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Abstract

We study the complexity afationalizing network formation. In this problem we fix an underlying
model describing how selfish parties (the vertices) produgeaph by making individual decisions to
form or not form incident edges. The model is equipped witl@om of stability (or equilibrium), and
we observe a set of “snapshots” of graphs that are assumedstaliie. From this we would like to infer
some unobserved data about the system: edge prices, or hawaach vertex values short paths to each
other vertex.

We study two rationalization problems arising from the r@ataformation model of Jackson and
Wolinsky [JW96]. When the goal is to infer edge prices, weenls that the rationalization problem is
easy. The problem remains easy even when rationalizinggpdo not exist and we instead wish to find
prices that maximize the stability of the system.

In contrast, when the edge prices are given and the goaltssidgo infer valuations of each vertex
by each other vertex, we prove that the rationalization j@rmkbecomes NP-hard. Our proof exposes a
close connection between rationalization problems anthibguality-SAT (I-SAT) problem.

Finally and most significantly, we prove that an approximtrersion of this NP-complete rational-
ization problem is NP-hard to approximate to within bettert a 1/2 ratio. This shows that the trivial
algorithm of setting everyone’s valuations to infinity (whirationalizes all the edges present in the input
graphs) or to zero (which rationalizes all the non-edgesentin the input graphs) is the best possible
assuming B NP. To do this we prove a tiglit /2 + J)-approximation hardness for a variant of I-SAT in
which all coefficients are non-negative. This in turn folkfrom a tight hardness result forA -LINg
(linear equations over the reals, with non-negative cdefits), which we prove by a (non-trivial) mod-
ification of the recent result of Guruswami and Raghaven@R{d7] which achieved tight hardness for
this problem without the non-negativity constraint.

Our technical contributions regarding the hardness of -&#d MaX -LINg, may be of independent
interest, given the generality of these problems.

1 Introduction

In any market setting where different goods are availabldifigrent prices, consumers demonstrate-a
vealed preferenctor a particular bundle by choosing to buy it. They do so inespf the existence of other
bundles of goods that may be more affordatikevealed preference thearyeconomics is a well-studied
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area[Sam48, Afr€7, Die73, VarB2] that uses these obselveides to infer preference profiles, and, more
subtly, to argue about the limitations of such inferencesdewntifying settings in which simple classes of
preference profiles (e.dinear utility functions) canalwaysrationalize data satisfying basic axioms — the
conclusion being that experiments of this sort cannot be&wpl to provide evidence that a more compli-
cated (e.g. non-linear) preference profile is actually i us

From a computer science perspective, a natural questioimois: hard is it, computationally, to infer
unobserved quantities (e.g. preferences profiles, ufilibctions, prices) that explain aationalize the
observed market data? Such problems abound in systems thirezds an underlying notion of stability or
equilibrium (and one assumes that the observed data reprable instances).

In certain classical settings [Afr67], rationalization @mnts to solving a linear program, and so it is im-
mediately seen to be easy. Other settings have a more caniighdeel, such as rationalizing matchings,
which we studied in previous work [KU08]. In this problem thgut is a collection of bipartite matchings,
each meant to represent the observed outcome of a two-siddeim\We showed in [KUQ8] that determin-
ing the existence of preference orders under which the nmagstare allstable matchingss NP-complete,
and NP-hard to approximate to within a constant factor.

In this work, we consider the rationalization problem fotwark formation games. We study two
variants of a prominent model due to Jackson and Wolinskydghat describes how selfish parties (the
vertices) produce a graph by making individual decisiongtm or not form incident edges. The model
is equipped with a notion of stability (or equilibrium), ama observe a set of “snapshots” of graphs that
are assumed to be stable. From this we would like to infer samodserved data about the system: in one
variant we are interested in edge prices; in the other, wantaeested in how much each vertex values short
paths to each other vertex. Both variants resemble thegetin which the rationalization problem can be
solved using linear programming (in the sense that the ibguiin conditions can be expressed as linear
inequalities), and yet they have a combinatorial compohenause the participants’ total utility depends on
the length of various shortest paths in the network.

In this paper we show an interesting contrast: inferring-gdge” quantities (i.e., prices) is easy, while
inferring “end-to-end” quantities (i.e., the value eacltee v assigns to having a short path to each other
vertexv) is hard. In the latter case we show a tight2 + §) inapproximability result (and this is our most
technically significant contribution). Thie'2 ratio implies that the trivial approximation algorithm tisets
everyone’s valuations to infinity (which rationalizes dlketedges present in the input graphs) or to zero
(which rationalizes all the non-edges present in the inpaplgs) is the best possible assuming RIP.

1.1 The network formation model and two rationalization problems

The network formation model we study is one proposed by #ecked Wolinsky[[JW96]. In this model,
there aren vertices, and each paijmu,v) (“potential edge”) has an associated price and a distance. A
network formation process produces a graphand given this outcome, the utility that accrues to each
vertexv depends on two additional features of the model: (1) a noreasing functionf from distances
to the non-negative reals (think ¢fd) as representing the value of having a connection of ledgtand
(2) “intrinsic values” of vertexu by v for eachu # v. The utility realized by vertex is then theaggregate
distanceminus the price of the edges irs subset, where thaggregate distances the sum over vertices
of v’s intrinsic value ofu times f applied to the shortest path lengthGhto eachu.

The equilibrium concept heremta Nash equilibrium, but rather a simpler notion of pairwise stability;

1This is because we only consider unilateral deviations dépep to anadjacentstrategy — one in which a single edge has been
added or removed — instead ofday alternative strategy.



the vertex strategies astableif (1) for each edgéu, v) in G, bothv’s andw’s marginal utility of forming
edge(u, v) is non-negative, and (2) for each non-edgev) in G eitheru’s or v’s marginal utility of forming
edge(u, v) is non-positive.

We consider two rationalization problems arising undes thodel. In the first, which we cafiTABLE-
PRICES we are trying to infer edge prices, and we assume the other(distances, the functiofy and the
pairwise “intrinsic values”) are fixed or given. Specifigallve are given a collection of distance-weighted
graphsGy, Gs, . .., G, on the same underlying vertex set, that arise from equilibrplay. In addition, we
are given the functiorf (as a circuit computing it), and the pairwise intrinsic \eduwhich are the same
across the different graphs). We do not observe the (patgetige prices (which are the same across the
different graphs). We are interested in determining edgmeprthatrationalize G1, Go, . .., G.,; i.e., for
which each; is stable, or “in equilibrium,” in the above sense.

In the second rationalization problem under consideratwhich we callSTABLE-VALUES, we are
trying to infer the pairwise “intrinsic values,” and we aswithe other data (latencies, the functibnand
the edge prices) are given. Specifically, as above, we asngvcollection of distance-weighted graphs
G1,Go, ..., G, on the same underlying vertex set, that arise from equilibrplay. In addition, we are
given the functionf (as a circuﬁ), and the edge prices (which are the same across the diffgraphs);
we do not observe the pairwise “intrinsic values” (which time same across the different graphs). We are
interested in determining pairwise intrinsic values ttaionalize G, Go, . .., G; i.€., for which eaclt;
is stable, or “in equilibrium”, in the above sense.

We also consider an optimization versionsafaABLE-VALUES. In it, we are seeking pairwise “intrinsic
values” that maximize the number of stable edges/non-eagess alln input graphsamong active pairs
We deem a paifu, v) active unless (1) it is an edge in all of the input graphs, with prieeoz(which
means effectively that edde, v) is present and fixed no matter how the other quantities aredjaor (2)
it is a non-edge in all of the input graphs, with price infinftyhich means effectively that edde, v) is
permanently absent regardless of the other relevant gieshtiNon-active pairs are “part of the landscape”
and intuitively do not contribute to the stability of the t®. After this consideration, our optimization
problem is to infer intrinsic values with the maximum ex@#sry power (and note that edges/non-edges are
counted separately for each graph in which they appear).

For concreteness, we briefly describe an example scenamioiah this rationalization problem naturally
arises. Social networks are formed among groups of peopteasbribe a certain value (“friendship”) to
one another but establish connections with only those liggt perceive to be most intrinsically valuable to
them. If, for instance, everybody in the group was in closgsptal proximity to one another (they all went
to the same high school or college) then the price of conmgéti any one person is insignificant compared
to the value derived in return, no matter how small that mayHas would result in a clique as a stable
network. However, once this group becomes geographicptiyasl out, the network formed in equilibrium
can become sparser, such as a star network, where all cmmseare made to a single person since the
cost of building mutual connections outweighs the utiligirged. This illustrates that (when holding the
intrinsic value people in such a group have for one anothéetmvariant) temporal and spatial dynamics
affect the manner of how social networks coalesce and &abilVhile prices and distances might be readily
observable, the intrinsic value each individual has fohezber individual is generally private. The problem
STABLE-VALUES in this paper asks to infer these values given (say) a ser@sapshots taken over time of
a single social network of individuals.

2This permits unnatural functiong but note that all of our reductions produce instances vetly gimple piecewise linear and
non-increasing’ that one can easily envision occurring in the real world.



1.2 Rationalization problems andi-sAT

As mentioned above, we show th&tABLE-PRICESIs easy, WhilesSTABLE-VALUES is hard. Our hardness
result is based on a reduction from a variant of the Inequ8itisfiability problem (abbreviated asAT)
introduced recently by Hochbaum and Moreno-Centeno [HMCAS8 instance of-SAT is a conjunction of
inequality-clauseswhere each inequality-clause is a disjunction of lineagimalities over real variables
r1,%2,...,Ty. The instance is a “yes” instance iff there exists an assagrtrof real values to the variables
simultaneously satisfying all of the inequality-clausegchbaum and Moreno-Centeno showed by a simple
reduction from 3sAT that this class of problems is NP-complete even in the casnwlach inequality-
clause is a disjunction of only two inequalities.

The variant ofi-sAT that we need for our reduction satisfies two additional cands: (1) all of the
coefficients are non-negative (and we are seeking a solatitynin the non-negative reals), and (2) there is
a partition of the variables into two se$§7" such that every inequality-clause is either the disjumctb
two < inequalities, one supported #and one supported if, or a conjunction of two> inequalities, one
supported inS and one irl". We call this variant-SAT*.

To achieve our main hardness results, we show IttsatT* is NP-complete, and that the optimization
version (maximize the number of inequality-clauses siemdébusly satisfied) is NP-hard to approximate to
within (1/2 + ¢). Note that, just as it is trivial to achieve approximatiotiaal/2 in the rationalization
problem to which we reduce, it is trivial to achieve approation ratio 1/2 here by either setting all vari-
ables to zero (satisfying all the inequality-clauses offifst type) or setting all variables sufficiently large
(satisfying all the inequality-clauses of the second type)

The ease of translating between these problems brings usitgp@rtant observation. Not only IsSSAT
useful as a starting point for reductions involving the heationalization problem in this paper, but we
contend it is the abstract computational problem that captrationalization problems more generally. It
is common for the “stability conditions” arising in a ratalization problem to be expressible by a finite
Boolean formula whose inputs are inequalities in the (rga8ntities being inferred. This is true, e.g., for
the bipartite matchings problem studied in [KWO08] (the citees being inferred are the values each left
node has for each right node, and the familiar stability @il for stable matchings is expressible as the
disjunction of two inequalities involving these quansiiefor the rationalization problems studied here, and
those mentioned in the introduction. Even the positivitpstoaint we add arises naturally in many such
settings, as utilities, prices, etc. are often assumed twhenegative.

Thus we expect that a more complete understanding of theoxippability of 1-SAT (which to our
knowledge has not been studied prior to this paper) can sasraauseful starting point for understanding the
approximability of rationalization problems more genitahnd we view this as an important contribution
of this paper.

1.3 Hardness of approximatingi-SAT* via MAX-LINg,

For the general-SAT problem, there is an easy reduction fromaktLINgk (linear equations over the reals).
Namely, for each equatioq’; a;x; = b, we produce the pair ofsAT clausesy , a;z; < band)_, a;xz; > b.
MAXx-LINg was (only recently) shown to have a PCP system Wlith ) completeness angdsoundness
[GRO7] (withe, v close to 0), which gives rise 1{d /2 + ¢)-inapproximability for the generatSAT problem
via this reduction (although, the non-perfect completsmesans this gap is between classes of unsatisfiable
instances, which is a minor drawback).
We need a similar hardness result for our varigi#aT*, which crucially entails a positivity constraint.
In the [GRO7] inapproximability result (and similar inapgmability results using the basic framework of



Hastad [[Has01]), the equations all have the farmt- z; — x;, = 0 since they arise from linearity tests
performed by the verifier in the PCP system. Thus, they arsuitdble for proving inapproximability for
I-SAT*. Simple transformations like translating the origin do wairk, and the natural idea of introducing
new variablest, and the constraints; + =, = 0 (and usingz} in place of —z; to remove the negative
coefficients) does not preserve the inapproximability.

It is also important to note that while Hastad's inapproxaitity results for MAX-LINg, can be eas-
ily transformed into similar inapproximability resultsrfMAx-LINyz, this transformation introduces large
coefficients (of magnitudg), which prohibit the clever trick in [GR07] that is used t@ae that the inap-
proximability carries over to the reals.

So our hands are somewhat tied: to obtain(th& + §) inapproximability fori-sat*, we really need
an exact analog of [GR07], but one that produces equatiotis puisitive coefficients. In Sectidd 5, we
give such a result for Mx-LINg, , showing that it is NP-hard to distinguish between an irsanith a
(1 — ¢) fraction satisfiable assignment and one with at nadsaction satisfiable, and in turn@,/2 + )
inapproximability result for-saT*. Doing so requires more than a superficial modification ofpuf in
[GRO7]. In stating our results, we abstract properties efdistribution used for the verifier’s queries that
are sufficient for the general proof strategy[of [GRO7] to ky@nd then utilize a different distribution (and
some minor changes in the Fourier analysis) to eventuadlgymre equations with all coefficientsl. This
result is our most significant technical contribution.

1.4 Related work

Rationalizability has been well-studied under the domdirevealed preference theory and social choice
theory by economists [Sam48, Var82, Spr00, FST04, BY060&/aEch08]. Traditionally, the questions
have been connected with characterizing the implicatiénsuigous solution concepts to games and market
settings, and whether these implications can be tested loasdata obtained from consumer choices.

In connection with studying network formation games, wiiie question of understanding the prop-
erties and limitations of equilibria is not new [JW96, DM@XV01, DJ0O3, FLM 03], to the best of our
knowledge there is no previous work done with respect toeeithe rationalizability question for these
games in general, or the Jackson-Wolinsky model of netwamkéation in particular.

1.5 Outline

In Section[B we formally definsTABLE-PRICES and observe that it is easy (and even the optimization
variant is easy to solve exactly). In Sectidn 4 we defineBLE-VALUES and give a reduction fromsAT* to

it. We then show that-saT* is NP-complete (this is not subsumed by our eventual inaqamability result,
since this reduction has perfect completeness). In Sdgtwe state an approximation preserving reduction
from MAX-LINg, to I-SAT*, and we then describe the PCP system (based on a non-trigdifioation

of [GRO7]) that impliese inapproximability for it. This yields the tight1/2 + ¢) inapproximability for
STABLE-VALUES.

2 Jackson-Wolinsky model for network formation games

We describe formally the seminal model for stability of netlwformation games as formulated by Jackson
and Wolinsky [JW95]. The model comprises:

e n agentst/



e pairwise distance functiod: V' x V — R,

e pairwise intrinsic value functiow : V- x V — R4

e afunctionf : R, — R that defines the contribution of a path of length
e price profilec: V x V — R,

For a graphz and any twai, j € V, we defined; (7, j) to be the distance of the shortest p&tt, j) from
1 to j given byz(u,v)ep(i,j) d(u,v). LetT'(v) be the set of neighbors of The utility agent; derives in
graphG, denotedu;(G), is given by:

wi(G) =Y fldai, ))w(i,j) = > cli,k)

jev kel (i)
Definition 2.1. A graphG = (V, E) is said to be pairwise stable with respectdawv, f, ¢ if:

1. for all 4, j € V such that(i, j) € G,

ui(G) 2 ui(G — (i, ) andu;(G) = u;(G — (i, 7))
2. foralli,j € V such that(i, j) ¢ G,

ui(G) > ui(G + (4, 7)) or uj(G) > u;i(G + (4, j))

In this definitionboth endpoints must prefer that an edgeGnexists (or at least be indifferent to its
existence) for the edge to be stable; correspondingly aedge-inG is stable if everoneendpoint prefers
that is not be present (or at least is indifferent to its pnesg

3 Finding stable prices when intrinsic values are known

In the first rationalization problem that we will callTABLE-PRICES we consider a scenario where the
intrinsic values are known but the edge-prices are not. Wegaren a collection of undirected graphs
Gy, ..., Gy all of which are formed over a common set of verti¢esin addition, we are given the pairwise
distance functions for eacH;, d; : V x V — R.,. The rationalizability question entails inferring theqas
that players in each of the graphs would have to pay givertlieagraphs are in pairwise equilibrium.

In the above problem (and in the subsequent verSTRBLE-VALUES) we assume thaf is given to us
in the form of a circuit that takes as input numbers represkntith some number of bits of precision that
is polynomial in the size of the rest of the input. This premisis sufficient to exactly express the shortest
path distance to whiclf is applied.

Theorem 3.1. There is a polynomial-time algorithm f@TABLE-PRICES

Proof. The algorithm is based on the simple intuition that for anestigexist between two verticesw it
must be the case that thearginal utility thatv derives by building that edge must be at léaanhd the same
for u, while for a non-edgév, w), eitherv or w must have a marginal utility at most These marginal
utilities are easy to compute, and they yield a system oflineequalities exactly describing stable edge
prices. For details, please refer to a full version of thisgra O



Problem 1. STABLE-PRICES

Given: Collection of graph+y, ..., G,, over common set
of verticesV’
Pairwise distance functiong : V' x V — R for
t=1,...,m
Intrinsic value functionv : V- x V — R,
Path distance contribution functigh: R, — R,
wheref is non-increasing.

Find: Price profilec that rationalize<r+, . .., G,,, i.e. for
which G; is stable w.r.td;, w, f, c for all 4, if it exists.

We think of a price profile asrationalizing (u, v) in G; if the conditions in Definitiof 2]1 hold fau, v).
An optimization version of the TABLE-PRICESproblem is, given a collection of graphs, . . . , G, to find
a price profile that rationalizes the maximum number(af,v) in G;” pairs. It is easy to see that the same
algorithm described above will also work to find a price pmfiiat would solve the optimization problem
for STABLE-PRICESexactly.

Corollary 3.2. Given an instance §TABLE-PRICESthere exists a polynomial-time algorithm to construct
a price profilec that rationalizes the maximum number @i/ v) in G;” pairs.

4 Finding stable intrinsic values when prices are known

In the problem ofSTABLE-VALUES, we consider the scenario where the edge-prices are knowthéu
intrinsic values functionu is unknown. We define TABLE-VALUES below and show thad TABLE-VALUES
is NP-hard by a reduction from a special variant-sfaT (defined below).

Problem 2. STABLE-VALUES

Given: Collection of graph+y, . .., G,, over common set of
verticesV’
Pairwise distance functiong : V' x V — R for
t=1,...,m

Path distance contribution functigh: R, — R where
f is non-increasing
Price profilec : V. x V — R

Find: Intrinsic values functionv : V- x V' — R, that
rationalizes¢4, . .., G, i.€. for whichG;
is pairwise stable w.r.t;, w, f, c for all ¢, if it exists.

Theorem 4.1. 1-SAT* is NP-complete.

Proof. We give a reduction from 3-SAT. Consider an instance of 3-§&&n byn variablesty, . .., z, and
m clause(y, ..., C,,. For each variable; our instance of-sAT* has two variables!, zif and for each
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Problem 3. 1-sAT*

Given: n variableszy, . .., x,, and a partitionS U T of [n].
m clauses that are either of type 1:

(ZieS a;x; < 1) OR <zj6T CjTj < 1)
or of type 2:

(ZiGS a;T; > 1) AND (ZjET Cjxj > 1),
where alla;, c; > 0.

Find: An assignment fog, . . ., z,, € R, satisfying allm
clauses, if it exists.

clauseC}, we have three auxiliary variables, b;,c;. In total, we will have2n + 3m unknowns in our
I-SAT* instance and we partition this int® = {zf,zif\z‘ =1,...,n}andT = {a;,b;,c;|j =1,...,m}.

For each claus€’;, we produce three-sAT* clauses of type 1 and one of type 2. SuppG§e=
(xp + Z4 + z,) by way of example. Our reduction produces the type 2 clause:

P a; b; ¢
Z4Z >1)aNnD (24242 >1 1
<3+3—> <4+4+4—> @

and the following three type 1 clauses

(2r <1) OR (¢;<1)

Suppose that there exists a satisfiable assignment for8# 3astance. Then, for eaah that is true in this
assignment we let! = 1,2/ = 2 and for each; that is false, we let! = 2, 2/ = 1. For each claus€};, set
one of thea;, b;, ¢; variables to 2 that corresponds to a true literal, and therstto 1. These assignments
satisfy all fouri-sAT* clauses corresponding to clauSg

In the other direction, we claim that setting to be true for exactly thoseé such that:! < 1is a
satisfying assignment. For each cladsg it cannot be the case tha, b;,c; are all< 1, as this would
violate the associated type-5AT* clause. Thus at least one of the variable appearing pdgitiveé’; must
havez! < 1 or one of the variables appearing negatively must h@fvg 1. Moreover, the type 2-saAT*
clause ensures that it can’t be the case ,tflaindzf are both< 1, so as claimed, the derived assignment is
consistent, and it is a satisfying assignment since it makk=ast one literal in each clause true. O

The following reduction is actually approximation presegy a fact that we will use in Sectibn 5.
Theorem 4.2. STABLE-VALUES is NP-complete.

Proof. Our proof is by reduction from-SAT*.
Suppose we are given an instanca-sfat* with m clauses’, ..., C,, overn unknownszy, ..., x,
where each clausg; is of type 1:

(Z a;x; < 1) OR ZCjSL’j <1

i€S jeT



or of type 2

(Z a;z; > 1) AND ch:cj >1
ics jer

and alla;,c; > 0 and.S U T'is a partition of[n]. Fix L to be the least integer that is greater than all of the
a;, c; coefficients appearing in these clauses. Our reductiorupesi. edge-weighted grapl;, ..., Gy,
on (n + 3) vertices labeled, . .., v,,u, s, t as follows.

For each claus€’ (of either type), we construct a base graphFor each € S, G contains edgés, v;)
with weightd(s,v;) = L + a; and edg€t, v;) with weightd(t,v;) = L. Similarly for eachj € T, G
contains edgés, v;) with weightd(s,v;) = L, and edg€t, v;) with weightd(t,v;) = L + ¢;. We also
include edges$s, u), (u,t) with weightsd(s, u) = d(t,u) = L/2.

If C'is of type 1, the base graphithe graph associated witH; refer to Figuré L. IfC is of type 2, we
add the edgés, t) with weightd(s, t) = 0 to the base graph; refer to Figuire 2.

We set the cost of an edge frostio ¢ to bec(s,¢) = 1. Note that with the exception of the edge ¢),
all of our graphs contain exactly the same set of edges. Ropain of vertices(p, ¢) other than(s, ¢), we
sete(p, q) = 0if (p, q) is an edge and(p, q) = > if (p, q) is a non-edge.

Finally, we define the piecewise-linear functigras follows:

{—L 0<z<L

—x x>1L

Figure 1:G from clause of type 1, with edge weights

This completes the description of the reduction. We now sttt the stability conditions for each
graph are exactly the conjunction or disjunction of linesqualities of the associatedsAT* clause.

Fix a graphG associated with-sAT* clauseC. We first note that all stability conditions not involving
edge(s, t) are trivially satisfied. This is because for any other gairg), the cost is 0 if(p, ¢) is an edge
in G (so bothp andgq are indifferent to keeping it, which makes it stable), anel ¢tbst isco if (p,q) is a
non-edge irG (so neithetp nor ¢ benefit from adding it, making it stable).

Now we focus on the stability conditions fés, ¢), which are

us(G + (s,t)) < us(G) ORu (G + (s,t)) < w(G)
if (s,t) is a non-edge itz and

us(G — (s,t)) > us(G) AND w (G — (s,t)) > ui(Q)

9



Figure 2:G from clause of type 2, with edge weights

if (s,t) is an edge inG. The following notation will be helpful. For a gragh, edgee and pair of vertices
u, v, we define

Af—i—e(uv U) = f(dG+e(u> U)) - f(dG(uv U))

which can be thought of as the “value added” (for verticeand v) by adding edge: to the graphG.
Similarly we define

Af-e(u,v) = fdg(u,v)) = f(dg—e(u,v))

which can be thought of as the “value added” (for verticeendv) by deleting edge from the graphG.
After expanding and rearranging terms, the pairwise staluibnditions for(s, t) then become:

ZU Af—l—(s,t)(37 v) : w(s, U) < C(S’ t)
OR

Z’U Af-l—(S,t) (t> U) ’ W(t, U) < C(Sv t)

if (s,t) is a non-edge iz and

Zv Af—(s,t)(37v) : w(s,v) > C(S’t)
AND

Zv Af—(s,t) (t> U) ’ w(tv U) > C(Sv t)

if (s,t)isanedgeirG.

Table 1: Shortest path distance f@rconstructed from a type 1 clause

(p,q) da(p,q) | dassn @ @) | Afresnp,q)

(s,v;)ieS | L+a; L a;
(t,v;)i € S L L 0
(s,v5)j €T L L 0
(t,vj))jeT | L+¢ L ¢j

(s,t) L 0 0
(s,u), (t,u) L/2 L/2 0

10



Table 2: Shortest path distance f@rconstructed from a type 2 clause

(p,q) da—(sq) | da(, @) | Af—(s0(p, )
(s,v;)i €S L+ q; L a;
(t,’l)i) 1€ 8 L L 0
(s,v5)j €T L L 0
(tvj)jeT L+c¢ L ¢

(s,1) L 0 0
(s,u), (t,u) L/2 L/2 0

If (s,t) is a non-edge 7 (so G was constructed from a type 1 clauSg, then Tablé Il calculates the
coefficients ofw(s, -), andw(t, -) in the above inequalities; fs, ¢) is an edge inG (soG was constructed
from a type 2 claus€) then Tabld R calculates the coefficients. Plugging thesend using the fact that
c(s,t) = 1, we get exactly

Yies @i w(s,v;) <1
OR

djer G- w(tv;) <1

in the case thatr was constructed from type 1 clauSg and

Zies ai - w(s,v;) > 1
AND

> jerCiw(tvg) >1

in the case that? was constructed from type 2 clausg

Thus in both cases the stability conditions arising in grépbonstructed from-sat* clauseC' are
exactly the constraints given by the clause, with the istdvaluesw (s, v;) playing the role of the variables
z; for i € S, and the intrinsic values (s, v;) playing the role of the variables; for j € T'.

This completes the proof of Theorém#.2. O

We now get to the meat of the paper, where we give a tight irmeqapiability result for an optimization
version ofSTABLE-VALUES.

5 Atight inapproximability result for STABLE-VALUES

Before defining the optimization version 8fABLE-VALUES, we need to define the notion attive pairs

Definition 5.1. Given an instance cdTABLE-VALUES containing a collection of graph&,...,G,, all
over a set of vertice¥” and a price profilec : V. x V' — R, a pair (u,v) € V x V is said to be aractive
pair if it is not the case that iu,v) € G; for all i AND ¢(u,v) = 0, orii) (u,v) ¢ G; for anyi AND
c(u,v) = oo.

As explained in the introduction, a pdit, v) that is not an active pair effectively “comes for free” since
regardless of what the intrinsic values forv are, the pairwise stability conditions are trivially sééd
because(u,v) = 0if (u,v) € G; foralli andc(u,v) = 0o if (u,v) ¢ G; for anyi.

11



As before, we think of an intrinsic values functianas rationalizing an active paji, v) in G; if the
stability conditions in Definitio 2]1 hold fofu, v). Then, theMAX -STABLE-VALUES problem is to seek
intrinsic values that rationalize threaximurmumber ofactive pairs(u, v), counted separately for each.
We observed in the introduction that there is a trivia2-factor approximation algorithm. More precisely,
for each non-edge, either adding it does not change the gajgrelistance contributions for either of its
endpoints (in which case it is stable regardless of thensitivaluations), or else it is rationalized when the
intrinsic valuations are all set to 0; similarly for each edgither removing it does not change the aggregate
distance contributions for its endpoints (in which case #&table iff its cost is 0, regardless of the intrinsic
valuations), or else it is rationalized when the intrinsaduations are all set too. Thus one of the two
extremes (setting all intrinsic valuations to 0, or alliingic valuations tax) rationalizes at least 1/2 of the
“(u,v) in G;” pairs that are rationalized by an optimum solution. We prav this section that thig /2
factor is tight assuming® # N P.

To our end of showing a hardness resultieyx -STABLE-VALUES we show an inapproximability result
for MAX-LINz_ , which is the main technical contribution of this paper.h8lighMAX -STABLE-VALUES is
actually defined over the reals and would admittedly requsréo show a hardness result foAX -LINg_,
we are able to employ a clever trick shownlin [GR07] that matkasfficient for us to work wittMAX -LIN 7,
and then carry the result over to the reals as long as we cameetat the co-efficients in theAx -LIN 7,
instance we obtain are bounded and the equations have spgseart.

Problem 4. MAX-LINz_

Given: nvariablesrq, ..., z,
m equations, each of which is of the type
Zi a;T; = b
wherea;,b € Z  foralli=1,...,n
Find: An assignment fos, . .., z, € Z, that satisfies the

maximum number of equations.

Theorem 5.2. Given an instance df1AX-LINz_, for all positive constants, J it is NP-hard to distinguish
between the following two cases:

e There exists a solution satisfying at leastla— ¢) fraction of the linear equations in the instance.
e Every solution satisfies at mosbdraction of the linear equations.

The above promise problem will be referred to asMLINz, (1 — ¢€,0). Our proof follows the outline
of the proof for Theorem 3.4 in_ [GRO7]. In the remainder ofstBection, we go through the proof of
Theoreni 5.R, pointing out the crucial points where our proedds to differ from [GR0O7]. We first define
the LABEL-COVER problem below.

Definition 5.3. Aninstance of the ABEL-COVER(c, s) problem comprises a bipartite gragt = (A, B, &),
a set of labelsx and a set of projection mappings. : ¥ — X for each edges € £. An assignment
A: (AU B) — X is a mapping from the set of vertices onto the set of labelsiatebal for an edge
e = (u,v) if m.(A(u)) = A(v). We wish to ascertain for this instance of the problem if

o there exists an assignmeatthat is legal for at least a fraction of edges, or

12



e every assignment is legal for at most afraction of the edges.

The following theorem gives a hardness of approximatiomulteder LABEL-COVER and is due to
[ALM T98] based on a result of Raz’s. [Raz98]

Theorem 5.4. ([ALM ™98 ,Raz98]) There exists a constant- 0 such that for all sufficiently large constant-
sized alphabetg, it is NP-hard to distinguish between an instancd.eBEL-COVER that has an assign-
ment legal for all edges and one for which every assignmdeg@ for at mostl /|X|” fraction of edges.

As we noted in Section 1.3, there doesn’t seem to be an easgti@a fromMAX -LIN z (shown to be
hard to approximate in [GRO7]) or fromAX -LINg, (shown to be hard to approximate in [HasO1]). Both
those results are obtained by reductions froaBEL-COVER and involve constructing equations of the
form x 4+ y — z = ¢. Most of our effort in our proof is spent on giving an alteimatreduction that gives
rise to equations with coefficients ifa,.. Specifically, our proof abstracts properties of the varifjeery
distribution that are sufficient for main steps of the [GRp®of. We then specify a different distribution
than the one in [GR07] that satisfies these properties, dsawah additional symmetry property that is key
to our final PCP system fanAX -LIN7z, .

5.1 Proof of Theorem 5.2

This subsection is devoted to the proof of Theofem 5.2. @ensin instance of theABEL-COVER(1,9)
problem comprising the bipartite graghi(U, V, E)) over n vertices andm edges, a set of labels =
{1,...,h} and constraint relations, : ¥ — X.

In our PCP system, the proof comprises the labels for alioestencoded using the Long Code we
define below.

Definition 5.5. [GRO7] For a labelr € [h], the codeword’(r) is an evaluation of the projection function
fr 1 Zh — 7 given byf,((z1,...,21)) = 2, overZ. In other wordsC(r)[z] = ;.

In other words, the proof is given to the verifier as a sequé@¢é(v;)),...,C(A(vy,))) where A is
the purported legal assignment. The verifier makes quesigsetproof at three locations. These locations
are chosen based on probability distributidfds P, andQ overZ*}r. In the end, as in_[GRO07], we will
discretize and truncate these distributions so that théeransesO(log n) randomness, so even though the
proof is formally of infinite length, the verifier only everesea (fixed) polynomially large fragment.

Our proof will use the following properties of probabilitystributions OveIZ}j_:

Definition 5.6. P is said to be(M, §)-heavyif

> P(x)=(1-9).
x€[M]h

Definition 5.7. P is said to be(d, L)-decay-resilientf for all = € [L]" and anyy € Z"

P(y + z)
P(y) =0

Definition[5.7 encapsulates and highlights a crucial priypesed in a technical step in the soundness
analysis. We are now ready to defifg, P,, which have the following form (they are parameterized by

D, 617027F17P2):
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Definition 5.8. For j = 1,2 we define the functionB; overZ” to be

h
Ceilp— =1
Pi((a1,...,2p)) = Tj[Jeel="1. )
i=1

wherel’; = (1 — e—cf)h ;7 = 1,2 are some constants.
The following proposition describes exactly how we mustad®l/, ¢, p, c¢;:
Proposition 5.9. There exist positive integetd = M (h,d),t = t(h,d), a primep = Q(M), and positive

reals ¢, co, 'y, I's for which P, and P, with these parameter settings are probability distribagp both
(M, 0)-heavy, and?, is (1/4, M + t)-decay-resilient.

Proof. We first prove that”; and P, as defined above in Definition 5.8 are probability distribng. This is
easy to see since for any choices®fcy, we can appropriately choose normalization constBni$’s so as
to ensure thaf;, P, are probability distributions. Next, we show th@t, P, are (M, §)-heavy. Note first

that for any(z1,...,z,) € Zh — [M]", there exists somesuch thatz, > M. Therefore:
>, Pi((z1,...,2n) = >, Tjec X ot
(1,055 €L —[ MR (@1,020) €L — [ MR

h
> X menmhes

r=1 (z1,....xp):xr>M

< h(1— e~¢)hemei(M=25)

IN

The right-hand side is less tharior

—1 1
M-P >
2 Cj

s

To show thatPs is (1/4, M + t)-decay-resilient, we invoke Lemma 6.5 from [GRO7], whichnestate
using our terminology below:

Lemma 5.10. (Lemma 6.5,[[GRQ7]) For allN. > 0, andcy, < f—]\‘}, the following is true for any: €
[N]",y € Z}:

Py(y+ x)
= 2 >1/4.
Pg(x) - /
We compile all the constraints on our ability to choddec;, t, p:
_ _ ,—¢ci\h
b1 > 1 ID[M} 3)
2 Cj (5
In4
< 4
2= WMo @)

First, we set to be the least integer greater thiatys. Next, we proceed to sef, co. Our choice ofc; is
determined directly from [GRO7] (pg 6), in order to ensuratitine key lemma we use from their result in
the soundness analysis (Lemma’.15) goes through, anckis g

- J1 A
01zmln{ﬁln(1+452),1n<1+4<Z> ﬁ)}
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We setcs, based on(3) andi(4), to be:

1

¢z = In 1— (62U/h Ry |

h
ChoosinglM to be the smallest integer greater thaff} ) =(+15%), andp to bep = [3M/2], we will satisfy
all the required properties @?,, P». O

From now on we will fix M, p and the parameters defining probability distributidis P as in the
above proposition. We lgi be a random variable ov@’}r generated by picking each coordinate totbe
with probability (1 — €) and an integer chosen randomly frdthwith probability e. We denot&? to be the
probability distribution with whichu is chosen.

Now we can describe the verifier test. Lt, X, be random variables ové&" distributed according to
P,, P, respectively. We useo 7. to denote the permutation of applied to the co-ordinates ofe Z". In
other word(x o 7 ); = 7 (;)- Using this notation, define random variablg = p — (X o 7 + Xa + ),
wherep denotegp, p, ..., p). The equation that the verifier checks is:

C(A(u)[X1] + C(A(v))[X2] + C(A(v))[X3] = p. (5)
Lemma 5.11. The PCP system faAX-LIN7, described above hgd — ¢) completeness.
Proof. SupposeA is indeed a legal assignment for all edges FE(G). This means that for any edge
e = (u,v), me(A(v)) = A(u). ThereforeC(A(u))[X1] + C(A(v))[X2] + C(A(v))[X3]
Xiaw) + X24w) + Paw) — (X1 0me + Xo + 1) 4
= Xia@) + X2a@w) TP — Xiro(aw) — X24@0) — BA®w)
= D — HA(v)
Recalling how we picked:, we know thaty 4, is 0 with probability exactly(1 — ¢) and hence,[(5) is
satisfied with probability(1 — ¢). O
Lemma 5.12. The PCP system fdvlAX-LINz, described above ha$) soundness error.

Proof. To argue for soundness, suppoeses an assignment that causes the verifier to accept with bildipa
atleasty’ = 196. This means that over all= (u, v) chosen uniformly at random frofi(G), andx;, xo, 11
chosen according to their respective probability distidns P, P», (Q from Z’}r:

P C(A@) X + CAW) [Xa] + CA@)IP — (X1 ome+ Xo )] =p] = 190

The following fact is handy:

Fact 5.13. Let P be a(1/4, (M + t))-decay-resilient probability distribution ove£”. Then, for any
y € [M +t]"and allz € Z":

P(z) < 2\/P(z +y) - P(x)
Proof. SinceP is (1/4, (M + t))-decay-resilient it satisfies the following inequality:

P(z) < 4P(xz+y)
< 2y/P(z+y)- P(x)
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The following lemma is based on the first step of the proof nepe used in[[GRO7] applied to our
setting:

Lemma 5.14. Let P;, P, be probability distributions oveZﬁLr and Q be a probability distribution oveft]"
such thatP;, P, (Q satisfy the following properties:

1. P, P,,Q are(p/3,6)-heavy.
2. Pyis(1/4, M + t)-decay-resilient.
3. Py is symmetric aroundp/2,...,p/2),i.e. Po(x) = Pa(p — x)

Suppose thak, X5, 1 are chosen respectively from distributiofs, P, QQ ande = (u,v) is chosen uni-
formly at random. Denot&s to be X3 = p — (X o e + Xo + 1). Then, if:

Lo [C(A)[Xa] + C(A)) [Xo] + C(A())[Xs] =p] = 235,
€, A1,A2,[4

letting Y "*) (X1, X2, u) be the indicator variable for the event
C(A(u))[X1] + C(A(v))[X2] + C(A(v))[p — (X1 0me + Xo + )] =0 mod p

the following must hold:

Euw) > Pia)VPa(z2) - Paws) Q)Y (1,20, 1) | > 80
x1,r2,23€[p/3]"

Proof. Note first that since; is (p/3, §)-heavy, and/3 < M, itis also(M, d)-heavy. Furthermore, since
w is by default chosen frorft]”, with probability at moss our choice ofX; will lie outside [A/]" and so:

Pr[CA®)[X0] + C(A®) [Xa] + C(A®) [Xs] = plXi € [M]] > 226
€, A1, A2,

DenotingY*“(z1, z2, 1) to be the indicator variable for the event:
C(A(u))[a1] + C(A(v))[z2] + C(A(W))[p — (x1 0 me + 29 + p)] = p

we can rewrite the left-hand side above in terms of an expentaver all edgeg(u, v):

E. > Py(21) Py(22) QU)X (g, w9, p) | > 226 6)
z1€[MP zo€Zl uelt)h

Combining [(6) with Propertly]2 and Fact 5113, we get:

E, Z Py (21)\/ P2 (x2) - Pa(2g + 21 ome + 1)Q(u) YW (21,9, p) | > 118
x16[M]h,xQEZﬁ,u€[t}h
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SinceP, is symmetric aroundp/2, ... ,p/2), Py(z2 +x1om+p) = Po(p — (22 + 1 om+ 1)) and hence
the above inequality becomes:

E. > Pi(21)\/ Py (w2) - Pa(p — (1 0 e + @2 + 1)) Q(u) T (w1, 20, 1) | > 116
z1E[M]" o €Zh e[t

Observing thafl ") (z1, 22, 1) > YY) (21, 25, 1) and denotingzs = p — (z1 o me + z2 + 1), we have:

E. > Pi(21)\/Py (w2) - Pa(23)Q(u) XS (w1, w0, 1) | = 116
x1E[M}h,x2€Zﬁ,u€[t}h

SinceP;, P, Q are(p/3, 6)-heavy:

Yo PV (w2)  Pas)Qu) Y (w1, wo, ) | > 85 (7)

x1,22,u€[p/3]"

Eu,v)

Note that the functior ") : [p]* — {0,1} is given by

Y@ (2 29, 1) = 1 C(A(u))[x1] + C(A(v))[z2] + C(A(v))[z3] =0 mod p,
P Lz 0 otherwise

Té“’”) can equivalently be written as below:

T(uv) (z1,m9, 1) = Z 2R (C(A(w) [21]+C(A(v)) [£2]+C(A(v)) [x3))
P20

Substituting this in[{7), the left-hand side becomes:

|
-

1 X 2mik u))[x v))[x v))[z
Buo [p Y AV (xz)'Pz(ws)Q(M)< o LA Al A sD)]

x1,x2,p€[E]0 0

B
Il

We further simplify the term within the expectation:

LY P)VPR@) B)Q <§_je () w11+c<A<v>>mwm(v»mn)
p

:c175627/i€[£]h

= _Z Z Q(p )(Pl(;pl)ez”T““c(A(u))[m]>( By (29) (3:2)622:%( (v))[mz]>< P2($3)€2§_+kC(A(U))[x3])

Pz x1,02,n€[ 5]
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Settinglf,, (z) = Pl(x)e%%cm(“))[m] andV,(z) = Pg(ac)e%TﬁcC(A(”))[z], (@) now simplifies to:

Z Z QU (x1) Vo (72) Vo (3) > 80 (8)

k 0961,962#6[ 1k

This is where our proof technique has a crucial point of deparfrom that used in [GR07]. Since our test
has only positive co-efficients, we do not have the luxury akeithe substitution

P (x)e—%ikc(/‘(v))[ﬂ =V,(z)

that is made in[GRQ7] which simplifies their analysis.
Consider the Fourier expansion fdy, described below:

- ¥ e

we[p]h

Buw) = 5 3 th(a)e™ 50

z€[p]h
We substitute this and a similar Fourier expansionfpback in [8):

Z:{\u wy 6%(101@1) ﬁ) ws e%(wz,m) ﬁv wa e%(wg,xg,) > 85
()Y B () ()
w1 wa o

k‘ 0x1,22,1

where

Substitutingrs = (p — (z1 o me + 2 + p)) the left-hand side becomes:

E(uﬂ)) _Z Z ZL{ wl 6 e (w1,21) ZV ZUQ 62;” w2,T2) ZV w3 278 (3, (p— (1‘107re+x2+u))>]
O:c175027u
f— E(uﬂ)) —Z Z Zu wl 6 7 wl,l‘l ZV w2 62;” w2,1‘2 ZV ’UJ3 e—% w;,($10ﬂ8+x2+u)>]
O:c175027u
= E(u,v) —Z Z L{ wl V w3 262;’” (w1 —wzomg 1), z1) 262;’” (w2—ws3 x2>ZQ(,u)e 2m<w37u>]
k 0 w1, w2,w3 ©
wherews o ;! denotes the vector obtained by setting o 7. !); = Zj@rgl(i) ws; fori=1,..., h. Note
that forw, # wgom; 1, 2, 5 (17052 )21 — 0 and similarly, forwy # ws, ¥, e » (V2 7w2)72) —
0. Settingw = ws, the overall inequality simplifies to:
R .
522 (pdu(wor ) (P Vo(w)?) ZQ(u)e‘TWW] > 85 )
k=0 w u

Also, note thatV, (w)?| = \/ <17U(w)2-17v(w)2) - \/ <9v(w)-l7v(w))2 — [V, (w)[? using the simple

identity thatz? - z2 = (z - 2)2 for any complex numbez.
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Substituting back i (9), we obtain:

p_l 27
E(u0) EkZOZ@hﬁu(w”e_ H) (" Vuw)?) (ZQ(u)e‘P<w’“>>] > 8 (10)
-0 w o

We are now ready to use the following lemma, again from [GR®ricerning probability distributions
Py, P, Q and some assignmertof labels to vertices it satisfying [(10).

Lemma 5.15. (IGROT7]) Let Py, P», @ : Z — [0, 1] be probability distributions and : V(G) — [h] some
assignment of labels to vertices@hsatisfying [ID). Then, there exists a constarguch that
(Pr) [Ais legal for (u,v)] > 6*/96C>
By choosing our original instance ofABEL-COVER(1, ) to be such that is large enough, we can
ensure that* /96C2 > 1/h7. This gives us a soundness1®i as required. O

5.2 Tying it all together
Theorem 5.16. For all constantse, § > 0, the problemMAX-LINg, (1 — ¢,d) is NP-hard.

Proof. We just need the following argument from [GRO7], which welggp Z, andR, as opposed t#
andR.

We give a reduction from Mx-LINz_ (1 —¢,d/8). Note that our reduction in proving that this problem
was hard produced an instance oAKtLIN7z, where each equation consists of three variables:

Ti+xj+x)p=c

wherez;, z;, i, ¢ € Z4. The MAX-LINg, instance we construct will have exactly the same set of these
equations:

T+ oy =c
with 2, m;., ) chosen fronR .. A solution in integers to the original Mx-LINz, instance is automatically
a solution to the MX-LINg_ instance.

Suppose that with probability at leasbver the choice of equations in the instance, a solutioraisilfte.

Then, for any such equation:

T+ F oy =c
by choosing each variable, to be either| 2| or [2/] uniformly at random fors = i, j, k we will have
satisfied the equation in the correspondingMLINz, instance with probability at leagy8 thereby con-
tradicting the hardness assumption we made for the instance O

Theorem 5.17. For all constants, § > 0, the problem-sAT*(1 — €, 1/2 4 766) is NP-hard.

Proof. The proof is by reduction from MXx-LINg, (1 — €,195) over a set of unknowns;, ..., z,. Our
I-SAT* instance will have variableg, . .., y,; ¥}, . . ., v,,. We define a partitiors U T whereS = {y;|i =
L,...,n}andT = {yi|j = 1,...,n}. For each equation over the redl; a;z; = b in an instance of
MAX-LINg, , we construct the-SAT* clauses:
Y ies @iy <b Y ics @iYi > b
OR ) AND (1))
ZjeT ajy; <b ZjeT ajy;' 2 b
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Letzy,...,z, beasolution for MX-LINz, . We sety; =y, = x; foralli = 1,...,n. Asolution satisfying
at least g1 — ¢) fraction of the equations in the Mk-LINg, instance will satisfy at least(d — ¢) fraction of
the inequality-clauses in thesAT* instance. Conversely, suppose there exists a solutisfygag at least a
(1/24769) fraction of the inequality-clauses. Then there is at le&8tjdraction of inequality-clause pairs
of type [11) which must be satisfied. For each such pair, the &clause implies that both ", s a;y; > b)
and (>_,c7 a;y; > b) and the type 1 clause implies that oneXf. g a;y; < band) . ra;y; > b must
hold. Therefore, for each such pair oneXf g a;y; = b or Y, a;y; = b must hold. Setting:; to be
y; for all i if there are more pairs for which’,_ ¢ a;3; < b andy; otherwise, guarantees that at leagba
fraction of equation$ _; a;x; = b must be satisfied in the original Ak-LIN7z, instance thereby giving us
the necessary gap reduction. This completes the proof ahéwrem. O

Theorems$ 5.16 arld 517 give us the corollary below that inatelgt yields the intended1/2 + 6)
hardness result:

Corollary 5.18. For all €,§ > 0 the problenMAX -STABLE-VALUES(1 —¢,1/2 4 §) is NP-hard.

Proof. We argue that the reduction fromsAT* shown in the proof of Theorem 4.2 is also a gap-preserving
reduction and reduce fromsaT*(1 — ¢,1/2 + §). Arguing first for (1 — ¢) completeness, we note that if a
clause in the-sAT* instance is satisfied then the corresponding pairwiseligyatmndition is also satisfied.
Suppose now, thatl /2 + §) fraction of the stability conditions for the active paire avatisfied. But
each such condition exactly corresponds to a clause betigjiesa in the originali-SAT* instance thereby
giving us the requiredl/2 + §) soundness foBTABLE-VALUES. O
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