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Abstract

Locally testable codes (LTCs) are error-correcting codes for which membership of a given word in
the code can be tested probabilistically by examining it in very few locations. Kaufman and Sudan
[2] proved that sparse, low-bias linear codes are locally testable (in particular sparse random codes are
locally testable). Kopparty and Saraf [3] conjectured that all linear sparse codes (codes with logarithmic
dimension) are locally testable.

In this paper we refute this conjecture by showing that for every ε > 0 there exists a code Cε ⊂
Fn2 with relative distance (1/2 − ε) and dim(C) = Θ(log(n)) which is not locally testable and not
locally decodable. Moreover, our construction can achieve any (non-constant) dimension, e.g. we can
construct C s.t. dim(C) = log log(n) and C is not locally testable (decodable). This also shows that the
requirement of “low-bias” in the work of Kaufman and Sudan [2] was necessarily.

1 Introduction

Locally testable codes (LTCs) are error correcting codes for which distinguishing, when given oracle access
to a purported word w, between the case that w is a codeword and the case that it is very far from all
codewords, can be accomplished by a randomized algorithm, called a tester, which reads a constant amount
of information from w.

On the other hand, locally decodable codes (LDCs) allow to recover each message entry with high
probability by reading only a few entries of the codeword even if a constant fraction of it is adversely
corrupted. The both families of error correcting codes are explicitly studied, for survey see e.g. [5].

Kaufman and Sudan [2] showed that local testability and decodability can be found in random. They
showed that all sparse, low-bias linear codes are locally testable. In particular, sparse random linear codes
have low-bias and hence are locally testable. This result was later generalized by Kopparty and Saraf [4] to
high error regime.

Kopparty and Saraf [3] conjectured that all linear sparse codes (codes with logarithmic dimension) are
locally testable. We refute this conjecture in Theorem 4.1 by showing a linear sparse code (with linear
distance) which are not locally testable (and not locally decodable). This also shows that the “low-bias”
requirement in the work of Kaufman and Sudan [2] was necessarily.
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2 Preliminary

Let F be a finite field and [n] be the set {1, . . . , n}. In this work, we consider only linear codes. We start
with a few definitions.

Let C ⊆ Fn be a linear code over F. For w ∈ Fn, let supp(w) = {i ∈ [n] | wi 6= 0} and |w| =
| supp(w)|. We define the relative distance between two words x, y ∈ Fn to be δ(x, y) = ∆(x,y)

n and let
∆(x, y) = δ(x, y) · n. The distance of a code is denoted by ∆(C) and defined to be the minimal value
of ∆(x, y) for two distinct codewords x, y ∈ C. Similarly, the relative distance of the code is denoted
δ(C) = ∆(C)

n . For x ∈ Fn and C ⊆ Fn, let δ(x,C) = δC(x) = min
y∈C
{δ(x, y)} denote the relative distance

of x from the code C. We note that ∆(C) = min
c∈C\{0}

{wt(c)}. If δ(x,C) ≥ ε, we say that x is ε-far from C

and otherwise x is ε-close to C. Let dim(C) be the dimension of C. The vector inner product between u1

and u2 is denoted by 〈u1, u2〉. The dual code C⊥ is defined as C⊥ = {u ∈ Fn | ∀c ∈ C : 〈u, c〉 = 0}. In a
similar way we define C⊥≤t =

{
u ∈ C⊥ | |u| ≤ t

}
and C⊥t =

{
u ∈ C⊥ | |u| = t

}
.

For w ∈ Fn let wi be the concatenation of w to itself i times.

3 Definition of LTCs

In this section, we formally define Locally Testable Codes (LTCs). We define LTCs following [1], which in
particular explains why LTCs can be defined in this way without loss of generality.

Definition 3.1 (LTCs and Testers). Let C ∈ Fn be a linear code. Given a distribution D over set C⊥, we
define the support of D over C⊥ as DS =

{
u ∈ C⊥ | D(u) > 0

}
. We say that D is a (q, ε, δ)-distribution

of the code C, if the following conditions are satisfied:

• DS ⊆ C⊥≤q.

• For all x ∈ Fn s.t. δ(x,C) ≥ δ it holds that Pr
u∼D

[〈u, x〉 6= 0] ≥ ε.

We say that C ⊆ Fn is a (q, ε, δ)-LTC if it has a (q, ε, δ)-distribution D.

We say that a code C is locally testable when C is a (q, ε, δ)-LTC, where q, ε, δ > 0 are constants.

Remark 3.2. Usually we assume that δ ≤ 1/3 (see discussion in [1]). Hence, we will say that C is not
locally testable if there exists a word w s.t. δ(w,C) ≥ 1/3 and w is accepted with probability 1 by every
tester (distribution) for C (from definition 3.1).

4 Main Result

In the next theorem we refutes the conjecture of [3]. We show a linear code with logarithmical dimension
and linear distance which is not locally testable. It can be readily verified that this construction works for
any dimension, e.g. in the same way we can construct a code C ⊂ Fn2 s.t. dim(C) = log log(n) and
δ(C) ≥ 0.49 which will not be locally testable.

Theorem 4.1 (Bad Rate does not imply LTC). For every ε > 0 there exists Cε ⊂ Fn2 s.t. δ(C) ≥ 1
2 − ε,

dim(C) = log(n) and C is not locally testable with constant query complexity.

2



Proof. Let ε > 0 be a constant and m = log(n). Let Rε ⊂ Fm2 be a linear code s.t. δ(Rε) ≥ 1
2 − ε,

δ(Rε⊥) ≥ Ω(1) and dim(Rε) = Θ(m) (even random code will have such properties). Let w ∈ Fm2 be
a word s.t. δ(w,Rε) ≥ 1/3 (note that we could use any other threshold less than 1/2, not only 1/3). Let
Cε ⊂ Fn be a linear code, s.t. c ∈ Cε if and only if c = r(n/m), where r ∈ Rε, i.e., every codeword of Cε is
a codeword of Rε concatenated to itself n/m times.

We have dim(Cε) = Θ(m) = Θ(log(n)) and δ(Cε) ≥ 1/2−ε. Moreover, δ(w(n/m), Cε) = δ(w,Rε) ≥
1/3. Assume by a way of contradiction that Cε is locally testable andD is a tester(distribution over constant
weight dual words) for Cε.

We argue that w(n/m) will be accepted by D with probability 1.
First, note that for all u ∈ Cε⊥ if |u| = 2 then supp(u) = {m · i,m · j} for some integers i 6= j and

thus 〈u,w(n/m)〉 = 0.
Second, note that for all u ∈ Cε⊥ if |u| 6= 2 then |u| ≥ Ω(m) = Ω(log(n)) by construction of Cε. It

follows that for every constant weight dual word u ∈ Cε⊥ we have 〈u,w(n/m)〉 = 0, i.e., w is accepted with
probability 1.

Remark 4.2. It can be readily verified that the same construction demonstrates a code which is not locally
decodable (and in particular not self-correctable) by a constant number of queries. This holds because
local correction (decoding) can be done only by using a constant weight dual words. So, if there exists
a non-codeword w, which is close to the code, but satisfies all constant weight constraints (dual words)
the local decoding (correction) is impossible. To obtain such a word pick any codeword r ∈ Rε, and let
roffset = 0(m−1)1 and w = (r + roffset)(n/m). It holds that δ(w,Cε) = 1/m, but w satisfies all constant
weight constraints.
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