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Abstract

We investigate the question of what languages can be decided efficiently with the help of a
recursive collision-finding oracle. Such an oracle can be used to break collision-resistant hash
functions or, more generally, statistically hiding commitments. The oracle we consider, Samd

where d is the recursion depth, is based on the identically-named oracle defined in the work of
Haitner et al. (FOCS ’07). Our main result is a constant-round public-coin protocol “AM−Sam”
that allows an efficient verifier to emulate a Samd oracle for any constant depth d = O(1) with the
help of a BPPNP prover. AM−Sam allows us to conclude that if L is decidable by a k-adaptive
randomized oracle algorithm with access to a SamO(1) oracle, then L ∈ AM[k] ∩ coAM[k].

The above yields the following corollary: assume there exists an O(1)-adaptive reduction that
bases constant-round statistically hiding commitment on NP-hardness, then NP ⊆ coAM and
the polynomial hierarchy collapses. The same result holds for any primitive that can be broken
by SamO(1) including collision-resistant hash functions and O(1)-round oblivious transfer where
security holds statistically for one of the parties. We also obtain non-trivial (though weaker)
consequences for k-adaptive reductions for any k = poly(n). Prior to our work, most results in
this research direction either applied only to non-adaptive reductions (Bogdanov and Trevisan,
SIAM J. of Comp. ’06) or to primitives with special regularity properties (Brassard FOCS ’79,
Akavia et al., FOCS ’06).

The main technical tool we use to prove the above is a new constant-round public-coin
protocol (SampleWithSize) that we believe may be interesting in its own right, and that guar-
antees the following. Given an efficient function f on n bits, let D be the output distribution
D = f(Un), then SampleWithSize allows an efficient verifier Arthur to use an all-powerful prover
Merlin’s help to sample a random y ← D along with a good multiplicative approximation of the
probability py = Pry′←D[y′ = y]. The crucial feature of SampleWithSize is that it extends even
to distributions of the form D = f(US), where US is the uniform distribution on an efficiently
decidable subset S ⊆ {0, 1}n (such D are called efficiently samplable with post-selection), as
long as the verifier is also given a good approximation of the value |S|.
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1 Introduction

The ability to sample from efficiently decidable sets (i.e., membership in such set can be decided
efficiently, but sampling from the set might be hard) is an extremely powerful computation resource,
to the point that having such ability for any decidable set implies P = NP. In this work we study
less powerful samplers, that only agree to sample from more carefully chosen sets. We show that
while these samplers can be used to break certain cryptographic primitives, they seem not to be
strong enough to decide arbitrary NP languages. We then use this fact to give negative evidence
on the possibility of basing such primitives on NP hardness.

Consider the sampler that gets a circuit C over {0, 1}n as input, and outputs two random
values x and x′ in {0, 1}n such that C(x) = C(x′). Such a sampler is known as a “collision finder”,
and breaks the security of any family of collision-resistant hash functions [61].1 We consider the
following generalization of the above sampler: the sampler Samd, where d ∈ N, gets up to d recursive
calls, each of the form (C1, . . . , Ci, x), where i ≤ d, each of the Cj ’s is a circuit over {0, 1}n and
x ∈ {0, 1}n. Samd answers depth 1 calls (C1, ·) with a random element in {0, 1}n. For depth
i > 1 calls, Samd first checks that it was previously queried with (C1, . . . , Ci−1, ·) and answered
with x (otherwise, it aborts). If the check passes, then Samd answers with a random element in
C−1

1 (C1(x))∩. . .∩C−1
i (Ci(x)). (See Section 2.1 for a more detailed description of Samd). (Note that

the “collision finder” we described above is equivalent to Sam2.) Such a sampler is very powerful,
as it can be used for breaking the binding of any d-round statistically hiding commitments [63, 32].

Commitment schemes are the digital analogue of a sealed envelope. In such a scheme, a sender
and a receiver run an interactive protocol where a sender commits to a bit b. In case the commitment
is statistically hiding, then the protocol guarantees that from the receiver’s point of view there
exists roughly equal chance that the sender has committed to b = 0 or b = 1 (hence the bit b
is hidden from the receiver information-theoretically). Where the additional guarantee is that a
computationally-bounded sender can only find one way to decommit. (See Section 5.1.1 for the
formal definition). Statistically hiding commitments are widely used throughout all of cryptography,
with applications including, but not limited to, constructions of zero-knowledge protocols [13, 48,
23, 7, 33], authentication schemes [15], and other cryptographic protocols (e.g., coin-tossing [43]).
Hence, it is highly important to study the minimal assumptions required for building them. Since
Samd breaks any d-round statistically hiding commitments, it is very informative to learn what
hardness assumptions Samd does not break (in particular, we have little hope to base d-round
statistically hiding commitments on such assumptions). The following theorem shows that for
constant d, Samd is not “too powerful”.

Theorem 1.1 (Main theorem, informal). For any d = O(1) and any efficient oracle-aided algorithm
A, there exists a constant-round public-coin protocol AM−Sam with the following guarantee: either
the output of the efficient verifier is statistically close to the output of ASamd, or (if the prover
cheats) the verifier aborts with high probability. Furthermore, the honest prover has complexity
BPPNP, while the cheating prover may be unbounded.

We apply this theorem to understand what languages can be efficiently decided by randomized
oracle-aided algorithms with oracle access to SamO(1), where the strength of the implication is a
result of the adaptivity of the calls to SamO(1) made by the algorithm. We write A ∈ BPPO[k]

1A family of collision resistant hash functions is a family of compressing functions with the following security
guarantee: given a random function h in the family, it is hard to find x 6= x′ satisfying h(x) = h(x′).
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to mean that R is a k-adaptive randomized oracle-aided algorithm using an oracle O: A makes k
adaptive rounds of queries to its oracle; each round may consist of many queries, but all of the
queries in one round can be computed without looking at the oracle responses to any of the other
queries in the same or later rounds. We say A is non-adaptive if k = 1.

We can apply Theorem 1.1 to obtain a k-round protocol for any language L ∈ BPPSamO(1)[k].
Since BPPSamO(1)[k] is closed under complement, the above implies the following corollary.

Corollary 1.2 (Limits of languages decidable using oracle access to SamO(1)). It holds that
BPPSamO(1)[k] ⊆ AM[k] ∩ coAM[k]. In particular, every L ∈ BPPSamO(1)[k] has a k-round inter-
active proof where the honest prover has complexity BPPNP. Furthermore, if L is NP-complete,
then the following consequences hold.

k = poly(n): co-NP has a public-coin O(k)-round interactive proof with honest prover complexity
BPPNP.

k = polylog(n): the subexponential hierarchy collapses to its third level (by [53]).

k = O(1): PH = Σ2 (by [11]).

Since the polynomial hierarchy is widely conjectured not to collapse, it follows that NP-complete
languages are unlikely to be in BPPSamO(1)[k=O(1)]. For k = polylog(n), the collapse is less under-
stood, but it is still reasonable to conjecture that such a collapse does not occur. For k = o(n)
the consequence may not be implausible but would nevertheless lead to surprising progress on the
long-standing open question of reducing the round complexity of interactive proofs for co-NP [44].
Finally for k = poly(n), as pointed out to us by Holenstein [38], it would answer a long-standing
open question of Babai et al. [5] about reducing the complexity of the prover in interactive proofs
for co-NP from BPP#P to BPPNP (in fact this question is even open for multi-prover interac-
tive proofs). Thus, depending on the adaptivity k, Corollary 1.2 gives an indication of either the
implausibility or the difficulty of proving that NP-complete languages can be decided using the
help of SamO(1).

1.1 Application to Basing Cryptography on NP-Hardness

Much of modern cryptography relies on computational intractability assumptions; starting with
seminal works of Diffie and Hellman [18] and Goldwasser and Micali [29], the security of many
if not most modern cryptosystems rests on the assumption that some underlying computational
problem is hard to solve efficiently. Often the underlying problem is a concrete number-theoretic
or algebraic problems [56, 19, 54]; unfortunately the existence of sub-exponential algorithms for
factoring [14] and of efficient quantum factoring algorithms [60] have thrown into question whether
many of these underlying assumptions are viable, and indeed faster factoring algorithms often
translate into better attacks on the cryptosystems based on factoring. In light of this, there has
been a search for more robust underlying intractability assumptions.

The holy grail of this search would be to base cryptography on the minimal assumption of
P 6= NP; namely to show that P 6= NP implies the existence of one-way functions, or, even
more desirably, the existence of stronger cryptographic primitives such as collision-resistant hash
functions or public-key cryptosystems. Other than the fact that P 6= NP is necessary for the
existence of one-way functions (and almost all other cryptographic primitives [39, 51]), the former
is a “worst-case” assumption while the latter is of “average-case” nature, hence making the first
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assumption is much more desirable. In fact, this goal dates back to the seminal paper by Diffie and
Hellman [18].

Most constructions and proofs in the cryptographic literature are black-box, so it is worthwhile
to understand whether black-box reductions can base cryptographic primitives on NP-hardness. A
black-box reduction (also known as, black-box proof of security) from NP-hardness to the security
of a cryptographic primitive is an efficient randomized oracle algorithm R such that given any
oracle O that breaks the security of the cryptographic primitive, RO solves SAT. The question
of whether black-box reductions can be used to base cryptography on NP-hardness has previously
been studied in [12, 20, 9, 22, 3, 52].

Since SamO(1) breaks a the security of d-round statically hiding commitments, it also breaks
the wide variety of cryptographic primitives that yield such commitment via constant-adaptive
black-box reductions. This list includes: collection of claw-free permutations with an efficiently-
recognizable index set [23], collision-resistant hash functions [17, 47], (singly) homomorphic encryp-
tion [40], constant-round protocols for oblivious-transfer and private information retrieval schemes
where the security of one of the parties holds information theoretically [32], the average-case hard-
ness of SZKP [50], constant-round statistically binding commitments secure against selective open-
ing attacks [64], and constant-round inaccessible entropy generators [34]. The following corollary
states that if any of the above primitives can be based on NP-hardness via a black-box reduction
R, then RSamO(1) decides SAT.

Corollary 1.3 (immediate by Corollary 1.2). Let R be a k-adaptive reduction that bases the
existence of any cryptographic primitive that can be broken by SamO(1) on NP-hardness. Then
SAT ⊆ AM[k]∩ coAM[k], where the honest provers that realize this containment are in BPPNP.
The various consequences for different k given in Corollary 1.2 also hold.

We remark that previous results studying the analogous question of basing (general) one-way
functions on NP-hardness were restricted to non-adaptive reductions [20, 9, 3]. Other works
do consider adaptive reductions, but with respect to more structured primitives [12, 3, 22]. See
Section 1.3.1 for the description of previous works.

1.2 Main Tool — A New Sampling Protocol

Our main tool for proving Theorem 1.1, which is also our main technical contribution, is a new
constant-round public-coin sampling protocol that we believe to be of independent interest. A
distribution D is called efficiently samplable if it is the output distribution of an efficient function
f : {0, 1}n → {0, 1}∗ (i.e., D = f(Un)). A distribution is efficiently samplable with post-selection
if D = f(US) where US is the uniform distribution over an efficiently decidable set S ⊆ {0, 1}n.
Such distributions have previously been studied in the context of randomized algorithms [36]. We
emphasize that although S is efficiently decidable, it is not necessarily possible to efficiently sample
uniform elements of S.

Our “Sample With Size” protocol takes f,S, and a good approximation of |S| as input, and
enables an efficient verifier to sample a uniform y ∈ f(S), along with a good approximation of the
value py = Pry′←f(US)[y′ = y].

Lemma 1.4. (Sampling With Size protocol, informal) There exists a constant-round public-coin
protocol SampleWithSize, where the parties get as a common input an efficiently decidable set S ⊆
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{0, 1}n, an efficiently computable function f : S → {0, 1}∗ and a good approximation (i.e., within
(1± 1

poly(n)) factor) of |S| and has the following guarantees:
Either VSWS outputs a pair (x, sx) such that 1. x is distributed (1/poly(n))-close to the uniform

distribution over S, and 2. sx is a good approximation for |f−1(f(x))| , or (if the prover cheats)
the verifier aborts with high probability. Furthermore, the honest prover has complexity BPPNP,
while the cheating prover may be unbounded.

1.3 Related Work

1.3.1 NP-hardness and cryptography

Brassard [12] showed that if there exists a deterministic black-box reduction from NP-hardness to
inverting a one-way permutation, then NP= co-NP. Bogdanov and Trevisan [9], building on earlier
work of Feigenbaum and Fortnow [20], showed that if there exists a non-adaptive randomized black-
box reduction from NP-hardness to inverting a one-way function (or more generally, to a hard on the
average problem in NP), then NP ⊆ AM∩coAM/poly, which is considered implausible since the
polynomial hierarchy would collapse to the third level [65]. Akavia et al. [3] improved this result for
the case of reductions to inverting one-way functions to show that the same hypothesis implies the
uniform conclusion NP ⊆ AM ∩ coAM, which implies that the polynomial hierarchy collapses to
the second level [11]. [3] also showed that if there exists an arbitrarily adaptive black-box reduction
from NP-hardness to inverting one-way functions with efficiently decidable range and efficiently
computable preimage size (decidable range, for short), then co-NP ⊆ AM ∩ coAM.2 Goldreich
and Goldwasser [22] showed that adaptive reductions basing public-key encryption schemes with
the special property that the set of invalid ciphertexts is verifiable in AM, on NP-hardness would
also imply that NP ⊆ coAM. Finally, Pass [52] takes a different route and showed that if a specific
type of witness-hiding protocol exists, then an arbitrarily adaptive reduction from NP-hardness
to the existence of one-way functions implies that co-NP ⊆ AM ∩ coAM. As recently point out
by Haitner et al. [35], however, it is unlikely that known witness-hiding protocols are of the type
required by [52].

We remark that while most cryptographic reductions we know of are non-adaptive, there are
a few notable exceptions, in particular security reductions for building interactive protocols [48],
pseudorandom number generators [37], and certain lattice-based cryptosystems [2, 45]. One may
hope in particular that lattice problems might someday be used to prove that P 6= NP implies
one-way functions, since they already exhibit a worst-case to average-case hardness reduction.3

[9, 3] do not rule out the possibility that any of these (or some other adaptive) techniques may
succeed.

2As pointed out by [10], the proof of [3] indicates that decidable range one-way functions seem to be of different
type than standard one way functions; their proof shows that it is unlikely to base worst case decidable range one-way
functions on NP-hardness, where it is easy to show that worst case one-way functions can be based on NP-hardness.
The above should be compare with the implications of Corollary 1.3, which also hold with respect to weak forms
of statically hiding commitments (ones that only slightly hiding, or their binding cannot be broken with probability
1− 1/ poly). Such weak commitments, however, are not known to be implied by (standard) one way functions.

3In particular, the adaptivity of the lattice-based schemes seems essential for giving the best known approximation-
ratio required in the worst-case hard lattice problem. Unfortunately, even in the best known reductions the starting
worst-case hard problem in the NP ∩ co-NP.
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1.3.2 The oracle Sam

Simon [61] considered the sampler Samπ
2 — a generalization of Sam2 that gets circuits with π-gates,

where π is a random permutation oracle. He showed that while Samπ
2 breaks any collision-resistant

hash functions relative to random permutation π (i.e., the hash function is allowed to use π-
gates), it cannot invert π. Continuing this line research, Haitner et al. [32] showed that Samπ

d

breaks all d-round statistically hiding commitments, even those implemented using π, but Samπ
d

does not help to invert π if d = o(n/ log n). As a consequence, the above results rule out the
possibility of basing o(n/ log n)-round statistically hiding commitments on the existence of one-way
functions/permutations, using fully-black-box reductions — a reduction from statistically hiding
commitments to one-way function is fully-black-box, if the proof of security is black box (in the
sense of Corollary 1.3), where in addition the construction uses the one-way function as black-box.
Note that these results are incomparable to the result stated in Corollary 1.3. On one hand, they
rule out all fully-black-box reductions unconditionally without restrictions on adaptivity. On the
other hand, they consider reductions starting from one-way functions rather than NP-hardness, and
their results do not apply to non-black-box constructions. In contrast, Corollary 1.3 also applies to
reductions where the construction is non-black-box, which permits, for example, the construction to
exploit the fact that YES instances of NP languages have efficiently verifiable witnesses. In other
words, Corollary 1.3 only requires that the security analysis be black-box. We refer the reader
to Reingold et al. [55], which, although they do not focus on our case where the construction is
non-black-box but the security analysis is black-box, nevertheless is useful for understanding the
distinctions between various notions of reductions.

Sam and zero knowledge. In recent work, Gordon et al. [31] observe that our main result
is useful in the context of understanding zero knowledge proofs. In particular, they prove using
Theorem 1.1 that if a language L has a constant-round black-box computational zero-knowledge
proof based on one-way permutations with a k-adaptive simulator, then L ∈ AM[k] ∩ coAM[k].
Their result suggests that reducing the round complexity of known constructions of zero knowledge
proofs based on one-way permutations for NP (e.g., [26, 8]) (all of which have super-constant
round complexity) to a constant number of rounds is implausible if the simulator must also be
O(1)-adaptive or at least very difficult to prove for larger adaptivity.

1.3.3 Efficiently decidable sets

Estimating statistics. Estimating statistical properties of efficiently samplable distributions
has long been studied in theoretical computer science [30, 21, 1, 49, 58, 24]. Typically, estimating
interesting parameters of samplable distributions (and therefore also of samplable distributions with
post-selection) such as entropy or statistical difference is hard (e.g., SZKP-hard). Nevertheless,
for samplable distributions it was known that an efficient verifier can estimate various parameters
in constant rounds with the help of an all-powerful prover.

Bounding set-size protocols. The constant-round public-coin lower bound protocol of Gold-
wasser and Sipser [30] (see Lemmas 3.16 and 3.17 for the formal statements) can be used to
lower-bound the size of efficiently decidable sets. Namely, on input an efficiently decidable set S
and a value s, the prover makes the verifier accept iff |S| ≥ s. Fortnow [21] (see also Aiello and
H̊astad [1]) gives a constant-round protocol that upper-bounds the sizes of efficiently decidable sets
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S where in addition the verifier has a uniform element of S that is unknown to the prover (see
Lemma B.1).

These protocols are related to our protocol SampleWithSize. For example, one can estimate with
respect to D = f(Un) the probability py = Pry′←D[y′ = y] for a random y ← D by lower-bounding
and upper-bounding the set |f−1(y)|. In particular, the upper bound [21, 1] can be applied in this
case, since the verifier can sample x ← Un, compute y = f(x) and ask the prover for an upper
bound on the size of the set f−1(y) without revealing x. This is one way to prove SampleWithSize
for the special case S = {0, 1}n.

We cannot necessarily apply, however, the upper bounds of [21, 1] to do the same thing with
post-selected distributions D = f(US). That is, even though f−1(y) is efficiently decidable, it
may not be possible to efficiently generate x ← US conditioned on x ∈ f−1(y) (with x that is
hidden from the prover). As we will discuss in Section 2.1.1, handling post-selected distributions is
necessary to obtain Theorem 1.1. Although one-sided lower-bound estimates can be obtained from
the lower-bound protocol of [30], it is unknown how to get two-sided estimates using the upper
bound protocol of [21, 1], where the difficulty is to obtain secret samples from US . In contrast,
SampleWithSize does guarantee a two-sided bound for the estimate py ≈ Pry′←D[y = y′] for a
random y ← f(US).

Sampling. Using an all-powerful prover to help sample is an old question in computer science,
dating at least to the works of Valiant and Vazirani [62] and Impagliazzo and Luby [39]. In building
SampleWithSize, we will use a sampling protocol that first appeared in Goldreich et al. [28], and
was further refined by Akavia et al. [3]. This constant-round public-coin protocol takes as input an
efficiently decidable set S and a good approximation of |S|, and outputs a nearly-uniform element
of S. See Lemma 3.18 for a formal statement. Our protocol SampleWithSize uses their sampling
protocol and extends it by also giving set size information about the sample that is generated.

Another protocol that seems related to SampleWithSize is the random selection protocol of
Goldreich et al. [25]. Their protocol accomplishes a goal similar to the protocol of [28], allowing
a verifier to select a random element of a set. Their protocol, however, cannot be applied in
our context as it requires super-constant round complexity. Other related work include random
selection protocols arising in the study of zero knowledge [16, 27, 59], but none of these protocols
provides the size information that is provided by SampleWithSize).

1.4 SamO(1) Vs. Sam2

It is worthwhile noting that Theorem 1.1 for non-recursive collision finders (i.e., Sam2), can be
proven via a straightforward application of the lower-bound protocol of Goldwasser and Sipser [30]
(see Lemma 3.17) and the upper-bound protocol of [21, 1] (see Lemma B.1). See Appendix B for
an illustration of these easier proofs.

Various evidence suggests, however, that SamO(1) is more powerful than Sam2. There is no
known way to “collapse” the depth (i.e., to show that Sam2 suffices to emulate Samd for d > 2),
and under various assumptions there exist problems solvable using SamO(1) but not Sam2 (for
example the average-case hardness of SZKP [50] and constant-round parallelizable zero knowledge
proofs for NP [34], which both imply constant-round statistically hiding commitment, but not
collision-resistant hash functions). Therefore, we do not focus on the (admittedly simpler) proof
of Main Theorem 1.1 for the case of Sam2, and rather we build our machinery SampleWithSize in
order to prove Theorem 1.1 for the case of SamO(1).
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Organization

High level description of our techniques is given in Section 2. Notations, definitions and basic
lemmas can be found in Section 3. Our main technical contribution (Lemma 4.1) is given in
Section 4, where our main result (Theorem 5.2) and its applications to understanding black-box
reductions basing cryptography on NP-hardness are given in Section 5. Finally, in Appendix B we
sketch a simple proof of Theorem 5.2 for the case of d = 2.

2 Our Techniques

In this section we overview the main ingredients used for proving Theorem 1.1. We first show how
to use protocol SampleWithSize (i.e., the new sampling protocol) to implement protocol AM−Sam,
and then give details on the implementation of protocol SampleWithSize itself.

2.1 Using SampleWithSize to implement AM−Sam

We start with more precise description of Samd (the algorithm that AM−Sam tries to “emulate”).
On input (C1, . . . , Ci, x), where x ∈ {0, 1}n and each Cj is a circuit over {0, 1}n, Samd performs the
following “sanity check”: it checks that i ≤ d, and if i > 1 then it also checks that it was previously
queried on (C1, . . . , Ci−1, x

′) (for some x′ ∈ {0, 1}n) and answered with x. If any of these checks
fail, Samd returns “failure”. Otherwise, Samd returns a random element x′ in S(C1, . . . , Ci−1, x) :=
{x′ ∈ {0, 1}n : ∀1 ≤ j ≤ i− 1, Cj(x′) = Cj(x)} (if i = 1, it returns a random x′ ∈ {0, 1}n). Viewed
differently, x′ is a random collision with x for depth with respect to C1, . . . , Ci−1 since it satisfies
Cj(x′) = Cj(x) for every 1 ≤ j ≤ i− 1.

In protocol AM−Sam, the verifier chooses A’s random coins at random and then emulates ASamd ,
while answering each query (C1, . . . , Ci, x) to Samd using the following subprotocol: The verifier
first performs (using the data stored during previous executions, see below) the sanity check of
Samd, and returns “failure” in case this tests fails. Otherwise it does the following:

In case i = 1: The verifier sets S = {0, 1}n, s = 2n, and f = C1 and runs SampleWithSize to get
a random sample x1 ∈ {0, 1}n and an approximation s1 ≈ |{x′ ∈ {0, 1}n : C1(x1) = C1(x′)}|.
The verifier stores an entry ((C1, x1), s1) in its memory, and returns x1 to A as the query’s
answer.

In case i > 1: The verifier looks up the entry ((C1, . . . , Ci−1, x), si−1) from its memory
(the sanity checks guarantee that such entry must exist, since x was the an-
swer for a previous query (C1, . . . , Ci−1, ·)). Run SampleWithSize on S = Si =
{x′ ∈ {0, 1}n : ∀1 ≤ j ≤ i− 1, Cj(x′) = Cj(x)}, f = Ci, and si−1 in order to obtain xi ∈ S
and the approximation si ≈ |{x′ ∈ S : Ci(xi) = Ci(x′)}|. As in the case i = 1, the verifier
stores an entry ((C1, . . . , Ci, xi), si) in its memory, and returns xi.

To see that AM−Sam indeed behaves like ASamd , we first note that Lemma 1.4 yields that for
depth 1 queries, SampleWithSize returns x1 that is (close to) uniform in {0, 1}n, exactly as Samd.
In addition, SampleWithSize outputs a good approximation s1 ≈ |C−1

1 (C1(x1))| that can be used
as input for depth 2 queries to AM−Sam. Since s1 is a good approximation, this means that a
depth 2 query will be answered by SampleWithSize with x2 where x2 is a near-uniform element
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of C−1
1 (C1(x1)), just as Samd would answer. SampleWithSize also outputs a good approximation

s2 ≈ |C−1
2 (C(x2))|, which can be used for depth 3 queries, and so on.

The above is done in parallel for each of the k adaptive rounds of oracle queries. The approx-
imation error of si grows as the depth increases, and from the formal statement of Lemma 1.4
(see Lemma 4.1) it follows that we can repeat the above process a constant number of times.
Unfortunately, the accumulated error becomes super-polynomial for any d = ω(1).

Contrast to previous work [20, 9, 3]. Samd is in a sense a “canonical recursive collision
finder”. Similarly, one could consider a “canonical function inverter” that takes as input a circuit
C and a value y and outputs a random element of C−1(y). Such an oracle would break all one-
way functions. One could then ask whether it is possible to construct some kind of “AM-Inv”
that emulates this canonical inverter. Such a result would strengthen our main theorem, since an
inverter can in particular find collisions.

Unfortunately, it is not known how to build such an AM-Inv. The difficulty is handling cheating
provers, who claim that the given query is not invertible. Notice that for the problem of inverting
a function, it is possible to ask queries (C, y) where y is not in the image of C. In this case the
oracle must say that the query is invalid. Since there is no efficient way to verify that y is not
in the image of C, a cheating prover can claim, say, that none of the verifier’s queries are in the
image of C even when some are valid queries. In general, it is not known how to catch this kind of
cheating, since proving that y is not in the image of C is a co-NP statement.

As already mentioned in Section 1.3, various works have gotten around this difficulty using
additional restrictions either on the way the inverting oracle is called (i.e., non-adaptivity) or on
the kinds of functions that the oracle inverts (i.e., functions with efficiently verifiable range and
efficiently computable preimage sizes). The main reason we are able to build AM−Sam whereas
building “AM-Inv” seems out of reach is that in our setting, unlike the inverting oracle, Samd can
never respond “failure” to a well-formed query (one that passes the sanity checks), since the sanity
check ensures that collisions always exist.

2.1.1 Necessity of post-selection

It seems necessary to have a good hold on the statistics of an efficiently samplable distributions
with post-selection, in order to make AM−Sam successfully emulate Samd for any d > 2. This is
clear from the sketch of how we use SampleWithSize to prove AM−Sam given in Section 2.1: in
order for the proof to work for large depths, we need SampleWithSize to apply not just on the
S = {0, 1}n but, on the sets Si that are returned by previous calls to SampleWithSize. These sets
Si are efficiently decidable, but it may not be possible for the verifier to generate secret elements
from Si. This prevents us from giving a simple proof of SampleWithSize using the upper bound
protocol of [21, 1], since their protocol relies on being able to generate secret elements in Si.

2.2 Proving SampleWithSize

Approximating histograms. Underlying the proof of SampleWithSize is a constant-round
public-coin protocol VerifyHist for verifying histograms of distributions. Let D be a distribution
over {0, 1}∗, and let py = Pry′←D[y′ = y]. The histogram of D is a function h : [0, 1] → [0, 1], where
h(p) = Pry←D[py = p]. Namely, the histogram tells us the distribution of weights of elements drawn
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from D. Since we would like to consider objects with small description, our formal definition is a
“discretized” variant of the above notion (see Definition 3.2 for a precise definition).

In this paper, we use the 1st Wasserstein distance W1 (also known as Kantorovich distance
and Earth Mover’s distance, see Definition 3.8) as the distance measure between histograms. This
distance is well studied in probability theory [46, 41, 42] and also has application in computer
science, for example in the realm of image processing [57]. To understand this distance intuitively,
think of a histogram h as piles of “earth” on the unit interval [0, 1], where the larger h(p) is, the
larger the pile at location p ∈ [0, 1]. W1(h, h′) is the minimal amount of work that must be done
to push the configuration of earth given by h to get the configuration given by h′. Recall that in
physics, work is equal to force times distance. So, for example, pushing a probability mass of 0.1
from position 1/10 to position 9/10 requires work 0.1 · 8/10 = 8/100, while pushing the same mass
from 1/3 to 2/3 requires less work, only 0.1 · 1/3 = 1/30.

More formally, the W1 distance for distributions over [0, 1] is defined as:

W1(h, h′) =
∫ 1

0

∣∣∣∣
∫ x

0
(h(p)− h′(p)) dp

∣∣∣∣ dx.

The intuition is that
∫ x
0 (h(p)− h′(p)) dp captures the amount of mass “pushed” from the interval

[0, x] into the interval (x, 1], and taking an integral over all these amounts together gives us the
total amount moved. As a comparison, it is easy to observe that W1(h, h′) ≤ ‖h − h′‖1. We will
define and use a suitably discretized version of this W1 distance in Definition 3.8.

The protocol VerifyHist allows us to verify the validity of an histogram in the W1 distance not
just of efficiently samplable distributions, but even efficiently samplable distributions with post-
selection (as defined in the previous section about SampleWithSize), as long as the verifier knows
roughly the probability of the post-selected event. Our protocol is as follows.

Lemma 2.1 (Verify Histogram Protocol, informal). There exists a constant-round public-coin pro-
tocol VerifyHist, between a prover PVH in BPPNP and an efficient verifier VVH, where the parties
get as a common input an efficiently decidable set S ⊆ {0, 1}n, an efficiently computable func-
tion f : S → {0, 1}∗, a good approximation (i.e., within (1 ± 1

poly(n)) factor) of |S| and a claimed
histogram h of the distribution D = f(US), and has the following guarantees:

Completeness. If h is the histogram of D, then PVH makes VVH accept with high probability.

Soundness. If h is far from the histogram of D in the 1st Wasserstein distance, then no (possibly
cheating) prover can make VVH accept with non-negligible probability.

Previous work using histograms. Previous works have used histograms to estimate set sizes,
and a related protocol to VerifyHist appears in Goldreich et al. [28]. We emphasize that their
protocol accomplishes a different task that is incomparable to ours.4

4The protocol of [28] lower bounds the size of a set S that is efficiently verifiable via a low-communication interactive
protocol, but not efficiently decidable using a circuit. To do so, they recursively refining the histogram such that the
following holds: if the prover lies about |S| (and gives an over-estimate), then at the base of the recursion the verifier
catches the cheating by noticing that some parts of the histogram are empty. The prover, however, must claim they
are non-empty in order to be consistent with previous answers.
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2.2.1 Proving soundness of SampleWithSize using VerifyHist.

Since completeness is straightforward to observe from the definition of the protocols, in the following
we focus on describing how to prove the soundness properties of the SampleWithSize and VerifyHist
protocols. The overviews presented here assume familiarity with the lower bound protocol of [30]
and the uniform sampling lemma of [28, 3]. An informal description of these protocols appears in
Section 1.3.3, while formal statements appear in Section 3.6.

The verifier in SampleWithSize essentially does the following. Given S, f and s where s ≈ |S|,
consider the post-selected distribution D = f(US). Ask the prover for D’s histogram h and run
VerifyHist to verify that h is indeed close to the true histogram of D. Now:

1. Use the sampling protocol of [28] to sample many points: x1, . . . , xk ← US . Set yi = f(xi).

2. The prover sends s1, . . . , sk, which should be equal to |f−1(yi)|. Run the [30] lower bound to
ensure that indeed |f−1(yi)| ≥ si for all i.

3. Use s1, . . . , sk to construct from this distribution an “empirical histogram” hemp where each
entry is computed this way: hemp(p) = 1

k |{i | p = |si|
|S| }|.5.

4. If hemp and h are too far apart in the 1st Wasserstein distance, then abort. Otherwise, pick
a random i ∈ [k] and output (xi, si).

Intuitively, the lower bound in Step 2 means that if the prover wants to cheat, it can only claim
si to be smaller than |f−1(yi)|. On the other hand, by Chernoff we know that for large enough k,
the true empirical histogram of the examples y1, . . . , yk will be close to h. Therefore, if the prover
consistently under-estimates |f−1(yi)| for many i, then this implies he gives us a very distorted
empirical histogram, and we will catch him in the check on the 1st Wasserstein distance in Step 4.
Together, this implies that si ≈ |f−1(yi)| for almost all i, and so outputting (xi, si) for a random i
is good with high probability.

2.2.2 Proving soundness of VerifyHist.

Let us consider the very special case of VerifyHist where the input is of the form S = {0, 1}n, s = 2n,
and f that is promised to be a k-to-1 regular function, but where the regularity k is unknown. This
implies that |f({0, 1}n)| = 2n/k, and the only nonzero element of the histogram is h(k/2n), which
has value 1. To verify a claimed value k′, the verifier does the following.

Preimage test: The verifier runs the lower-bound protocol (Lemma 3.17) to check that k =
|f−1(f(x))| ≥ k′ (here x is arbitrary and unimportant since the function is regular).

Image test: The verifier runs the lower-bound protocol to check that 2n/k = |f({0, 1}n)| ≥ 2n/k′.

It is clear from the guarantee of the lower-bound protocol that the preimage test prevents the prover
from claiming k′ À k, and also that the image test prevents the prover from claiming k′ ¿ k, as
this would make |f({0, 1}n)| = 2n/k ¿ 2n/k′ and the lower-bound of the image test would fail. We
are able to use the lower-bound protocol in the image test because membership in the image of f
can be efficiently verified.

5Here we ignore the fact that the proper way to construct the empirical histogram requires discretizing the
probability space so that elements y, y′ with |f−1(y)| ≈ |f−1(y)| contribute to the same entry in the histogram. See
Definition 3.2
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The general case. The idea in the above simple case is that by giving a lower bound on the
image of the function f , one obtains an upper bound on the preimage. This idea extends to f that
are far from being regular, and we generalize the special case of regular functions to a protocol with
more image tests over many subsets of f(S).

To be more precise, define the sets Wk ⊆ f(S) given by Wk =
{
y : y ∈ f(S), |f−1(y)| ≥ k

}
. Just

as in the simple example of regular functions where knowing the regularity k tells us the size of the
image |f({0, 1}n)|, so for the general case we will observe that knowing the histogram of D tells us
the sizes of |Wk|. Let wh

k be the estimate of |Wk| that is given by the histogram h. (Here we do
not specify further how exactly this estimate is calculated, since it requires additional parameters
and the formula is complicated. See Section 4 for details.)

Also, one can efficiently verify membership in Wk, by using the lower-bound protocol: given y,
run the lower-bound to verify that |f−1(y)| ≥ k. Therefore, the set sizes |Wk| can themselves be
lower-bounded using (a generalization of) the lower-bound protocol of [30], given in Lemma 3.17.

Our VerifyHist protocol consists essentially of the following. Given an input S, f, s which defines
the distribution D = f(US) and a claimed histogram h for D, the verifier does the following

Preimage test: First, use the Sampling Lemma 3.18 to sample y1, . . . , yk ← D. The prover also
sends claimed sizes s1, . . . , sk. The verifier constructs the empirical histogram hemp given
these claimed sizes and aborts if W1(h, hemp) is too large. The verifier runs the lower-bound
protocol (Lemma 3.17) to check that |f−1(yi)| ≥ si for all i and aborts if any lower-bound
fails.

Image test: For k = 2iε where i ranges over 1, . . . , n/ε and ε = 1/poly(n) is a suitably small
function, run the lower bound protocol to verify that |Wk| ≥ wh

k .

The main technical contribution of our work is to prove that if all these tests accept, then h must
be close to the true histogram in the 1st Wasserstein distance. The intuition is the same as for
the special case of regular functions explained above: the preimage tests prevent the prover from
claiming that preimages are larger than they actually are, while the image tests prevent the prover
from claiming that many preimages are smaller than they actually are, because, as we prove in
Section 4, under-estimating the size of many preimages distorts the histogram in such a way that
there exists k where wh

k À |Wk|, and this will be caught by the image lower-bound protocol.

3 Preliminaries

3.1 Notation

We use calligraphic letters to denote sets and capital letters to denote random variables. Given
u ∈ Um+1, we denote the components of u as u = (u0, . . . , um), and let u≤i = (u0, . . . , ui). For a
random variable X, we write x ← X to indicate that x is selected according to X. Similarly, we
write x ← S to indicate that x is selected according to the uniform distribution over the set S. By
US we denote the random variable whose distribution is uniform over S. All the logarithms written
as log in this paper are in base 2 . For any m ∈ N, we let [m] = {1, . . . , m} and (m) = {0, 1, . . . , m}.

Given a two-party protocol (A,B), we let the random variable 〈A, B〉(x) denote (the transcript
of) a random execution of the protocol over a common input x.
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3.2 Many-wise Independent Functions

Definition 3.1 (d-wise independent functions). A family of functions Fn,t = {f : {0, 1}n → [t]}
is d-wise independent if for any x1, . . . , xd ∈ {0, 1}n and y1, . . . , yd ∈ [t], Prf←Fn,t [f(x1) =
y1, . . . , f(xd) = yd] = t−d.

It is possible to efficiently sample d-wise independent functions for any d = poly(n), for example
by using a random univariate degree d− 1 polynomial (for better parameters see for example [4]).

3.3 The Histogram of a Function

For any distribution D, let py = Pry′←D[y = y′] be the weight of an element y under the distribution
D. The histogram of D is the probability distribution of weights of elements drawn from D. Namely,
a histogram h assigns to every p ∈ [0, 1] the probability h(p) = Pry←D[p = py]. We will discretize
the histogram on the log-scale with an approximation error ε to obtain the following definition.

Definition 3.2 (Histogram). Let S ⊆ {0, 1}n, let f be a function from S to {0, 1}∗, let ε > 0 and let
m = bn/εc. For i ∈ (m) we define the i’th “bin” as Bi =

{
y : Prx←S [f(x) = y] ∈ (2−(i+1)·ε, 2−iε]

}
.

Let Bin(x) := i iff f(x) ∈ Bi, and let h = (h0, . . . , hm) where hi = Prx←S [Bin(x) = i]. We call h
the ε-histogram of the function f over S.

For simplicity, in the definition of a histogram, we always assume that ε is chosen in a way
that n/ε ∈ N and m = n/ε exactly. Notice that the bins with smaller numbers contain “heavier”
elements (namely for smaller i, the elements y ∈ Bi occur with larger probability). The histogram
h encodes the (approximate) regularity structure of the function f over the domain S. For example
let ε = 1 (which implies m = n) and S = {0, 1}n. Therefore a 1-to-1 function’s histogram has
one non-zero entry hm = 1, a 2-to-1 function’s histogram has one non-zero entry hm−1 = 1, while
a constant function’s histogram has one non-zero entry h0 = 1. Functions with more complex
regularity structures would have more complex histograms.

Histograms can also be defined for empirical samples drawn according to a distribution as
follows. Suppose we have a set of examples x1, . . . , x` all sampled from xi ← S, and suppose
someone claims to us the weights of each of the f(xi). Namely, he gives to us a labeling function
v : [`] → (m) with the claim that f(xi) ∈ Bv(i). This labeling v induces a claimed histogram as
follows.

Definition 3.3 (Empirical histogram). For a labeling function v : [`] → (m), define hv = Hist(v)
where hv

j = Pri←[`][v(i) = j].

The following observations easily follow from Definition 3.2.

Proposition 3.4.

1.
⋃

i∈(m) Bi = S and
∑

i∈(m) hi = 1,

2. For every y ∈ Bi it holds that |f−1(y)| ∈ (|S| · 2−(i+1)ε, |S| · 2i·ε].

3. For every i ∈ (m) it holds that |Bi| ∈ [hi · 2iε, hi · 2(i+1)·ε).
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3.4 Metrics over Distributions

3.4.1 Statistical distance

Definition 3.5 (Statistical distance). Given two random variables X, Y over a common universe
U let ∆(X, Y ) denote their statistical distance, where ∆(X, Y ) = maxS⊆U |Pr[X ∈ S]− Pr[Y ∈ S]|.
X and Y are called δ-close iff ∆(X, Y ) ≤ δ.

Two ensembles of distributions {Xn} , {Yn} over {0, 1}poly(n) are statistically indistinguishable
if ∆(Xn, Yn) ≤ n−ω(1).

We will use the following elementary properties of the Statistical distance.

Lemma 3.6. Let X be a random variable distributed over the set (S × T ) ∪ {⊥}, and suppose
∆(X, US×T ) ≤ Pr[X = ⊥] + δ. Let XS be the random variable that equals ⊥ if X = ⊥ and equals
to s ∈ S if X = (s, t). Then it holds that ∆(XS , US) ≤ Pr[X = ⊥] + δ.

Lemma 3.7. Let X, Y be a random variables distributed over the set S ∪ {⊥} such that Pr[Y =
⊥] = 0 and ∆(X, Y ) ≤ Pr[X = ⊥] + δ. Then for any event T ⊂ S it holds that:

Pr[X ∈ T ] = Pr
x←X

[x 6= ⊥ ∧ x ∈ T ] ≤ Pr[T ] + δ.

3.4.2 Wasserstein distance

The following metric measures how much “work” it takes to turn one distribution over U into an-
other one; where the amount of work is assumed to be amount of needed “moves” of the probability
masses times the distance by which they are moved. Our definition is for the special case that the
members of U form a one-dimensional array and their distance is the normalized difference between
their indexes. For more general spaces it is known as the 1st Wasserstein distance or the Kan-
torovich distance [46, 41, 42]. Also in the field of image processing it known as the Earth Mover’s
distance [57].

Definition 3.8 (1st Wasserstein distance over arrays). Given two distribution vectors x and y over
(m), for every i ∈ (m) we let ai =

∑
j∈(i) xj and bi =

∑
j∈(i) yj. We let

• −→W1(x, y) = 1
m ·∑i∈(m) : ai>bi

(ai − bi),

• ←−W1(x, y) = 1
m ·∑i∈(m) : bi>ai

(bi − ai),

• W1(x, y) =
−→
W1(x, y) +

←−
W1(x, y),

where we call W1(x, y) the 1st Wasserstein distance between x and y, where
←−
W1(x, y) and

−→
W1(x, y)

are called the left and right Wasserstein distance respectively.

The following proposition is easy to verify.

Proposition 3.9. Let x, y and z be distributions vector over (m), then

1.
−→
W1(x, y) +

−→
W1(y, z) ≥ −→

W1(x, z),

2.
←−
W1(x, y) +

←−
W1(y, z) ≥ ←−

W1(x, z),
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3. W1(x, y) + W1(y, z) ≥ W1(x, z).

Proof Sketch. We only prove the first item. For i ∈ (m), let ai and bi be as in Definition 3.8 and
similarly let ci =

∑
j∈(i) zj . Let i ∈ (m) be such that (ai − ci) > 0, we will show this coordinate

contributes at least as much to
−→
W1(x, y) +

−→
W1(y, z) as it does to

−→
W1(x, z) (this concludes the

proof, since only positive (ai − ci) contributes to
−→
W1(x, z)). Assuming that both (ai − bi) and

(bi − ci) are positive, then this coordinates contributes 1
m · ((ai − bi) + (bi − ci)) = 1

m · (ai − ci)
to
−→
W1(x, y) +

−→
W1(y, z). In the case that one of (ai − bi) and (bi − ci) is positive and the other

is negative, then the only (positive) term that contributes to
−→
W1(x, y) +

−→
W1(y, z) is larger than

1
m · (ai − ci).

¤

3.4.3 Shift distance

Suppose we have a set of empirical examples x1, . . . , x` ← S. Let u(i) = Bin(xi) and v(i) be the
“claimed” value for u(i) (which might differ from the honest bin labels Bin(xi) = u(i)). Let hv be
the histogram induced by the (possibly false) bin labels v(i), and let hu be the histogram induced
by the true bin labels Bin(xi) = u(i). W1(hu, hv) gives the minimal amount of work to move the
histogram hu to the histogram hv, but notice that the labeling of x1, . . . , x` in fact implies a specific
way of moving from hu into hv; namely, for each i such that v(i) 6= u(i) = Bin(xi), we need to move
one unit of mass from the u(i)’th bin to the v(i)’th bin. The following shift distance captures this
notion of the amount of work required by a specific way to move from one histogram to another.

Definition 3.10 (Shift distance). Given two mappings u, v from [`] to (m), we define the right

shift distance as
−→
SH(u, v) = 1

m` ·
∑

i : u(i)<v(i)(v(i) − u(i)), the left shift distance as
←−
SH(u, v) =

1
m` ·

∑
i : u(i)>v(i)(u(i)− v(i)), and the shift distance as SH(u, v) =

−→
SH(u, v) +

←−
SH(u, v).

We will use the following simple proposition.

Proposition 3.11. Let u and v be two mappings from [`] to (m), then the following holds.

1. If u(i) ≤ v(i) + k for all i ∈ [`], then
←−
SH(u, v) ≤ k/m. Similarly if v(i) − k ≤ u(i) for all

i ∈ [`], then
−→
SH(u, v) ≤ k/m.

2. If SH(u, v) ≤ k/m, then for at least (1− δ) fraction of i ∈ [`] it holds that |u(i)− v(i)| ≤ k/δ.

3. It holds that
−→
SH(u, v) = 1

m` ·
∑

j∈(m)(|{i : u(i) ≤ j ∧ v(i) > j}|), and similarly
←−
SH(u, v) =

1
m` ·

∑
j∈(m)(|{i : v(i) ≤ j ∧ u(i) > j}|).

Proof Sketch. The first part readily follows from Definition 3.10. For the second part note that
Ei←[`][|u(i) − v(i)|] = m · SH(u, v) ≤ k. So by the Markov inequality it holds that Pri←[`][|u(i) −
v(i)| > k/δ] ≤ δ.

The third part holds because if v(i) > u(i), then the index i contributes 1
m` · (v(i) − u(i)) to−→

SH(u, v) while it contributes 1
m` to the right hand side for each j such that u(i) ≤ j < v(i).

¤
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3.4.4 Shift distance to Wasserstein distance

The following lemma relates the Wasserstein distance of two histograms to the Shift distance of
the samples that these histograms correspond to. It is proven in Appendix A.

Lemma 3.12 (Bounding W1 with SH). Let u and v be two mappings from [`] to (m) and let
hu = Hist(u) and hv = Hist(v). The following holds.

1.
−→
W1(hu, hv) ≤ −→

SH(u, v) and
←−
W1(hu, hv) ≤ ←−

SH(u, v) (and thus W1(hu, hv) ≤ SH(u, v)).

2.
−→
W1(hu, hv) ≥ −→

SH(u, v) − ←−
SH(u, v) and

←−
W1(hu, hv) ≥ ←−

SH(u, v) − −→
SH(u, v), (and thus

W1(hu, hv) ≥ |−→SH(u, v)−←−SH(u, v)|).

3.5 AM Languages

A language L is in AM[k] if there exists a k-round interactive protocol for deciding L where
the verifier V is efficient (i.e., polynomially bounded) and public coin (its messages are simply
random coins). Namely, for every x ∈ L ∩ {0, 1}n it holds that Pr[V accepts in 〈P, V〉(x)] ≥ 1 −
2−n and for every x ∈ {0, 1}n \ L and any cheating (possibly inefficient) prover P∗ it holds that
Pr[V accepts in 〈P∗,V〉(x)] ≤ 2−n. If k = 2, then we simply write L ∈ AM (and call L an AM
set or language). Finally, we abuse notation and say that (P, V) is an AM[k] protocol if it is a
k-round, public-coin protocol with an efficient verifier.

We also consider the “promise problem” variant of an AM language.

Definition 3.13. Let M = (P,V) be an AM protocol. We say that M is a proof system for the
promise problem (Y,N ) (where Y ∩N = ∅) if the following holds.

• Y =
⋃

n Yn where Yn = {x ∈ {0, 1}n : Pr[V accepts in 〈P,V〉(x)] ≥ 1− 2−n}.
• N =

⋃
nNn where Nn = {x ∈ {0, 1}n : ∀P∗, Pr[V rejects in 〈P∗, V〉(x)] ≥ 1− 2−n}.

We call Yn the set of YES instances, Nn the set of NO instances and Tn = {0, 1}n \ (Yn ∪Nn) the
set of non-promise instances of length n. We also let T =

⋃
n Tn to be the set of all non-promise

inputs to M.

Note that a language L ∈ AM iff there exist a two-round public-coin protocol (with an efficient
verifier) M = (P, V) with an empty non-promise set T = ∅.

3.5.1 Error reduction AM protocols

The definition above assumes that the probability a YES instance is accepted is ≥ 1− 2−n and the
probability that a NO instance is accepted is ≤ 2−n. This is equivalent to YES instances being
accepted with probability ≥ 2/3 and NO instances being accepted with probability ≤ 1/3 for by
the following well-known lemma.

Lemma 3.14 (Error reduction for AM protocols, [6]). Suppose with an efficient verifier and let
α = α(n) < 1, β = β(n) < 1 be such that α − β > 1/ poly(n). Suppose we define the sets Yα and
N β as follows.

• Yα
n = {x ∈ {0, 1}n : Pr[V accepts in 〈P, V〉(x)] ≥ α}.
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• N β
n = {x ∈ {0, 1}n : ∀P∗, Pr[V accepts in 〈P∗,V〉(x)] ≤ β}.

Then there exists an AM protocol M′ = (P′,V′) (with an efficient verifier) such that for all n the
following holds

• ∀x ∈ Yα
n , Pr[V′ accepts in 〈P′,V′〉(x)] ≥ 1− 2−2n.

• ∀x ∈ N β
n , ∀P∗, Pr[V′ rejects in 〈P∗,V′〉(x)] ≥ 1− 2−2n.

3.5.2 Efficient provers for AM protocols

The following lemma says that the prover in any AM protocol can be replaced by a BPPNP

prover, with a loss in the completeness error that depends on the round complexity. It is prover in
Appendix A.

Lemma 3.15 (BPPNP provers for AM protocols). Let M = (P, V) be an AM[2k] protocol (with
no input) for k = O(1) such that

Pr[V accepts in 〈P, V〉] ≥ 1− δ,

for δ ≥ 1/poly(n). Then there is a BPPNP prover strategy P′ such that

Pr[V accepts in 〈P′,V〉] ≥ 1− 2kδ1/2k
.

3.6 Set Size-Estimation and Sampling Protocols

We call a family of sets {Sn} (non-uniformly) efficiently decidable, if there exist a family of polyno-
mial size circuits Boolean {Cn} such that Sn = {x | Cn(x) = 1}. When it is clear from the context
we simply write S instead of Sn.

The following fundamental lemma by [30] provides a protocol to lower-bound the size of effi-
ciently decidable sets up to small multiplicative factor.

Lemma 3.16 (Set lower-bound protocol, [30] Section 4.1). There exists an AM protocol SetLB =
(PLB,VLB), where the parties get as input an efficiently decidable set S ⊆ {0, 1}n,6 s (as size of S),
ε (as the approximation parameter), the verifier runs in time poly(n, 1/ε) and the following holds.

Completeness. If |S| ≥ s, then Pr[VLB accepts in 〈PLB, VLB〉(S, s, ε)] ≥ 1− 2−n.

Soundness. If |S| ≤ (1− ε) · s, then for every prover P∗, it holds that
Pr[VLB accepts in 〈P∗,VLB〉(S, s, ε)] < 2−n.

We will need a variation of the protocol of Lemma 3.16 over the promise languages. In fact
the exact same protocol given in [30] (with the help of the amplification of Lemma 3.14) proves
both Lemma 3.16 and the following Lemma 3.17. The protocol of [30] is described for an AM set
S which clearly contain the efficiently decidable S’s (i.e. Lemma 3.16) as a special case. However
the same protocol (and in fact even the same analysis) given in [30], when considered over AM
promise languages yields the following.

6S can be represented as its deciding circuit, or in case of more succinct representations (PLB, VLB) can directly
depend on the deciding algorithm of S when it is uniform.
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Lemma 3.17 (Generalized set lower-bound protocol). [30, Section 4.1] Let M = (P,V) be an AM
protocol with YES instances {Yn} and non-promise instances {Tn}. Then there exists an AM
protocol GeneralizedSetLB = (PGLB, VGLB), where the parties get as input s (as size of Yn), ε (as
the approximation parameter), the verifier runs in time poly(n/ε) and the following holds.

Completeness. If |Yn| ≥ s, then Pr[VGLB accepts in 〈PGLB, VGLB〉(M, s, ε)] ≥ 1− 2−n.

Soundness. If |Yn ∪ Tn| ≤ (1 − ε) · s, then for every prover P∗, it holds that
Pr[VGLB accepts in 〈P∗, VGLB〉(M, s, ε)] < 2−n. 7

The following lemma and its proof are an adaptation of those of [28, Lemma A.2] for the setting
where we are only given an approximation of the size of the set to be sampled from. ([3] also
describes a candidate protocol without the proof.) We give a proof in Appendix A.

Lemma 3.18 (Uniform sampling protocol, [28, 3]). There exists an AM protocol UniformSamp,
between an PNP prover PUS and an efficient verifier VUS, whose parties get as input, an efficiently
decidable set S ⊆ {0, 1}n, s ∈ N, and an error parameter δ < 1, such that the following holds:
assuming that s ∈ [(1 ± δ/32) · |S|], then the verifier runs in poly(n, 1/δ) and either rejects by
outputting x = ⊥ or outputs an element x ∈ S such that:

Completeness. VUS rejects in 〈PUS, VUS〉(S, s, δ) with probability at most δ.

Soundness. ∆(x,US) ≤ Pr[VUS rejects in 〈P∗, VUS〉(S, s, δ)] + δ, for any (unbounded) prover P∗.

4 Sampling with Size and Verify Histogram Protocols

In this section we formally state and prove Lemma 1.4 (SampleWithSize), its extension to the multi-
query case (see discussion below) and Lemma 2.1 (VerifyHist). We first prove a “weak” version of
Lemma 2.1 (see Lemma 4.5), use this weak version for proving Lemma 1.4 and its multi-query case
(formally stated as Lemma 4.1 and Lemma 4.2), and then prove Lemma 2.1 (stated as Lemma 4.4)
using Lemma 4.2. In order to keep the text simple, we state the lemmas with respect to PSPACE
provers, and only give a variant of Lemma 4.2 (Corollary 4.3) with a BPPNP prover. The very
same approach, however, can be applied to give similar variant of all other lemmas in this section.
Let us start with the formal statements of the main lemmas and of Corollary 4.3.

Lemma 4.1 (Restating Lemma 1.4). There exists an AM[O(1)] protocol SampleWithSize =
(PSWS, VSWS), whose parties get as input an efficiently decidable set S ⊆ {0, 1}n, an accuracy pa-
rameter δ ≥ 1/poly(n), s ∈ N (as size of S) and an efficiently computable function f : S → {0, 1}∗.
At the end of the protocol VSWS either rejects (signified by outputting a special symbol x = ⊥), or it
outputs a pair (x, sx). Assuming that s ∈ [(1±γ) · |S|] for γ := ( δ

10n)8, then the following conditions
hold:

Completeness: VSWS accepts when interacting with PSWS with probability at least 1 − δ, and if
not rejecting it holds that sx = |f−1(f(x))|.

Soundness: For all provers P∗, the following hold:
7Note that M is not really an extra input and the protocol GeneralizedSetLB implicitly depends on M, but we still

indicate it as so for the sake of clarity.
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• Pr[VSWS does not reject in 〈P∗,VSWS〉 ∧ sx 6∈ [(1± δ) · |f−1(f(x))|]] ≤ δ,

• ∆(x,US) ≤ δ + Pr[VSWS rejects in 〈P∗, VSWS〉].
For proving Theorem 1.1 we need to handle multiple queries to protocol SampleWithSize si-

multaneously, using a single constant round protocol, while enforcing independence between the
verifiers’ outputs in the different calls. While applying Lemma 4.1 independently in parallel for
each of the queries does not guarantee such independence (nothing prevents outputs of the different
calls to be dependant), a bit more careful usage of this lemma does yield the desired guarantee,
which is formally state as the next lemma.

Lemma 4.2 (Multi-query variant of Lemma 4.1). There exists an AM[O(1)] protocol
MultSampleWithSize = (PMSWS,VMSWS), whose parties get as input a tuple of k triplets
((S1, s1, f1), . . . , (Sk, sk, fk)), where each Si ⊆ {0, 1}ni is efficiently decidable, an accuracy param-
eter δ ≥ 1/poly(n) for n =

∑
i ni, si ∈ N and each fi : Si → {0, 1}∗ is an efficiently computable

function. At end of the protocol VMSWS either rejects (signified by outputting a special symbol
⊥) or outputs ((x1, sx1), . . . , (xk, )). Assuming that si ∈ [(1 ± γ) · |Si|] for every i ∈ [k], where
γ := 1

8k · ( δ
20n)8, then the following holds:

Completeness: VMSWS accepts when interacting with PMSWS with probability at least 1 − δ, and
if not rejecting it holds that sxi =

∣∣f−1
i (fi(xi))

∣∣ for every i ∈ [k].

Soundness: The following holds for any (unbounded) prover P∗:

• Pr
[
VMSWS does not reject in 〈P∗, VMSWS〉 ∧ ∃i ∈ [k] : sxi /∈ [(1± δ) · ∣∣f−1

i (fi(xi))
∣∣]]< δ,

• ∆((US1 , . . . , USk
), (x1, . . . , xk)) ≤ δ + Pr[VMSWS rejects in 〈P∗,VMSWS〉].

Corollary 4.3 (Lemma 4.2 with BPPNP prover). Let ((S1, s1, f1), . . . , (Sk, sk, fk)) and δ be as
in Lemma 4.2. There exists an AM[O(1)] protocol MultSampleWithSize = (PMSWS, VMSWS), where
PMSWS in BPPNP, whose parties get as input ((S1, s1, f1), . . . , (Sk, sk, fk)) and δ, at end of the pro-
tocol VMSWS either rejects or outputs ((x1, s

′
1), . . . , (xk, s

′
k)), and the following holds for a universal

constant c > 1. Assuming that si ∈ [(1± γ) · |Si|] for every i ∈ [k], where γ := δc

ckn8 , then

Completeness: VMSWS accepts when interacting with PMSWS with probability at least 1− δ.

Soundness: The following holds for any (unbounded) prover P∗:

• Pr
[
VMSWS does not reject in 〈P∗, VMSWS〉 ∧ ∃i ∈ [k] : sxi /∈ [(1± δ) · ∣∣f−1

i (fi(xi))
∣∣]]< δ,

• ∆((US1 , . . . , USk
), (x1, . . . , xk)) ≤ δ + Pr[VMSWS rejects in 〈P∗,VMSWS〉].

Proof. Let c′ be the number of rounds of Protocol MultSampleWithSize of Lemma 4.1, and let δ′

be such that δ = 2c′δ′1/2c′
. Lemma 4.1 yields that if γ ≤ 1

8k · ( δ′
20n)8 then both the complete-

ness and the soundness conditions hold with a PSPACE prover and the accuracy parameter δ′.
Lemma 3.15 yields that we can get a BPPNP prover that makes the verifier accept with probability
1 − 2c′δ′1/2c′

= 1 − δ. Therefore the honest prover can be implemented in BPPNP if γ is small
enough:

γ ≤ 1
8k
· ( δ′

200n
)8 =

1
8k
·
(

(δ/2c′)2c′

20n

)8

which is implied by γ ≤ δc

ckn8 for a large enough constant c. ¤
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Lemma 4.4 (Restating Lemma 2.1). There exists an AM[O(1)] protocol VerifyHist = (PVH, VVH),
whose parties get as input an efficiently decidable set S ⊆ {0, 1}n, s ∈ N (as size of S), an
efficiently computable function f : S → {0, 1}∗, the histogram parameter 0 < ε < 1 and a (claimed)
ε-histogram h ∈ [0, 1]m+1 for m = n/ε such that the following holds. Let hf ∈ [0, 1]m+1 be the (real)
ε-histogram of f with respect to S. If s ∈ [(1± γ) · |S|] for γ = ( ε

10n)40 then:

Completeness: If h = hf , then VVH accepts when interacting with PVH with probability at least
1− 2−n.

Soundness: If W1(hf , h) > 20/m = 20ε/n, then (for any unbounded prover) VVH rejects with
probability at least 1− 2−n.

We are also using the following “supporting lemmas” whose proofs are given in Section 4.1.

Supporting lemmas

The following protocol is similar to protocol VerifyHist of Lemma 4.4, but provides a weaker guar-
antee: the prover cannot convince the verifier that

−→
W1 is much larger than

←−
W1.

Lemma 4.5 (Weak Verify Histogram). There exists an AM[O(1)] protocol WeakVerifyHist =
(PWVH, VWVH), whose parties get as input an efficiently decidable set S ⊆ {0, 1}n, s ∈ N (as size of
S), an efficiently computable function f : S → {0, 1}∗, the histogram parameter ε = 1/poly(n) and
a (claimed) histogram h ∈ [0, 1]m+1 for m = n/ε such that the following holds. Let hf ∈ [0, 1]m+1

be the true ε-histogram of f with respect to S. Given the promise that s ∈ [(1± ε)|S|] the following
holds.

Completeness: If h = hf , then VWVH accepts when interacting with PWVH with probability at least
1− 2−n/2.

Soundness: If
−→
W1(hf , h) > 4 · ←−W1(hf , h) + 100ε, then (for any unbounded prover) VWVH rejects

with probability at least 1− 2−n/2.

The following lemma states that there exists a protocol that verifies that a claimed empirical
labeling is close to a true labeling in the shift distance.

Lemma 4.6 (Verify Empirical Labeling). There exists an AM[O(1)] protocol VerifyEmpLabel =
(PVEL, VVEL), whose parties get as input an efficiently decidable set S ⊆ {0, 1}n (where n ≥ 20),
an efficiently computable function f : S → {0, 1}∗, an histogram parameter ε = 1/poly(n) and
a (claimed) histogram h ∈ [0, 1]m+1. In addition, the protocol takes as input empirical samples
x1, . . . , x` ∈ S along with a (claimed) labeling u : [`] → (m).

Let hf be the (true) histogram of f over the set S. Let uf be the (true) labeling of xi (i.e.,
uf (i) = Bin(xi)) and let huf

= Hist(uf ) (i.e., the induced histogram of uf ).
Assuming that s ∈ [(1± ε)|S|], −→W1(h, hf ) < 4 ·←−W1(h, hf ) + 100ε and W1(huf

, hf ) ≤ ε, then the
following hold:

Completeness: If u = uf and W1(hu, h) ≤ ε, then VVEL accepts when interacting with PVEL with
probability at least 1− 2−n/2.

Soundness: If SH(u, uf ) > 111ε, then (for any unbounded prover) VVEL rejects with probability at
least 1− 2−n/2.
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Note about the proofs Throughout our proofs we use the fact that 22ε > 1 + ε > 2ε/2 and
2−ε/2 > 1 − ε > 2−2ε for small ε > 0. Namely, for small ε enough the range [1 − ε, 1 + ε] is the
same as [2−2ε, 22ε] up to a factor of 2 over ε. Therefore we will freely replace expressions of the
form s ∈ [(1± ε)|S|] with expressions of the form s ∈ [2±ε · |S|] (and sometimes vice versa) to make
the manipulations simpler, with the understanding that this affects the statement of our theorems
by introducing an inconsequential loss of constant factor 2 in parameters.

The formal proofs of SampleWithSize Lemma 4.1 and VerifyHist Lemma 4.4 are somewhat differ-
ent than the overview given in Section 2. The idea, however, remains the same: for SampleWithSize,
the prover will claim to us a histogram for D whose correctness we check using image and preimage
tests, and then if it is correct we sample many elements plus their sizes from D, check that the
empirical histogram of the samples is close to what the prover claimed, and if so output one of them.
Instead of using VerifyHist to perform the image and preimage tests, we will define SampleWithSize
to explicitly use VerifyEmpLabel to do the preimage tests and WeakVerifyHist to do the image tests,
therefore bypassing VerifyHist. In fact, we will then use SampleWithSize to prove VerifyHist (there
is no circularity because WeakVerifyHist and VerifyEmpLabel do not depend on VerifyHist). It turns
out that for the formal proof, this alternative is cleaner to present, and in fact allows us to achieve
better parameters, than proving things in the order presented in Section 2.

Now can now move to proving the main lemmas of this section.

Proof of Lemma 4.1. We first a give an implementation of SampleWithSize and its multi-query case
with a PSPACE prover. Since they are both constant round protocols Lemma 3.15 yields that
there exist an BPPNP prover for Protocols SampleWithSize and MultSampleWithSize with slightly
weaker guarantee which are good enough for our purposes to prove Theorem 1.1.

Protocol SampleWithSize is defined as follows.

Protocol 4.7.
SampleWithSize = (PSWS, VSWS).

Common input: An efficiently decidable set S ⊆ {0, 1}n, accuracy parameter δ = 1/poly(n), an
efficiently computable function f : S → {0, 1}∗ and a size estimation s (for |S|).

Description: In the following let ε = δ2/(1000n) and ` = n/ε2.

1. Sampling random points from S. The parties interact, in an execution of the Uniform
Sampling Protocol of Lemma 3.18, on input (S`, s`, δ/9), where PSWS and VSWS play the
role of the prover and the verifier respectively. Let (x1, . . . , x`) denote VUS’s output in this
execution.

2. Compute the histogram and labeling. PSWS computes h ∈ [0, 1]m+1 the ε-histogram of f
with respect to S as well as the labeling u : [`] 7→ (m), where u(i) = Bin(xi) (see Definition 3.2
for the definition of Bin(xi)). PSWS sends h, u to VSWS.

3. Verify the claimed histogram (image tests). The parties interact in the WeakVerifyHist
protocol (of Lemma 4.5) on input (S, s, f, ε, h) where PSWS and VSWS play the role of PWVH

and VWVH respectively.

4. Verify the samples (preimage tests). PSWS,VSWS engage in the VerifyEmpLabel protocol
(of Lemma 4.6) on input (S, s, f, ε, h, x1, . . . , x`, u). If VerifyEmpLabel rejects, then VSWS

rejects as well.
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5. Choose output. VSWS chooses i ← [`] and outputs (xi, s · 2−ε·u(i)).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We next prove the completeness and soundness of Protocol 4.7. Recall our notation that uf

is the honest labeling of the examples x1, . . . , x`, huf
= Hist(uf ) denotes the empirical histogram

given by the honest labeling uf , hu = Hist(u) denotes the empirical histogram given by the claimed
labeling u, and hf denotes the honest histogram of f over S. The intuition of the proof roughly
follows in three steps, described below.

1. x1, . . . , x` are sampled almost uniformly in S, so we can apply a Chernoff bound to argue
that W1(huf

, hf ) is small.

2. The WeakVerifyHist protocol guarantees that the claimed histogram h satisfies
−→
W1(h, hf ) <

4
←−
W1(h, hf ) + 100ε, therefore the VerifyEmpLabel protocol guarantees that SH(u, uf ) is small.

3. We apply the following lemma that states that if SH(u, uf ) is small, then by picking a random
i ← [`] we get an output (xi, s2−ε·u(i)) which has the requirements of Lemma 4.1.

Lemma 4.8. Suppose that SH(u, uf ) ≤ 111ε, then

Pr
i←[`]

[
si · 2−ε·u(i) ∈

[
|f−1(f(xi))| · 2±δ

]]
≥ 1− δ/9.

Proof. The promise that SH(u, uf ) ≤ 111ε = 111n/m together with Proposition 3.11 (item 2) yield
that Pri←[`][|uf (xi)− u(xi)| ≤ 111n/(δ/9)] ≥ 1− δ/9, and we conclude that

s · 2−ε·u(i)

∈ 2±ε · |S| · 2ε·uf (xi) · 2±ε·(999n/δ) since s ∈ [2±γ · |S|]
⊆ 2±ε · 2±ε · |f−1(f(xi))| · 2±ε·(999n/δ) by Proposition 3.4

= |f−1(f(xi))| · 2±ε·(2+999n/δ)

⊆ |f−1(f(xi))| · 2±ε·(1000n/δ)

= |f−1(f(xi))| · 2±δ.

Thus with probability 1− δ/9 we pick a good i satisfying the requirement of Lemma 4.1. ¤

We now use Lemma 4.8 to formally prove that SampleWithSize is complete and sound (with an
unbounded prover).

Completeness. If s ∈ [2±γ · |S|], then s` ∈ [2±γ` ·∣∣S`
∣∣]. Now note that since `γ < (δ/9)/30, there-

fore s satisfies the promise of the Uniform Sampling protocol used in Step 1. By the completeness
of Lemma 3.18 the verifier rejects in Step 1 with probability at most δ/9.

Moreover, the uniformity condition of Lemma 3.18 implies that for all sets T ⊆ S`, it holds that

Pr[(x1, . . . , x`) ∈ T ] (1)
= (Pr[(x1, . . . , x`) ∈ T ] + Pr[VSWS rejects ]− Pr[US` ∈ T ]) + Pr[US` ∈ T ]− Pr[VSWS rejects]
= (Pr[(x1, . . . , x`) ∈ T ∪ {⊥}]− Pr[US` ∈ T ∪ {⊥}]) + Pr[US` ∈ T ]− Pr[VSWS rejects] (2)
≤ ∆((x1, . . . , x`), US`) + Pr[US` ∈ T ]− Pr[VSWS rejects] (3)
≤ Pr[US` ∈ T ] + δ/9 (4)

21



In the above, the probability is over the (x1, . . . , x`) sampled by VSWS as in Step 1, which can
possibly be ⊥ if VSWS rejects. In Inequality 2 we use the fact that samples from US never equal ⊥.
Inequality 3 follows by the definition of statistical distance. Inequality 4 follows by the uniformity
condition of Lemma 3.18.

The following claim asserts that the empirical histogram of uniform samples from US` are close
to the true histogram with high probability.

Claim 4.9. Let T ⊆ S` be the set of tuples (x1, . . . , x`) such that the true empirical histogram huf

satisfies W1(huf
, hf ) > ε. Then

Pr[US` ∈ T ] < m2−n

Proof. It follows that for each j ∈ (m− 1) that

Pr
x←S

[Bin(x) ≤ j] =
∑

i∈(j)

hf
i

Let Xj
i be the random variable such that Xj

i = 1 if Bin(xi) ≤ j, and Xj
i = 0 otherwise. Since∑

i∈(j) huf

i = 1
` ·

∑
i∈[`] X

j
i , applying a Chernoff bound yields that

Pr


|(

∑

i∈(j)

huf

i )− (
∑

i∈(j)

hf
i )| > ε




= Pr


|1`

∑̀

i=1

Xj
i − (

∑

i∈(j)

hf
i )| > ε




≤ 2e−`ε2
= 2e−n < 2−n.

It follows that

Pr[US` ∈ T ]

= Pr[W1(huf
, hf ) > ε] = Pr


 ∑

j∈(m)

|(
∑

i∈(j)

huf

i )− (
∑

i∈(j)

hf
i )| > mε




≤

 ∑

j∈(m−1)

Pr


|(

∑

i∈(j)

huf

i )− (
∑

i∈(j)

hf
i )| > ε





 ≤ m2−n.

¤

Since the prover is honest, h = hf and therefore it follows by the completeness of WeakVerifyHist
that VSWS rejects in Step 3 the with probability at most 2−n/2.

Since the prover is honest, h = hf and u = uf . Therefore by Claim 4.9 and Inequality 4, it
holds that Pr[(x1, . . . , x`) ∈ T ] ≤ m2−n + δ/9. Therefore, suppose (x1, . . . , x`) /∈ T , which implies
that W1(huf

, hf ) ≤ ε. Along with the promise that s ∈ [2±γ · |S|] ⊆ [2±ε · |S|] holds, and the fact
that h = hf , we can apply the completeness of Lemma 4.6 to deduce that the verifier rejects in
Step 4 with probability at most 2−n/2.

So if the prover is honest the verifier does not reject in any of the steps with probability
≤ 2δ/9 + 2 · 2−n/2 < δ.
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Soundness. Fix a cheating prover P∗. Let BadSize be the bad event that si2−εu(i) /∈
[2±δ|f−1(f(xi))|] and let NoReject be the event that VSWS does not reject. Let NoRejecti be the
event that VSWS does not reject in Steps 1, . . . , i (but may possibly reject in later steps), and fi-
nally let BadHist be the event that (x1, . . . , x`) ∈ T as defined in Claim 4.9. Our goal is to bound
Pr[BadSize ∧ NoReject]. It holds that

Pr[BadSize ∧ NoReject] (5)
≤ Pr[BadSize ∧ NoReject1]

= Pr[BadSize ∧ NoReject1 ∧ BadHist] + Pr[BadSize ∧ NoReject1 ∧ BadHist]

≤ Pr[BadHist] + Pr[BadSize | NoReject1 ∧ BadHist] (6)

As in the analysis of completeness, Claim 4.9 and Inequality 4 yield that Pr[BadHist] ≤ m2−n+δ/9.
In order to bound the second probability in Inequality 6, it suffices to bound the sum of the
probabilities of the following events conditioned on NoReject1 ∧ BadHist:

1. The probability that
−→
W1(hf , h) > 4

←−
W1(hf , h) + 100ε and WeakVerifyHist accepts.

2. Conditioned on all previous events not occuring, the probability that SH(u, uf ) > 111ε and
VerifyEmpLabel accepts.

3. Conditioned on all previous events not occuring, the probability that the output si2−εu(i) /∈
[2±δ|f−1(f(xi))] (i.e., BadSize occurs).

By conditioning on NoReject1∧BadHist, all the promises required by WeakVerifyHist Lemma 4.5 are
satisfied, therefore by the soundness of Lemma 4.5 the first item occurs with probability < 2−n/2.
Then, in the second item the promises of VerifyEmpLabel Lemma 4.6 are satisfied, so the soundness
of Lemma 4.6 implies that this event occurs with probability < 2−n/2. Finally, the Correctness
Lemma 4.8 implies that the last event occurs with probability δ/9. Therefore the conditional
probability in Inequality 6 is bounded by 2−n/2+1 + δ/9, and the entire probability in Inequality 6
is bounded by m2−n + 2δ/9 + 2−n/2+1 < δ.

For the second part of the soundness, let Reject = NoReject and Rejecti = NoRejecti. By the
uniformity guarantee of Lemma 3.18, it holds for every i, that

∆(xi, US) ≤ Pr[Reject1] + δ/9

and it particular it holds if i is chosen at random. Note that Rejecti ∩ Rejectj = ∅ for any i 6= j.
Therefore if as a mental experiment we choose i ← [`] at the beginning (rather than the last step),
the final output x satisfies:

∆(x,US) = ∆(xi, US) + Pr[Reject2 ∨ Reject3 ∨ Reject4]
≤ Pr[Reject1] + δ/9 + Pr[Reject2 ∨ Reject3 ∨ Reject4]
= δ/9 + Pr[Reject]
= p + δ/9,

which concludes the proof. ¤

Next, we prove the multiple-query version of the above lemma.
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Proof. (of Lemma 4.2) Protocol MultSampleWithSize is defined as follows.

Protocol 4.10.
MultSampleWithSize = (PMSWS, VMSWS).

Common input: An accuracy parameter δ, and for every i ∈ [k] : an efficiently decidable set Si,
efficiently computable function fi : Si → {0, 1}∗ and a size estimation si.

Description: In the following let S = S1×· · ·×Sk ⊆ {0, 1}n, let g(x1, . . . , xk) := (f1(x1), . . . , fk(xk))
and let s = s1 · · · sk.

1. Sampling points jointly. The parties interact in an execution of the SampleWithSize pro-
tocol of Lemma 4.1 on input (S, s, g, δ/2), where PSWS and VSWS play the role of the prover
and the verifier respectively. Let (x = (x1, . . . , xk), sx) denote VSWS’s output.

2. Sending the sibling sizes. PMSWS sends sxi = |f−1
i (fi(xi))| for every i ∈ [k] to VMSWS,

and VMSWS rejects if sx 6= sx1 · · · sxk
.

3. Lower-bound test. For every i ∈ [k] in parallel, the parties interact in an execution of the
lower-bound protocol of Lemma 3.16 on input (f−1

i (fi(xi)), sxi , δ/8k), where PSWS and VSWS

play the role of the prover and the verifier respectively.

4. Output. VSWS outputs ((x1, sx1), . . . , (xk, sxk
)).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Since si ∈ [(1 ± γ) · |Si|] ⊆ [2±2γ · |Si|] for every i ∈ [k], it follows that s ∈ [2±2kγ · |S|] ⊆
[(1± 8kγ) · |S|]. Therefore, s satisfies the promise of Lemma 4.1 for accuracy parameter δ/2 (recall
that γ := 1

8k · ( δ
20n)8).

Completeness. When interacting with the honest prover, Lemma 4.1 yields that VMSWS rejects
in Step 1 with probability at most δ/2. Clearly, VMSWS does not reject in Step 2, and Lemma 3.16
and a union bound yield that VMSWS rejects in Step 3 with probability at most k ·neg(n) = neg(n).
Therefore, the probability that VMSWS rejects is bounded by δ/2 + neg(n) < δ.

Soundness. In the following we assume without loss of generality that sx = sx1 · · · sxk
(as oth-

erwise VSWS rejects). Lemma 4.1 yields that

Pr[E1 ∧ VSWS does not reject at Step 1] < δ/2, (7)

where E1 is the event that sx ∈ (1± δ/2) · |g−1(g(x))|, and Lemma 3.16 yields that

Pr[E2 ∧ VSWS does not reject at Step 3] ≤ neg(n), (8)

where E2 is the event that sxi ≤ (1 + δ/8k) · |f−1
i (fi(xi))| for every i ∈ [k].

When E2 occurs, then for every i ∈ [k] it holds (using the fact that (1 + δ/(8k))k−1 ≤ 1 + δ/2)
that

Πj 6=isxj ≤ (1 + δ/2) ·Πj 6=i|f−1
j (fj(xj))|
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Since |g−1(g(x))| = Πi|f−1
i (fi(xi))|, therefore the following holds for all i ∈ [k] when E1∧E2 occurs:

sxi =
sx∏

j 6=i sxi

≥ (1− δ/2) ·∏k
j=1 |f−1

j (fj(xj))|
(1 + δ/2)

∏
j 6=i |f−1

j (fj(xj))|
≥ (1− δ)|f−1

i (fi(xi))| (9)

Hence it follows that:

Pr[∃i : sxi · (1± δ) · |f−1
i (fi(xi))| ∧ VSWS does not reject]

≤ Pr[VSWS does not reject ∧ E1 ∧ E2]
≤ δ/2 + neg(n) < δ.

For the second part of the soundness proof, Lemma 4.1 yields that

∆((US1 , . . . , USk
), (x1, . . . , xk)) ≤ δ/2 + Pr[VMSWS rejects in Step 1].

As in the proof of Lemma 4.1, since the event that VMSWS rejects in later steps is disjoint from the
event that VMSWS rejects in Step 1, it follows that

∆((US1 , . . . , USk
), (x1, . . . , xk)) ≤ δ/2 + Pr[VMSWS rejects]

¤

Proof. (of Lemma 4.4) The protocol VerifyHist described below only achieves completeness and
soundness O(ε). This this can be easily amplified, however, to error below 2−n via parallel repeti-
tion.

Protocol 4.11. VerifyHist = (PVH,VVH).

Common input: An efficiently decidable set S ⊆ {0, 1}n, an efficiently computable function f : S →
{0, 1}∗, a size estimation s (for |S|), the histogram parameter 0 < ε < 1 and a (claimed) ε-histogram
h of f with respect to S.

Description: Note that it holds that m = n/ε where h ∈ [0, 1]m+1. In the following let ` = 100m2n =
100n3/ε2.

1. Sample ` random elements from S. The parties interact in an execution of the parallel
SampleWithSize protocol of Lemma 4.2, on input (ε, (S1, s, f), . . . , (S`, s, f)), where Si = S
for all i ∈ [`] and PVH and VVH play the role of PMSWS and VMSWS respectively. Let
((x1, sx1), . . . , (x`, sx`

)) be the result of the interaction.

2. Approximate the histogram. For i ∈ [`], let u(i) = b(log(sxi/s))/εc. Let hu = Hist(u) be
the empirical histogram concluded from the mapping u according to Definition 3.3.

3. Verify the claim. Reject if W1(h, hu) ≥ 10/m, and accept otherwise.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let h = hf , let uf (i) = Bin(xi) indicate the real bin number of xi according to Definition 3.2,
and let huf

be the empirical histogram concluded from uf .
Notice that γ ¿ 1

8` · ( δ
20n)8 and so s is in the right range to be used for MultSampleWithSize

protocol in Step 1.
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We will show that for any prover strategy with high probability either the verifier rejects or
hu is a “good” approximation for hf in the 1st Wasserstein distance. Then comparing hu to h to
decide accept or reject (Step 3) works properly.

Let T1 ⊂ (S × N)` be the “bad set” of tuples ((x1, sx1), . . . , (x`, sx`
)) where there exist i ∈ [`]

such that sxi 6∈ [2±ε|f−1(f(xi))|].
In the following we assume without loss of generality that the xi’s are elements of S.

Claim 4.12. If ((x1, sx1), . . . , (x`, sx`
)) /∈ T1 then W1(hu, huf

) ≤ 6/m.

Proof. If ((x1, sx1), . . . , (x`, sx`
)) /∈ T1 then for all i ∈ [`] it holds that sxi ∈ [2±ε|f−1(f(xi))|].

Therefore

u(i) = b(log(sxi/s))/εc
∈ [(log(sxi/s))/ε± 1]

⊆ [(log(2±ε|f−1(f(xi))|/s))/ε± 1]

= [±1 + (log(|f−1(f(xi))|/s))/ε± 1]
⊆ {Bin(xi)± 3} .

But if u(i) ∈ {Bin(xi)± 3} for all i ∈ [`], then by Proposition 3.11 and Lemma 3.12 it holds
that

W1(hu, huf
) ≤ SH(u, uf ) =

←−
SH(u, uf ) +

−→
SH(u, uf ) ≤ 3/m + 3/m = 6/m. (10)

¤

Let T2 ⊆ S` be another “bad set”, the set of tuples (x1, . . . , x`) such that W1(huf
, hf ) > 1/m.

The following claim can be proven similar to Claim 4.9:

Claim 4.13. Pr[US` ∈ T2] < m2−n = neg(n).

In the following let NoReject1 be the event that VVH does not reject in Step 1, let Reject1 be
the event that VVH rejects in Step 1, and let Reject be the event that VVH rejects in some step.

Claim 4.14. Let ((x1, sx1), . . . , (x`, sx`
)) be the result of Step 1. Then it holds that

Pr[NoReject1 ∧W1(hu, hf ) ≥ 10/m] ≤ 3ε

Proof. Note that if ((x1, sx1), . . . , (x`, sx`
)) /∈ T1 and (x1, . . . , x`) /∈ T2 then by the definition of T2

and Claim 4.12 it holds that

W1(hu, hf ) ≤ W1(hu, huf
) + W1(huf

, hf ) ≤ 1/m + 6/m < 10/m.

So it holds that:

Pr[NoReject1 ∧W1(hu, hf ) ≥ 10/m]
≤ Pr[NoReject1 ∧ (((x1, sx1), . . . , (x`, sx`

)) ∈ T1 ∨ (x1, . . . , x`) ∈ T2)]
≤ Pr[NoReject1 ∧ ((x1, sx1), . . . , (x`, sx`

)) ∈ T1] + Pr[NoReject1 ∧ (x1, . . . , x`) ∈ T2].

Now Claim 4.14 will follow by proving the following inequalities.

Pr[NoReject1 ∧ ((x1, sx1), . . . , (x`, sx`
)) ∈ T1] ≤ ε (11)

Pr[NoReject1 ∧ (x1, . . . , x`) ∈ T2] ≤ ε + neg(n) (12)
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The soundness of Lemma 4.2 yields that

Pr[VMSWS does not reject ∧ ∃i ∈ [`] : sxi 6∈ [2±ε|f−1(f(xi))|] ≤ ε

which is equivalent to Inequality 11.
The soundness of Lemma 4.2 also yields that

∆(US` , (x1, . . . , x`)) ≤ ε + Pr[VMSWS rejects]. (13)

By using Lemma 3.7 over Inequality 13 with parameters Y = US` , X = (x1, . . . , x`), T = T2 and
δ = ε we get that

Pr[NoReject1 ∧ (x1, . . . , x`) ∈ T2] ≤ ε + Pr[US` ∈ T2].

But Claim 4.13 yields that Pr[US` ∈ T2] ≤ neg(n) and so Inequality 12 follows. ¤

Now we will prove that Protocol VerifyHist is complete and sound as described in Lemma 4.4
(we prove this for completeness/soundness error O(ε), but this can be amplified to 2−n by repeating
in parallel).

Completeness. Let the prover be honest and h = hf . By Claim 4.14 it holds that

Pr[Reject1 ∨W1(hu, hf ) ≤ 10/m] ≥ 1− 3ε.

By the completeness of Lemma 4.2, VVH rejects in Step 1 with probability at most δ = ε and so

Pr[W1(hu, hf ) ≤ 10/m] ≥ 1− 4ε.

But if W1(hu, hf ) ≤ 10/m, then VVH does not reject in Step 3. Therefore by a union bound:

Pr[Reject] ≤ ε + 4ε = 5ε.

Soundness. Suppose W1(hf , h) > 20/m.
By Claim 4.14 it holds that

Pr[Reject1 ∨W1(hu, hf ) ≤ 10/m] ≥ 1− 3ε.

But if W1(hf , hu) < 10/m, then it would hold that

W1(hu, h) > W1(hf , h)−W1(hf , hu) > 20/m− 10/m = 10/m.

So it holds that
Pr[Reject1 ∨W1(hu, h) > 10/m] ≥ 1− 3ε.

Finally since W1(hu, h) > 10/m makes the verifier reject in Step 3 therefore:

Pr[Reject] ≥ 1− 3ε.

¤

4.1 Proving Supporting Lemmas

In this section we prove Lemma 4.5 and Lemma 4.6.
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Proof of WeakVerifyHist Lemma 4.5

Proof. We will use the following definition:

Definition 4.15 (Exponential sum). Given x ∈ Rj+1 and ε > 0, we define the exponential sum

of x as ESε(x) =
∑

i∈(j) xi · 2iε and the normalized exponential sum of x as ẼSε(x) = ESε(x)/2jε.
When ε is clear from the context, we omit ε from the notation.

If hf be the ε-histogram of a function f over {0, 1}n, then by Proposition 3.4, ESε(hf≤j) lower-
bounds |⋃i∈(j) Bi| with approximation factor 2εj .

Protocol 4.16.
WeakVerifyHist = (PWVH, VWVH).

Common input: An efficiently decidable set S ⊆ {0, 1}n, a size estimation s (for |S|), a function
f : S → {0, 1}∗, a histogram parameter ε = 1/poly(n), and h a (claimed) ε-histogram of f over S.

Description: We assume for sake of simplicity assume that f(S) ⊆ {0, 1}n. 8 For each j ∈ (m), let
Mj be the following protocol: on input y ∈ {0, 1}n, if y 6∈ f(S), the verifier rejects. Otherwise, the
parties engage in the Set-Lower-Bound protocol of Lemma 3.16 with input (f−1(y), s · 2−ε·(j+2), ε).
Protocol WeakVerifyHist is defined as follows:

1. The parties interact for every j ∈ (m), in parallel, in an execution of the of Lemma 3.17, on
input (1n,Mj , ESε(h≤j), ε), where VWVH and PWVH play the role of VGLB and PGLB respectively.

2. VWVH accepts if all Vj
WVH’s accept.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We next prove the completeness and soundness of Protocol 4.16. In the following we fix S, f ,
n, s and ε, let Bj ’s be as in Definition 3.2 with respect to to this fixing. Also let (Yj ,N j , T j)
be, in order, the YES, NO, and non-promise inputs of length n for the protocol Mj according to
Definition 3.13 (since n is fixed, we will not write the index n). Finally, let GeneralizedSetLBj be
the j’th execution of the Generalized Set-Lower-bound protocol done in a random execution of
WeakVerifyHist.

Claim 4.17. It holds that:

1.
⋃

i∈(j) Bi ⊆ Yj, and

2. Yj ∪ T j ⊆ ⋃
1≤i≤j+3 Bi.

Proof. Let y ∈ Bi. First consider the case that i ≤ j. Proposition 3.4 yields that |S| · 2−ε·(j+1) ≤
|S| · 2−ε·(i+1) < |f−1(y)|, and by the promise on s it holds that s · 2−ε·(j+2) ≤ |f−1(y)|. The
completeness of Lemma 3.16 yields that verifier accepts in Mj with probability at least 1−2−n and
therefore Bi ⊆ Yj .

Now let i ≥ j + 4. Proposition 3.4 yields that
∣∣f−1(y)

∣∣ ≤ |S| · 2−εi ≤ |S| · 2−ε·(j+4). Since
|S| ≤ s · 2ε, it holds that

∣∣f−1(y)
∣∣ ≤ 2−ε(s · 2−ε·(j+2)). Therefore, the soundness of Lemma 3.16

8Since f is efficiently computable, it holds that f(S) ⊆ {0, 1}poly(n) and all the proof can easily be adapted to this
case as well.
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yields that the verifier rejects in Mj with probability at least 1− 2−n, which implies that Bi ⊆ N j .
Also note that by the definition of Mj , it holds that {0, 1}n \ f(S) ⊆ N j , and therefore

Yj ∪ T j ⊆ f(S) \
⋃

j+4≤i≤m

Bi =
⋃

1≤i≤j+3

Bi.

¤

Completeness. Assuming that h = hf , Proposition 3.4 and Claim 4.17 yield that ES(h≤j) =
ES(hf

≤j) ≤ |⋃i∈(j) Bi| ≤ |Yj |. Therefore, the completeness of Lemma 3.17 yields that the verifier
accepts in GeneralizedSetLBj with probability at least 1 − 2−n, and by the union bound VWVH

accepts in all of the m + 1 instances of GeneralizedSetLBj ’s (simultaneously) with probability at
least 1− (m + 1)2−n > 1− 2−n/2.

Soundness. The following lemma carries the heart of the proof.

Lemma 4.18. Let d and d′ be two probability distributions over [0, 1]m+1 and let ε, λ ∈ (0, 1).
Assume that

1. m · ε ≥ 1 and

2. ESε(d′≤j) ≤ 2λ · ESε(d≤j) for all j ∈ (m),

then
−→
W1(d, d′) ≤ 16λ + 4

←−
W1(d, d′).

Before proving Lemma 4.18, we first use it to show the soundness of Protocol 4.16. Let m′ =
m + 3, d′ = (d′0, . . . , d

′
m′) = (0, 0, 0, h) and d = (d0, . . . , dm′) = (hf , 0, 0, 0) (notice that we are using

Lemma 4.18 with dimension m′+1 rather than m+1). Since m′ε > mε = n ≥ 1, the first condition
of Lemma 4.18 is satisfied. The following claim yields that (d, d′) also satisfies the second condition
of Lemma 4.18 for the suitable choice of λ.

Claim 4.19. For any j ∈ (m) and any prover P∗, either ES(h≤j) ≤ 22ε ·ES(hf
≤j+3) or VWVH rejects

in GeneralizedSetLBj with probability at least 1− 2−n (where we let hf
i = 0 for i > m).

Proof. Assuming that ES(hf
≤j+3) < 2−2ε · ES(h≤j), Claim 4.17 together with Proposition 3.4 yield

that

|Yj ∪ T j | ≤
∣∣∣∣∣∣

⋃

i∈(j+3)

Bi

∣∣∣∣∣∣
< 2ε · ES(hf

≤j+3) < 2ε2−2ε · ES(h≤j) = 2−εES(h≤j).

Therefore, Lemma 3.17 yields that VWVH rejects in GeneralizedSetLBj with probability at least
1− 2−n. ¤

For j ∈ {0, 1, 2} and any λ > 0, it holds that ES(d′≤j) = 0 ≤ 2λ · ES(d≤j). Claim 4.19 yields
that either VWVH rejects with probability at least 1− 2−n or it holds that

ES(d′≤j) = 0 + 23ε · ES(h≤j−3) ≤ 23ε22εES(hf
≤j) = 25εES(d≤j),

for 3 ≤ j ≤ m′. Hence, the second requirement of Lemma 4.18 holds for λ = 5ε. Below, by−→
W1m′(hf , h) we mean the 1st Wasserstein distance when the dimension is increased m′ (by adding
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three zeros in coordinates m + 1,m + 2,m + 3). Note m′ ·W1m′(hf , h) = m ·W1(hf , h) and that
W1m′(d′, h) ≤ 3/m < 3ε. We conclude that

−→
W1(hf , h)

= (m′/m)
−→
W1m′(hf , h) by change of the dimension m → m′

≤ (m′/m)(
−→
W1(hf , d) +

−→
W1(d, d′) +

−→
W1(d′, h)) by Proposition 3.9

≤ (m′/m)(0 + 16λ + 4
←−
W1(d, d′) + 3ε) by Lemma 4.18

≤ (m′/m)(16(5ε) + 4(
←−
W1(d, hf ) +

←−
W1m′(hf , h) +

←−
W1(h, d′)) + 3ε) by Proposition 3.9

= (m′/m) · (83ε) + 4
←−
W1(hf , h) by change of the dimension m′ → m

≤ 100ε + 4
←−
W1(hf , h). for m ≥ n > 15

¤

Proof of Lemma 4.18. For the duration of the proof, set m′ = 2m − 1. We first increase the
dimension of d and d′ from m + 1 to m′ + 1 = 2m, by padding them with trailing zeros. Namely,
we let d = (d0, . . . , dm, dm+1 = 0, . . . , dm′ = 0) and d′ = (d′0, . . . , d

′
m, d′m+1 = 0, . . . , d′m′ = 0) (both

vectors are now in [0, 1]m
′+1). For j ∈ (m′), let aj =

∑
i∈(j)(di− d′i) and let a = (a0, . . . , am′) (note

that aj = 0 for m ≤ j ≤ m′). Also we let aj = 0 for j /∈ (m′) (in particular, ES(a≤j) = 0 for j < 0).
The following claim characterizes the difference ES(d′≤j)− ES(d≤j) in terms of the vector a.

Claim 4.20. For every j ∈ (m′) it holds that ES(d′≤j)− ES(d≤j) = (2ε − 1) · ES(a≤j−1)− 2jεaj.

Proof. An intuitive proof is as follows. Consider the process that changes d≤j into d′≤j by “pushing”
the amount ai’s from di to di+1 for every i ∈ (j). The effect of these changes for i < j on
ES(d′≤j)−ES(d≤j) is equal to −ai2iε + ai2(i+1)ε = (2ε− 1)ai2iε (ai is removed from di and is added
to di+1, where these changes get multiplied by 2iε and 2(i+1)ε respectively in the exponential sums).
For i = j the change to ES(d′≤j) − ES(d≤j) is just the negative part −ai2iε (ai is “pushed out” of
(d1, . . . , di)). Formally, the proof goes as follows.
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(2ε − 1) · ES(a≤j−1)− aj2jε

=
( ∑

i∈(j−1)

(2ε − 1)ai2iε
)−aj2jε definition of ES(a≤j)

=
( ∑

i∈(j−1)

(2ε − 1)2iε ·
∑

k∈(i)

(dk − d′k)
)−2jε ·

∑

k∈(j)

(dk − d′k) definition of ai

=
( ∑

k∈(j−1)

(dk − d′k)((2
ε − 1) ·

∑

k≤i≤j−1

2iε)
)−

∑

k∈(j−1)

(dk − d′k)2
jε − (dj − d′j)2

jε

=
( ∑

k∈(j−1)

(dk − d′k)((2
ε − 1) · 2jε − 2kε

(2ε − 1)
)
)−

∑

k∈(j−1)

(dk − d′k)2
jε − (dj − d′j)2

jε

=
∑

k∈(j−1)

(dk − d′k)(2
jε − 2kε − 2jε)− (dj − d′j)2

jε

=
∑

k∈(m)

(dk − d′k)(−2kε) = −(ES(d≤j)− ES(d′≤j)) = ES(d′≤j)− ES(d≤j).

¤

Note that the second promise of Lemma 4.18 implies that ES(d′≤j) − ES(d≤j) can not be “too
large” because it is bounded by ≤ (2λ−1) ·ES(d≤j). The next claim, roughly speaking, asserts that
if effect of (a1, . . . , aj−1) in ES(d′≤j) − ES(d≤j) (which is captured by ES(a≤j−1)) is large enough,
then aj that has a negative effect in ES(d′≤j)−ES(d≤j) should also be large to compensate the effect
of (a1, . . . , aj−1) for ES(d′≤j)−ES(d≤j) and keep it ‘small”. On the other hand, if aj is large enough
then this in turn keeps ES(a≤j) large. The claim proves the above intuition for the normalized
exponential sums.

Claim 4.21. The following holds for every j ∈ (m′):

1. aj ≥ (1− 2−ε) · ẼS(a≤j−1)− λ · ẼS(d≤j), and

2. ẼS(a≤j) ≥ ẼS(a≤j−1)− λ · ẼS(d≤j).

Proof. For every j ∈ (m′), the second promise of Lemma 4.18 implies that ES(d′≤j) − ES(d≤j) ≤
(2λ − 1) · ES(d≤j) < λ · ES(d≤j). Therefore, Claim 4.20 yields that (2ε − 1) · ES(a≤j−1) − 2jεaj <
λ · ES(d≤j), and thus by normalizing the exponential sums we have

aj ≥ 2−ε(2ε − 1) · ẼS(a≤j−1)− λ · ẼS(d≤j),

which proves the fist part of the claim.
The second part of the claim also holds since

ẼS(a≤j)

= 2−ε · ẼS(a≤j−1) + aj by definition of ES(·) and ẼS(·)
≥ 2−ε · ẼS(a≤j−1) + (1− 2−ε) · ẼS(a≤j−1)− λ · ẼS(d≤j) by the first part of Claim 4.21

= ẼS(a≤j−1)− λ · ẼS(d≤j),

¤
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It is clear that ẼS(d≤j) ≤ 1. Trivially it then holds that
∑

j∈(m′) ẼS(d≤j) ≤ m′ + 1. The
following claim strengthens this trivial bound.

Claim 4.22. It holds that
∑

j∈(m′) ẼS(d≤j) ≤ 2/(2ε − 1).

Proof.
∑

j∈(m′)

ẼS(d≤j)

=
∑

j∈(m′)

1
2jε

·
∑

i∈(j)

di2iε =
∑

i∈(m′)

∑

i≤j≤m′
di2(i−j)ε

=
∑

i∈(m′)

di ·
∑

k∈(m′−i)

2−kε <
∑

i∈(m′)

di ·
∑

k∈(∞)

2−kε = 2ε/(2ε − 1) < 2/(2ε − 1).

¤

Recall that Claim 4.21 informally states that if ẼS(a≤j) is large for some j, then for j′ > j, aj′

and ẼS(a≤j′) are relatively large as well. Looking from the other direction, since eventually we get
to the point that am′ = 0, none of the ẼS(a≤j)’s can be too large. This intuition is formalized in
the following claim.

Claim 4.23. For every j ∈ (m′), it holds that ẼS(a≤j) < 4λ/(2ε − 1).

Proof.

ẼS(a≤j)− 4λ/(2ε − 1)

< ẼS(a≤j)− λ · (
∑

j≤i<m′−1

ẼS(d≤i)
)−2λ/(2ε − 1) Claim 4.22

≤ ẼS(a≤m′−1)− 2λ/(2ε − 1) induction over the second part of Claim 4.21

≤ ẼS(a≤m′−1)− λ2ε

(2ε − 1)
· ẼS(d≤m′) by 2ε < 2 and ẼS(d≤m′) ≤ 1

≤ ẼS(a≤m′−1)− λ

(1− 2−ε)
· ẼS(d≤m′)

≤ am′/(1− 2−ε) = 0. the first part of Claim 4.21

¤

Recall that the conclusion of Lemma 4.18 states that if
−→
W1(d, d′) =

∑
ai>0 ai is large, then

←−
W1(d, d′) = −∑

ai<0 ai is large too. In Claim 4.23, we showed that ẼS(a≤j)’s cannot be too
large. Roughly speaking (see the calculation below), large

∑
ai>0 ai makes ẼS(a≤j) large, where

large −∑
ai<0 ai makes ẼS(a≤j) small. Thus, in order for the claimed bound on ẼS(a≤j) to hold,

−∑
aj<0 aj should cancel

∑
aj>0 aj . Formally, we first show that:

∑

j∈(m′)

ẼS(a≤j) =
∑

j∈(m′)

∑

i∈(m)

ai2(i−j)ε

=
∑

i∈(m′)

ai ·
∑

k∈(m′−i)

2−kε
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Therefore from Claim 4.23 and the fact that m′ = 2m− 1 we conclude that
∑

i∈(m′)

ai ·
∑

k∈(m′−i)

2−kε ≤ 4m′λ(2ε − 1) < 8mλ(2ε − 1) (14)

On the other hand, since we assumed mε ≥ 1, for every 0 ≤ i < m we can get the following upper
and lower-bounds for

∑
k∈(m′−i) 2−kε (i.e. the coefficient of ai in Equation 14):

1
2(2ε − 1)

<
(2ε − 2−mε)

(2ε − 1)
=

∑

k∈(m)

2−kε ≤
∑

k∈(m′−i)

2−kε <
∑

k∈(∞)

2−kε =
2ε

2ε − 1
<

2
(2ε − 1)

(15)

By substituting the coefficient of the ai’s in Equation 14 with the proper upper and lower bound
of Equation 15 (the positive ai’s with 1/2(2ε − 1) and the negative ones with 2/(2ε − 1)), we get
that 1

2(2ε−1)

∑
aj>0 aj + 2

(2ε−1)

∑
aj<0 aj < 8mλ/(2ε − 1), which yields that

∑

aj>0

aj + 4 ·
∑

aj<0

aj < 16mλ. (16)

We conclude that:

−→
W1(d, d′) =

1
m
·
∑

aj>0

aj ≤ 16λ− 4
m
·
∑

aj<0

aj = 16λ + 4 · ←−W1(d, d′).

¤

Proof of Lemma 4.6

Proof. The Protocol VerifyEmpLabel is defined as follows.

Protocol 4.24.
VerifyEmpLabel = (PVEL, VVEL).

Common input: An efficiently decidable set S ⊆ {0, 1}n, an efficiently computable function f :
{0, 1}n → {0, 1}∗, a claimed size s for S, the histogram parameter ε, a claimed histogram h of f
over S, the empirical samples x1, . . . , x`, and claimed bins for the empirical samples u.

Description:

1. VVEL verifies that x1, . . . , x` ∈ S.

2. (Preimage tests) The parties interact for every i ∈ [`], in parallel, in an execution of the Set
Lower-bound protocol of Lemma 3.16, on input (f−1(f(xi)), s ·2−ε·(u(i)+2), ε), where PVEL and
VVEL play the role of Pi

LB and Vi
LB respectively.

3. Let hu = Hist(u) (see Definition 3.3). The verifier rejects if W1(h, hu) > ε (and accepts if
not rejected so far).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let SetLBj be the j’th execution of the set Lower-bound protocol in a random execution of
VerifyEmpLabel. In the following we prove the completeness and soundness properties of Proto-
col 4.24.

Completeness. Suppose that the prover is honest (namely u = uf and h = hf ), it follows that
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• VVEL always accepts in Step 1.

• Proposition 3.4 yields that |f−1(f(xi))| ≥ |S| · 2−ε·(u(i)+1), and the promise on s yields that
|S| ≥ 2−εs. Therefore we have |f−1(f(xi))| ≥ s · 2−ε·(u(i)+2) and by the completeness of
Lemma 3.16 Vi

LB accepts with probability at least 1 − 2−n. Hence VVEL does not reject in
Step 2 with probability at least 1−m2−n.

• VVEL always accepts in Step 3.

Therefore VVEL accepts with probability at least 1−m2−n > 1− 2−n/2.
Soundness. We claim that uf (i) ≤ u(i) + 3 for all i ∈ [`] or otherwise VVEL rejects with

probability at least 1−2−n. Let assume that uf (i) ≥ u(i)+4 for some i ∈ [`]. Then Proposition 3.4
yields that

∣∣f−1(f(xi))
∣∣ ≤ |S| · 2−ε·uf (i) ≤ |S| · 2−ε·(u(i)+4). Now since |S| ≤ s · 2ε, it follows that

∣∣f−1(f(xi))
∣∣ ≤ 2−ε(s · 2−ε·(u(i)+2)) (17)

Hence, by the soundness of Lemma 3.16, Vi
LB (and thus VSWS) rejects with probability least 1−2−n,

in which case we are done.
So in the following we assume that uf (i) ≤ u(i) + 3 for all i ∈ [`], which by Proposition 3.11

yields that

←−
SH(uf , u) ≤ 3/m. (18)

Using the promise W1(huf
, hf ) ≤ ε and that W1(hu, h) ≤ ε (since otherwise VVEL would reject in

Step 3), we conclude that

SH(uf , u) (19)

=
←−
SH(uf , u) +

−→
SH(uf , u) Definition 3.10

≤ ←−
SH(uf , u) + (

←−
SH(uf , u) +

−→
W1(huf

, hu)) Lemma 3.12

≤ 6/m +
−→
W1(huf

, hf ) +
−→
W1(hf , h) +

−→
W1(h, hu) Equation 18 and Proposition 3.9

≤ 6/m + W1(huf
, hf ) +

−→
W1(hf , h) + W1(h, hu) Definition 3.8

≤ 6/m + ε +
−→
W1(hf , h) + ε Promise and Step 3

≤ 6/m + 2ε + (100ε + 4
←−
W1(hf , h)) Promise

≤ 6/m + 102ε + 4(
←−
W1(hf , huf

) +
←−
W1(huf

, hu) +
←−
W1(hu, h)) Proposition 3.9

≤ 6/m + 102ε + 4(W1(hf , huf
) +

←−
SH(uf , u) + W1(hu, h))) Lemma 3.12 and Definition 3.8

≤ 6/m + 102ε + 4(ε + 3/m + ε) Step 1, Equation 18 and Step 3
≤ 18/m + 110ε ≤ 111ε. for mε = n ≥ 18

(20)

¤
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5 Applications

In this section we use the sample with size protocol described in Section 4 for proving our main
result. We first formally defined the interactive sampler, Sam, inspired by the sampler of Haitner
et al. [32].

Definition 5.1 (Sam). For d ∈ N, the randomized stateful oracle Samd is defined as follows: on
input (C1, . . . , Ci, x), where x ∈ {0, 1}m and each Cj is a circuit over {0, 1}m,

1. Samd returns ⊥ if either

• i > d, or

• it was not previously asked on (C1, . . . , Ci−1, x
′) (for some x′ ∈ {0, 1}m) and answered

with x.

2. Otherwise, Samd returns a random element in S(C1, . . . , Ci−1, x) :=
{x′ ∈ {0, 1}m : ∀j ∈ (i− 1) : Cj(x′) = Cj(x)}, where Samd uses fresh randomness for
each call.

Given an oracle-aided (random) algorithm A and x ∈ {0, 1}∗, we let ASamd(x) be the output
distribution of ASamd on input x (this distribution is induced by the random coins of A and
Samd). We say that ASamd(x) is k-adaptive, for k ∈ N, if A(x) makes at most k parallel
calls to Samd, where a parallel call consist of arbitrary many different inputs to Samd (i.e., ,
(q1 = C1,1, . . . , C1,j1 , x1), . . . , qt = (Ct,1, . . . , Ct,jt , xt))).

Given the above definition, we can formally state our main result.

Theorem 5.2 (Restating Theorem 1.1). For any d = O(1), let A be an efficient oracle-aided
algorithm and let x ∈ {0, 1}∗. If ASamd(x) is k-adaptive, then there exists an AM[O(k)] pro-
tocol AM−Sam = (P, V) whose parties get as input x ∈ {0, 1}∗ and an accuracy parameter
δ > 1/poly(|x|), the prover P is in ∈ BPPNP, and the following hold:

Completeness: V accepts in 〈P, V〉(δ, x) with probability at least 1− δ.

Soundness: For every prover P∗ it holds that

∆(ASamd(x), 〈P∗, V〉V(δ, x)) ≤ Pr[〈P∗, V〉V(δ, x) =⊥] + δ,

where ASamd(x) denotes the output of A on input x, and 〈P∗, V〉V(δ, x) denotes the output of
V at the end of the interaction with P∗ on input (δ, x) (equals ⊥ if V aborts).

The above theorem yields the following classification.

Corollary 5.3. Let A be a k-adaptive efficient oracle-aided algorithm such that ASamd decides a
language L ⊆ {0, 1}n — for every x ∈ {0, 1}n it holds that Pr[ASamd(x) = 1L(x)] ≥ 1

2 + δ for
δ > 1/poly(n). Then L ∈ AM[k] ∩ coAM[k], with provers in BPPNP.

Proof. In order to keep the text simple, we assume that A makes no parallel queries. Let ` <
poly(|x|) be an upper bound on the running A on inputs of length |x|. We consider the following
protocol for the emulation of ASamd(x):
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Protocol 5.4.
AM−Sam = (P,V).

Common input: An accuracy parameter δ and x ∈ {0, 1}∗.
Description: For i ∈ [d] let δi = (δi+1)c/c · `8, where δd = δ/2` and c is the constant stated in
Corollary 4.3.9

1. V chooses, uniformly at random, random coins for A, and initialized a table Prefix (initially
empty).

2. V emulates ASamd(x), while doing the following each time A makes a query q = (C1, . . . , Ci, x)
to Samd:

(a) If i > d, or i > 1 and st = (C1, . . . , Ci−1, x) /∈ Prefix, then V returns ⊥ to A as the
answer of Samd.

(b) Otherwise, P and V are engaged in a random execution of protocol SampleWithSize from
Corollary 4.3 on input (δi,S(st), Prefix(st), Ci), 10 where V and P act as the verifier and
prover respectively.
Let (x′, s) be the output of the verifier in the above execution, V stores
Prefix(C1, . . . , Ci, x

′) = s and returns x′ to A as the answer of Samd.

3. V rejects if it has rejected in one of the above executions.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is clear that the complexity of the above protocol matches the statement of the theorem (recall
that the prover in SampleWithSize is in BPPNP). We will prove the completeness and soundness of
the protocol using induction. In the following we assume that V never sets Prefix(C1, . . . , Ci, x) = s
for s /∈ [(1 ± δi) · |S(C1, . . . , Ci−1, x)|] (i.e., we assume a variant of V that aborts if the original
verifier is about to store an invalid value). Corollary 4.3 yields that by doing that we increase the
rejecting probability of V by at most δ/2.

Let Viewj
Samd

denote the view of A after the j’th query to Samd. For a prover P∗, we let Viewj
P∗

denote the view of A after the j’th query in the emulation done in 〈P∗, V〉(δ, x) (where we set it to
⊥ is V has rejected). Assume that the following for j ∈ (`):

Completeness: V rejects with probability at most jδ/2` when interacting with P up until and
including the j’th emulated query.

Soundness: For any (unbounded) prover P∗ it holds that ∆(Viewj
Samd

, Viewj
P∗) ≤ ρj + jδ/2`,

where ρj is the probability that V rejects in the first j queries of 〈P∗, V〉(δ, x).

Since the output of the verifier at the end of the emulation is a function of A’s view, the above for
j = ` yields the proof of the lemma. For proving the case j +1, fix any non-rejecting view v for the
first j steps of A. Since ` bounds the domain of the set parameter S in any query made by A(x),
Corollary 4.3 yields that the following with respect to the j + 1 query of A(x):

1. V reject with probability at most δ/2` when interacting with P, and
9Since d is constant, all these values are inverse polynomials of |x| and 1/δ.

10Where we view a circuit C with m input wires, as a function over {0, 1}m.
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2. ∆((Viewj+1
Samd

| v), (Viewj+1
P∗ | v)) ≤ ρv + δ/2`, where ρv is the probability that V reject in the

j + 1 query, conditioned on v.

The completeness for the (j + 1) step follows immediately from the above and the induction
hypothesis. For the soundness, note that ρj+1 = ρj + (1 − ρj) · Ev←Viewj

P∗
[ρv | v 6=⊥]. Simi-

larly, the triangle inequality yields that ∆(Viewj+1
Samd

,Viewj+1
P∗ ) ≤ ∆(Viewj

Samd
, Viewj

P∗) + (1− ρj) ·
E

v←Viewj
P∗

[∆((Viewj+1
Samd

| v), (Viewj+1
P∗ | v)) | v 6=⊥] ≤ ρj+1 + (j + 1)δ/2`. ¤

5.1 Lower Bounds on Statistically Hiding Commitments

In this section we use Theorem 5.2 to derive a lower bound on the possibility of basing constant-
round statistically hiding commitments on the assumption that P 6= NP. Statistically hiding
commitments are defined in Section 5.1.1. In Section 5.1.2 we show that Samd can be used to break
any d rounds statistically hiding commitment, and define a reduction from statistically hiding
commitments to deciding a language in Section 5.1.2. Finally, we state and prove the result of this
section in Section 5.1.4.

5.1.1 Statistically hiding commitments

Definition 5.5 (Statistically hiding commitments). A (bit) commitment scheme (Send, Rec) is an
efficient two-party protocol consisting of two stages.11 Throughout, both parties receive the security
parameter 1n as input.

Commit. The sender Send has a private input b ∈ {0, 1}, which she wishes to commit
to the receiver Rec, and a sequence of coin tosses r. At the end of this stage, both parties
receive as common output a commitment z.

Reveal. Both parties receive as input a commitment z. Send also receives the private
input b and coin tosses r used in the commit stage. This stage is non-interactive: Send
sends a single message to Rec, and Rec either outputs a bit (and accepts) or rejects.

Definition 5.6. A commitment scheme (Send,Rec) is statistically hiding if

Completeness. If both parties are honest, then for any bit b ∈ {0, 1} that Send gets
as private input, Rec accepts and outputs b at the end of the reveal stage.

Statistical Hiding. For every unbounded strategy Rec∗, the distributions
ViewRec∗(Send(0),Rec∗) and ViewRec∗(Send(1),Rec∗) are statistically indistinguishable.

Computational Binding. For every ppt Send∗, Send∗ succeeds in the following
game (breaks the commitment) with negligible probability in n:

• Send∗ interacts with an honest Rec in the commit stage, which yields a commitment
z.

• Send∗ outputs two messages τ0, τ1 such that for both b = 0 and b = 1, Rec on input
(z, τb) accepts and outputs b.

11Sice we are interested in lower bounds, we only present the definition for bit commitments.
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5.1.2 Sam and statistically hiding commitments

Haitner et al. [32] (following Wee [63]) showed that Sam can be used for breaking any statistically
hiding commitment. Since there are slight differences between the definition of Sam considered
above and the one considered in [32], we restate their result according to our formulation and
sketch its proof.

Lemma 5.7 (implicit in [32]). For any d-round statistically hiding commitment (Send, Rec), there
exists a deterministic oracle-aided adversary A such that ASamd break the binding of (Send, Rec)
with save but negligible probability.

Proof Sketch. We assume without loss of generality that Rec speaks first, and let m be the number
of random coins used by Send. We also assume that Send gets its random coins, r, as an additional
input (i.e., we view Send’s input as a pair x = (b, r), where b is the secret bit of Send).

Let x0 :=⊥. In the commit stage, A behaves as follows: given a query qi from Rec, it queries
Samd on (Ci, xi−1) to get an answer xi, where Ci is the following circuit: on input x ∈ {0, 1}m+1, it
outputs the message of Send(x) on the i’th round, given that Rec’s first i messages are q1, . . . , qi.
Finally, A sends Ci(xi) to Rec (as its i’th message).

In the reveal stage, A queries Samd n times on (C ′, xd), where C ′ is an arbitrary circuit over
{0, 1}n, to get outputs {(bi, ri)}i=1,...,n. If there exists i 6= j such that bi 6= bj then A outputs
((bi, ri), (bj , rj)), otherwise A aborts.

The definition of Samd yields that each (bi, ri) is a random valid decommitment. Hence, the
statistically hiding property of (Send, Rec) yields that, with save but negligible probability, there
exist bi 6= bj and A successfully produces decommitments to both 0 and 1.12 Therefore, ASamd

breaks the binding of (Send,Rec) with save but negligible probability.
¤

5.1.3 Black-box reductions

We now formally define the notion of black-box reductions from deciding a language to (breaking
the binding of) commitment schemes.

Definition 5.8 (Black-box reduction). A black-box reduction from deciding a language L to break-
ing the binding of a commitment protocol (Send, Rec) is an oracle-aided algorithm (Send, Rec) with
the following guarantee: given as oracle a deterministic and stateless adversary O that breaks the
binding of (Send, Rec), RO decides L (i.e., , Pr[RO(x) = 1L(x)] ≥ 1 − 2−n). We say that R is
k-adaptive if it makes k adaptive rounds of queries to its oracle; each round may consist of many
queries, but all of the queries in one round can be computed without looking at the oracle responses
to any of the other queries in the same round.

5.1.4 On basing statistically hiding commitments on NP-harndess

Given the above definitions, we can formally state result about reducing the security of statistically
hiding commitment on the decidability hardness of a given language.

12The statistically hiding property yields that given a random transcript of the commitment, essentially half of
Send’ possible input pairs that are consistent with the transcript are of the form (0, ·), and the other half are of the
form (1, ·).
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Corollary 5.9. Suppose that there exists an efficient k-adaptive black-box reduction R from deciding
a language L to breaking the binding of a statistically hiding commitment. Then L ∈ AM[k] ∩
coAM[k] with provers in BPPNP.

Proof. Let R and (Send, Rec) be the assumed reduction and statistically hiding commitment re-
spectively. Let ASamd be the algorithm guaranteed by Lemma 5.7 for breaking the binding of
(Send,Rec). We would like to argue that RASamd decides L, but the problem is that ASamd is
randomized and stateful. Nevertheless, the following lemma readily follows from Haitner et al. [32].

Lemma 5.10 (implicit in [32]). Let (Send, Rec), R and L be as in Definition 5.8. The there exists
an efficient oracle-aided algorithm R̃ such that R̃Õ decides L for any randomized and stateful oracle
Õ, which breaks the binding of (Send, Rec) with save but negligible probability.

Proof Sketch. We present an efficient algorithm R̃ and a family of deterministic and stateless
oracles {Oλ} such that the following hold: 1. with save but negligible probability over the choice of
λ, it holds that Oλ breaks the binding of (Send, Rec), and 2. the execution of R̃Õ(x) and ROλ are
statistically close, over the randomness of R̃, R, Õ and a random choice of λ. Showing that will
conclude the proof, since the grantees about {Oλ} yields that ROλ decides L correctly for most λ’s,
and theretofore R̃Õ decided L.

Following [32], we first consider a stateless version Ô of Õ that lets the caller hold its state —
on each query, the caller provides O with a state parameter (encoded as string), where at the end
of the call O returns the updated state to the caller (in addition to its original output). We would
like to claim that whatever can be done with Ô could be done with Õ. The problem is, however,
that a “user” of Ô can get additional power by providing fake states. Following [32], this problem
is solved by letting Ô sign its states using information theoretic signature (i.e., the output of a
random function that Ô keeps in its belly), and verify the validity of the signature in each call.
Finally, we let Oλ be the oracle Ô whose random coins (including the one used for the signatures)
fixed to λ.13

Since Ô breaks the binding of (Send,Rec) with save but negligible probability, item 1 holds
with respect to {Oλ}. Moreover, the signature mechanism we employ, tell us that, with save but
negligible probability over the choice of λ and the random coins of R, invalid calls made by R (i.e.,
with fake states) are answered with ⊥.

On input x algorithm R̃ emulates ROλ(x) as follows: it forwards the oracle calls of R to Õ
(stripped from the state parameter), and returns Õ answers to R, along with the state of Õ and
a signature of the state (R̃ computes both parameters by itself, where for the signature it simply
returns a random string). In addition, if the state given in the call is invalid (was not return by a
previous call), R̃ returns ⊥ as the answer to the call.14 Finally, it answers identical queries with
identical answers (as a stateless oracle should do).

Assuming that R never gets non ⊥ answers to invalid queries, the distribution of R̃Õ(x) and ROλ

are identical. Thus, item 2 follows by the above observation about the guarantee of the signature
mechanism.

¤
13Since the running time of R is bounded, the size of λ is bounded as well.
14Note that R̃ does not need to use the signature mechanism to ensure validity, since R̃ is stateful and can keep

track on the execution.
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Lemma 5.10 yields that R̃ASamd decides L. Since A is efficient, it follows that there exists an
efficient oracle-aided algorithm R′ such that R′Samd decides L. Hence, Corollary 5.3 yields that
L ∈ AM[k] ∩ coAM[k] with provers in BPPNP. ¤
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[46] G. Monge. Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie des
Sciences de Paris, page 666, 1781.

[47] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications.
In Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC), pages
33–43. ACM Press, 1989.

[48] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero-knowledge arguments for
NP using any one-way permutation. Journal of Cryptology, 11(2):87–108, 1998. Preliminary
version in CRYPTO’92.

[49] T. Okamoto. On relationships between statistical zero-knowledge proofs. Journal of Computer
and System Sciences, 60(1):47–108, 2000. Preliminary version in STOC’96.

[50] S. J. Ong and S. P. Vadhan. An equivalence between zero knowledge and commitments. In
R. Canetti, editor, TCC, volume 4948 of Lecture Notes in Computer Science, pages 482–500.
Springer, 2008. ISBN 978-3-540-78523-1.

[51] R. Ostrovsky and A. Wigderson. One-way functions are essential for non-trivial zero-
knowledge. In Proceedings of the 2nd Israel Symposium on Theory of Computing Systems,
pages 3–17. IEEE Computer Society, 1993.

[52] R. Pass. Parallel repetition of zero-knowledge proofs and the possibility of basing cryptography
on np-hardness. In IEEE Conference on Computational Complexity, pages 96–110, 2006.

[53] A. Pavan, A. L. Selman, S. Sengupta, and N. V. Vinodchandran. Polylogarithmic-round
interactive proofs for conp collapse the exponential hierarchy. Theor. Comput. Sci., 385(1-3):
167–178, 2007. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/j.tcs.2007.06.013.

[54] M. O. Rabin. Digitalized signatures and public-key functions as intractable as factorization.
Technical Report MIT/LCS/TR-212, Massachusetts Institute of Technology, Jan. 1979. URL
ftp://ftp-pubs.lcs.mit.edu/pub/lcs-pubs/tr.outbox/MIT-LCS-TR-212.ps.gz.

43

ftp://ftp-pubs.lcs.mit.edu/pub/lcs-pubs/tr.outbox/MIT-LCS-TR-212.ps.gz


[55] O. Reingold, L. Trevisan, and S. P. Vadhan. Notions of reducibility between cryptographic
primitives. In Theory of Cryptography, First Theory of Cryptography Conference, TCC 2004,
volume 2951 of Lecture Notes in Computer Science, pages 1–20. Springer, 2004.

[56] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, Feb 1978.

[57] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distributions with applications to image
databases. In ICCV ’98: Proceedings of the Sixth International Conference on Computer
Vision, page 59, Washington, DC, USA, 1998. IEEE Computer Society. ISBN 81-7319-221-9.

[58] A. Sahai and S. Vadhan. A complete problem for statistical zero knowledge. Journal of the
ACM, 50(2):196–249, 2003. Preliminary version in FOCS’97.

[59] S. Sanghvi and S. P. Vadhan. The round complexity of two-party random selection. In H. N.
Gabow and R. Fagin, editors, STOC, pages 338–347. ACM, 2005. ISBN 1-58113-960-8.

[60] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM Journal on Computing, 26:1484–1509, 1997.

[61] D. Simon. Finding collisions on a one-way street: Can secure hash functions be based on
general assumptions? In Advances in Cryptology – EUROCRYPT ’98, volume 1403 of Lecture
Notes in Computer Science, pages 334–345. Springer, 1998.

[62] L. G. Valiant and V. V. Vazirani. Np is as easy as detecting unique solutions. In STOC
’85: Proceedings of the seventeenth annual ACM symposium on Theory of computing, pages
458–463, New York, NY, USA, 1985. ACM. ISBN 0-89791-151-2. doi: http://doi.acm.org/10.
1145/22145.22196.

[63] H. Wee. One-way permutations, interactive hashing and statistically hiding commitments. In
TCC ’07, pages 419–433, 2007.

[64] D. Xiao. (Nearly) optimal black-box constructions of commitments secure against selective
opening attacks, 2009. Manuscript.

[65] C.-K. Yap. Some consequences of non-uniform conditions on uniform classes. Theor. Comput.
Sci., 26:287–300, 1983.

A Omitted proofs

A.1 Relation between W1 and SH

Proof of Lemma 3.12. Let J :=
{

j ∈ (m) :
∑

i∈(j) hu
i >

∑
i∈(j) hv

i

}
. By Definition 3.8 it holds that

−→
W1(hu, hv) = 1

m ·∑j∈J(
∑

i∈(j) hu
i −

∑
i∈(j) hv

i ), and so by Definition 3.3 it holds that

∑

i∈(j)

hu
i =

1
`
·
∑

i∈(j)

|{k : u(k) ≤ j}| = 1
`
· (|{i : u(i) ≤ j}| .
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Now the first part holds since

−→
W1(hu, hv)

=
1

m`
·
∑

j∈J

(|{i : u(i) ≤ j}| − |{if : v(i) ≤ j}|)

=
1

m`
·
∑

j∈J

(|{i : u(i) ≤ j ∧ v(i) > j}| − |{i : v(i) ≤ j ∧ u(i) > j}|)

≤ 1
m`

·
∑

j∈J

(|{i : u(i) ≤ j ∧ v(i) > j}|)

≤ 1
m`

·
∑

j∈(m)

(|{i : u(i) ≤ j ∧ v(i) > j}|)

=
−→
SH(u, v) (by Proposition 3.11).

Similarly it holds that

−→
W1(hu, hv)

=
1

m`
·
∑

j∈J

(|{i : u(i) ≤ j}| − |{i : v(i) ≤ j}|)

≤ 1
m`

·
∑

j∈(m)

(|{i : u(i) ≤ j}| − |{i : v(i) ≤ j}|)

=
1

m`
·

∑

j∈(m)

(|{i : u(i) ≤ j ∧ v(i) > j}| − |{i : v(i) ≤ j ∧ u(i) > j}|)

=
1

m`
· (

∑

j∈(m)

|{i : u(i) ≤ j ∧ v(i) > j}| −
∑

j∈(m)

|{i : v(i) ≤ j ∧ u(i) > j}| )

=
−→
SH(u, v)−←−SH(u, v) (by Proposition 3.11),

which proves the second part. ¤

A.2 Efficient provers for AM protocols

The goal of this section is to prove Lemma 3.15. To do so we start with the following lemma.

Lemma A.1. Let M = (P, V) be a AM[O(1)] protocol, δ ≥ 1/poly(n), and the following set is not
empty:

Y1−δ
n = {x ∈ {0, 1}n : Pr[〈P, V〉(x) accepts] ≥ 1− δ},

then there exists a BPPNP strategy that with probability ≥ 1− 2−n/2 finds an element x ∈ {0, 1}n

such that Pr[〈P, V〉(x) accepts] ≥ 1− 2δ.

Proof. Define the set N 1−2δ
n = {x ∈ {0, 1}n : Pr[〈P, V〉(x) accepts] ≤ 1− 2δ}, and let M′ = (P′,V′)

be the “amplified” two-round protocol that Lemma 3.14 yields with respect to M = (P,V) with
parameters α = 1− δ and β = 1− 2δ. Thus,
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• for every x ∈ Y1−δ
n , it holds that Pr[〈P′, V′〉(x) accepts] ≥ 1− 2−2n, and

• for every x ∈ N 1−2δ
n , it holds that Pr[〈P′, V′〉(x) accepts] ≤ 2−2n.

Let ω denote the random coins of V′ for inputs of length n. By a union bound, it holds that

Pr
ω

[∃x ∈ N 1−2δ
n , 〈P′, V′〉(x; ω) accepts] ≤ 2−n (21)

The BPPNP algorithm claimed in the theorem simply does the following: choose ω uniformly
at random, and use the NP oracle to find x such that V′(x; ω) = 1. Notice that since Y1−δ

n 6= ∅,
therefore with probability at least 1 − 2−2n such x exists. Furthermore, by Inequality 21 the
probability that x ∈ N 1−δ

n is at most 2−n.
Therefore, with probability 1 − 2−n − 2−2n ≥ 1 − 2−n/2 we output x /∈ N 1−δ

n , namely it will
hold that Pr[〈P,V〉(x) accepts] ≥ 1− 2δ. ¤

Proof of Lemma 3.15. For any sequence of i messages w = (r1,m1, r2, . . . ) exchanged between V
and P we can always define a AM[k− i] game (Pw,Vw) with respect to w where the fist i messages
are fixed to be w and the parties continue interacting as if they are (P, V). For any sequence of
messages w we define ρ(w) = Pr[Vw accepts in 〈Pw, Vw〉].

Suppose r1 is the first message of the verifier V. By an average argument it holds that Pr[ρ(r1) ≥
1−

√
δ] ≥ 1−2

√
δ. The prover strategy P′ pretends that ρ(r1) ≥ 1−

√
δ holds and uses Lemma A.1

where the input x of Lemma A.1 will be the response of P′ to the message r1. Lemma A.1 yields
that if ρ(r1) ≥ 1 −

√
δ then with probability 1 − neg(n), P′ finds a message x = m1 such that

ρ(r1,m1) ≥ 1− 2
√

δ. Inductively if ρ(r1,m1, . . . , ri−1,mi−1) ≥ 1− 2δ1/2i
, then it holds that

Pr[ρ(r1,m1, . . . , ri−1,mi−1, ri) ≥ 1− δ1/2i+1
] ≥ 1− 2δ1/2i+1

and if ρ(r1,m1, . . . , ri−1,mi−1, ri) ≥ 1 − δ1/2i+1
, then the prover can use the BPPNP strategy of

Lemma A.1 to find mi such that ρ(r1,m1, . . . , ri−1, mi−1, ri,mi) ≥ 1 − 2δ1/2i+1
. If at the end P′

achieves ρ(r1, . . . , mk) > 0 he succeeds. By a union bound the latter happens with probability at
least 1− 2

∑
i∈[k] δ

1/2i
> 1− 2kδ1/2k

.
¤

A.3 Sampling from decidable sets

Proof of Lemma 3.18.

Protocol A.2. Set k = log(5/δ) and ` =
⌊
log( (δ/5)3s

2k2 )
⌋
. Let Hn,` be an efficient family of 2k-wise

independent hash functions mapping n bits to ` bits. Set t = 1−δ/5
1+δ/32 · s

2` .

1. VUS picks h ← Hn,` and sends h to PUS.

2. PUS computes distinct x1, . . . , xt ∈ S∩h−1(0) and sends them to the verifier (or aborts if such
x1, . . . , xt do not exist).

3. VUS checks that she has received distinct x1, . . . , xt and that xi ∈ S ∩h−1(0) for all i ∈ [t] and
reject if any of the checks does not hold. If not rejected, pick i ← [t] and output xi.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Completeness. The only case where the honest prover might cause the verifier to abort is if there
do not exist t distinct elements in |S ∩ h−1(0)|, which we call the bad event W . For every x ∈ S
define ζx to be the random variable that is 1 if h(x) = 0 and zero otherwise, and let ζx = ζx − 2−`

such that E[ζx] = 0. We derive:

Pr[W ] = Pr[
∑

x∈S
ζx < t]

= Pr[
∑

x∈S
ζx < 1−δ/5

1+δ/32 · s
2` ]

≤ Pr[
∑

x∈S
ζx < (1− δ/5)|S|/2`] by the promise s ∈ [(1± δ/32)|S|]

≤ Pr

[∑

x∈S
ζx < −(δ/5)|S|2−`

]

≤
E

[(∑
x∈S ζx

)2k
]

((δ/5)|S|2−`)2k
raise to 2k power and use Markov

=
E

[∑
x1,...x2k∈S

∏2k
i=1 ζxi

]

(δ/5)2k|S|2k2−2k`

=

∑
x1,...x2k∈S E

[∏2k
i=1 ζxi

]

(δ/5)2k|S|2k2−2k`
.

By 2k-wise independence, all terms in the numerator of the last expression above given by tuples
(x1, . . . , x2k) where one of the xi is unique will contribute 0 to the sum. Therefore it suffices to
count such tuples where no xi is unique.

Claim A.3.
∑

x1,...,x2k∈S
E

[
2k∏

i=1

ζxi

]
≤ |S|kk2k2−k`.

By Claim A.3 we conclude that

Pr[W ] ≤ |S|kk2k2−k`

(δ/5)2k|S|2k2−2k`
≤

(
k22`

(δ/5)2|S|
)k

≤ (δ/10)k < δ,

as claimed.

Proof. (of Claim A.3) There are
(|S|

i

)
ways of choosing i elements out of |S|, and there are at

most i2k ways of arranging these elements (with duplicates) when there are 2k total elements.
For all c ≥ 2, the expectation E[(ζx)c] ≤ 2−`. Therefore, the sum of expectations over all tuples
with exactly i non-unique elements is bounded by ≤ (|S|

i

)
i2k2−i`. The entire sum is bounded by∑k

i=1

(|S|
i

)
i2k2−i` (we do not sum i > k as these terms have duplicate xi’s and so therefore their

expectation is 0). By Stirling’s approximation the maximum term is for i = k, therefore the sum
of all elements is bounded by k

(|S|
k

) · k2k2−k` ≤ |S|k · k2k2−k`. ¤
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Soundness. Since a random sample from S is never the failure symbol ⊥ while the protocol
might output ⊥, it follows that

∆(x,S) = max
T⊆S∪{⊥}

{Pr[x ∈ T ]− Pr[S ∈ T ]}

= Pr[x = ⊥] + max
T⊆S

{Pr[x ∈ T ]− Pr[S ∈ T ]} .

Therefore, it suffices (and is actually equivalent) to show that for all T ⊆ S, it holds that

Pr[x ∈ T ] ≤ |T |
|S| + δ.

Now fix any T ⊆ S, and if |T | < (δ/4)|S| then simply pad T with extra elements until we have
|T | = (δ/4)|S|. Let WT be the event that |h−1(0) ∩ T | > (1 + δ/5)2−`|T | elements. Let ζx, ζx be
defined as in the case of completeness.

Pr[WT ] = Pr[
∑

x∈T

ζx > (1 + δ/5)2−`|T |]

= Pr[
∑

x∈T

ζx > (δ/5)2−`|T |]

≤
∑

x1,...,x2k
E[

∏2k
i=1 ζxi ]

(δ/5)2k2−2k`|T |2k

≤
(

k22`

(δ/5)2|T |
)k

Using the assumption |T | ≥ (δ/5)|S| and the definition of `, k, we have that k22`

(δ/5)2|T | ≤ 1/2 and so
the probability that WT occurs is ≤ δ/5. Assuming WT did not occur, we have that

|T ∩ h−1(0)| ≤ (1 + δ/5)2−`|T |

=
(1 + δ/5)(1 + δ/32)

1− δ/5
· |T |

s
· t

≤ (1 + δ/5)(1 + δ/32)
(1− δ/5)(1− δ/32)

· |T ||S| · t

≤ (1 + δ/2) · |T ||S| · t.

Therefore the probability of sampling an element of T is δ/4 + (1 + δ/2) |T ||S| , where the first term is
the probability of the bad event WT occuring while the second is the probability that conditioned
on the bad event not occurring, we sample an element of T . If T was not padded then it holds that

δ/4 + (1 + δ/2) |T ||S| ≤ |T |
|S| + δ/2(1/2 + |T |

|S| ) ≤ |T |
|S| + 3δ/4.

In case T was padded, we again get that the probability is at most

δ/4 + (1 + δ/2)δ/4 ≤ 3δ/4 ≤ |T |
|S| + 3δ/4

¤
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B The Case of Sam2

In this section we present a simple proof of Theorem 5.2 for the special case of d = 2 (i.e., non-
recursive collision finder). In this simplified proof, the following upper-bound protocol takes the
role of the more complex Protocol 4.7.

Lemma B.1 (Set Upper-bound protocol[1]). There exists a two-round public-coin protocol SetUB =
(PSUB, VSUB), where the parties get as input an efficiently decidable set S ⊆ {0, 1}n, s (as size of
S), δ, ε 0, the verifier gets in addition a secret random sample x from S (unknown to the prover)
and runs in time poly(n, 1/δ, 1/ε), and the following hold:

Completeness. If |S| ≤ s, then Pr[VSUB accepts in 〈PSUB,VSUB(x)〉(S, s, δ, ε)] ≥ 1− δ.

Soundness. If |S| ≥ s(1 + ε), then for every prover P∗, it holds that
Pr[VSUB accepts in 〈P∗, VSUB〉(S, s, δ, ε)] < 1− ε/5 + δ.

Theorem B.2. BPPSam2[k] ⊆ AM[k] ∩ coAM[k].

Proof Sketch.(of Theorem 5.2 for the case d = 2) This sketch is very high-level as it is meant only
to illustrate the idea and to show that the case of Sam2 is simpler than the case of Samd for d > 2;
a formal proof of this theorem is left as a special case of our general Theorem 5.2.

Given an efficient oracle aided algorithm A, we construct an AM protocol that emulates ASam2

as follows: The protocol’s high-level strategy is standard: the verifier tries to emulate the execution
of ASam2 by picking random coins for the reduction A, and whenever A asks an oracle query to
Sam2, the verifier engages the prover in a protocol such that the distribution of the output is close
to what Sam2 would output, or else if not the verifier rejects.

Depth 1 queries: a query (C1,⊥) is answered as follows. Setting ε = 1/poly(n) suitably small,
` = (1/ε2) and δ = ε8, the verifier runs

1. VSUB samples x1, . . . , x` ← {0, 1}n at random and sends all the yi = C1(xi) to PSUB.

2. PSUB responds with si = |C−1
1 (C1(xi))| for each i ∈ [`].

3. for each i ∈ [`] in parallel:

(a) Using the lower-bound protocol of Lemma 3.16 on input (S, ε, δ), VSUB verifies that
si ≤ |C−1

1 (C1(xi))|.
(b) Using the upper-bound protocol of Lemma B.1 on common input (S, δ, ε) and secret

input xi, VSUB verifies that si ≥ |C−1
1 (C1(xi))|.

4. VSUB rejects if one of the verifier in one of the above execution does. Otherwise, it picks i
uniformly at random from [`], store (xi, si) in a lookup table, and returns xi.

The soundness of the lower-bound protocol yields that if si(1 − ε) > |C−1
1 (C1(xi))| then VSUB

rejects with hight probability. Where the soundness of the upper-bound protocol, yields that if the
number of i such that si(1 + ε) < |C−1

1 (C1(xi))| is larger than 1/ε, then VSUB rejects in at least
one of the upper bound protocols with overwhelming probability. It follows that if VSUB does not
reject with high probability in the interaction, then for a random i it holds that si ≈ |C−1

1 (C1(xi))|
with probability 1− ε.
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Depth 2 queries: On query (C2, x), VSUB checks that (C1) was asked before and was answered
with x, and if not it rejects. Otherwise, it looks up the value of sx previously stored and uses it to
sample a random member of the set Sib(x) by using the sampling lemma Lemma 3.18. Lemma 3.18
guarantees that this sample is close to uniformly distributed in C−1

1 (C1(x)).
Assuming that the prover does not cause the verifier to reject with hight probability, each query

of A (or rather each adaptive round of parallel queries) is answered correctly (up to some small
statistical deviation), and the proof follows.
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