.5. For ε-regular W ∈ Rn×k, θ ∈ Rk, and 0 < λ < 1,

Pr
x∈u{1,−1}n

[W Tx ∈ Rect(θ + λ 1k) \ Rect(θ − λ 1k) ] ≤ C(log1.6 k) (ε log(1/ε))1/5 +
√

log k λ.

Proof. Follows directly from Theorem 3.1 and Lemma 3.4.

We can now prove Theorem 5.2.

Proof of Theorem 5.2. Note that for x, y ∈ Rn, f∧k(x) 6= f∧k(y) implies that W Tx ∈ Rect(θ +
γ1k) \ Rect(θ − γ1k), where γ = ‖W Tx−W T y‖∞. Hence,

NSδ(f∧k) = Pr
x∈u{1,−1}n,Y

[ f∧k(x) 6= f∧k(y(x)) ]

≤ Pr
x∈u{1,−1}n,Y

[ f∧k(x) 6= f∧k(y(x)) | ‖W Tx−W T y(x)‖∞ ≤ λ ] + 2δ (Claim 5.4)

≤ Pr
x∈u{1,−1}n

[W Tx ∈ Rect(θ + λ 1k) \ Rect(θ − λ 1k) ] + 2δ

≤ C(log1.6 k) (ε log(1/ε))1/5 +
√

log k λ+ 2δ. (Claim 5.5)

The theorem now follows.

6 Pseudorandom Generators for Polytopes

We now prove our main theorems for constructing pseudorandom generators for polytopes with
respect to a variety of distributions (Theorems 1.5, 1.6, and 1.7).

The results in this section are based on a recent PRG construction due to Meka and Zuckerman
[MZ09] for polynomial threshold functions using the invariance principle of Mossel et al. [MOO05].
A closer look at their construction reveals a general program for constructing PRGs from invariance
principles. Given this observation, it is natural to ask if our invariance principle can be used
to construct PRGs for regular polytopes. Indeed it can, and we use the Meka and Zuckerman
generator but with a different setting of its parameters. The analysis, however, is a little more
complicated in our setting (even given our invariance principle) and requires a careful application
of hypercontractivity.
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6.1 Main Generator Construction

We begin by describing the construction of the PRG we use; it is a slightly modified version of the
PRG used by Meka and Zuckerman [MZ09] to fool regular halfspaces (i.e., the case k = 1).

Give δ ∈ (0, 1), let ε = Ω(δ6/ log9.6 k) be such that log1.6 k(ε log(1/ε))1/5 = δ. Let t = 1/ε and
let H = {h : h : [n]→ [t]} be a (2 log k)-wise independent family of hash functions. That is, for all
I ⊆ [n], |I| ≤ 2 log k and b ∈ [t]I ,

Pr
h∈uH

[ ∀i ∈ I, h(i) = bi ] =
1
t|I|

.

Efficient constructions of hash families H as above with |H| = O(n2 log k) are known. To avoid
some technical issues that can be overcome easily, we assume that every hash function h ∈ H is
equi-distributed in the following sense: for all j ∈ [t], |{i : h(i) = j}| = n/t.

Let m = n/t and let G0 : {0, 1}s → {1,−1}m generate a (4 log k)-wise independent distribution
over {1,−1}m. That is, for all I ⊆ [n], |I| ≤ 2 log k and b ∈ {1,−1}I ,

Pr
x=G0(z),z∈u{0,1}s

[∀i ∈ I, xi = bi ] =
1

2|I|
.

Efficient constructions of generators G0 as above with s = O(log k log n) are known [NN93].
Given a hash family and generator G0 as above, we consider the following generator. Define

G : H× ({0, 1}s)t → {1,−1}n by G(h, z1, . . . , zt) = x, where x|h−1(i) = G0(zi) for i ∈ [t].

6.2 Pseudorandom Generators for Regular Polytopes

We now argue that the generator G defined in the last section fools regular polytopes and prove
Theorem 1.5.

Proof of Theorem 1.5. The bound on the seed length of the generator G follows from the construc-
tion. The following statement follows from an argument similar to that of the proof of Theorem 3.2:
for any smooth function ψ : Rk → R and ε-regular W ,∣∣∣∣ E

y∈u{0,1}r
[ψ(W TG(y))]− E

Y←Nn
[ψ(W TY )]

∣∣∣∣ ≤ C log3 k (ε log(1/ε)) ‖ψ(4)‖1. (6.1)

Indeed, to observe that Lemma 4.1 holds for any (2 log k)-wise independent family of hash functions
and the proof of Lemma 4.2 relies only on two key properties of X ← µn: (1) For a fixed hash
function h, the blocks Xh−1(1), Xh−1(2), . . . , Xh−1(t) are independent of one another. (2) For a
fixed hash function h, and j ∈ [t], the distribution of each block Xh−1(j) satisfies (2, 2 log k)-
hypercontractivity for all j ∈ [t]. In other words, we used the property that for all j ∈ [t],
u ∈ R|h−1(j)|,

E[|〈u,Xh−1(j)〉|4 log k] ≤ (C log k)2 log k ‖u‖4 log k. (6.2)

Note that X generated according to the generator G satisfies both the above conditions: 1) For a
fixed function h, the blocks are independent by definition and 2) the hypercontractivity inequality
6.2 only involves the first (4 log k)-moments of the distribution of Xh−1(j). As a consequence,
inequality 6.2 holds for any (4 log k)-wise independent distribution over {1,−1}|h−1(j)|.

We can now move from closeness in expectation to closeness in cdf distance by an argument
similar to the proof of Theorem 3.1, where we use Equation 6.1 instead of Theorem 3.2, to get

| Pr
y∈u{0,1}r

[G(y) ∈ K]− Pr
Y←Nn

[Y ∈ K]| ≤ δ.

The theorem now follows from the above equation and Theorem 3.1.
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6.2.1 Approximate Counting for Integer Programs

The PRG from Theorem 1.5 coupled with enumeration over all possible seeds immediately implies a
quasi-polynomial time, deterministic algorithm for approximately counting, within a small additive
error, the number of solutions to “regular” {0, 1}-integer programs. It turns out that “regular”
integer programs correspond to a broad class of well-studied combinatorial problems. For example,
we obtain deterministic, approximate counting algorithms for dense set cover problems and {0, 1}-
contingency tables. We obtain quasi-polynomial time algorithms even when there are a polynomial
number of constraints (or polynomial number of rows in the contingency table setting). As far as
we know, there is no prior work giving nontrivial deterministic algorithms for counting solutions to
integer programs with many constraints.

Here we discuss the case of dense set cover instances and remark that we get similar results for
the special case of counting contingency tables. Covering integer programs are a fundamental class
of integer programs and can be formulated as follows.

min
∑
i

Xi

s.t.
∑
i

aijXi ≥ cj , j = 1, . . . , k, (6.3)

X ∈ {0, 1}n,

where the coefficients of the constraints aij and cj are all non-negative. An important special
class of covering integer programs is set cover, which in turn is a generalization of many important
problems in combinatorial optimization such as edge cover and multidimensional {0, 1}-knapsack.

In the standard set cover problem, the input is a family of sets S1, . . . , Sn over a universe U of
size k and an integer t. The goal is to find a subfamily of sets C such that |C| ≤ t and the union
of all the sets in C equals U . This corresponds to a covering program as above with k constraints
and n unknowns from {0, 1}. Call an instance of set cover ε-dense if each element in U appears in
at least 1/ε2 of the different sets Si. It is easy to verify that with this restriction, after translating
from {0, 1} to {1,−1} and appropriate normalization, all the linear constraints in the corresponding
integer program as in Equation 6.3 are ε-regular. Thus, using the generator from Theorem 1.5 and
enumerating over all seeds to the generator, we have the following:

Theorem 6.1. There exists a deterministic algorithm that, given instance of an ε-dense set cov-
ering problem with k constraints over a universe of size n, approximates the number of solutions to
within an additive factor of δ in time npoly(log k,1/δ) as long as ε ≤ δ5/(log8.1 k)(log(1/δ)).

We now briefly elaborate on approximately counting the number of {0, 1} contingency tables.
The problem of counting {0, 1}-contingency tables is the following. Given, positive integers n, k
n > k, r = (r1, . . . , rn) ∈ Zn, c = (c1, . . . , ck) ∈ Zk we wish to count the number of solutions,
CT(r, c), to the following integer program whose solutions are matrices X ∈ {0, 1}n×k with row
and column sums given by r, c.

Find X ∈ {0, 1}n×k

s.t.
∑
j

Xij = ri, 1 ≤ i ≤ n,∑
i

Xij = cj , 1 ≤ j ≤ k.
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Observe that, after translating from {0, 1} to {1,−1} and appropriately normalizing, solutions
to the above integer program correspond to points from {1,−1}n×k that lie in an intersection of
2(n + k)-halfspaces each of which is (1/

√
k)-regular (recall that the notion of regularity does not

depend on the value of the ci’s or rj ’s). Thus, as with dense instances of set cover, we can use
Theorem 1.5 to count the number of {0, 1}-contingency tables:

Theorem 6.2. There exists a deterministic algorithm that on input r ∈ Zn, c ∈ Zk, approximates
CT(r, c)/2nk, the fraction of {0, 1}-contingency tables with sums r, c, to within additive error δ,
and runs in time npoly(log k,1/δ).

We remark that using results of Wolff [Wol07], who shows hypercontractivity for various discrete
distributions, we can approximately count number of solutions to dense set cover instances and
contingency tables over most natural domains.

6.3 Pseudorandom Generators for Polytopes in Gaussian Space

We now prove Theorem 1.6. We use an idea of Ailon and Chazelle [AC06] and the invariance of
the Gaussian measure to unitary rotations to obtain PRGs with respect to N n for all polytopes.
Similar ideas were used by Meka and Zuckerman to obtain PRGs for spherical caps (i.e., the case of
one hyperplane). In our setting, we must prove that, with respect to a random rotation, all of the
bounding hyperplanes become regular with high probability. Such a tail bound requires applying
hypercontractivity.

Let H ∈ Rn×n be the normalized Hadamard matrix with Hij ∈ {1/
√
n,−1/

√
n}. Ailon and

Chazelle show that for any w ∈ Rn, and a random diagonal matrixD with uniformly random {1,−1}
entries, the vector HDw is regular with high probability. We derandomize their observation using
hypercontractivity. For a vector x ∈ Rn, let D(x) ∈ Rn×n be the diagonal matrix with diagonal
entries x.

Lemma 6.3. There exists a constant C > 0 such that the following holds. For any w ∈ Rn,
‖w‖ = 1 , 0 < δ < 1 and any (C log(k/δ))-wise independent distribution D over {1,−1}n,

Pr
x←D

[
‖HD(x)w‖44 ≥ C log2(k/δ)/n

]
≤ δ/k.

Proof. Fix a w ∈ Rn and a C log(k/δ)-wise independent distribution D for constant C to be chosen
later. Let random variable Z = ‖HD(x)w‖44 =

∑
i (
∑

lHilxlwl)
4 for x ← D. Note that x satisfies

(2, q)-hypercontractivity for q ≤ C log(k/δ). Now,

E[Z2] =
∑
i,j

E

(∑
l

Hilxlwl

)4(∑
l′

Hjl′xl′w
′
l

)4


≤
∑
ij

√√√√√E

(∑
l

Hilxlwl

)8
 · E

(∑
l

Hjlxlwl

)8
 Cauchy-Schwarz inequality

≤
∑
i,j

84

E

(∑
l

Hilxlwl

)2
2E

(∑
l

Hjlxlwl

)2
2

(2, 8)-hypercontractivity

= 84
∑
i,j

1
n4

=
c

n2
.
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Observe that Z is a degree 4 multilinear polynomial over x1, . . . , xn. Therefore, by (2, q)-hypercontractivity,
Lemma 2.4, applied to the random variable Z, for q ≤ C log(k/δ)/4,

E[|Z|q] ≤ q2q(E[Z2])q/2 ≤ cq/2 q2q

nq
.

Hence, by Markov’s inequality, for γ > 0,

Pr[ |Z| > γ ] = Pr[ |Z|q > γq ] ≤

(
c1/2 q2

γn

)q
.

The lemma now follows by taking q = 2 log(k/δ) and γ = 2 c1/2 q2/n.

Let G : {0, 1}r → {1,−1}n be the generator from Theorem 1.5 for r = O((log n log k)/ε).
Let G1 : {0, 1}r1 → {1,−1}n generate a C log(k/δ)-wise independent distribution, for constant
C as in Lemma 6.3. Generators G1 as above with r1 = O(log(k/δ) log n) are known. Define
GN : {0, 1}r1 × {0, 1}r → Rn as follows:

GN (x, y) = D(G1(x))HG(y).

We claim that GN δ-fools all polytopes with respect to N n.

Proof of Theorem 1.6. Recall that ε = Ω(δ5.1/ log8.1 k) > 1/n.51. The seed length of GN is r1 +r =
O(log n log k/ε). Fix W ∈ Rn×n. Observe that W TGN (x, y) = (HD(G1(x))W )TG(y). Now, from
Lemma 6.3 and a union bound it follows that

Pr
x∈u{0,1}r1

[HD(G1(x))W is not ε-regular ] ≤ δ. (6.4)

Further, from the invariance of N n with respect to unitary rotations, for any x ∈ {0, 1}r1 ,

Pr
z←Nn

[(HD(G1(x))W )T z ∈ Rect(θ)] = Pr
z←Nn

[W T z ∈ Rect(θ)].

Thus, from Theorem 1.5 applied to N , we get that for HD(G1(x))W ε-regular,

| Pr
y∈u{0,1}r

[ (HD(G1(x))W )TG(y) ∈ Rect(θ) ]− Pr
z←Nn

[W T z ∈ Rect(θ)]| ≤ δ. (6.5)

The theorem now follows from Equations (6.4), (6.5).

6.4 Pseudorandom Generators for Intersections of Spherical Caps

Theorem 1.7 follows from Theorem 1.6 and the following new invariance principle for polytopes
over Sn−1:

Lemma 6.4. For any polytope K with k faces,∣∣∣∣ Pr
X∈uSn−1

[X ∈ K]− Pr
Y←Nn

[
Y/
√
n ∈ K

]∣∣∣∣ ≤ C log n log k√
n

.

The proof uses Nazarov’s bound on Gaussian surface area and the following classical large
deviation bound for the norm of a random Gaussian vector (for a nice exposition of the bound see
[Tao09])
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Lemma 6.5. For Y ← N n,

Pr[ |‖Y ‖ −
√
n| > t ] ≤ a exp(−b t2),

where a, b > 0 are universal constants.

Proof of Lemma 6.4. Fix a polytope K(W, θ). Let X ∈u Sn−1 and Y ← N n. Note that Y/‖Y ‖ is
uniformly distributed over Sn−1. Fix δ = c/n1/2 for a constant c to be chosen later. Observe that
for Y ← N n, and u ∈ Rn, ‖u‖ = 1, 〈u, Y 〉 is distributed as N . Hence, for any u ∈ Rn, ‖u‖ = 1,

Pr[ |〈u, Y 〉| ≥
√

log(k/δ) ] ≤ δ

k
.

Therefore, by a union bound,

Pr[ ‖W TY ‖∞/
√
n >

√
log(k/δ)/

√
n ] ≤ δ.

Further, by using Lemma 6.5 and the fact that Y/‖Y ‖ is uniformly distributed over Sn−1,

Pr[ ‖W TX‖∞ >
√
C log(k/δ)/

√
n ] ≤ 2δ,

for a sufficiently large constant C. From the above two equations, it follows that to prove the
theorem we can assume that

‖θ‖∞ <
√
C log(k/δ)/n.

Now, from Lemma 6.5 and the above equation it follows that

Pr[ |‖Y ‖ −
√
n| ‖θ‖∞ ≥

√
C log(1/δ) log(k/δ)/n ] ≤ δ. (6.6)

Let λ =
√
C log(1/δ) log(k/δ)/n. Then, since Y/‖Y ‖ ∈u Sn−1

| Pr[X ∈ K]− Pr[Y/
√
n ∈ K] | = | Pr[W TX ∈ Rect(θ)]− Pr[W TY/

√
n ∈ Rect(θ)] |

= | Pr[W TY ∈ ‖Y ‖Rect(θ)]− Pr[W TY ∈
√
nRect(θ)] |

≤ Pr[ |‖Y ‖ −
√
n| ‖θ‖∞ ≥ λ ]

+ Pr[W TY ∈ Rect(
√
nθ + λ1k) \ Rect(

√
nθ − λ1k) ]

≤ δ +O(λ
√

log k ). (Equation 6.6, Lemma 3.4)

The lemma now follows by choosing δ = c/n1/2 for a sufficiently large constant c.

Proof of Theorem 1.7. Define Gsp : {0, 1}r1 × {0, 1}r → Sn−1 by Gsp(x, y) = GN (x, y)/
√
n. It

follows from Theorem 1.6 and Lemma 6.4 that Gsp fools polytopes over Sn−1 as in the theorem.
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[PR89] Vygantas Paulauskas and Alfredas Račkauskas. Approximation Theory in the Central Limit The-
orem: Exact Results in Banach Spaces. Kluwer Academic Publishers, 1989. (Translated from Russian).

[Shi00] Yaoyun Shi. Lower bounds of quantum black-box complexity and degree of approximating polynomials
by influence of Boolean variables. Inf. Process. Lett., 75(1-2):79–83, 2000. arXiv:quant-ph/9904107,
doi:10.1016/S0020-0190(00)00069-7.

[Tao09] Terry Tao. Talagrand’s concentration inequality , 2009. (Post in Blog ”What’s new”).

[Wol07] Pawel Wolff. Hypercontractivity of simple random variables. Studia Math, 180(3):219–236, 2007.
doi:10.4064/sm180-3-3.

[Wol08] Ronald de Wolf. A brief introduction to Fourier analysis on the Boolean cube. Theory of Computing,
Graduate Surveys, 1:1–20, 2008. doi:10.4086/toc.gs.2008.001.

[Zie95] Günter M. Ziegler. Lectures on polytopes, volume 152 of Graduate texts in Mathematics. Springer,
1995.

21

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 

http://dx.doi.org/10.1016/j.jcss.2003.11.002
http://dx.doi.org/10.1109/FOCS.2008.64
http://dx.doi.org/10.1145/174130.174138
http://dx.doi.org/10.1145/174130.174138
http://www.springer.com/physics/complexity/book/978-0-7923-9478-5
http://dx.doi.org/10.1137/S0097539796309326
http://arxiv.org/abs/math/0503503
http://dx.doi.org/10.1109/SFCS.2005.53
http://arxiv.org/abs/math/0703683
http://arxiv.org/abs/math/0703683
http://dx.doi.org/10.1109/FOCS.2008.44
http://arxiv.org/abs/0910.4122
http://dx.doi.org/10.1007/b10415
http://dx.doi.org/10.1137/0222053
http://dx.doi.org/10.1137/0222053
http://dx.doi.org/10.1016/j.jcss.2004.01.001
http://eccc.hpi-web.de/report/2008/055
http://dx.doi.org/10.1145/1374376.1374458
http://arxiv.org/abs/math/0412377
http://dx.doi.org/10.1214/aos/1176325373
http://arxiv.org/abs/quant-ph/9904107
http://dx.doi.org/10.1016/S0020-0190(00)00069-7
http://terrytao.wordpress.com/2009/06/09/talagrands-concentration-inequality/
http://dx.doi.org/10.4064/sm180-3-3
http://dx.doi.org/10.4086/toc.gs.2008.001
http://www.springer.com/math/geometry/book/978-0-387-94365-7

