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Abstract

In this paper, we formalize a folklore concept and formalkbfide weak kernels for fixed-
parameter computation. We show that a problem has a (adi)i kernel then it also has a
weak kernel. It is unknown yet whether the converse is alviays On the other hand, for a
problem in NP, if it has a weak kernel then it admits an FPT dtigm (hence a kernel). We
show a few applications of weak kernels, for which a (tradhitil) kernelization seems hard to
apply. Among them, we present the first FPT algorithm for #fsmdus Sorting by Minimum
Unsigned Reversals problem.
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1 Introduction

In the last four decades, we have seen the huge advance afiNplateness [7, 16, 10]. Nowadays,
NP-complete problems appear in almost all the areas whicivies combinatorial optimization, for
example in computational biology and bioinformatics. Amfirthe beginning a lot of people tended
to believeP # N P (at least it seems to be hard to prove or disprove it), peapieadiately started
to investigate different ways to handle NP-hard problemg.tdJtoday, the two most popular ways
to handle NP-hard problems, among researchers in algod#sign, are approximation algorithms
and exact (or FPT) algorithms, which were started with thaisal works of Johnson [14] and
Tarjan and Trojanowski [20] respectively. (Using heudstiethods to hand NP-hard problems, like
evolutionary computation, is beyond this paper.)

In some areas like computational biology and bioinfornstibe data usually contain errors.
On top of this, if we design a factor-2 approximation to hanitiese data, whatever result we got
is not appealing to biologists. So, to make approximatigoihms useful for these applications,
the approximation factors must be very close to one. Themyaldy, FPT algorithm pops up as a
natural alternative for handling these problems. The thpgdications we will discuss in this paper
all originate from computational biology.

On the other hand, the theory of fixed-parameter computdtambeen developed rigorously
in the last two decades. The first textbook was published @018/ Downey and Fellows [9] and
another couple were published in the last several yearsrdsiied readers are referred to [11] for
further details and references.

In designing FPT algorithms, kernelization is one of the nfimsdamental techniques. Loosely
speaking, kernelization is reallyata reduction; i.e., with kernelization one reduces the problem
instance size (kernel size) to a level so small that one aadd apply a brute-force method. Some-
times, even if the kernel size is slightly bigger (€4 so that a brute-force method is inappropriate,
one can still make use of it with integer linear programmimdpi@anch-and-bound to obtain almost
optimal solutions in a reasonable amount of time [11].

In this paper, we formalize a folklore method and formallyineweak kernels and weak ker-
nelization. Again, loosely speaking, when viewing an NPdhaptimization problem as a searching
problem (like for Vertex Cover, we are really searching faed of k vertices, among input ver-
tices, so that deleting the vertices leaves the resulting graph edge-less), weak lkeatien is
really aboutsearch space reduction. Certainly, if a problem has a kernel then of course it has a
weak kernel (which we will prove formally). But whether therwerse is true is unknown yet. We
show formally that for problems in NP the converse is in fagét

The purpose for defining the weak kernels concept, on the bdred, is more on helping us de-



sign FPT algorithms more easily. Here, we show three agpics, all known to be NP-complete,
for which we compute the corresponding weak kernels effthigihence design efficient FPT al-
gorithms). Among the three problems, Sorting with Minimumdigined Reversals is a famous
problem in computational biology and we do not know of any-trbnal kernelization or FPT al-
gorithm for it. We show that Sorting with Minimum Unsigned\Resals has a weak kernel of size
4k, hence an FPT algorithm running @(2**n + nlogn) time (and with a more detailed analysis,
in O(2%n + nlogn) time).

This paper is organized as follows. In Section 2, we definekvkeanels formally and prove its
relation with the (traditional) kernels. In Section 3, weshthree applications of weak kernels. In
Section 4, we conclude the paper with several open problems.

2 KernesvsWeak Kernels

2.1 Preiminaries

Basically, a fixed-parameter tractable (FPT) algorithmdioroptimization problenil with optimal
solution valuek is an algorithm which solves the problem @(f(k)n¢) time, wheref is any
function only onk, n is the input size and is some fixed constant not relateditoFPT also stands
for the set of problems which admit such an algorithm.

Kernelization is a polynomial time transformation thanséorms a problem instandé, k) to
another instancél’, k') such that (1)1, k) is a yes-instance iffI’, k') is also a yes-instance; (2)
kK < k; and (3)|I'| < f(k) for some functionf(—). (I’,k) is typically called akernel of the
problem, with sizd’|. It is easy to see that if a problem has a kernel then it is in; FRdreover,
every problem in FPT has a kernel. More details on FPT algmstcan be found in [9].

2.2 Weak Kernds

As illustrated in the introduction, we view weak kernelipat (weak kernels) as a way to reduce
search space. Given an optimization problHmlet I1(7) be an instance dfl, and let a solution
of size k can be searched from a componéfitl) of II(I). So we denote the resulting search
problem ag(I1(1), S(I), k). For example, the corresponding search problem for Vertexe€is
(G=(V,E),V,E).

A weak kernelization is a polynomial time transformation which transforms a skagroblem
instance(I1(1), S(I), k) into (II(I"), S'(I), k) such that (L)II(I")| < |II(T)[; (2) |S/(I)| < f(k)
for some functionf (—); (3) (IL(1), S(I), k) is a yes-instance iff[I("), S’(I), k) is a yes-instance.
Note that condition (1) is not important in our definition,ather words, while we have to reduce



search space, we can but do not have to reduce the problemsizgu(e.g., we can even make
II(1) = 1I(I")). (II(I"), S'(I), k) (or simply S’(I)) is also called the correspondimgeak kernel for
I1, with size|S’(I)].

We have the following results regarding weak kernels.

Lemma 1 If aproblem II has a kernel, then it has a weak kerndl.

Proof. Let the kernel forllI(I) be (II(1;), k), with |II(;)| < f(k) for some functionf(—). We
can view the (searching) problefhas (I1(1),II(I), k), which is the corresponding weak kernel;
i.e.,II(I) can be solved by searching a solution of sieom I1(1; ) (which has size at mogt(k)).
Hence Il has a weak kernel. O

The converse of Lemma 1 is not necessarily true (at least weotgrove that the converse is
true). For instance, let an EXP-complete search problBiiI), S(I), k) have a weak kernel of
sizew(k), say(Il'(I), S'(I), k) with S"(I) < w(k). AsTI' is EXP-complete, checking whether a
solution of sizek from S’(I) is a YES/NO instance fdil’(I) probably can not be done in polyno-
mial time (unless the complexity hierarchy collapses atadeplace). How to find such an problem
IT' beyond NP is open.

On the other hand, wheld € N P, we can show that traditional kernels and weak kernels are
equivalent in theory. Of course, that does not imply theiesiare the same.

Theorem 1 If aproblemII € N P has a weak kernel, then it admits an FPT algorithm.

Proof. Let the weak kernel bgll(I),S'(I), k), with [S’(I)] < f(k) for some functionf(—).
We can enumerate all possible solutions of dize S’(I) and for each one check whether it is a
YES/NO instance, which can be done in polynomial timélas N P. If no YES instance is found
then return NO; otherwise return the YES instance. Henceave bn FPT algorithm. O

Corollary 1 IfaproblemII € N P hasaweak kernel, then it has a kernel.

Proof. If II has a weak kernel, following Theorem 1, it admits an FPT dtgaor. Following the
known result in FPT theory, a problem in FPT always has a ké@jeHencell has a kernel. O
Combining this with Lemma 1, we have the following theorem.

Theorem 2 AproblemIl € N P has aweak kernel if and only if it has a kernel.

While the above proofs are not really difficult, the true rhefithe corresponding results seems
to be helping us design efficient FPT algorithms via weak ésrdirectly. We show below three
examples of the applications of weak kernels. For all of them do not know of better kernel
bounds. For the famous Sorting with Minimum Unsigned Realsrghis is the first non-trivial FPT
algorithm.



3 Applications

We consider three minimization problems which are all kndeioe NP-complete: Complement
of Maximal Strip Recovery (CMSR), Minimum Co-Path Set andtifig with Minimum Unsigned
Reversals (SMUR).

31 CMSR

Given two genomic map&; andG, represented by a sequencenajene markers, grip (syntenic
block) is a sequence of distinct markers of length at leastvilvich appear as subsequences in the
input maps, either directly or in reversed and negated forhre problemMaximal Srip Recovery
(MSR) is to find two subsequencé§ andG? of G; andGy, respectively, such that the total length
of disjoint strips inG7 andG3 is maximized (i.e., conversely, the complement of the mobCMSR

is to minimize the number of markers deleted to have a feasiblution). An example of MSR and
CMSR is shown in the following figure, in which each integgresents a marker. Throughout this
paper, a sequence is either denoted as a list as in Figurettaorjust be denoted as a string.

Gi = (1 23456789101112>

Go = (-9,-4,-7,-6,8,1,3,2,-12,—-11,—10, —5)
sS1o= (1,2)

S, = (6,7,9)

S; = (10,11,12)

Gt = (1,2,6,7,9,10,11,12)

G5 = (—9,-7,-6,1,2,—12,—11,-10)

Figure 1: An example for the problem MSR and CMSR. MSR has atisal size of eight, with
three stripsSy, S2,.53. CMSR has a solution size of four: the deleted markers ar® 3yd 8.

MSR and CMSR were motivated by eliminating redundancieseimognic maps [6, 24]. Re-
cently, both MSR and CMSR are shown to be NP-complete [233.gdmneralization to handle more
than two genomic maps can be found in [4, 23].

The computation of weak kernel for CMSR was already preskim¢23]. (Of course, it was
a folklore and was even called ‘kernel’ in [23]; likewise, R&nd CMSR was not properly distin-
guished in [23] even though they are complement to each.ptbee to the mis-use of terminology



and confusion, we sketch and revise the crucial parts of #hoa to have a clear one here, as the
first application of weak kernels.

Lemma 2 Before any marker is deleted, if xyzw or —w — z — y — x appearsin both G; and G,
(or, if xyzw appearsin G; and —w — z — y — x appears in G, and vice versa), then there is an
optimal solution for MSRwhich has zyzw or —w — z — y — x asa strip.

Proof. Wlog, we only consider the case whepzw appears iG; and—w — z — y — x appears in
G5. The cases whenyzw (—w — z — y — x) appears in botlkd’; andG, are similar.

Let the length-6 substring iG/; containingzyzw be py(z)ryzws; (w) and let the length-6
substring inG, containing—w — z — y — x bepy(w) — w — z — y — xse(x). When deleteryzw
from G; and —w — z — y — x from G3, at most two strips can be obtainegd; (z)s;(w) and
p2(w)se(x) (with a total length of 4). Clearly, retainingyzw and—w — z — y — x as a strip can
give us a solution at least as good as any optimal solutioncélg¢he lemma is proven. O

Let X be the alphabet for the input ma@s andG,. The above lemma gives us a weak kernel-
ization procedure.

1. Identify a set of strips of length at least four from the tsemuences, without deleting any
gene marker.

2. For each strip identified, change it to a new letteEin with ¥ N X = (). Let the resulting
sequences b@’, G,.

Let X1 be the set of new letters used in the weak kernelization pmaeith>; N X = (). The
two lemmas for obtaining the final result are: (1) There is ptinsal CMSR solution of sizé for
G1 andG,, if and only if the solution can be obtained by deletingnarkers inX from G andGY
respectively. (2) InG (resp. G5), there are at mosik letters (markers) irt [23]. To see the last
lemma, letz be a marker to be deleted, let it appeatihas...axb...cd... and let it appear i, as
...cxd...ab.... Clearly, in this example is associated withz, a, b, ¢, d}.

Theorem 3 [23] CMSR has a weak kerndl of size 5k which implies directly an FPT algorithm
running in O(23-61%n, 4-n?) time.

Proof. From the above discussion, we can choose to dél&ters inX from G, GY,. The number

5k ~ 23.61k
k )

of choices, is hence bounded by



using Stirling’s formula. For each choice, we can check Wweeit is valid, i.e., whether all remain-
ing markers are in some strip @&, andG%. This can be done in linear time if we spefign?) time
in advance, i.e., building a correspondence between aliefdentical markers i1, G. So the
overall running time of the algorithm ©(23%1%n + n?) time. Note that the algorithm will report
‘no solution of sizek’, if none of the choices leads to a valid solution. O

We comment that with the bounded search tree method, the Igefitam can be improved to
run in O(3n + n?) time [25]. The details will not be reported here.

3.2 Minimum Co-Path Set

In this subsection, we study the following problem callechitium Co-Path Set. Given a simple
undirected grapld-, a co-path set is a setS of edges inG whose removal leaves a graph in which
every connected component is a path. In the Minimum Co-Peti?®blem, we need to compute a
minimum co-path set i.

The Minimum Co-Path Set Problem originates from radiatigbrid (Rh) mapping, which is
a powerful technique for mapping unique DNA sequences dmtoncosomes and whole genomes
[5, 8, 17, 18]. In Rh mapping, chromosomes are randomly brakéo small DNA fragments
through gamma radiation. A (random) subset of these DNAegts retain with healthy hamster
cells and grow up to build up a hybrid cell line. This processdpeated many times and the co-
retention rate of a pair of markers (labeled chromosomad) ladicates their physical distance on
the chromosome. In principle, when two markerandy are close, the probability thatandy are
broken by the gamma radiation is small, hence with a highadviity they are either co-present in
or co-absent from a DNA fragment.

A subset of markers that are co-present from DNA fragmentiled acluster. LetV =
{1,2,...,n} be a set of markers and |6t = {C;,C5,...,C,,} be a collection of clusters. The
Radiation Hybrid Map Construction Problem is to computerngdr ordering of the markers in
which the markers in each clustél, appear consecutively. In reality, a cluster might be formed
with errors, so no such linear ordering might exist. In thase, one needs to remove the minimum
number of clusters so that the leftover clusters admit alimedering. WhenC;| = 2 for all 4, this
is exactly the Minimum Co-Path Set Problem. Given a simpldirected grapiG = (V, F), each
vertex inV corresponds to a marker, an edgev) € E corresponds to a clustéi, v}.

In [5], the Minimum Co-Path Set Problem was shown to be NPgdeta [10]. The proof is by
a reduction from the Hamiltonian Path problem, with eachegdgv) being converted to a cluster
{u,v}. Itis easy to see that there is a Hamiltonian Path in the igmphG if and only if one has
to delete exactlyE| — n + 1 clusters. A factor-2 approximation was also proposed in [3he



counterpart of the Minimum Co-Path Set Problem is the witin Minimum Path Cover problem
[22] and will not be covered here.) Létbe the minimum number of edges deleted for the problem.
We show in this subsection that the Minimum Co-Path Set Brob$ in FPT; in fact, it has a linear
weak kernel of size at most:, hence the problem can be solved efficientlya(R361*(n + k))
time. In the following, we present the technical details.

If some connected component Gfhas maximum vertex degree at most 2 then the problem is
trivially solvable for that component. So from now on we assuthat each connected component
of G' has maximum vertex degree at least 3. Moreover, in the solatisingle vertex could also be
considered as a (degenerate) path. The following lemmasistegprove.

Lemma 3 There is a solution R for the minimum co-path set such that R contains only edges
incident to some vertices of degree at least 3in G.

Proof. Assume to the contrary that a solutidhcontains some edde:, y) such that bothr andy
have degree at most two (. Let G — R be the graph obtained frodd by deleting all the edges in
R. When bothr andy have degrees at most 2,(if, y) is in R then putting it back téx — R would
have two possibilities: (1) make each connected comporfef@e- R) U {(z,y)} a path, or (2)
create some cycle ifG — R) U {(z,y)}. In case (1), it contradicts the optimality & In case (2),
(x,y) is on some cycle i7. Hence we can find an edg@e’, ') on this cycle which is incident to
some vertex of degree at least 3Gh Then we simply swagz, y) with (z’, ') in R. Itis easy to
see that repeating this process we can eventually have aaletios R’ such thai R’| = |R| and
R’ contains only edges incident to some vertices of degreast &inG. O

Now let D be a solution for the minimum co-path set such thatontains only edges incident
to some vertices of degree at least 3in The above lemma implies a simple weak kernelization
procedure.

1. Identify the vertices ofs with degree at least 3. Let this set bBg(G).

2. Letthe set of edges which are incident to some verticé3 (67) be E5(G).
Return(G, E5(G), k) as a weak kernel.

We have the following lemma.

Lemma4 The Minimum Co-Path Set Problem has a solution of size k if and only if the solution
can be obtained by deleting & edgesin E5(G).

Proof. We only need to show the ‘only-if’ part as the other part isiobg. By Lemma 3, we do not
need to include any edge i which is incident to vertices of degree only one or two. O
It remains to show the weak kernel size (i.e., the siz€i7)). We have the following lemma.
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Lemma5 Let k£ = |D|, then |E3(G)| < 5k. In other words, the size of the weak kernel of the
Minimum Co-Path Set Problemis 5k.

Proof. From Lemma 4, we know that theedges ofD can be found inEs(G). After thesek edges
in D are deleted frontz, G — D is only composed of paths, i.e., the degrees of vertic&s in D
are at most 2. In other words, the edgesf(G) — D must also be incident to vertices (W — D
of degree at most 2 (note that these vertices originally lie &3(G)). As thek edges inD are
incident to at mos2k vertices inV3(G), [V3(G)| < 2k. Therefore, we have at mosk edges in
E5(G)—D. Counting the: edges inD back, we havéFs;(G)| = |Es(G)—D|+|D| < 4k+k = 5k.
0

With the above lemmas, it is easy to have an FPT algorithmHerMinimum Co-Path Set
Problem. First, ifiV5(G)| > 2k or |E3(G)| > 5k then we can simply return No. Otherwise, among
the (at mostpk edges inEs(G), select all combinations of edges to delete. For each setkof
edges selected, delete them fraiand check whether the resulting graph is composed of paths
only (using standard linear time graph algorithms like @iefrist search). If we fail to find such a
set, then return ‘No solution of siZg; otherwise, just return the computed set of edge®as

5k ,
The time complexity of the algorithm is dominated by chegké B ) ~ 23-61% splutions.

This presents an FPT algorithm for the Minimum Co-Path Seblem which runs irO(2361% (n, +
k)) time. We have the following theorem.

Theorem 4 Let k be the size of the minimum co-path set. The Minimum Co-Path Set Problem has
aweak kernel of size 5k, hence can be solved in O(2361% (n, 4 k)) time.

Similar to CMSR, we show recently, with the bounded seareh tnethod, that the Minimum
Co-Path Set Problem can be solvedi(2.46* (n+&)) time. The results will be reported elsewhere.

3.3 Sorting with Minimum Unsigned Reversals

Sorting with Minimum Unsigned Reversals (SMUR) is a famousbfem in computational biol-
ogy, more specifically, in computational genomics. GivereaaneH composed of a sequence
of n distinct genes (also formulated as a permutations iftegers{1, 2, ...,n}), i.e., assume that
H = s189---8;Si4+1--5j—15j - - - Sp, areversal operation on the segmesfs;; - - - sj_1s; trans-
formsH into H' = sys2---5jSj_1- -+ Si+1S; - - - sp. The problem Sorting with Minimum Unsigned
Reversals is to use the minimum number of reversals to cod¥ento the identity permutation

I = 123...n. Example: GivenH = 15342, we can use two signed reversals to first change it to
15432 and finally to 12345.



When the genes are signed, we have a similar problem SortthgWinimum Signed Reversals.
Given a signed genomE ~ composed of a sequencesofistinct (signed) genes (also formulated
as a signed permutations ofintegers{1,2,...,n}), i.e., H~ = tity---titip1---tj_1tj---tn, @
signed reversal operation on the segmenit; ;- - - t;_1t; transformsH~ into H" = tyty--- —
tj —tj—1--- — tiy1 — t;---t,. The problem Sorting with Minimum Signed Reversals is to use
the minimum number of signed reversals to convért into the identity permutatiod = 123...n.
Example: GiverH = 1—534—2, we can use two signed reversals to first changelitto —4—3—2
and finally to 12345. (Note that in the literature it is alscemtable to converH~ to —1 =
—n... — 3 — 2 — 1. We can enforce thald ~ is converted td by adding two auxiliary genes, i.e.,
0H~(n + 1). This is a known trick in computational genomics.)

SMUR was shown to be NP-complete by Caprara [3] and the besbeimation algorithm has
a factor 1.375 [1]. However, no non-trivial FPT algorithmkisown for the problem. The trivial
solution is to use a bounded search tree algorithm whichirursughly O (k°*)n) time. We show
below that with weak kernels, a much faster FPT algorithmhmdesigned.

We use Sorting with Minimum Signed Reversals as a subrodin&MUR. Unlike SMUR,
Sorting with Minimum Signed Reversals can be solved in pofgial time [13, 15, 21], with the best
running time beingD(nlogn) [19]. Computing the minimum signed reversal distance, hane
can be done in linear time [2]. Lé¥ be the (unsigned) genome to be sorted. It is easy to see that
each reversal can eliminate at most two breakpoints. (fwdfse a breakpoint is a 2-substrifigj)
of H such thatjj — i| # 1.) Hence, if the optimal solution size is there would be at mostk
breakpoints inH. In other words, there are at most genes which are in some breakpoints. Let
H;, be the set of such (at mostk genes.

Given H, let a maximal substringB3 of H composed of at least two consecutive adjacen-
cies be called dlock, with the first and last letters callelskad and tail of the block respec-
tively. (We also say that the head and the tail adgacent through the block B in H.) Example:
H=1(0,5,7,8,10,1,2,3,4,9,6,11), B = (1,2,3,4) is a block with head and tail4. 7 and8 are
in H; but form an adjacency ifi/. 1 and4 are adjacent through the bloékin H. Following [12],
there is an optimal SMUR solution fdi which does not cut any block.

Let H, be the set of signed genomes obtained by addifig signs on these genes (involved in
some breakpoints) ifi;,. (Following [12], if two such genes i, are the head and tail of a block
B, then all the genes iB should be given the same sign, i.e., either all positive lanegative.) It
is easily seen thaf{, | < 24k Moreover, we have the following lemma.

Lemma 6 Thereisa solution of k£ unsigned reversals for sorting A if and only if the solution can
be found by sorting some sequence in H,~ with k signed reversals.
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Proof. If there is a solution ofk unsigned reversals for sorting, then we can trace these
reversals backwards and each time add signs accordinglgxample, assume that the last reversal
to obtain(0, 1,2, 3,4, 5) is (3,2), then for sorting by signed reversals the second last sigaadme
is (0,1,—-3,—2,4,5). Itis easily seen that after repeating this proced¢snes, we have a signed
genomeH"” in H, . Certainly, one can sofif” by k signed reversals.

On the other hand, if there akesigned reversals which sorts some genom&jn sayH”, one
can ignore the negative signs HY (to obtain /) and perform the samke (unsigned) reversals to

sort H into 1. O

Theorem 5 Sorting with Minimum Unsigned Reversals has a weak kernel of size 4k, hence can be
solved in O(2%n + nlogn) time.

Proof. We first show a bound af(2*n + nlogn), which is straightforward from thék weak
kernel. First, following Lemma 6, the weak kernelizationeiasy: identify all the blocks i
and return(H, Hy,, k). For each possible signed genomdipy (obtained from/;, by adding some
negative signs), we use the algorithm in [2] to check wheitteam be sorted witt signed reversals.
If so, we can compute accordingly thesigned reversals using the algorithm by Swenreatah. [19],
to obtain thek (unsigned) reversals to saft in O(n log n) time. If no valid solution is found, we
report NO. This algorithm clearly runs if(2%*n + nlogn) time.

By a more detailed analysis (i.e., we do not have to try alkflide ways to sign genes i),
the running time of the above algorithm can be improvedt@*n + nlogn) time. Now let the
genes inH;, form a total ofz adjacencies (possibly through some blocks). Followind,[f2wo
such genes form an adjacencyhh obviously they have to be given the same signs, i.e., eitbir
positive or both negative. If two such genes form an adjacéimough some blockB in H, all the
genes inB need to have the same signs. So the total number of ways tgeigrs inH;, is bounded
by

97 y 9(4k—22)/2—1 _ 92k—1

Hence we have an FPT algorithm with running tim&?*n + nlogn). O

4 Concluding Remarks

We formally introduce a new (somehow a previous folklorenaapt called weak kernels for fixed-
parameter computation and proved some interesting piepatweak kernels. We also show some
interesting applications with weak kernels. We believe thacertain problems weak kernels are
more flexible and possibly more powerful than the traditid@ainels. This is certainly the case with

11



our three applications, especially the famous Sorting Withimum Unsigned Reversals (SMUR)
problem. We know of no FPT algorithm which runs closeltt(2*) time. It would be interesting
to see more applications of weak kernels.

We feel that the running times of the best FPT algorithms ffier three problems can all be
further improved, maybe with some new techniques. At thisfpor decentk (sayk = 40), none
of them is really fast enough for practical datasets.

Finally, the Minimum Co-Path Set Problem only handles trecip case of the Radiation Hy-
brid Map Construction Problem (i.e., whé@;| = 2). It would also be interesting to tackle the
general problem with exact and approximation algorithms.

Acknowledgments

This research is partially supported by NSF of China undejegt 60928006. We also thank Mike
Fellows for some valuable comments.

References

[1] P. Berman, S. Hannenhalli and M. Karpinski. 1.375-agpnation algorithm for sorting by
reversals. IrProc. 10th European Symp. on Algorithms (ESA' 02), Pages 200-210, Rome, Italy,
Sep, 2002 (LNCSseries, 2461).

[2] D. Bader, B. Moret and M. Yan. A linear-time algorithm foomputing inversion distance
between signed permutations with an experimental studf.Computational Biology, 8:483—
491, 2001.

[3] A. Caprara. Sorting by reversals is difficult. Proc. 1st Intl. Conf. on Research in Comput.
Molecular Biology (RECOMB'97), pages 75-83, 1997.

[4] Z. Chen, B. Fu, M. Jiang, and B. Zhu. On recovering syritdmocks from comparative maps.
Journal of Combinatorial Optimization, 18:307-318, 2009.

[5] Y. Cheng, Z. Cai, R. Goebel, G. Lin and B. Zhu. The radiatitybrid map construction prob-
lem: recognition, hardness, and approximation algoritHdampublished Manuscript, 2008.

[6] V. Choi, C. Zheng, Q. Zhu, and D. Sankoff. Algorithms ftwetextraction of synteny blocks
from comparative maps. IRroceedings of the 7th International Workshop on Algorithms in
Bioinformatics (WABI’ 07), pages 277-288, 2007.

12



[7] S. Cook. The complexity of theorem-proving procedurksProceedings of the 3rd ACM
Symp. on Theory of Computing (STOC' 71), pages 151-158, 1971.

[8] D.R. Cox, M. Burmeister, E.R. Price, S. Kim, and R.M. MyeRadiation hybrid mapping:
a somatic cell genetic method for constructing high resmtutmaps of mammalian chromo-
somescience, 250:245-250, 1990.

[9] R. Downey and M. FellowsParameterized Complexity, Springer-Verlag, 1999.

[10] M. R. Garey and D. S. JohnsoBomputers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

[11] J. Guo and R. Niedermeier. Invitation to data reductimal problem kernelizationS GACT
News, 38:31-45. 2007.

[12] S. Hannenhalli and P. Pevzner. To cut...or not to cutplsations of comparative physical
maps in molecular evolution). IRroceedings of the 7th ACM-S AM Symp. on Discrete Algo-
rithms (SODA' 96), pages 304313, 1996.

[13] S. Hannenhalli and P. Pevzner. Transforming cabbaigetimnip: polynomial algorithm for
sorting signed permutations by reversalsACM, 46(1):1-27. 1999.

[14] D. Johnson. Approximation algorithms for combinadbmproblems.J. Comput. Sys. Sciences,
9:256-278, 1974.

[15] H. Kaplan, R. Shamir and R. Tarjan. A faster and simplgodthm for sorting signed permu-
tations by reversalsS AM J. Comput., 29:880-892, 1999.

[16] R. Karp. Reducibility among combinatorial problems) R. Miller and J. Thatcher (eds.),
Complexity of Computer Computations, Plenum Press, NY, pages 85-103, 1972.

[17] C.W. Richard, D.A. Withers, T.C. Meeker, S. Maurer, G.&vans, R.M. Myers, and D.R.
Cox. A radiation hybrid map of the proximal long arm of humdmamosome 11, containing
the multiple endocrine neoplasia type 1 (MEN-1) and bclskdse lociAmerican J. of Human
Genetics, 49:1189-1196, 1991.

[18] D. Slonim, L. Kruglyak, L. Stein, and E. Lander. Builgiinuman genome maps with radiation
hybrids.J. of Computational Biology, 4:487-504, 1997.

[19] K. Swenson, V. Rajan, Y. Lin, and B. Moret. Sorting signgermutations by inversions in
O(nlogn) time. InProc. RECOMB'’ 09, LNCS 5541, pages 386—399, 2009.

13



[20] R. Tarjan and A. Trojanowski. Finding a maximum indegent setSAM J. Comput., 6:537-
546, 1977.

[21] E. Tannier and M-F. Sagot. Sorting by reversals in saogatic time. InProc. 15th Symp.
Combinatorial Pattern Matching (CPM’04), Istanbul, Turkey, Pages 1-13, July, 2004 (LNCS
series, 3109).

[22] S.Vishwanathan. An approximation algorithm for thgrasetric travelling salesman problem
with distance one and twénformation Processing Letters, 44:297-302, 1992.

[23] L. Wang and B. Zhu. On the tractability of maximal strgcovery.J. of Computational Biol-
ogy, to appear, 2010. (An earlier version appeared in TAMC’09.)

[24] C. Zheng, Q. Zhu, and D. Sankoff. Removing noise and guitiés from comparative maps
in rearrangement analysikEEE/ACM Transactions on Computational Biology and Bioinfor-
matics, 4:515-522, 2007.

[25] B. zZhu. Efficient algorithms for the complementary of xiraal strip recoverySubmitted to
AAIM’ 10, 2010.

14

ECCC ISSN 1433-8092

http://eccc.hpi-web.de




