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Abstract

Locally testable codes are error-correcting codes for which membership of a given word in the code
can be tested probabilistically by examining it in very few locations. A linear code C ⊆ Fn

2 is called
sparse if dim(C) = O(log(n)). We say that a code C ⊆ Fn

2 is ε-biased if all nonzero codewords of C
have relative weight in the range ( 1

2 − ε,
1
2 + ε), where ε may be a function of n.

Kaufman and Sudan [10] proved that for sparse linear codes with relative distance 1
2 − n

−Ω(1) are
locally testable. Moreover, they showed that all sparse n−Ω(1)-biased linear codes are locally decodable.
In particular sparse random codes are locally testable and are locally decodable with probability 1−o(1).

Kopparty and Saraf [11] conjectured that all sparse linear codes (even with a bad distance) are locally
testable.

In this paper we refute this conjecture by showing that for every d(n) ranging from ω(1) to Ω(n)
there exists a family of codes

{
C(n) ⊂ Fn

2

}
n∈Z with linear distance and dim(C(n)) = Θ(d(n)) which

are not locally testable (decodable).
Furthermore, we show that there exists a family of codes

{
C(n) ⊂ Fn

2

}
n∈Z with bias n−o(1) and

dim(C(n)) = log(n) which are not locally testable (decodable). This also shows that the results of
Kaufman and Sudan [10] were surprisingly tight.

1 Introduction

Locally testable codes (LTCs) are error correcting codes for which distinguishing, when given oracle access
to a purported word w, between the case that w is a codeword and the case that it is very far from all
codewords, can be accomplished by a randomized algorithm, called a tester, which reads a constant amount
of information from w.

On the other hand, locally decodable codes (LDCs) allow to recover each message entry with high
probability by reading only a few entries of the codeword even if a constant fraction of it is adversely
corrupted. Both families of error correcting codes are explicitly studied, see e.g. the survey [14].

Given a linear code C ⊆ Fn, the dimension of C, denoted by dim(C), is its dimension as a vector
space and its distance, denoted by ∆(C), is the minimal Hamming distance between two closest different
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(FP7/2007-2013) under grant agreement number 240258. Research of both authors supported by grant number 2006104 by the
US-Israel Binational Science Foundation and by grant number 679/06 by the Israeli Science Foundation.
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codewords. A linear code C ⊆ Fn2 is called sparse if its dimension is O(log(n)). We say that a code C is
ε-biased if all nonzero codewords of C have relative weight in the range (1

2 − ε,
1
2 + ε), where ε may be a

function of n. Notice that the ε-bias property implies that the relative distance is at least 1
2 − ε.

Kaufman and Sudan [10] showed that local testability and decodability exists in random sparse linear
codes. They showed that for any constant γ > 0 all sparse linear codes with relative distance 1

2 − n−γ

are (strongly) locally testable. They also showed that for any constant γ > 0 all sparse n−γ-biased linear
codes are locally decodable. 1. In particular, sparse random linear codes have low-bias and hence are locally
testable and decodable.

This result was later generalized by Kopparty and Saraf [12] to the problem known as “local list-
decoding and testing in the high error regime” (see [12] for the definition and discussion of the problem),
i.e., they proved that sparse n−Ω(1)-biased linear codes are locally testable and locally list-decodable even
in the high error regime.

Kopparty and Saraf [11] conjectured that all sparse linear codes (even with a bad distance) are locally
testable. In particular, this conjecture says that the result of Kaufman and Sudan could be extended to all
sparse linear codes and the n−Ω(1)-bias requirement is not necessary.

We refute this conjecture in Theorem 3.1 by showing that for any d(n) ranging from ω(1) to Ω(1) there
exists a family of linear codes

{
C(n) ⊂ Fn2

}
n∈Z with linear distance and dim(C(n)) = Θ(d(n)) which are

not locally testable (decodable).
Furthermore, in Theorem 3.4 we show that there exists a family of sparse n−o(1)-biased linear codes

which are not locally testable (decodable), i.e., for any computable function h(n) = o(1) we can construct
a family of sparse n−h(n)-biased linear codes which are not locally testable (decodable).

In particular, this theorem shows that the n−Ω(1)-bias requirement in the work of Kaufman and Sudan
[10] is necessary, and has a surprising tightness.

Organization of the paper. In the following section we provide the standard definitions regarding locally
testable and locally decodable codes. In Section 3 we state our main results (Theorems 3.1, 3.4). Section 4
contains some useful propositions and in Section 5 we prove Theorems 3.1 and 3.4.

2 Preliminaries

Let F be a finite field and [n] be the set {1, . . . , n}. In this work, we consider only linear codes. We start
with a few definitions.

Let C ⊆ Fn be a linear code over F. For w ∈ Fn, let supp(w) = {i ∈ [n] | wi 6= 0} and |w| =
| supp(w)|. We define the relative distance between two words x, y ∈ Fn to be δ(x, y) = ∆(x,y)

n and let
∆(x, y) = δ(x, y) · n. The distance of a code is denoted by ∆(C) and defined to be the minimal value
of ∆(x, y) for two distinct codewords x, y ∈ C. Similarly, the relative distance of the code is denoted
δ(C) = ∆(C)

n . For x ∈ Fn and C ⊆ Fn, let δ(x,C) = δC(x) = min
y∈C
{δ(x, y)} denote the relative distance

of x from the code C. We note that ∆(C) = min
c∈C\{0}

{wt(c)}. For two linear codes C1, C2 ⊆ Fn we let

δ(C1, C2) = min
c1∈C1\{0}

{δ(c1, C2)}.

If δ(x,C) ≥ ε, we say that x is ε-far from C and otherwise x is ε-close to C. Let dim(C) be
the dimension of C. For u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ Fn let 〈u, v〉 denote the bilin-

1In fact, Kaufman and Sudan [10] proved a stronger result. They showed that sparse “low-bias” linear codes are self-correctable
and thus are locally decodable.
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ear function from Fn × Fn to F defined by 〈u, v〉 =
n∑
i=1

uivi The dual code C⊥ is defined as C⊥ =

{u ∈ Fn | ∀c ∈ C : 〈u, c〉 = 0}. In a similar way we define C⊥≤t =
{
u ∈ C⊥ | |u| ≤ t

}
and C⊥t ={

u ∈ C⊥ | |u| = t
}

. For w ∈ Fn and S = {j1, j2, ..., jm} ⊆ [n] we let w|S = (wj1 , wj2 , ..., wjm), where
j1 < j2 < . . . < jm, be the restriction of w to the subset S. Similarly, we let C|S = {c|S | c ∈ C} denote
the projection of the code C onto S. We say that a code C has a q-characterization if span(C⊥≤q) = C⊥.

For w ∈ Fn and i ∈ N let w(i) ∈ Fni be the concatenation of w to itself i times.

2.1 Background on LTCs and LDCs

We formally define locally testable codes, using the definition provided in [4] (see that paper for a justifica-
tion of the definition).

Note that given a code C ⊆ Fn, the subset I ⊆ [n] uniquely defines C|I . The linearity of C implies that
C|I is a linear subspace of FI .

Definition 2.1 (LTCs and Testers). Let C ⊆ Fn be a linear code. A (q, ε, δ)-tester T for C is a distribution
D over subsets I ⊆ [n] such that |I| ≤ q and the following holds.

• For all w ∈ Fn such that δ(w,C) ≥ δ we have Pr
I∼D

[w|I /∈ C|I ] ≥ ε.

A code C ⊆ Fn is a (q, ε, δ)-LTC if it has a (q, ε, δ)-tester.

The tester outputs accept on the given word w whenever it selects a subset I ⊆ [n] such that w|I ∈ C|I
and otherwise output reject. Notice that a tester for a linear code is non-adaptive [2].

We say that a family of codes
{
C(n)

∣∣ n ∈ Z
}

is locally testable if there exist constants q, ε, δ > 0 such
that for infinitely many n it holds that C(n) ⊆ Fn is a (q, ε, δ)-LTC.

Remark 2.2. Usually we assume that δ ≤ 1/3 (see the discussion in [1] regarding this issue). Hence,
we say that the family of codes is not locally testable if for every constants q, ε > 0, large enough n and
distribution Dn over subsets I ⊆ [n], such that |I| ≤ q there is a word w with δ(w,C(n)) ≥ 1/3 and
Pr
I∼Dn

[w|I /∈ C|I ] < ε.

Next we define locally decodable codes.

Definition 2.3 (LDCs and Decoders). Let C ⊆ Fn2 and EC : Fk2 → Fn2 be its encoding function, i.e.,
C =

{
EC(x) | x ∈ Fk2

}
. Then C is a (q, ε, δ)-LDC if there exists a randomized decoder (D) such that:

• In every invocation, D makes at most q queries.

• For all x ∈ Fk, i ∈ [k] and ĉ ∈ Fn such that ∆(EC(x), ĉ) ≤ δn we have Pr
[
Dĉ[i] = xi

]
≥ 1

2
+ ε,

i.e., with probability at least 1
2 + ε entry xi will be recovered correctly.

Note that the definition implies that δ < δ(C)/2. We can assume without loss of generality that the
decoder for a linear code is non-adaptive [5]. We say that a family of codes

{
C(n)

∣∣ n ∈ Z
}

is locally
decodable if there exist constants q, ε, δ > 0 such that for infinitely many n it holds that C(n) ⊆ Fn is a
(q, ε, δ)-LDC.

It is well-known that q-query self-correctable codes are q-query locally decodable, so if we show that a
code C is not q-query LDC then it is not q-query self correctable.
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Remark 2.4. Notice that a message space for LDC can be a linear subspace of M ⊂ Fk, i.e., the messages
are of the length k but not every word in Fk is a (legal) message. In this case the dimension of the code is
dim(M). Note that because of linearity of C the message space M must be a linear subspace (closure to
addition).

3 Main Results

In this section we present our main results, i.e., Theorem 3.1 and Theorem 3.4. Theorem 3.1 refutes the
conjecture of Kopparty and Saraf [11], which says that all sparse linear codes are locally testable. It shows
that there exists a family of sparse linear codes with relative distance ≥ 0.49 which are not locally testable
(decodable).

One could conjecture that all sparse linear codes with small characterization are locally testable or
decodable. So, Theorem 3.1 also shows that there are sparse linear codes which have a small characterization
and linear distance, but are not locally testable (decodable).

Finally we show that there are sparse linear codes with dual distance > 2 which are not locally testable
(decodable). We believe that this case is interesting since it shows that non-redundant2 sparse code can
be not locally testable (decodable). Equivalently, picking a large fraction of columns from the Hadamard
generating matrix (G ∈ F [n]×[2n]

2 ) may result in a generating matrix of a code which is not locally testable
(decodable). This contrasts with the result of [10] which says that taking a large random fraction of columns
from the Hadamard generating matrix gives, with high probability, a generating matrix of a locally testable
(decodable) code.

Theorem 3.1 (Low Rate does not imply LTC or LDC). For every q, ε > 0, function w(1) ≤ d(n) ≤ O(n)
and infinitely many n > 0

1. There exists Cε ⊂ Fn2 such that δ(C) ≥ 1
2 − ε, dim(Cε) = Θ(d(n)) and Cε is not locally testable

with o(d(n)) queries and is not locally decodable with q queries.

2. There exists C ⊂ Fn2 such that dim(C) = Θ(d(n)), ∆(C) ≥ Ω(n), span(C⊥≤3) = C⊥ and C is not
locally testable with o(d(n)) queries and is not locally decodable with q queries.

3. There exists C ⊂ Fn2 such that dim(C) = 1.1 log(n), ∆(C) ≥ Ω(n), ∆(C⊥) > 2 and C is not
locally testable with o(log(n)) queries and is not locally decodable with q queries.

Remark 3.2. Folklore claim 7.2 states that every linear codeC is testable by dim(C)+1 queries. Intuitively,
C is non-trivially testable if it can be testable with o(dim(C)) queries. So, Theorem 3.1 shows the families
of linear codes that can not be non-trivially testable.

Remark 3.3. The construction in the bullet three of Theorem 3.1 can not achieve dimension lower than
log(n), since every code C ⊆ Fn2 such that dim(C) < log(n) has ∆(C⊥) ≤ 2.

The next theorem shows a surprising tightness of the results in [10]. Recall that Kaufman and Sudan
showed that sparse linear codes with bias n−Ω(1) are locally testable (decodable). We show that for every
h(n) = o(1) there exists a family of sparse linear codes with bias n−h(n)) which are not locally testable
(decodable).

2The term “non-redundant” here means the dual distance of the code is at least 3. Note that if the dual distance of a code is 1
then some of its bits are identically 0, and if the dual distance is 2 then some pairs of bits are equal to each other and hence one of
each pair is redundant.
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Theorem 3.4 (Tightness of [10]). For every constant q > 0, computable function h(n) = o(1) and infinitely
many n > 0 there exists C ⊂ Fn2 such that dim(C) = log(n), C is n−h(n)-biased and C is not locally
testable (decodable) with q queries.

4 Repetition does not affect the LTCs and LDCs

4.1 Testers and Decoders modulo m

Definition 4.1 (Repetition Code). Let R ⊆ Fm be a linear code and i > 0. We say that C ⊆ F(im) is the
i-repetition code of R if it holds that c ∈ C if and only if c = r(i), where r ∈ R, i.e., every codeword of C
is a codeword of R repeated i times.

Notice that the linearity of R implies the linearity of its repetition code.
Let R ⊂ Fm2 be a linear code and C ⊂ F(mi)

2 be its (i)-repetition code. For I = {i1, i2, . . . , iq} ⊆ [n]
let I mod m = {i1 mod m, i2 mod m, . . . , iq mod m} ⊆ [m].

Given a tester DC for C we define a (modulo-m)-tester DR for R as follows.

• Pick a test I ⊆ [mi] according to the tester DC .

• Choose test I mod m.

The modulo-m decoder is defined in the similar way, i.e., invokes the decoder of C and take modulo m
over all queried indices.

Note that if w ∈ Fm2 then the tester (decoder) for C will get the same “queried entries” on w(i) as
modulo-m tester (decoder) for R on w. In this way, if tester for C rejects then the tester for R rejects and
if the decoder for C recovers correctly the message bit then the decoder for R recovers correctly the same
message bit.

4.2 Main Propositions

We prove the simple (but important) propositions, which say that the repetition does not affect the testability
and the decodability. These propositions (Proposition 4.2 and Proposition 4.3) are shown for binary codes
but can be easily extended for any field.

Proposition 4.2. Let R ⊂ Fm2 be a linear code and i > 0 be an integer. Let C ⊂ F(mi)
2 be an (i)-repetition

code of R. Then,

• if R is a (q, ε, δ)-LTC then C is (q,min{ε/2, δ/2}, 2δ)-LTC

• if C is (q, ε, δ)-LTC then R is a (q, ε, δ)-LTC.

Proof. Note that C|[m] = R.

Proof of the first bullet. Assume that R is a (q, ε, δ)-LTC and let DR be a (q, ε, δ)-tester for R. We define a
tester DC for C as following.

• flip a coin

• If “heads,”

– pick j ∈ [m] and l1 ∈ [i− 1] independently at random,
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– pick I = {j, j +m · l1} (note that I ⊆ [mi]);

• Else pick I ∼ D (note that I ⊆ [m]).

We argue that DC is a (q,min{ε/2, δ/2}, 2δ)-tester forC. Letw ∈ F(mi) be a word such that δ(w,C) ≥ 2δ.
If δ(w|[m], C|[m]) = δ(w|[m], R) ≥ δ we are done, since

Pr
I∼DC

[w|I /∈ C|I ] ≥
1
2
· Pr
I∼DR

[
(w|[m])|I /∈ R|I

]
≥ ε

2
.

Otherwise we have δ(w|[m], C|[m]) = δ(w|[m], R) < δ.
But δ(w,C) ≥ 2δ implies that

E
j∈[i−1]

[
δ(w|{jm+1,...,(j+1)m}, w|[m])

]
≥ 2δ − δ = δ.

Hence Pr
I∼DC

[w|I /∈ C|I ] ≥
1
2

Pr
j∈[m],l1∈[i−1]

[
w|{j,j+m·l1} /∈ C|{j,j+m·l1}

]
≥ δ/2.

Proof of the second bullet. Assume that C is a (q, ε, δ)-LTC and let DC be its (q, ε, δ)-tester. Let DR be a
modulo-m tester of C. Note that DR is a distribution over subsets I ⊆ [m] such that |I| ≤ q.

We argue that DR is a (q, ε, δ)-tester for R. Let w ∈ Fm2 be a word such that δ(w,R) ≥ δ. Assume
by way of contradiction that Pr

I∼DR

[w|I /∈ R|I ] < ε. Notice that δ(w(im), C) = δ(w,R) ≥ δ. We have

Pr
I∼DC

[
w(im)|I ∈ C|I

]
< ε since if for I ⊂ [im] it holds that w(im)|I /∈ C|I then w|I mod m /∈ R. We

conclude that DC is not a (q, ε, δ)-distribution for C. Contradiction.

Proposition 4.3. Let R ⊂ Fm2 be a code such that the first dim(R) bits of R are message bits. Let i > 0
and C be an (i)-repetition of R. Then,

• If R is not (q, ε, δ)-LDC then C is not (q, ε, δ)-LDC.

• If R is a (q, ε, δ)-LDC then C is a (q, ε/2, εδ2 )-LDC.

Proof. Let k = dim(R) = dim(C). Note that the first k bits of C are message bits.

Proof of the first bullet. If R is not (q, ε, δ)-LDC then for every q-query decoder there exist a word w ∈ Fm2
such that δ(w,R) ≤ δ, but there exists i ∈ [k] such that the probability that the decoder recovers correctly
the message bit i is less then 1− ε.

Assume by way of contradiction that C is a (q, ε, δ)-LDC and has the decoder DC . Let DR be a modulo-
m decoder of DC . But then there exist w ∈ Fm, δ(w,R) ≤ δ such that the decoder DR recovers some
message bit i with probability less then 1 − ε. But DC will get always the same information on w(n/m)

as DR on w, and moreover, δ(w(n/m), C) = δ(w,R) ≤ δ. Thus DC is not a (q, ε, δ)-decoder for C.
Contradiction.

Proof of the second bullet. Assume R is (q, ε, δ)-LDC and let DR be its (q, ε, δ)-decoder. For j ∈ [i]
and I = {i1, i2, . . . , iq} ⊆ [m] let jm + I = {jm+ i1, jm+ i2, . . . , jm+ iq}. Note that jm + I ⊆
{mj + 1, . . . ,m(j + 1)}. The decoder DC for C recovers message bit l from the given word w ∈ Fim as
following.
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• pick j ∈ [i− 1] and select I = jm+ [m],

• return D(w|I)
R [l], i.e., recover the lth message bit as the decoder DR on w|I .

We argue that if δ(w,C) ≤ εδ
2 then DC recovers correctly the lth message bit of C with probability at least

1
2 + ε

2 . Let r(i) ∈ C be a closest codeword of C to w, i.e., δ(w, r(i)) = δ(w,C) ≤ εδ
2 .

For j ∈ [i] we say thatw|(jm+[m]) is a j-block ofw. We say that j-block is corrupted if δ(w|jm+[m], r) >
δ. The fraction of corrupted blocks is bounded by ε

2 , because otherwise we have δ(w, r(i)) > εδ
2 . Recall

that the decoder DC for C picks random j ∈ [i− 1] and invokes the decoder for R on the j-block of w. The
probability that DR will be invoked on the non-corrupted block and will recover a message bit correctly is
at least (1

2 + ε) · (1− ε
2) ≥ 1

2 + ε− ε
2 = 1

2 + ε
2 .

From the previous propositions we conclude the next corollary.

Corollary 4.4. Let R ⊂ Fm2 be a linear code and i > 0 be an integer. Let C ⊂ F(mi)
2 be an (i)-repetition

code of R. Then,

• if R is not (q, ε, δ)-LTC then C is not (q, ε, δ)-LTC.

• if R is not (q, ε, δ)-LDC then C is not (q, ε, δ)-LDC.

5 Proof of Main Results (Theorems 3.1,3.4)

We first prove Theorem 3.1 in Section 5.1. Then we prove Theorem 3.4 in Section 5.2.

5.1 Proof of Theorem 3.1

Proof of the first bullet. Let ε > 0 be a constant and m = d(n) ≥ w(1). Let Rε ⊂ Fm2 be a linear code
such that δ(Rε) ≥ 1

2 − ε and δ(Rε⊥) ≥ Ω(1) and dim(Rε) = Θ(m) (e.g., a random linear code of constant
rate will have these properties). Claim 7.1 implies that Rε is not locally testable with o(m) queries. Lower
bounds on locally decodable codes from [9] imply that Rε is not q-query locally decodable code.

Let Cε ⊂ Fn be a (n/m)-repetition code of Rε. We have dim(Cε) = Θ(m) = Θ(log(n)) and δ(Cε) ≥
1/2− ε. Furthermore, Corollary 4.4 implies that Cε is not locally testable with o(m) queries and not locally
decodable with q queries.

One could conjecture that sparse codes, which are characterized by small weight dual words and have
linear distance are locally testable. We refute this next.

Proof of the second bullet. Let m = d(n) ≥ w(1). Then, for sufficiently large m, Theorem 7.3 implies the
existence of a linear code R ⊂ Fm2 such that dim(R) = Θ(d(n)), ∆(R) ≥ Ω(m), span(R⊥≤3) = R⊥ and R
is not locally testable with o(m) queries and not locally decodable with q queries.

Let C ⊂ Fn2 be a (n/m)-repetition code ofR. Then Proposition 4.2 implies that C is not locally testable
with o(m) = o(d(n)) queries. Proposition 4.3 implies that C is not locally decodable with q queries.
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5.1.1 Proof of the Third Bullet

Given two linear codes with the same blocklength (C1, C2 ⊆ Fn) letC1+C2 = {c1 + c2 | c1 ∈ C1, c2 ∈ C2}.
Notice that (C1 + C2) is a linear code.

We start from a straightforward proposition that will be useful in the next theorem.

Proposition 5.1. Let C1 and C2 be two linear binary codes with the same blocklength. Then (C1 + C2)⊥ =
C1
⊥ ∩ C2

⊥ and so (C1 + C2)⊥ ⊆ C1
⊥ and (C1 + C2)⊥ ⊆ C2

⊥.

Proof. We have u ∈ (C1 + C2)⊥ iff (u ∈ C1
⊥ and u ∈ C2

⊥) iff u ∈ (C1
⊥ ∩ C2

⊥)

It follows that if C1 is a repetition code but C2 is not then C1 + C2 is not repetition code. Moreover, if
there is a “small-size” intersection between low-weight dual words of C1 and of C2 then C1 +C2 will have
a small number of low-weight dual words and hence, intuitively will not be a locally testable.

Claim 5.2. Let C ⊆ Fn be a linear code and a (q, ε, δ)-LDC. Assume that C ′ ⊂ C is a linear code (subcode
of C). Then C ′ is a (q, ε, δ)-LDC.

Proof. Assume C has the (linear) message space S ⊆ F k and has the decoder D. Let S′ ⊂ S be a (linear)
message space for C ′. We argue that C ′ has the same decoder D. Let w be δ-close to C ′ (δ-close to the
encoding of some message m ∈ S′). Then w is δ-close to C and thus for all i ∈ [k] the decoder D recovers
correctly the message entry (mi) with probability at least 1

2 + ε.
Notice that the message space S′ of the subcode C ′ will have smaller dimension than S, i.e., dim(S′) <

dim(S). S′ is a linear vector space because for every two messages x1, x2 ∈ S′ which are encoded to
c1, c2 ∈ C ′, respectively, we have (x1 + x2) ∈ S′ and (x1 + x2) is encoded to c1 + c2.

Proposition 5.3. Let C1, C2 ⊆ Fn2 be linear codes. If C1 is not locally decodable with q queries then
C1 + C2 is not locally decodable with q queries.

Proof. If C1 + C2 is locally decodable with q queries then C1 is locally decodable with q queries by Claim
5.2, because C1 is a subcode of C1 + C2.

Proof of the third bullet. Let m = log(n) and R ⊂ Fm2 be a linear code with ∆(R) ≥ m/5, ∆(R⊥) ≥
Θ(m) and dim(R) = m/10 (e.g., a random linear code of constant rate will have these properties). Claim
7.1 implies that R is not locally testable with o(m) queries, and in particular, not locally testable with q
queries.

Let w ∈ Fm2 be a word such that δ(w,R) ≥ 1.1
3 (a random w ∈ Fm satisfies this condition with high

probability). Notice that for all u ∈ R⊥≤o(m) we have 〈u,w〉 = 0 because R⊥ has no words of weight less
then o(m), i.e., R⊥≤o(m) = ∅.

Let C1 ⊂ Fn2 be a (n/m)-repetition code of R. Then δ(w(n/m), C1) = δ(w,R) ≥ 1.1
3 . Notice that by

construction for all u ∈ C1
⊥
≤o(m) we have 〈u,w(n/m)〉 = 0. We also have δ(C1) ≥ 1/5 and dim(C1) =

log(n)/10. Let C2 ⊆ Fn2 be the Hadamard code3 (assume w.l.o.g. that n is a power of 2). Note that
∆(C2

⊥) > 2.
Let π : [n] 7→ [n] be a permutation. With some abuse of notation, for w = (w1, w2, . . . , wn) ∈ Fn

let π(w) = (wπ(1), wπ(2), . . . , wπ(n)) be a π-permuted word. Let π(C2) = {π(c) | c ∈ C2} be a set of all
permutated codewords of C2. Note that for every permutation π : [n] 7→ [n] it holds that δ(π(C2)) = δ(C2),
dim(π(C2)) = dim(C2) and ∆((π(C2))⊥) = ∆(C2

⊥) > 2.

3Instead of the Hadamard code we could take any binary, sparse code with linear distance and dual distance > 2.
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Recall that δ(C1, C2) = min
c1∈C1\{0}

{δ(c1, C2)}. We say that a permutation π : [n] 7→ [n] is good if

δ(w(n/m), C1 + π(C2)) ≥ 1
3 and δ(C1, π(C2)) ≥ 1/10.

We argue that a random permutation π : [n] 7→ [n] is good with probability at least 1 − o(1). It is
sufficient to show that a random permutation π : [n] 7→ [n] is bad with probability at most o(1).

By the Chernoff inequality the probability that for some c1 ∈ (C1 \ {0}) and c2 ∈ (C2 \ {0}) we get
δ(w(n/m), c1+π(c2)) < 1/3 with probability at most 1

2Ω(n) . Note that if c2 = 0 then δ(w(n/m), c1+π(c2)) =
δ(w(n/m), c1) ≥ 1.1

3 by construction.
Take a union bound over all c1 ∈ (C1 \{0}) and c2 ∈ C2 to get that δ(w(n/m), C1 +π(C2)) < 1/3 with

probability at most O(n2)

2Ω(n) = o(1). Moreover, the probability that for given c1 ∈ (C1 \ {0}) and c2 ∈ C2 we
have δ(c1, π(c2)) ≤ 1/10 is bounded by 1

2Ω(n) . Take a union bound over all c1 ∈ (C1 \ {0}) and c2 ∈ C2 to

get that the probability that δ(C1, π(C2)) ≤ 1/10 is bounded by O(n2)

2Ω(n) = o(1).
We conclude that a random permutation π : [n] 7→ [n] is bad with probability at most o(1). So, let

π : [n] 7→ [n] be a good permutation. Then, we have δ(C1 + π(C2)) = δ(C1, π(C2)) ≥ 1/10 and
δ(w(n/m), C1 +C2) ≥ 1/3. Proposition 5.1 implies that w(n/m) satisfies all constraints in (C1 + C2)⊥≤o(m)

and thus w(n/m) will be accepted with probability 1 by any tester for C1 + π(C2) with query complexity
≤ o(m). We conclude that (C1 + π(C2)) is not locally testable with o(m) queries. Notice that dim(C1 +
π(C2)) = dim(C1) + dim(C2) = 1.1 log(n).

The proof for local decodability is almost the same. R is not q-query locally decodable by the lower
bound of [9]. Corollary 4.4 implies that C1 is not q-query locally decodable. Proposition 5.3 implies that
C1 + π(C2) is not q-query locally decodable.

5.2 Proof of Theorem 3.4

Proof. In this proof we always assume that n > 2. Let h(n) = o(1) such that h(n) > 0 for all n > 2.
Without loss of generality we can assume that h(n) ≥ 1

3 log(log(n)) (otherwise let h(n) = 1
3 log(log(n)) )

because if h(n) < 1
3 log(log(n)) then n−h(n) > n

− 1
3 log(log(n)) , so we will prove the Theorem even for a lower

bias than n−h(n). Hence we assume that h(n) ≥ 1
3 log(log(n)) .

Let g(n) = 3h(n) and then g(n) ≥ 1
log(log(n)) for all n > 2. Let f(n) = 1

g(n) = ω(1), note that

f(n) ≤ log(log(n)). Let m = ng(n) and R ⊆ Fm2 be a random linear code such that dim(R) = log(m) ·
f(n) = log(n). The probability that at least one nonzero codeword of R has relative weight less than

1
2 − m−1/3 or more than 1

2 + m−1/3 is bounded by
2 · 2(log(m)·f(n))

2Ω(m1/3)
= o(1), and this follows from the

Chernoff inequality and the Union bound. Moreover, the probability that ∆(R⊥) < log(f(n)) = ω(1) is
bounded by mlog(f(n))

2dim(R) = o(1), and this follows from the Union bound. So, let R be a m−1/3-biased code
such that dim(R) = log(m) · f(n) and ∆(R⊥) ≥ log(f(n)) = ω(1), i.e., R⊥≤log(f(n)) = R⊥≤ω(1) = ∅.
Assume without loss of generality that the first dim(R) bits of R are message bits.

Notice that log(m) · f(n) = log(n) and m−1/3 = n−(1/3)g(n) = n−h(n). Claim 7.1 implies that R is
not locally testable (decodable) with q = O(1) queries.

Let C ⊆ Fn2 be the (n/m)-repetition code of R. We have dim(C) = dim(R) = log(n) and C has the
same bias as R, i.e., C is n−h(n)-biased. In particular we have δ(C) ≥ 1

2 − n
−h(n). Furthermore, Corollary

4.4 implies that C is not locally testable (decodable) with q = O(1) queries. The Theorem follows.

9



6 Acknowledgement

We thank Tali Kaufman, Swastik Kopparty and Shubhangi Saraf for helpful discussions.

References

[1] E. Ben-Sasson, V. Guruswami, T. Kaufman, M. Sudan, and M. Viderman, “Locally testable codes
require redundant testers,” in IEEE Conference on Computational Complexity. IEEE Computer
Society, 2009, pp. 52–61. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/CCC.2009.
6

[2] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova, “Some 3CNF properties are hard to
test,” SIAM Journal on Computing, vol. 35, no. 1, pp. 1–21, 2005. [Online]. Available:
http://epubs.siam.org/SICOMP/volume-35/art 44544.html

[3] E. Ben-Sasson and M. Sudan, “Robust locally testable codes and products of codes,” Random Struct.
Algorithms, vol. 28, no. 4, pp. 387–402, 2006. [Online]. Available: http://dx.doi.org/10.1002/rsa.20120

[4] E. Ben-Sasson and M. Viderman, “Composition of semi-LTCs by two-wise tensor products,”
in APPROX-RANDOM, ser. Lecture Notes in Computer Science, I. Dinur, K. Jansen, J. Naor,
and J. D. P. Rolim, Eds., vol. 5687. Springer, 2009, pp. 378–391. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-03685-9

[5] A. Deshpande, R. Jain, T. Kavitha, S. V. Lokam, and J. Radhakrishnan, “Lower bounds for adaptive
locally decodable codes,” Random Struct. Algorithms, vol. 27, no. 3, pp. 358–378, 2005. [Online].
Available: http://dx.doi.org/10.1002/rsa.20069

[6] I. Dinur, “The PCP theorem by gap amplification,” Journal of the ACM, vol. 54, no. 3, pp. 12:1–12:44,
Jun. 2007.

[7] O. Goldreich, “Short locally testable codes and proofs (survey),” Electronic Colloquium on
Computational Complexity (ECCC), no. 014, 2005. [Online]. Available: http://eccc.hpi-web.de/
eccc-reports/2005/TR05-014/index.html

[8] O. Goldreich and M. Sudan, “Locally testable codes and PCPs of almost-linear length,” Journal of the
ACM, vol. 53, no. 4, pp. 558–655, Jul. 2006.

[9] J. Katz and L. Trevisan, “On the efficiency of local decoding procedures for error-correcting codes,”
in STOC, 2000, pp. 80–86. [Online]. Available: http://doi.acm.org/10.1145/335305.335315

[10] T. Kaufman and M. Sudan, “Sparse random linear codes are locally decodable and testable,” in FOCS.
IEEE Computer Society, 2007, pp. 590–600. [Online]. Available: http://doi.ieeecomputersociety.org/
10.1109/FOCS.2007.65

[11] S. Kopparty and S. Saraf, “Tolerant linearity testing and locally testable codes,” in APPROX-
RANDOM, ser. Lecture Notes in Computer Science, I. Dinur, K. Jansen, J. Naor, and
J. D. P. Rolim, Eds., vol. 5687. Springer, 2009, pp. 601–614. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-03685-9

10

http://doi.ieeecomputersociety.org/10.1109/CCC.2009.6
http://doi.ieeecomputersociety.org/10.1109/CCC.2009.6
http://epubs.siam.org/SICOMP/volume-35/art_44544.html
http://dx.doi.org/10.1002/rsa.20120
http://dx.doi.org/10.1007/978-3-642-03685-9
http://dx.doi.org/10.1002/rsa.20069
http://eccc.hpi-web.de/eccc-reports/2005/TR05-014/index.html
http://eccc.hpi-web.de/eccc-reports/2005/TR05-014/index.html
http://doi.acm.org/10.1145/335305.335315
http://doi.ieeecomputersociety.org/10.1109/FOCS.2007.65
http://doi.ieeecomputersociety.org/10.1109/FOCS.2007.65
http://dx.doi.org/10.1007/978-3-642-03685-9


[12] S. Kopparty and S. Saraf, “Local list-decoding and testing of random linear codes from high-error,” in
STOC 2010.

[13] O. Meir, “Combinatorial construction of locally testable codes,” in STOC. ACM, 2008, pp. 285–294.
[Online]. Available: http://doi.acm.org/10.1145/1374376.1374419

[14] L. Trevisan, “Some applications of coding theory in computational complexity,” Sep. 23 2004.
[Online]. Available: http://arxiv.org/abs/cs/0409044

7 Appendix

The next folklore claim states that the small dual distance of the linear code C ⊆ Fn is necessary for its
local testing and local decoding. We explain this claim now.

Ben-Sasson et al. [2] showed that a q-query tester for a locally testable code is (w.l.o.g.) a distribution
over dual codewords of weight at most q. In particular, if ∆(C⊥) ≥ q+ 1 we conclude that C is not locally
testable with q queries. Now, assume that the first dim(C) entries of the code C are message entries and
∆(C⊥) ≥ q + 1. Then any local decoder which makes only q − 1 queries always obtains a “local view”
that contains no information about the message entries and hence message entries can not be recovered with
non-trivial probability.

Claim 7.1 (Folklore). Let C ⊆ Fn be a linear code such that ∆(C⊥) ≥ (q + 1), where q ≥ 1. Assume
that the first dim(C) entries of C are message entries. Then C is not locally testable with q queries and not
locally decodable with q − 1 queries.

The other folklore claim (stated e.g. in [1]) says that every linear code is testable with query complexity
equal to its dimension plus one.

Claim 7.2 (Folklore 2). Every linear code C is testable by dim(C) + 1 queries.

Let us state the central theorem (which we rephrase) from [2]. Ben-Sasson et al. [2] showed a family
of codes Cm ⊂ Fm2 which has linear distance, constant rate and was characterized by 3 weight dual words.
They proved that this family is not locally testable with o(m) queries. Note that this family of codes is
not local decodable with constant number of queries (q) because of the lower bound on the blocklength of
locally decodable codes due to Katz and Trevisan [9].

Theorem 7.3. Let q > 0 be a constant integer. For infinitely many m > 0 there exists a family of codes
Cm ⊂ Fm2 which has δ(Cm) = Θ(1), dim(Cm) = Θ(m) and span((Cm)⊥3 ) = (Cm)⊥. Moreover, Cm is
not locally testable with o(m) queries and not locally decodable with q queries.
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