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Abstract

We study the complexity ofrationalizingnetwork formation. In this problem we fix an underlying
model describing how selfish parties (the vertices) producea graph by making individual decisions to
form or not form incident edges. The model is equipped with a notion of stability (or equilibrium), and
we observe a set of “snapshots” of graphs that are assumed to be stable. From this we would like to infer
some unobserved data about the system: edge prices, or how much each vertex values short paths to each
other vertex.

We study two rationalization problems arising from the network formation model of Jackson and
Wolinsky [JW96]. When the goal is to infer edge prices, we observe that the rationalization problem is
easy. The problem remains easy even when rationalizing prices do not exist and we instead wish to find
prices that maximize the stability of the system.

In contrast, when the edge prices are given and the goal is instead to infer valuations of each vertex
by each other vertex, we prove that the rationalization problem becomes NP-hard. Our proof exposes a
close connection between rationalization problems and theInequality-SAT (I-SAT) problem.

Finally and most significantly, we prove that an approximation version of this NP-complete rational-
ization problem is NP-hard to approximate to within better than a 1/2 ratio. This shows that the trivial
algorithm of setting everyone’s valuations to infinity (which rationalizes all the edges present in the input
graphs) or to zero (which rationalizes all the non-edges present in the input graphs) is the best possible
assuming P6= NP. To do this we prove a tight(1/2+δ)-approximation hardness for a variant of I-SAT in
which all coefficients are non-negative. This in turn follows from a tight hardness result for MAX -L INR+

(linear equations over the reals, with non-negative coefficients), which we prove by a (non-trivial) mod-
ification of the recent result of Guruswami and Raghavendra [GR07] which achieved tight hardness for
this problem without the non-negativity constraint.

Our technical contributions regarding the hardness of I-SAT and MAX -L INR+
may be of independent

interest, given the generality of these problems.

1 Introduction

In any market setting where different goods are available atdifferent prices, consumers demonstrate are-
vealed preferencefor a particular bundle by choosing to buy it. They do so in spite of the existence of other
bundles of goods that may be more affordable.Revealed preference theoryin economics is a well-studied

∗Supported by NSF CCF-0346991, CCF-0830787, BSF 2004329, and a Sloan Research Fellowship.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 145 (2009)



area [Sam48, Afr67, Die73, Var82] that uses these observed choices to infer preference profiles, and, more
subtly, to argue about the limitations of such inferences byidentifying settings in which simple classes of
preference profiles (e.g.linear utility functions) canalwaysrationalize data satisfying basic axioms — the
conclusion being that experiments of this sort cannot be expected to provide evidence that a more compli-
cated (e.g. non-linear) preference profile is actually in use.

From a computer science perspective, a natural question is:how hard is it, computationally, to infer
unobserved quantities (e.g. preferences profiles, utilityfunctions, prices) that explain orrationalize the
observed market data? Such problems abound in systems wherethere is an underlying notion of stability or
equilibrium (and one assumes that the observed data represent stable instances).

In certain classical settings [Afr67], rationalization amounts to solving a linear program, and so it is im-
mediately seen to be easy. Other settings have a more combinatorial feel, such as rationalizing matchings,
which we studied in previous work [KU08]. In this problem theinput is a collection of bipartite matchings,
each meant to represent the observed outcome of a two-sided market. We showed in [KU08] that determin-
ing the existence of preference orders under which the matchings are allstable matchingsis NP-complete,
and NP-hard to approximate to within a constant factor.

In this work, we consider the rationalization problem for network formation games. We study two
variants of a prominent model due to Jackson and Wolinsky [JW96] that describes how selfish parties (the
vertices) produce a graph by making individual decisions toform or not form incident edges. The model
is equipped with a notion of stability (or equilibrium), andwe observe a set of “snapshots” of graphs that
are assumed to be stable. From this we would like to infer someunobserved data about the system: in one
variant we are interested in edge prices; in the other, we areinterested in how much each vertex values short
paths to each other vertex. Both variants resemble the settings in which the rationalization problem can be
solved using linear programming (in the sense that the equilibrium conditions can be expressed as linear
inequalities), and yet they have a combinatorial componentbecause the participants’ total utility depends on
the length of various shortest paths in the network.

In this paper we show an interesting contrast: inferring “per-edge” quantities (i.e., prices) is easy, while
inferring “end-to-end” quantities (i.e., the value each vertex u assigns to having a short path to each other
vertexv) is hard. In the latter case we show a tight(1/2 + δ) inapproximability result (and this is our most
technically significant contribution). The1/2 ratio implies that the trivial approximation algorithm that sets
everyone’s valuations to infinity (which rationalizes all the edges present in the input graphs) or to zero
(which rationalizes all the non-edges present in the input graphs) is the best possible assuming P6= NP.

1.1 The network formation model and two rationalization problems

The network formation model we study is one proposed by Jackson and Wolinsky [JW96]. In this model,
there aren vertices, and each pair(u, v) (“potential edge”) has an associated price and a distance. A
network formation process produces a graphG, and given this outcome, the utility that accrues to each
vertexv depends on two additional features of the model: (1) a non-increasing functionf from distances
to the non-negative reals (think off(d) as representing the value of having a connection of lengthd), and
(2) “intrinsic values” of vertexu by v for eachu 6= v. The utility realized by vertexv is then theaggregate
distanceminus the price of the edges inv’s subset, where theaggregate distanceis the sum over verticesu
of v’s intrinsic value ofu timesf applied to the shortest path length inG to eachu.

The equilibrium concept here isnota Nash equilibrium1, but rather a simpler notion of pairwise stability;

1This is because we only consider unilateral deviations of a player to anadjacentstrategy – one in which a single edge has been
added or removed – instead of toanyalternative strategy.
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the vertex strategies arestableif (1) for each edge(u, v) in G, bothv’s andu’s marginal utility of forming
edge(u, v) is non-negative, and (2) for each non-edge(u, v) in G eitheru’s or v’s marginal utility of forming
edge(u, v) is non-positive.

We consider two rationalization problems arising under this model. In the first, which we callSTABLE-
PRICES, we are trying to infer edge prices, and we assume the other data (distances, the functionf , and the
pairwise “intrinsic values”) are fixed or given. Specifically, we are given a collection of distance-weighted
graphsG1, G2, . . . , Gm on the same underlying vertex set, that arise from equilibrium play. In addition, we
are given the functionf (as a circuit computing it), and the pairwise intrinsic values (which are the same
across the different graphs). We do not observe the (potential) edge prices (which are the same across the
different graphs). We are interested in determining edge prices thatrationalizeG1, G2, . . . , Gm; i.e., for
which eachGi is stable, or “in equilibrium,” in the above sense.

In the second rationalization problem under consideration, which we callSTABLE-VALUES, we are
trying to infer the pairwise “intrinsic values,” and we assume the other data (latencies, the functionf , and
the edge prices) are given. Specifically, as above, we are given a collection of distance-weighted graphs
G1, G2, . . . , Gm on the same underlying vertex set, that arise from equilibrium play. In addition, we are
given the functionf (as a circuit2), and the edge prices (which are the same across the different graphs);
we do not observe the pairwise “intrinsic values” (which arethe same across the different graphs). We are
interested in determining pairwise intrinsic values thatrationalizeG1, G2, . . . , Gm; i.e., for which eachGi

is stable, or “in equilibrium”, in the above sense.
We also consider an optimization version ofSTABLE-VALUES. In it, we are seeking pairwise “intrinsic

values” that maximize the number of stable edges/non-edgesacross allm input graphsamong active pairs.
We deem a pair(u, v) active unless (1) it is an edge in all of the input graphs, with price zero (which
means effectively that edge(u, v) is present and fixed no matter how the other quantities are varied) or (2)
it is a non-edge in all of the input graphs, with price infinity(which means effectively that edge(u, v) is
permanently absent regardless of the other relevant quantities). Non-active pairs are “part of the landscape”
and intuitively do not contribute to the stability of the system. After this consideration, our optimization
problem is to infer intrinsic values with the maximum explanatory power (and note that edges/non-edges are
counted separately for each graph in which they appear).

For concreteness, we briefly describe an example scenario inwhich this rationalization problem naturally
arises. Social networks are formed among groups of people who ascribe a certain value (“friendship”) to
one another but establish connections with only those that they perceive to be most intrinsically valuable to
them. If, for instance, everybody in the group was in close physical proximity to one another (they all went
to the same high school or college) then the price of connecting to any one person is insignificant compared
to the value derived in return, no matter how small that may be. This would result in a clique as a stable
network. However, once this group becomes geographically spread out, the network formed in equilibrium
can become sparser, such as a star network, where all connections are made to a single person since the
cost of building mutual connections outweighs the utility gained. This illustrates that (when holding the
intrinsic value people in such a group have for one another tobe invariant) temporal and spatial dynamics
affect the manner of how social networks coalesce and stabilize. While prices and distances might be readily
observable, the intrinsic value each individual has for each other individual is generally private. The problem
STABLE-VALUES in this paper asks to infer these values given (say) a series of snapshots taken over time of
a single social network of individuals.

2This permits unnatural functionsf , but note that all of our reductions produce instances with very simple piecewise linear and
non-increasingf that one can easily envision occurring in the real world.
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1.2 Rationalization problems andI-SAT

As mentioned above, we show thatSTABLE-PRICES is easy, whileSTABLE-VALUES is hard. Our hardness
result is based on a reduction from a variant of the Inequality Satisfiability problem (abbreviated asI-SAT)
introduced recently by Hochbaum and Moreno-Centeno [HMC08]. An instance ofI-SAT is a conjunction of
inequality-clauses, where each inequality-clause is a disjunction of linear inequalities overn real variables
x1, x2, . . . , xn. The instance is a “yes” instance iff there exists an assignment of real values to the variables
simultaneously satisfying all of the inequality-clauses.Hochbaum and Moreno-Centeno showed by a simple
reduction from 3-SAT that this class of problems is NP-complete even in the case when each inequality-
clause is a disjunction of only two inequalities.

The variant ofI-SAT that we need for our reduction satisfies two additional constraints: (1) all of the
coefficients are non-negative (and we are seeking a solutiononly in the non-negative reals), and (2) there is
a partition of the variables into two setsS, T such that every inequality-clause is either the disjunction of
two ≤ inequalities, one supported inS and one supported inT , or a conjunction of two≥ inequalities, one
supported inS and one inT . We call this variantI-SAT∗ .

To achieve our main hardness results, we show thatI-SAT∗ is NP-complete, and that the optimization
version (maximize the number of inequality-clauses simultaneously satisfied) is NP-hard to approximate to
within (1/2 + δ). Note that, just as it is trivial to achieve approximation ratio 1/2 in the rationalization
problem to which we reduce, it is trivial to achieve approximation ratio 1/2 here by either setting all vari-
ables to zero (satisfying all the inequality-clauses of thefirst type) or setting all variables sufficiently large
(satisfying all the inequality-clauses of the second type).

The ease of translating between these problems brings us to an important observation. Not only isI-SAT

useful as a starting point for reductions involving the hardrationalization problem in this paper, but we
contend it is the abstract computational problem that captures rationalization problems more generally. It
is common for the “stability conditions” arising in a rationalization problem to be expressible by a finite
Boolean formula whose inputs are inequalities in the (real)quantities being inferred. This is true, e.g., for
the bipartite matchings problem studied in [KU08] (the quantities being inferred are the values each left
node has for each right node, and the familiar stability condition for stable matchings is expressible as the
disjunction of two inequalities involving these quantities), for the rationalization problems studied here, and
those mentioned in the introduction. Even the positivity constraint we add arises naturally in many such
settings, as utilities, prices, etc. are often assumed to benon-negative.

Thus we expect that a more complete understanding of the approximability of I-SAT (which to our
knowledge has not been studied prior to this paper) can serveas a useful starting point for understanding the
approximability of rationalization problems more generally, and we view this as an important contribution
of this paper.

1.3 Hardness of approximatingI-SAT∗ via MAX -L INR+

For the generalI-SAT problem, there is an easy reduction from MAX -L INR (linear equations over the reals).
Namely, for each equation

∑
i aixi = b, we produce the pair ofI-SAT clauses

∑
i aixi ≤ b and

∑
i aixi ≥ b.

MAX -L INR was (only recently) shown to have a PCP system with(1−ǫ) completeness andγ soundness
[GR07] (with ǫ, γ close to 0), which gives rise to(1/2+ δ)-inapproximability for the generalI-SAT problem
via this reduction (although, the non-perfect completeness means this gap is between classes of unsatisfiable
instances, which is a minor drawback).

We need a similar hardness result for our variant,I-SAT∗, which crucially entails a positivity constraint.
In the [GR07] inapproximability result (and similar inapproximability results using the basic framework of
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Hastad [Hås01]), the equations all have the formxi + xj − xk = 0 since they arise from linearity tests
performed by the verifier in the PCP system. Thus, they are notsuitable for proving inapproximability for
I-SAT∗ . Simple transformations like translating the origin do notwork, and the natural idea of introducing
new variablesx′i and the constraintsxi + x′i = 0 (and usingx′i in place of−xi to remove the negative
coefficients) does not preserve the inapproximability.

It is also important to note that while Hastad’s inapproximability results for MAX -L INFp can be eas-
ily transformed into similar inapproximability results for MAX -L INZ, this transformation introduces large
coefficients (of magnitudep), which prohibit the clever trick in [GR07] that is used to argue that the inap-
proximability carries over to the reals.

So our hands are somewhat tied: to obtain the(1/2 + δ) inapproximability forI-SAT∗ , we really need
an exact analog of [GR07], but one that produces equations with positive coefficients. In Section 5, we
give such a result for MAX -L INR+ , showing that it is NP-hard to distinguish between an instance with a
(1 − ǫ) fraction satisfiable assignment and one with at mostδ fraction satisfiable, and in turn a(1/2 + δ)
inapproximability result forI-SAT∗ . Doing so requires more than a superficial modification of theproof in
[GR07]. In stating our results, we abstract properties of the distribution used for the verifier’s queries that
are sufficient for the general proof strategy of [GR07] to work, and then utilize a different distribution (and
some minor changes in the Fourier analysis) to eventually produce equations with all coefficients+1. This
result is our most significant technical contribution.

1.4 Related work

Rationalizability has been well-studied under the domain of revealed preference theory and social choice
theory by economists [Sam48, Var82, Spr00, FST04, BV06, Var06, Ech08]. Traditionally, the questions
have been connected with characterizing the implications of various solution concepts to games and market
settings, and whether these implications can be tested based on data obtained from consumer choices.

In connection with studying network formation games, whilethe question of understanding the prop-
erties and limitations of equilibria is not new [JW96, DM97,JW01, DJ03, FLM+03], to the best of our
knowledge there is no previous work done with respect to either the rationalizability question for these
games in general, or the Jackson-Wolinsky model of network formation in particular.

1.5 Outline

In Section 3 we formally defineSTABLE-PRICES, and observe that it is easy (and even the optimization
variant is easy to solve exactly). In Section 4 we defineSTABLE-VALUES and give a reduction fromI-SAT∗ to
it. We then show thatI-SAT∗ is NP-complete (this is not subsumed by our eventual inapproximability result,
since this reduction has perfect completeness). In Section5 we state an approximation preserving reduction
from MAX -L INR+ to I-SAT∗, and we then describe the PCP system (based on a non-trivial modification
of [GR07]) that impliesǫ inapproximability for it. This yields the tight(1/2 + δ) inapproximability for
STABLE-VALUES.

2 Jackson-Wolinsky model for network formation games

We describe formally the seminal model for stability of network formation games as formulated by Jackson
and Wolinsky [JW96]. The model comprises:

• n agentsV
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• pairwise distance functiond : V × V → R+

• pairwise intrinsic value functionw : V × V → R+

• a functionf : R+ → R that defines the contribution of a path of lengthd

• price profilec : V × V → R+

For a graphG and any twoi, j ∈ V , we definedG(i, j) to be the distance of the shortest pathP (i, j) from
i to j given by

∑
(u,v)∈P (i,j) d(u, v). Let Γ(v) be the set of neighbors ofv. The utility agenti derives in

graphG, denotedui(G), is given by:

ui(G) =
∑

j∈V

f(dG(i, j))w(i, j) −
∑

k∈Γ(i)

c(i, k)

Definition 2.1. A graphG = (V,E) is said to be pairwise stable with respect tod,w, f, c if:

1. for all i, j ∈ V such that(i, j) ∈ G,

ui(G) ≥ ui(G− (i, j)) anduj(G) ≥ uj(G− (i, j))

2. for all i, j ∈ V such that(i, j) /∈ G,

ui(G) ≥ ui(G+ (i, j)) or uj(G) ≥ uj(G+ (i, j))

In this definitionboth endpoints must prefer that an edge inG exists (or at least be indifferent to its
existence) for the edge to be stable; correspondingly a non-edge inG is stable if evenoneendpoint prefers
that is not be present (or at least is indifferent to its presence).

3 Finding stable prices when intrinsic values are known

In the first rationalization problem that we will callSTABLE-PRICES, we consider a scenario where the
intrinsic values are known but the edge-prices are not. We are given a collection of undirected graphs
G1, . . . , Gm all of which are formed over a common set of verticesV . In addition, we are given the pairwise
distance functions for eachGi, di : V × V → R+. The rationalizability question entails inferring the prices
that players in each of the graphs would have to pay given thatthe graphs are in pairwise equilibrium.

In the above problem (and in the subsequent version,STABLE-VALUES) we assume thatf is given to us
in the form of a circuit that takes as input numbers represented with some number of bits of precision that
is polynomial in the size of the rest of the input. This precision is sufficient to exactly express the shortest
path distance to whichf is applied.

Theorem 3.1. There is a polynomial-time algorithm forSTABLE-PRICES.

Proof. The algorithm is based on the simple intuition that for an edge to exist between two verticesv,w it
must be the case that themarginal utility thatv derives by building that edge must be at least0 and the same
for u, while for a non-edge(v,w), eitherv or w must have a marginal utility at most0. These marginal
utilities are easy to compute, and they yield a system of linear inequalities exactly describing stable edge
prices. For details, please refer to a full version of this paper.
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Problem 1. STABLE-PRICES

Given: Collection of graphsG1, . . . , Gm over common set
of verticesV
Pairwise distance functionsdi : V × V → R+ for
i = 1, . . . ,m
Intrinsic value functionw : V × V → R+

Path distance contribution functionf : R+ → R,
wheref is non-increasing.

Find: Price profilec that rationalizesG1, . . . , Gm, i.e. for
whichGi is stable w.r.t.di, w, f, c for all i, if it exists.

We think of a price profilec asrationalizing(u, v) in Gi if the conditions in Definition 2.1 hold for(u, v).
An optimization version of theSTABLE-PRICESproblem is, given a collection of graphsG1, . . . , Gm, to find
a price profile that rationalizes the maximum number of “(u, v) in Gi” pairs. It is easy to see that the same
algorithm described above will also work to find a price profile that would solve the optimization problem
for STABLE-PRICESexactly.

Corollary 3.2. Given an instance ofSTABLE-PRICESthere exists a polynomial-time algorithm to construct
a price profilec that rationalizes the maximum number of “(u, v) in Gi” pairs.

4 Finding stable intrinsic values when prices are known

In the problem ofSTABLE-VALUES, we consider the scenario where the edge-prices are known but the
intrinsic values functionw is unknown. We defineSTABLE-VALUES below and show thatSTABLE-VALUES

is NP-hard by a reduction from a special variant ofI-SAT (defined below).

Problem 2. STABLE-VALUES

Given: Collection of graphsG1, . . . , Gm over common set of
verticesV
Pairwise distance functionsdi : V × V → R+ for
i = 1, . . . ,m
Path distance contribution functionf : R+ → R where
f is non-increasing
Price profilec : V × V → R+

Find: Intrinsic values functionw : V × V → R+ that
rationalizesG1, . . . , Gm, i.e. for whichGi

is pairwise stable w.r.t.di, w, f, c for all i, if it exists.

Theorem 4.1. I-SAT∗ is NP-complete.

Proof. We give a reduction from 3-SAT. Consider an instance of 3-SATgiven byn variablesx1, . . . , xn and
m clausesC1, . . . , Cm. For each variablexi our instance ofI-SAT∗ has two variableszti , z

f
i and for each
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Problem 3. I-SAT∗

Given: n variablesx1, . . . , xn, and a partitionS ∪ T of [n].
m clauses that are either of type 1:(∑

i∈S aixi ≤ 1
)

OR
(∑

j∈T cjxj ≤ 1
)

or of type 2:(∑
i∈S aixi ≥ 1

)
AND

(∑
j∈T cjxj ≥ 1

)
,

where allai, cj ≥ 0.

Find: An assignment forx1, . . . , xn ∈ R+ satisfying allm
clauses, if it exists.

clauseCj, we have three auxiliary variablesaj , bj , cj . In total, we will have2n + 3m unknowns in our
I-SAT∗ instance and we partition this intoS = {zti , z

f
i |i = 1, . . . , n} andT = {aj , bj , cj |j = 1, . . . ,m}.

For each clauseCj , we produce threeI-SAT∗ clauses of type 1 and one of type 2. SupposeCj =
(xp + x̄q + xr) by way of example. Our reduction produces the type 2 clause:

(
zti
3
+

zfi
3

≥ 1

)
AND

(
aj
4

+
bj
4
+

cj
4

≥ 1

)
(1)

and the following three type 1 clauses
(
ztp ≤ 1

)
OR (aj ≤ 1)

(zfq ≤ 1) OR (bj ≤ 1)
(
ztr ≤ 1

)
OR (cj ≤ 1)

Suppose that there exists a satisfiable assignment for the 3-SAT instance. Then, for eachxi that is true in this
assignment we letzti = 1, zfi = 2 and for eachxi that is false, we letzti = 2, zfi = 1. For each clauseCj, set
one of theaj , bj , cj variables to 2 that corresponds to a true literal, and the others to 1. These assignments
satisfy all fourI-SAT∗ clauses corresponding to clauseCj.

In the other direction, we claim that settingxi to be true for exactly thosei such thatzti ≤ 1 is a
satisfying assignment. For each clauseCj, it cannot be the case thataj , bj, cj are all≤ 1, as this would
violate the associated type 2I-SAT∗ clause. Thus at least one of the variable appearing positively in Cj must
havezti ≤ 1 or one of the variables appearing negatively must havezfi ≤ 1. Moreover, the type 2I-SAT∗

clause ensures that it can’t be the case thatzti andzfi are both≤ 1, so as claimed, the derived assignment is
consistent, and it is a satisfying assignment since it makesat least one literal in each clause true.

The following reduction is actually approximation preserving, a fact that we will use in Section 5.

Theorem 4.2. STABLE-VALUES is NP-complete.

Proof. Our proof is by reduction fromI-SAT∗.
Suppose we are given an instance ofI-SAT∗ with m clausesC1, . . . , Cm overn unknownsx1, . . . , xn

where each clauseCi is of type 1:
(∑

i∈S

aixi ≤ 1

)
OR


∑

j∈T

cjxj ≤ 1



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or of type 2 (∑

i∈S

aixi ≥ 1

)
AND


∑

j∈T

cjxj ≥ 1




and allai, cj ≥ 0 andS ∪ T is a partition of[n]. Fix L to be the least integer that is greater than all of the
ai, cj coefficients appearing in these clauses. Our reduction producesm edge-weighted graphsG1, . . . , Gm

on (n+ 3) vertices labeledv1, . . . , vn, u, s, t as follows.
For each clauseC (of either type), we construct a base graphG. For eachi ∈ S, G contains edge(s, vi)

with weight d(s, vi) = L + ai and edge(t, vi) with weight d(t, vi) = L. Similarly for eachj ∈ T , G
contains edge(s, vj) with weightd(s, vj) = L, and edge(t, vj) with weight d(t, vj) = L + cj . We also
include edges(s, u), (u, t) with weightsd(s, u) = d(t, u) = L/2.

If C is of type 1, the base graphis the graph associated withC; refer to Figure 1. IfC is of type 2, we
add the edge(s, t) with weightd(s, t) = 0 to the base graph; refer to Figure 2.

We set the cost of an edge froms to t to bec(s, t) = 1. Note that with the exception of the edge(s, t),
all of our graphs contain exactly the same set of edges. For any pair of vertices(p, q) other than(s, t), we
setc(p, q) = 0 if (p, q) is an edge andc(p, q) = ∞ if (p, q) is a non-edge.

Finally, we define the piecewise-linear functionf as follows:

f(x) =

{
−L 0 ≤ x ≤ L

−x x > L

b

b

b

b

b

vj vi

s t

u

L L

T S

L/
2 L/2

L
+
a
i

L
+
c j

Figure 1:G from clause of type 1, with edge weights

This completes the description of the reduction. We now showthat the stability conditions for each
graph are exactly the conjunction or disjunction of linear inequalities of the associatedI-SAT∗ clause.

Fix a graphG associated withI-SAT∗ clauseC. We first note that all stability conditions not involving
edge(s, t) are trivially satisfied. This is because for any other pair(p, q), the cost is 0 if(p, q) is an edge
in G (so bothp andq are indifferent to keeping it, which makes it stable), and the cost is∞ if (p, q) is a
non-edge inG (so neitherp nor q benefit from adding it, making it stable).

Now we focus on the stability conditions for(s, t), which are

us(G+ (s, t)) ≤ us(G) OR ut(G+ (s, t)) ≤ ut(G)

if (s, t) is a non-edge inG and

us(G− (s, t)) ≥ us(G) AND ut(G− (s, t)) ≥ ut(G)
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b

b

b

b

b

vj vi

s t

u

0

L L

T S

L/
2 L/2

L
+
a
i

L
+
c j

Figure 2:G from clause of type 2, with edge weights

if (s, t) is an edge inG. The following notation will be helpful. For a graphG, edgee and pair of vertices
u, v, we define

∆f+e(u, v) = f(dG+e(u, v)) − f(dG(u, v))

which can be thought of as the “value added” (for verticesu and v) by adding edgee to the graphG.
Similarly we define

∆f−e(u, v) = f(dG(u, v)) − f(dG−e(u, v))

which can be thought of as the “value added” (for verticesu andv) by deleting edgee from the graphG.
After expanding and rearranging terms, the pairwise stability conditions for(s, t) then become:

∑
v ∆f+(s,t)(s, v) · w(s, v) ≤ c(s, t)

OR∑
v ∆f+(s,t)(t, v) · w(t, v) ≤ c(s, t)

if (s, t) is a non-edge inG and

∑
v ∆f−(s,t)(s, v) · w(s, v) ≥ c(s, t)

AND∑
v ∆f−(s,t)(t, v) · w(t, v) ≥ c(s, t)

if (s, t) is an edge inG.

Table 1: Shortest path distance forG constructed from a type 1 clause

(p, q) dG(p, q) dG+(s,t)(p, q) ∆f+(s,t)(p, q)

(s, vi) i ∈ S L+ ai L ai
(t, vi) i ∈ S L L 0
(s, vj) j ∈ T L L 0
(t, vj) j ∈ T L+ cj L cj

(s, t) L 0 0
(s, u), (t, u) L/2 L/2 0
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Table 2: Shortest path distance forG constructed from a type 2 clause

(p, q) dG−(s,t)(p, q) dG(p, q) ∆f−(s,t)(p, q)

(s, vi) i ∈ S L+ ai L ai
(t, vi) i ∈ S L L 0
(s, vj) j ∈ T L L 0
(t, vj) j ∈ T L+ cj L cj

(s, t) L 0 0
(s, u), (t, u) L/2 L/2 0

If (s, t) is a non-edge inG (soG was constructed from a type 1 clauseC), then Table 1 calculates the
coefficients ofw(s, ·), andw(t, ·) in the above inequalities; if(s, t) is an edge inG (soG was constructed
from a type 2 clauseC) then Table 2 calculates the coefficients. Plugging these in, and using the fact that
c(s, t) = 1, we get exactly

∑
i∈S ai · w(s, vi) ≤ 1

OR∑
j∈T ci · w(t, vj) ≤ 1

in the case thatG was constructed from type 1 clauseCi, and
∑

i∈S ai · w(s, vi) ≥ 1

AND∑
j∈T ci · w(t, vj) ≥ 1

in the case thatG was constructed from type 2 clauseCi.
Thus in both cases the stability conditions arising in graphG constructed fromI-SAT∗ clauseC are

exactly the constraints given by the clause, with the intrinsic valuesw(s, vi) playing the role of the variables
xi for i ∈ S, and the intrinsic valuesw(s, vj) playing the role of the variablesxj for j ∈ T .

This completes the proof of Theorem 4.2.

We now get to the meat of the paper, where we give a tight inapproximability result for an optimization
version ofSTABLE-VALUES.

5 A tight inapproximability result for STABLE-VALUES

Before defining the optimization version ofSTABLE-VALUES, we need to define the notion ofactive pairs:

Definition 5.1. Given an instance ofSTABLE-VALUES containing a collection of graphsG1, . . . , Gm all
over a set of verticesV and a price profilec : V × V → R+, a pair (u, v) ∈ V × V is said to be anactive
pair if it is not the case that i)(u, v) ∈ Gi for all i AND c(u, v) = 0, or ii) (u, v) /∈ Gi for any i AND
c(u, v) = ∞.

As explained in the introduction, a pair(u, v) that is not an active pair effectively “comes for free” since
regardless of what the intrinsic values foru, v are, the pairwise stability conditions are trivially satisfied
becausec(u, v) = 0 if (u, v) ∈ Gi for all i andc(u, v) = ∞ if (u, v) /∈ Gi for anyi.

11



As before, we think of an intrinsic values functionw as rationalizing an active pair(u, v) in Gi if the
stability conditions in Definition 2.1 hold for(u, v). Then, theMAX -STABLE-VALUES problem is to seek
intrinsic values that rationalize themaximumnumber ofactive pairs(u, v), counted separately for eachGi.
We observed in the introduction that there is a trivial1/2-factor approximation algorithm. More precisely,
for each non-edge, either adding it does not change the aggregate distance contributions for either of its
endpoints (in which case it is stable regardless of the intrinsic valuations), or else it is rationalized when the
intrinsic valuations are all set to 0; similarly for each edge, either removing it does not change the aggregate
distance contributions for its endpoints (in which case it is stable iff its cost is 0, regardless of the intrinsic
valuations), or else it is rationalized when the intrinsic valuations are all set to∞. Thus one of the two
extremes (setting all intrinsic valuations to 0, or all intrinsic valuations to∞) rationalizes at least 1/2 of the
“(u, v) in Gi” pairs that are rationalized by an optimum solution. We prove in this section that this1/2
factor is tight assumingP 6= NP .

To our end of showing a hardness result forMAX -STABLE-VALUES we show an inapproximability result
for MAX -LIN Z+ , which is the main technical contribution of this paper. AlthoughMAX -STABLE-VALUES is
actually defined over the reals and would admittedly requireus to show a hardness result forMAX -LINR+ ,
we are able to employ a clever trick shown in [GR07] that makesit sufficient for us to work withMAX -LIN Z+

and then carry the result over to the reals as long as we can ensure that the co-efficients in theMAX -LIN Z+

instance we obtain are bounded and the equations have sparsesupport.

Problem 4. MAX -LIN Z+

Given: n variablesx1, . . . , xn
m equations, each of which is of the type∑

i aixi = b
whereai, b ∈ Z+ for all i = 1, . . . , n

Find: An assignment forx1, . . . , xn ∈ Z+ that satisfies the
maximum number of equations.

Theorem 5.2. Given an instance ofMAX -L INZ+ , for all positive constantsǫ, δ it is NP-hard to distinguish
between the following two cases:

• There exists a solution satisfying at least a(1− ǫ) fraction of the linear equations in the instance.

• Every solution satisfies at most aδ fraction of the linear equations.

The above promise problem will be referred to as MAX -L INZ+(1− ǫ, δ). Our proof follows the outline
of the proof for Theorem 3.4 in [GR07]. In the remainder of this section, we go through the proof of
Theorem 5.2, pointing out the crucial points where our proofneeds to differ from [GR07]. We first define
the LABEL-COVER problem below.

Definition 5.3. An instance of theLABEL-COVER(c, s) problem comprises a bipartite graphH = (A,B, E),
a set of labelsΣ and a set of projection mappingsπe : Σ → Σ for each edgee ∈ E . An assignment
A : (A ∪ B) → Σ is a mapping from the set of vertices onto the set of labels andis legal for an edge
e = (u, v) if πe(A(u)) = A(v). We wish to ascertain for this instance of the problem if

• there exists an assignmentA that is legal for at least ac fraction of edges, or

12



• every assignment is legal for at most ans fraction of the edges.

The following theorem gives a hardness of approximation result for LABEL-COVER and is due to
[ALM +98] based on a result of Raz’s. [Raz98]

Theorem 5.4. ([ALM+98, Raz98]) There exists a constantγ > 0 such that for all sufficiently large constant-
sized alphabetsΣ, it is NP-hard to distinguish between an instance ofLABEL-COVER that has an assign-
ment legal for all edges and one for which every assignment islegal for at most1/|Σ|γ fraction of edges.

As we noted in Section 1.3, there doesn’t seem to be an easy reduction fromMAX -LINZ (shown to be
hard to approximate in [GR07]) or fromMAX -LIN Fp (shown to be hard to approximate in [Hås01]). Both
those results are obtained by reductions from LABEL-COVER and involve constructing equations of the
form x + y − z = c. Most of our effort in our proof is spent on giving an alternative reduction that gives
rise to equations with coefficients inZ+. Specifically, our proof abstracts properties of the verifier query
distribution that are sufficient for main steps of the [GR07]proof. We then specify a different distribution
than the one in [GR07] that satisfies these properties, as well as an additional symmetry property that is key
to our final PCP system forMAX -LIN Z+ .

5.1 Proof of Theorem 5.2

This subsection is devoted to the proof of Theorem 5.2. Consider an instance of the LABEL-COVER(1, δ)
problem comprising the bipartite graphG(U, V,E) over n vertices andm edges, a set of labelsΣ =
{1, . . . , h} and constraint relationsπe : Σ → Σ.

In our PCP system, the proof comprises the labels for all vertices encoded using the Long Code we
define below.

Definition 5.5. [GR07] For a labelr ∈ [h], the codewordC(r) is an evaluation of the projection function
fr : Z

h
+ → Z+ given byfr((z1, . . . , zh)) = zr overZh

+. In other words,C(r)[x] = xr.

In other words, the proof is given to the verifier as a sequence(C(A(v1)), . . . , C(A(vn))) whereA is
the purported legal assignment. The verifier makes queries to the proof at three locations. These locations
are chosen based on probability distributionsP1, P2, andQ overZh

+. In the end, as in [GR07], we will
discretize and truncate these distributions so that the verifier usesO(log n) randomness, so even though the
proof is formally of infinite length, the verifier only ever sees a (fixed) polynomially large fragment.

Our proof will use the following properties of probability distributions overZh
+:

Definition 5.6. P is said to be(M, δ)-heavyif

∑

x∈[M ]h

P (x) ≥ (1− δ).

Definition 5.7. P is said to be(δ, L)-decay-resilientif for all x ∈ [L]h and anyy ∈ Z
h
+

P (y + x)

P (y)
≥ δ.

Definition 5.7 encapsulates and highlights a crucial property used in a technical step in the soundness
analysis. We are now ready to defineP1, P2, which have the following form (they are parameterized by
p, c1, c2,Γ1,Γ2):
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Definition 5.8. For j = 1, 2 we define the functionsPj overZh
+ to be

Pj((x1, . . . , xh)) = Γj

h∏

i=1

e−cj |xi−
(p−1)

2
|. (2)

whereΓj = (1− e−cj)
h
; j = 1, 2 are some constants.

The following proposition describes exactly how we must chooseM, t, p, cj :

Proposition 5.9. There exist positive integersM = M(h, δ), t = t(h, δ), a primep = Ω(M), and positive
reals c1, c2,Γ1,Γ2 for whichP1 andP2 with these parameter settings are probability distributions, both
(M, δ)-heavy, andP2 is (1/4,M + t)-decay-resilient.

Proof. We first prove thatP1 andP2 as defined above in Definition 5.8 are probability distributions. This is
easy to see since for any choice ofc1, c2, we can appropriately choose normalization constantsΓ1,Γ2 so as
to ensure thatP1, P2 are probability distributions. Next, we show thatP1, P2 are(M, δ)-heavy. Note first
that for any(x1, . . . , xh) ∈ Z

h
+ − [M ]h, there exists somer such thatxr > M . Therefore:

∑

(x1,...,xh)∈Z
h
+−[M ]h

Pj((x1, . . . , xh)) =
∑

(x1,...,xh)∈Z
h
+−[M ]h

Γje
−c

∑h
i=1 |xi−

p−1
2

|

≤

h∑

r=1

∑

(x1,...,xh):xr>M

Γje
−cj

∑h
i=1 |xi−

p−1
2

|

≤ h(1 − e−cj)he−cj(M− p−1
2 )

The right-hand side is less thanδ for

M −
p− 1

2
≥

1

cj
· ln

[
h(1− e−cj )h

δ

]

To show thatP2 is (1/4,M + t)-decay-resilient, we invoke Lemma 6.5 from [GR07], which werestate
using our terminology below:

Lemma 5.10. (Lemma 6.5, [GR07]) For allN > 0, and c2 < ln 4
hN , the following is true for anyx ∈

[N ]h, y ∈ Z
h
+:

P2(y + x)

P2(x)
≥ 1/4.

We compile all the constraints on our ability to chooseM, cj , t, p:

M −
p− 1

2
≥

1

cj
· ln

[
h(1 − e−cj)h

δ

]
(3)

c2 ≤
ln 4

h(M + t)
(4)

First, we sett to be the least integer greater thanh2/δ. Next, we proceed to setc1, c2. Our choice ofc1 is
determined directly from [GR07] (pg 6), in order to ensure that the key lemma we use from their result in
the soundness analysis (Lemma 5.15) goes through, and is given by:

c1 = min

{
1

h
ln
(
1 + 4δ2

)
, ln

(
1 + 4

(
δ

4

)5

·
δ

2h

)}
.
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We setc2, based on (3) and (4), to be:

c2 = ln

[
1

1− (δ21/h/h)1/h

]
,

ChoosingM to be the smallest integer greater than5
(
h
δ

) h

ln(1+4δ2) , andp to bep = ⌈3M/2⌉, we will satisfy
all the required properties ofP1, P2.

From now on we will fixM,p and the parameters defining probability distributionsP1, P2 as in the
above proposition. We letµ be a random variable overZh

+ generated by picking each coordinate to be0
with probability (1− ǫ) and an integer chosen randomly from[t] with probability ǫ. We denoteQ to be the
probability distribution with whichµ is chosen.

Now we can describe the verifier test. LetX1,X2 be random variables overZh distributed according to
P1, P2, respectively. We usex◦πe to denote the permutation ofπe applied to the co-ordinates ofx ∈ Z

h. In
other words(x ◦ πe)i = xπe(i). Using this notation, define random variableX3 = p− (X1 ◦ πe +X2 + µ),
wherep denotes(p, p, . . . , p). The equation that the verifier checks is:

C(A(u))[X1] + C(A(v))[X2] + C(A(v))[X3] = p. (5)

Lemma 5.11. The PCP system forMAX -L INZ+ described above has(1− ǫ) completeness.

Proof. SupposeA is indeed a legal assignment for all edgese ∈ E(G). This means that for any edge
e = (u, v), πe(A(v)) = A(u). Therefore,C(A(u))[X1] + C(A(v))[X2] + C(A(v))[X3]

= X1A(u) +X2A(v) + pA(v) − (X1 ◦ πe +X2 + µ)A(v)

= X1A(u) +X2A(v) + p−X1πe(A(v)) −X2A(v) − µA(v)

= p− µA(v)

Recalling how we pickedµ, we know thatµA(v) is 0 with probability exactly(1 − ǫ) and hence, (5) is
satisfied with probability(1− ǫ).

Lemma 5.12. The PCP system forMAX -L INZ+ described above has19δ soundness error.

Proof. To argue for soundness, supposeA is an assignment that causes the verifier to accept with probability
at leastδ′ = 19δ. This means that over alle = (u, v) chosen uniformly at random fromE(G), andx1,x2, µ
chosen according to their respective probability distributionsP1, P2, Q from Z

h
+:

Pr
e,X1,X2,µ

[C(A(u))[X1] + C(A(v))[X2] + C(A(v))[p − (X1 ◦ πe +X2 + µ)] = p] ≥ 19δ

The following fact is handy:

Fact 5.13. Let P be a (1/4, (M + t))-decay-resilient probability distribution overZh
+. Then, for any

y ∈ [M + t]h and allx ∈ Z
h
+:

P (x) ≤ 2
√

P (x+ y) · P (x)

Proof. SinceP is (1/4, (M + t))-decay-resilient it satisfies the following inequality:

P (x) ≤ 4P (x+ y)

≤ 2
√

P (x+ y) · P (x)
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The following lemma is based on the first step of the proof technique used in [GR07] applied to our
setting:

Lemma 5.14. LetP1, P2 be probability distributions overZh
+ andQ be a probability distribution over[t]h

such thatP1, P2, Q satisfy the following properties:

1. P1, P2, Q are (p/3, δ)-heavy.

2. P2 is (1/4,M + t)-decay-resilient.

3. P2 is symmetric around(p/2, . . . , p/2), i.e.P2(x) = P2(p− x)

Suppose thatX1,X2, µ are chosen respectively from distributionsP1, P2, Q ande = (u, v) is chosen uni-
formly at random. DenoteX3 to beX3 = p− (X1 ◦ πe +X2 + µ). Then, if:

Pr
e,X1,X2,µ

[C(A(u))[X1] + C(A(v))[X2] + C(A(v))[X3] = p] ≥ 23δ,

lettingΥ
(u,v)
p (X1,X2, µ) be the indicator variable for the event

C(A(u))[X1] + C(A(v))[X2] + C(A(v))[p − (X1 ◦ πe +X2 + µ)] = 0 mod p

the following must hold:

E(u,v)


 ∑

x1,x2,x3∈[p/3]h

P1(x1)
√

P2 (x2) · P2(x3)Q(µ)Υ(u,v)
p (x1, x2, µ)


 ≥ 8δ

Proof. Note first that sinceP1 is (p/3, δ)-heavy, andp/3 < M , it is also(M, δ)-heavy. Furthermore, since
µ is by default chosen from[t]h, with probability at mostδ our choice ofX1 will lie outside [M ]h and so:

Pr
e,X1,X2,µ

[
C(A(u))[X1] + C(A(v))[X2] + C(A(v))[X3 ] = p|X1 ∈ [M ]h

]
≥ 22δ

DenotingΥe(x1, x2, µ) to be the indicator variable for the event:

C(A(u))[x1] + C(A(v))[x2] + C(A(v))[p − (x1 ◦ πe + x2 + µ)] = p

we can rewrite the left-hand side above in terms of an expectation over all edgese(u, v):

Ee




∑

x1∈[M ]h,x2∈Zh
+,µ∈[t]h

P1(x1)P2(x2)Q(µ)Υ(u,v)(x1, x2, µ)


 ≥ 22δ (6)

Combining (6) with Property 2 and Fact 5.13, we get:

Ee




∑

x1∈[M ]h,x2∈Zh
+,µ∈[t]h

P1(x1)
√

P2 (x2) · P2(x2 + x1 ◦ πe + µ)Q(µ)Υ(u,v)(x1, x2, µ)


 ≥ 11δ
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SinceP2 is symmetric around(p/2, . . . , p/2), P2(x2+x1 ◦π+µ) = P2(p− (x2+x1 ◦π+µ)) and hence
the above inequality becomes:

Ee




∑

x1∈[M ]h,x2∈Zh
+,µ∈[t]h

P1(x1)
√

P2 (x2) · P2(p− (x1 ◦ πe + x2 + µ))Q(µ)Υ(u,v)(x1, x2, µ)


 ≥ 11δ

Observing thatΥ(u,v)
p (x1, x2, µ) ≥ Υ(u,v)(x1, x2, µ) and denotingx3 = p− (x1 ◦ πe + x2 + µ), we have:

Ee




∑

x1∈[M ]h,x2∈Zh
+,µ∈[t]h

P1(x1)
√

P2 (x2) · P2(x3)Q(µ)Υ(u,v)
p (x1, x2, µ)


 ≥ 11δ

SinceP1, P2, Q are(p/3, δ)-heavy:

E(u,v)


 ∑

x1,x2,µ∈[p/3]h

P1(x1)
√

P2 (x2) · P2(x3)Q(µ)Υ(u,v)
p (x1, x2, µ)


 ≥ 8δ (7)

Note that the functionΥ(u,v)
p : [p]3h → {0, 1} is given by

Υ(u,v)
p (x1, x2, µ) =

{
1 C(A(u))[x1] + C(A(v))[x2] + C(A(v))[x3] = 0 mod p,

0 otherwise.

Υ
(u,v)
p can equivalently be written as below:

Υ(u,v)
p (x1, x2, µ) =

1

p

p−1∑

k=0

e
2πik
p

(C(A(u))[x1]+C(A(v))[x2]+C(A(v))[x3])

Substituting this in (7), the left-hand side becomes:

E(u,v)


1
p

∑

x1,x2,µ∈[
p
3
]h

P1(x1)
√

P2 (x2) · P2(x3)Q(µ)

(
p−1∑

k=0

e
2πik
p

(C(A(u))[x1]+C(A(v))[x2]+C(A(v))[x3])

)


We further simplify the term within the expectation:

1

p

∑

x1,x2,µ∈[
p
3
]h

P1(x1)
√

P2 (x2) · P2(x3)Q(µ)

(
p−1∑

k=0

e
2πik
p

(C(A(u))[x1]+C(A(v))[x2]+C(A(v))[x3])

)

=
1

p

p−1∑

k=0

∑

x1,x2,µ∈[
p
3
]h

Q(µ)
(
P1(x1)e

2πik
p

C(A(u))[x1]
)(√

P2 (x2)e
2πik
p

C(A(v))[x2]
)(√

P2(x3)e
2πik
p

C(A(v))[x3 ]
)
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SettingUu(x) = P1(x)e
2πik
p

C(A(u))[x] andVv(x) =
√

P2(x)e
2πik
p

C(A(v))[x], (7) now simplifies to:

E(u,v)


1
p

p−1∑

k=0

∑

x1,x2,µ∈[
p
3
]h

Q(µ)Uu(x1)Vv(x2)Vv(x3)


 ≥ 8δ (8)

This is where our proof technique has a crucial point of departure from that used in [GR07]. Since our test
has only positive co-efficients, we do not have the luxury to make the substitution

√
P2(x)e

− 2πik
p

C(A(v))[x] = Vv(x)

that is made in [GR07] which simplifies their analysis.
Consider the Fourier expansion forUu described below:

Uu(x) =
∑

w∈[p]h

Ûu(w)e
2πi
p

〈w,x〉

where

Ûu(w) =
1

ph

∑

x∈[p]h

Uu(x)e
− 2πi

p
〈w,x〉

We substitute this and a similar Fourier expansion forVv back in (8):

E(u,v)

[
1

p

p−1∑

k=0

∑

x1,x2,µ

Q(µ)
∑

w1

Ûu(w1)e
2πi
p

〈w1,x1〉
∑

w2

V̂v(w2)e
2πi
p

〈w2,x2〉
∑

w3

V̂v(w3)e
2πi
p

〈w3,x3〉

]
≥ 8δ

Substitutingx3 = (p− (x1 ◦ πe + x2 + µ)) the left-hand side becomes:

E(u,v)

[
1

p

p−1∑

k=0

∑

x1,x2,µ

Q(µ)
∑

w1

Ûu(w1)e
2πi
p

〈w1,x1〉
∑

w2

V̂v(w2)e
2πi
p

〈w2,x2〉
∑

w3

V̂v(w3)e
2πi
p

〈w3,(p−(x1◦πe+x2+µ))〉

]

= E(u,v)

[
1

p

p−1∑

k=0

∑

x1,x2,µ

Q(µ)
∑

w1

Ûu(w1)e
2πi
p

〈w1,x1〉
∑

w2

V̂v(w2)e
2πi
p

〈w2,x2〉
∑

w3

V̂v(w3)e
− 2πi

p
〈w3,(x1◦πe+x2+µ)〉

]

= E(u,v)

[
1

p

p−1∑

k=0

∑

w1,w2,w3

Ûu(w1)V̂v(w2)V̂v(w3)
∑

x1

e
2πi
p

〈(w1−w3◦π
−1
e ),x1〉

∑

x2

e
2πi
p

〈(w2−w3),x2〉
∑

µ

Q(µ)e−
2πi
p

〈w3,µ〉

]

wherew3 ◦π
−1
e denotes the vector obtained by setting(w3 ◦π

−1
e )i =

∑
j∈π−1

e (i) w3j for i = 1, . . . , h. Note

that forw1 6= w3 ◦π
−1
e ,
∑

x1
e

2πi
p

〈(w1−w3◦π
−1
e ),x1〉 = 0 and similarly, forw2 6= w3,

∑
x2

e
2πi
p

〈(w2−w3),x2〉 =
0. Settingw = w3, the overall inequality simplifies to:

E(u,v)

[
1

p

p−1∑

k=0

∑

w

(
phÛu(w ◦ π−1

e )
)(

phV̂v(w)
2
)∑

µ

Q(µ)e−
2πi
p

〈w,µ〉

]
≥ 8δ (9)

Also, note that|V̂v(w)
2| =

√(
V̂v(w)2 · V̂v(w)2

)
=

√(
V̂v(w) · V̂v(w)

)2
= |V̂v(w)|

2 using the simple

identity thatz2 · z2 = (z · z)2 for any complex numberz.
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Substituting back in (9), we obtain:

E(u,v)

[
1

p

p−1∑

k=0

∑

ω

(
phÛu(w ◦ π−1

e )
)(

|phV̂v(w)|
2
)(∑

µ

Q(µ)e
− 2πi

p
〈w,µ〉

)]
≥ 8δ (10)

We are now ready to use the following lemma, again from [GR07]concerning probability distributions
P1, P2, Q and some assignmentA of labels to vertices inG satisfying (10).

Lemma 5.15. ([GR07]) LetP1, P2, Q : Zh
+ → [0, 1] be probability distributions andA : V (G) → [h] some

assignment of labels to vertices inG satisfying (10). Then, there exists a constantC such that

Pr
(u,v)

[A is legal for(u, v)] ≥ δ4/96C2

By choosing our original instance of LABEL-COVER(1, δ) to be such thath is large enough, we can
ensure thatδ4/96C2 ≥ 1/hγ . This gives us a soundness of19δ as required.

5.2 Tying it all together

Theorem 5.16.For all constantsǫ, δ > 0, the problemMAX -L INR+(1− ǫ, δ) is NP-hard.

Proof. We just need the following argument from [GR07], which we apply to Z+ andR+ as opposed toZ
andR.

We give a reduction from MAX -L INZ+(1− ǫ, δ/8). Note that our reduction in proving that this problem
was hard produced an instance of MAX -L INZ+ where each equation consists of three variables:

xi + xj + xk = c

wherexi, xj , xk, c ∈ Z+. The MAX -L INR+ instance we construct will have exactly the same set of these
equations:

x′i + x′j + x′k = c

with x′i, x
′
j, x

′
k chosen fromR+. A solution in integers to the original MAX -L INZ+ instance is automatically

a solution to the MAX -L INR+ instance.
Suppose that with probability at leastδ over the choice of equations in the instance, a solution is feasible.

Then, for any such equation:
x′i + x′j + x′k = c

by choosing each variablexs to be either⌊x′s⌋ or ⌈x′s⌉ uniformly at random fors = i, j, k we will have
satisfied the equation in the corresponding MAX -L INZ+ instance with probability at leastδ/8 thereby con-
tradicting the hardness assumption we made for the instance.

Theorem 5.17.For all constantsǫ, δ > 0, the problemI-SAT∗(1− ǫ, 1/2 + 76δ) is NP-hard.

Proof. The proof is by reduction from MAX -L INR+(1 − ǫ, 19δ) over a set of unknownsx1, . . . , xn. Our
I-SAT∗ instance will have variablesy1, . . . , yn; y′1, . . . , y

′
n. We define a partitionS ∪ T whereS = {yi|i =

1, . . . , n} andT = {y′j |j = 1, . . . , n}. For each equation over the reals
∑

i aixi = b in an instance of
MAX -L INR+ , we construct theI-SAT∗ clauses:




∑
i∈S aiyi ≤ b

OR∑
j∈T ajy

′
j ≤ b


 ,




∑
i∈S aiyi ≥ b

AND∑
j∈T ajy

′
j ≥ b


 (11)
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Letx1, . . . , xn be a solution for MAX -L INZ+ . We setyi = y′i = xi for all i = 1, . . . , n. A solution satisfying
at least a(1−ǫ) fraction of the equations in the MAX -L INR+ instance will satisfy at least a(1−ǫ) fraction of
the inequality-clauses in theI-SAT∗ instance. Conversely, suppose there exists a solution satisfying at least a
(1/2+76δ) fraction of the inequality-clauses. Then there is at least a38δ fraction of inequality-clause pairs
of type (11) which must be satisfied. For each such pair, the type 2 clause implies that both(

∑
i∈S aiyi ≥ b)

and(
∑

j∈T ajy
′
j ≥ b) and the type 1 clause implies that one of

∑
i∈S aiyi ≤ b and

∑
j∈T ajy

′
j ≥ b must

hold. Therefore, for each such pair one of
∑

i∈S aiyi = b or
∑

i∈T aiy
′
i = b must hold. Settingxi to be

yi for all i if there are more pairs for which
∑

i∈S aiyi ≤ b andy′i otherwise, guarantees that at least a19δ
fraction of equations

∑
i aixi = b must be satisfied in the original MAX -L INZ+ instance thereby giving us

the necessary gap reduction. This completes the proof of thetheorem.

Theorems 5.16 and 5.17 give us the corollary below that immediately yields the intended(1/2 + δ)
hardness result:

Corollary 5.18. For all ǫ, δ > 0 the problemMAX -STABLE-VALUES(1 − ǫ, 1/2 + δ) is NP-hard.

Proof. We argue that the reduction fromI-SAT∗ shown in the proof of Theorem 4.2 is also a gap-preserving
reduction and reduce fromI-SAT∗(1− ǫ, 1/2 + δ). Arguing first for(1− ǫ) completeness, we note that if a
clause in theI-SAT∗ instance is satisfied then the corresponding pairwise stability condition is also satisfied.

Suppose now, that(1/2 + δ) fraction of the stability conditions for the active pairs are satisfied. But
each such condition exactly corresponds to a clause being satisfied in the originalI-SAT∗ instance thereby
giving us the required(1/2 + δ) soundness forSTABLE-VALUES.
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