Weak Kernels

Haitao Jiang*
Binhai Zhu ${ }^{\dagger}$

January 3, 2010

Abstract

In this paper, we formalize a folklore concept and formally define weak kernels for fixedparameter computation. We show that a problem has a (traditional) kernel then it also has a weak kernel. It is unknown yet whether the converse is always true. On the other hand, for a problem in NP, if it has a weak kernel then it admits an FPT algorithm (hence a kernel). We show a few applications of weak kernels, for which a (traditional) kernelization seems hard to apply. Among them, we present the first FPT algorithm for the famous Sorting by Minimum Unsigned Reversals problem.

[^0]
1 Introduction

In the last four decades, we have seen the huge advance of NP-completeness [7, 16, 10]. Nowadays, NP-complete problems appear in almost all the areas which involves combinatorial optimization, for example in computational biology and bioinformatics. As from the beginning a lot of people tended to believe $P \neq N P$ (at least it seems to be hard to prove or disprove it), people immediately started to investigate different ways to handle NP-hard problems. Up to today, the two most popular ways to handle NP-hard problems, among researchers in algorithm design, are approximation algorithms and exact (or FPT) algorithms, which were started with the seminal works of Johnson [14] and Tarjan and Trojanowski [20] respectively. (Using heuristic methods to hand NP-hard problems, like evolutionary computation, is beyond this paper.)

In some areas like computational biology and bioinformatics, the data usually contain errors. On top of this, if we design a factor-2 approximation to handle these data, whatever result we got is not appealing to biologists. So, to make approximation algorithms useful for these applications, the approximation factors must be very close to one. Then, naturally, FPT algorithm pops up as a natural alternative for handling these problems. The three applications we will discuss in this paper all originate from computational biology.

On the other hand, the theory of fixed-parameter computation has been developed rigorously in the last two decades. The first textbook was published in 1999 by Downey and Fellows [9] and another couple were published in the last several years. Interested readers are referred to [11] for further details and references.

In designing FPT algorithms, kernelization is one of the most fundamental techniques. Loosely speaking, kernelization is really data reduction; i.e., with kernelization one reduces the problem instance size (kernel size) to a level so small that one could even apply a brute-force method. Sometimes, even if the kernel size is slightly bigger (say 2^{k}) so that a brute-force method is inappropriate, one can still make use of it with integer linear programming or branch-and-bound to obtain almost optimal solutions in a reasonable amount of time [11].

In this paper, we formalize a folklore method and formally define weak kernels and weak kernelization. Again, loosely speaking, when viewing an NP-hard optimization problem as a searching problem (like for Vertex Cover, we are really searching for a set of k vertices, among n input vertices, so that deleting the k vertices leaves the resulting graph edge-less), weak kernelization is really about search space reduction. Certainly, if a problem has a kernel then of course it has a weak kernel (which we will prove formally). But whether the converse is true is unknown yet. We show formally that for problems in NP the converse is in fact true.

The purpose for defining the weak kernels concept, on the other hand, is more on helping us de-
sign FPT algorithms more easily. Here, we show three applications, all known to be NP-complete, for which we compute the corresponding weak kernels efficiently (hence design efficient FPT algorithms). Among the three problems, Sorting with Minimum Unsigned Reversals is a famous problem in computational biology and we do not know of any non-trivial kernelization or FPT algorithm for it. We show that Sorting with Minimum Unsigned Reversals has a weak kernel of size $4 k$, hence an FPT algorithm running in $O\left(2^{4 k} n+n \log n\right)$ time (and with a more detailed analysis, in $O\left(2^{2 k} n+n \log n\right)$ time $)$.

This paper is organized as follows. In Section 2, we define weak kernels formally and prove its relation with the (traditional) kernels. In Section 3, we show three applications of weak kernels. In Section 4, we conclude the paper with several open problems.

2 Kernels vs Weak Kernels

2.1 Preliminaries

Basically, a fixed-parameter tractable (FPT) algorithm for an optimization problem Π with optimal solution value k is an algorithm which solves the problem in $O\left(f(k) n^{c}\right)$ time, where f is any function only on k, n is the input size and c is some fixed constant not related to k. FPT also stands for the set of problems which admit such an algorithm.

Kernelization is a polynomial time transformation that transforms a problem instance (I, k) to another instance $\left(I^{\prime}, k^{\prime}\right)$ such that (1) (I, k) is a yes-instance iff $\left(I^{\prime}, k^{\prime}\right)$ is also a yes-instance; (2) $k^{\prime} \leq k$; and (3) $\left|I^{\prime}\right| \leq f(k)$ for some function $f(-)$. ($\left.I^{\prime}, k\right)$ is typically called a kernel of the problem, with size $\left|I^{\prime}\right|$. It is easy to see that if a problem has a kernel then it is in FPT; moreover, every problem in FPT has a kernel. More details on FPT algorithms can be found in [9].

2.2 Weak Kernels

As illustrated in the introduction, we view weak kernelization (weak kernels) as a way to reduce search space. Given an optimization problem Π, let $\Pi(I)$ be an instance of Π, and let a solution of size k can be searched from a component $S(I)$ of $\Pi(I)$. So we denote the resulting search problem as $(\Pi(I), S(I), k)$. For example, the corresponding search problem for Vertex Cover is $(G=(V, E), V, k)$.

A weak kernelization is a polynomial time transformation which transforms a search problem instance ($\Pi(I), S(I), k)$ into $\left(\Pi\left(I^{\prime}\right), S^{\prime}(I), k\right)$ such that (1) $\left|\Pi\left(I^{\prime}\right)\right| \leq|\Pi(I)| ; ~(2)\left|S^{\prime}(I)\right| \leq f(k)$ for some function $f(-)$; (3) $(\Pi(I), S(I), k)$ is a yes-instance iff $\left(\Pi\left(I^{\prime}\right), S^{\prime}(I), k\right)$ is a yes-instance. Note that condition (1) is not important in our definition, in other words, while we have to reduce
search space, we can but do not have to reduce the problem input size (e.g., we can even make $\left.\Pi(I)=\Pi\left(I^{\prime}\right)\right)$. $\left(\Pi\left(I^{\prime}\right), S^{\prime}(I), k\right)$ (or simply $\left.S^{\prime}(I)\right)$ is also called the corresponding weak kernel for Π, with size $\left|S^{\prime}(I)\right|$.

We have the following results regarding weak kernels.
Lemma 1 If a problem Π has a kernel, then it has a weak kernel.
Proof. Let the kernel for $\Pi(I)$ be $\left(\Pi\left(I_{1}\right), k\right)$, with $\left|\Pi\left(I_{1}\right)\right| \leq f(k)$ for some function $f(-)$. We can view the (searching) problem Π as $\left(\Pi(I), \Pi\left(I_{1}\right), k\right)$, which is the corresponding weak kernel; i.e., $\Pi(I)$ can be solved by searching a solution of size k from $\Pi\left(I_{1}\right)$ (which has size at most $f(k)$). Hence, Π has a weak kernel.

The converse of Lemma 1 is not necessarily true (at least we cannot prove that the converse is true). For instance, let an EXP-complete search problem $\left(\Pi^{\prime}(I), S(I), k\right)$ have a weak kernel of size $w(k)$, say $\left(\Pi^{\prime}(I), S^{\prime}(I), k\right)$ with $S^{\prime}(I) \leq w(k)$. As Π^{\prime} is EXP-complete, checking whether a solution of size k from $S^{\prime}(I)$ is a YES/NO instance for $\Pi^{\prime}(I)$ probably can not be done in polynomial time (unless the complexity hierarchy collapses at certain place). How to find such an problem Π^{\prime} beyond NP is open.

On the other hand, when $\Pi \in N P$, we can show that traditional kernels and weak kernels are equivalent in theory. Of course, that does not imply their sizes are the same.

Theorem 1 If a problem $\Pi \in$ NP has a weak kernel, then it admits an FPT algorithm.
Proof. Let the weak kernel be $\left(\Pi(I), S^{\prime}(I), k\right)$, with $\left|S^{\prime}(I)\right| \leq f(k)$ for some function $f(-)$. We can enumerate all possible solutions of size k in $S^{\prime}(I)$ and for each one check whether it is a YES/NO instance, which can be done in polynomial time as $\Pi \in N P$. If no YES instance is found then return NO; otherwise return the YES instance. Hence we have an FPT algorithm.

Corollary 1 If a problem $\Pi \in N$ P has a weak kernel, then it has a kernel.
Proof. If Π has a weak kernel, following Theorem 1, it admits an FPT algorithm. Following the known result in FPT theory, a problem in FPT always has a kernel [9]. Hence Π has a kernel.

Combining this with Lemma 1, we have the following theorem.
Theorem 2 A problem $\Pi \in N P$ has a weak kernel if and only if it has a kernel.
While the above proofs are not really difficult, the true merit of the corresponding results seems to be helping us design efficient FPT algorithms via weak kernels directly. We show below three examples of the applications of weak kernels. For all of them, we do not know of better kernel bounds. For the famous Sorting with Minimum Unsigned Reversals, this is the first non-trivial FPT algorithm.

3 Applications

We consider three minimization problems which are all known to be NP-complete: Complement of Maximal Strip Recovery (CMSR), Minimum Co-Path Set and Sorting with Minimum Unsigned Reversals (SMUR).

3.1 CMSR

Given two genomic maps G_{1} and G_{2} represented by a sequence of n gene markers, a strip (syntenic block) is a sequence of distinct markers of length at least two which appear as subsequences in the input maps, either directly or in reversed and negated form. The problem Maximal Strip Recovery (MSR) is to find two subsequences G_{1}^{\star} and G_{2}^{\star} of G_{1} and G_{2}, respectively, such that the total length of disjoint strips in G_{1}^{\star} and G_{2}^{\star} is maximized (i.e., conversely, the complement of the problem CMSR is to minimize the number of markers deleted to have a feasible solution). An example of MSR and CMSR is shown in the following figure, in which each integer represents a marker. Throughout this paper, a sequence is either denoted as a list as in Figure 1, or it can just be denoted as a string.

$$
\begin{aligned}
G_{1} & =\langle 1,2,3,4,5,6,7,8,9,10,11,12\rangle \\
G_{2} & =\langle-9,-4,-7,-6,8,1,3,2,-12,-11,-10,-5\rangle \\
S_{1} & =\langle 1,2\rangle \\
S_{2} & =\langle 6,7,9\rangle \\
S_{3} & =\langle 10,11,12\rangle \\
G_{1}^{\star} & =\langle 1,2,6,7,9,10,11,12\rangle \\
G_{2}^{\star} & =\langle-9,-7,-6,1,2,-12,-11,-10\rangle
\end{aligned}
$$

Figure 1: An example for the problem MSR and CMSR. MSR has a solution size of eight, with three strips S_{1}, S_{2}, S_{3}. CMSR has a solution size of four: the deleted markers are 3,4,5 and 8 .

MSR and CMSR were motivated by eliminating redundancies in genomic maps [6, 24]. Recently, both MSR and CMSR are shown to be NP-complete [23]. The generalization to handle more than two genomic maps can be found in [4, 23].

The computation of weak kernel for CMSR was already presented in [23]. (Of course, it was a folklore and was even called 'kernel' in [23]; likewise, MSR and CMSR was not properly distinguished in [23] even though they are complement to each other.) Due to the mis-use of terminology
and confusion, we sketch and revise the crucial parts of the method to have a clear one here, as the first application of weak kernels.

Lemma 2 Before any marker is deleted, if $x y z w$ or $-w-z-y-x$ appears in both G_{1} and G_{2} (or, if $x y z w$ appears in G_{1} and $-w-z-y-x$ appears in G_{2}, and vice versa), then there is an optimal solution for MSR which has $x y z w$ or $-w-z-y-x$ as a strip.

Proof. Wlog, we only consider the case when $x y z w$ appears in G_{1} and $-w-z-y-x$ appears in G_{2}. The cases when $x y z w(-w-z-y-x)$ appears in both G_{1} and G_{2} are similar.

Let the length-6 substring in G_{1} containing $x y z w$ be $p_{1}(x) x y z w s_{1}(w)$ and let the length- 6 substring in G_{2} containing $-w-z-y-x$ be $p_{2}(w)-w-z-y-x s_{2}(x)$. When delete $x y z w$ from G_{1} and $-w-z-y-x$ from G_{2}, at most two strips can be obtained: $p_{1}(x) s_{1}(w)$ and $p_{2}(w) s_{2}(x)$ (with a total length of 4). Clearly, retaining $x y z w$ and $-w-z-y-x$ as a strip can give us a solution at least as good as any optimal solution. Hence, the lemma is proven.

Let Σ be the alphabet for the input maps G_{1} and G_{2}. The above lemma gives us a weak kernelization procedure.

1. Identify a set of strips of length at least four from the two sequences, without deleting any gene marker.
2. For each strip identified, change it to a new letter in Σ_{1}, with $\Sigma_{1} \cap \Sigma=\emptyset$. Let the resulting sequences be $G_{1}^{\prime}, G_{2}^{\prime}$.

Let Σ_{1} be the set of new letters used in the weak kernelization process, with $\Sigma_{1} \cap \Sigma=\emptyset$. The two lemmas for obtaining the final result are: (1) There is an optimal CMSR solution of size k for G_{1} and G_{2} if and only if the solution can be obtained by deleting k markers in Σ from G_{1}^{\prime} and G_{2}^{\prime} respectively. (2) In G_{1}^{\prime} (resp. G_{2}^{\prime}), there are at most $5 k$ letters (markers) in Σ [23]. To see the last lemma, let x be a marker to be deleted, let it appear in G_{1}^{\prime} as $\ldots a x b \ldots c d \ldots$ and let it appear in G_{2}^{\prime} as $\ldots c x d \ldots a b \ldots$. Clearly, in this example x is associated with $\{x, a, b, c, d\}$.

Theorem 3 [23] CMSR has a weak kernel of size $5 k$ which implies directly an FPT algorithm running in $O\left(2^{3.61 k} n+n^{2}\right)$ time.

Proof. From the above discussion, we can choose to delete k letters in Σ from $G_{1}^{\prime}, G_{2}^{\prime}$. The number of choices, is hence bounded by

$$
\binom{5 k}{k} \approx 2^{3.61 k}
$$

using Stirling's formula. For each choice, we can check whether it is valid, i.e., whether all remaining markers are in some strip in G_{1}^{\prime} and G_{2}^{\prime}. This can be done in linear time if we spend $O\left(n^{2}\right)$ time in advance, i.e., building a correspondence between all of the identical markers in G_{1}, G_{2}. So the overall running time of the algorithm is $O\left(2^{3.61 k} n+n^{2}\right)$ time. Note that the algorithm will report 'no solution of size k ', if none of the choices leads to a valid solution.

We comment that with the bounded search tree method, the FPT algorithm can be improved to run in $O\left(3^{k} n+n^{2}\right)$ time [25]. The details will not be reported here.

3.2 Minimum Co-Path Set

In this subsection, we study the following problem called Minimum Co-Path Set. Given a simple undirected graph G, a co-path set is a set S of edges in G whose removal leaves a graph in which every connected component is a path. In the Minimum Co-Path Set Problem, we need to compute a minimum co-path set in G.

The Minimum Co-Path Set Problem originates from radiation hybrid (Rh) mapping, which is a powerful technique for mapping unique DNA sequences onto chromosomes and whole genomes [5, 8, 17, 18]. In Rh mapping, chromosomes are randomly broken into small DNA fragments through gamma radiation. A (random) subset of these DNA fragments retain with healthy hamster cells and grow up to build up a hybrid cell line. This process is repeated many times and the coretention rate of a pair of markers (labeled chromosomal loci) indicates their physical distance on the chromosome. In principle, when two markers x and y are close, the probability that x and y are broken by the gamma radiation is small, hence with a high probability they are either co-present in or co-absent from a DNA fragment.

A subset of markers that are co-present from DNA fragments is called a cluster. Let $V=$ $\{1,2, \ldots, n\}$ be a set of markers and let $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be a collection of clusters. The Radiation Hybrid Map Construction Problem is to compute a linear ordering of the markers in which the markers in each cluster C_{i} appear consecutively. In reality, a cluster might be formed with errors, so no such linear ordering might exist. In this case, one needs to remove the minimum number of clusters so that the leftover clusters admit a linear ordering. When $\left|C_{i}\right|=2$ for all i, this is exactly the Minimum Co-Path Set Problem. Given a simple undirected graph $G=(V, E)$, each vertex in V corresponds to a marker, an edge $(u, v) \in E$ corresponds to a cluster $\{u, v\}$.

In [5], the Minimum Co-Path Set Problem was shown to be NP-complete [10]. The proof is by a reduction from the Hamiltonian Path problem, with each edge (u, v) being converted to a cluster $\{u, v\}$. It is easy to see that there is a Hamiltonian Path in the input graph G if and only if one has to delete exactly $|E|-n+1$ clusters. A factor-2 approximation was also proposed in [5]. (The
counterpart of the Minimum Co-Path Set Problem is the well-known Minimum Path Cover problem [22] and will not be covered here.) Let k be the minimum number of edges deleted for the problem. We show in this subsection that the Minimum Co-Path Set Problem is in FPT; in fact, it has a linear weak kernel of size at most $5 k$, hence the problem can be solved efficiently in $O\left(2^{3.61 k}(n+k)\right)$ time. In the following, we present the technical details.

If some connected component of G has maximum vertex degree at most 2 then the problem is trivially solvable for that component. So from now on we assume that each connected component of G has maximum vertex degree at least 3. Moreover, in the solution a single vertex could also be considered as a (degenerate) path. The following lemma is easy to prove.

Lemma 3 There is a solution R for the minimum co-path set such that R contains only edges incident to some vertices of degree at least 3 in G.

Proof. Assume to the contrary that a solution R contains some edge (x, y) such that both x and y have degree at most two in G. Let $G-R$ be the graph obtained from G by deleting all the edges in R. When both x and y have degrees at most 2 , if (x, y) is in R then putting it back to $G-R$ would have two possibilities: (1) make each connected component of $(G-R) \cup\{(x, y)\}$ a path, or (2) create some cycle in $(G-R) \cup\{(x, y)\}$. In case (1), it contradicts the optimality of R. In case (2), (x, y) is on some cycle in G. Hence we can find an edge $\left(x^{\prime}, y^{\prime}\right)$ on this cycle which is incident to some vertex of degree at least 3 in G. Then we simply swap (x, y) with $\left(x^{\prime}, y^{\prime}\right)$ in R. It is easy to see that repeating this process we can eventually have a new solution R^{\prime} such that $\left|R^{\prime}\right|=|R|$ and R^{\prime} contains only edges incident to some vertices of degree at least 3 in G.

Now let D be a solution for the minimum co-path set such that D contains only edges incident to some vertices of degree at least 3 in G. The above lemma implies a simple weak kernelization procedure.

1. Identify the vertices of G with degree at least 3 . Let this set be $V_{3}(G)$.
2. Let the set of edges which are incident to some vertices in $V_{3}(G)$ be $E_{3}(G)$.

Return $\left(G, E_{3}(G), k\right)$ as a weak kernel.
We have the following lemma.
Lemma 4 The Minimum Co-Path Set Problem has a solution of size k if and only if the solution can be obtained by deleting k edges in $E_{3}(G)$.

Proof. We only need to show the 'only-if' part as the other part is obvious. By Lemma 3, we do not need to include any edge in D which is incident to vertices of degree only one or two.

It remains to show the weak kernel size (i.e., the size of $E_{3}(G)$). We have the following lemma.

Lemma 5 Let $k=|D|$, then $\left|E_{3}(G)\right| \leq 5 k$. In other words, the size of the weak kernel of the Minimum Co-Path Set Problem is $5 k$.

Proof. From Lemma 4, we know that the k edges of D can be found in $E_{3}(G)$. After these k edges in D are deleted from $G, G-D$ is only composed of paths, i.e., the degrees of vertices in $G-D$ are at most 2. In other words, the edges in $E_{3}(G)-D$ must also be incident to vertices in $G-D$ of degree at most 2 (note that these vertices originally are all in $V_{3}(G)$). As the k edges in D are incident to at most $2 k$ vertices in $V_{3}(G),\left|V_{3}(G)\right| \leq 2 k$. Therefore, we have at most $4 k$ edges in $E_{3}(G)-D$. Counting the k edges in D back, we have $\left|E_{3}(G)\right|=\left|E_{3}(G)-D\right|+|D| \leq 4 k+k=5 k$.

With the above lemmas, it is easy to have an FPT algorithm for the Minimum Co-Path Set Problem. First, if $\left|V_{3}(G)\right|>2 k$ or $\left|E_{3}(G)\right|>5 k$ then we can simply return No. Otherwise, among the (at most) $5 k$ edges in $E_{3}(G)$, select all combinations of k edges to delete. For each set of k edges selected, delete them from G and check whether the resulting graph is composed of paths only (using standard linear time graph algorithms like depth-first search). If we fail to find such a set, then return 'No solution of size k '; otherwise, just return the computed set of edges as D.

The time complexity of the algorithm is dominated by checking $\binom{5 k}{k} \approx 2^{3.61 k}$ solutions. This presents an FPT algorithm for the Minimum Co-Path Set Problem which runs in $O\left(2^{3.61 k}(n+\right.$ $k)$) time. We have the following theorem.

Theorem 4 Let k be the size of the minimum co-path set. The Minimum Co-Path Set Problem has a weak kernel of size $5 k$, hence can be solved in $O\left(2^{3.61 k}(n+k)\right)$ time.

Similar to CMSR, we show recently, with the bounded search tree method, that the Minimum Co-Path Set Problem can be solved in $O\left(2.46^{k}(n+k)\right)$ time. The results will be reported elsewhere.

3.3 Sorting with Minimum Unsigned Reversals

Sorting with Minimum Unsigned Reversals (SMUR) is a famous problem in computational biology, more specifically, in computational genomics. Given a genome H composed of a sequence of n distinct genes (also formulated as a permutations of n integers $\{1,2, \ldots, n\}$), i.e., assume that $H=s_{1} s_{2} \cdots s_{i} s_{i+1} \cdots s_{j-1} s_{j} \cdots s_{n}$, a reversal operation on the segment $s_{i} s_{i+1} \cdots s_{j-1} s_{j}$ transforms H into $H^{\prime}=s_{1} s_{2} \cdots s_{j} s_{j-1} \cdots s_{i+1} s_{i} \cdots s_{n}$. The problem Sorting with Minimum Unsigned Reversals is to use the minimum number of reversals to convert H into the identity permutation $I=123 . . . n$. Example: Given $H=15342$, we can use two signed reversals to first change it to 15432 and finally to 12345.

When the genes are signed, we have a similar problem Sorting with Minimum Signed Reversals. Given a signed genome H^{-}composed of a sequence of n distinct (signed) genes (also formulated as a signed permutations of n integers $\{1,2, \ldots, n\}$), i.e., $H^{-}=t_{1} t_{2} \cdots t_{i} t_{i+1} \cdots t_{j-1} t_{j} \cdots t_{n}$, a signed reversal operation on the segment $t_{i} t_{i+1} \cdots t_{j-1} t_{j}$ transforms H^{-}into $H^{\prime \prime}=t_{1} t_{2} \cdots-$ $t_{j}-t_{j-1} \cdots-t_{i+1}-t_{i} \cdots t_{n}$. The problem Sorting with Minimum Signed Reversals is to use the minimum number of signed reversals to convert H^{-}into the identity permutation $I=123 \ldots n$. Example: Given $H=1-534-2$, we can use two signed reversals to first change it to $1-5-4-3-2$ and finally to 12345 . (Note that in the literature it is also acceptable to convert H^{-}to $-I=$ $-n \ldots-3-2-1$. We can enforce that H^{-}is converted to I by adding two auxiliary genes, i.e., $0 H^{-}(n+1)$. This is a known trick in computational genomics.)

SMUR was shown to be NP-complete by Caprara [3] and the best approximation algorithm has a factor 1.375 [1]. However, no non-trivial FPT algorithm is known for the problem. The trivial solution is to use a bounded search tree algorithm which runs in roughly $O\left(k^{O(k)} n\right)$ time. We show below that with weak kernels, a much faster FPT algorithm can be designed.

We use Sorting with Minimum Signed Reversals as a subroutine for SMUR. Unlike SMUR, Sorting with Minimum Signed Reversals can be solved in polynomial time [13, 15, 21], with the best running time being $O(n \log n)$ [19]. Computing the minimum signed reversal distance, however, can be done in linear time [2]. Let H be the (unsigned) genome to be sorted. It is easy to see that each reversal can eliminate at most two breakpoints. (In this case a breakpoint is a 2 -substring $\langle i, j\rangle$ of H such that $|j-i| \neq 1$.) Hence, if the optimal solution size is k, there would be at most $2 k$ breakpoints in H. In other words, there are at most $4 k$ genes which are in some breakpoints. Let H_{k} be the set of such (at most) $4 k$ genes.

Given H, let a maximal substring B of H composed of at least two consecutive adjacencies be called a block, with the first and last letters called head and tail of the block respectively. (We also say that the head and the tail are adjacent through the block B in H.) Example: $H=\langle 0,5,7,8,10,1,2,3,4,9,6,11\rangle, B=\langle 1,2,3,4\rangle$ is a block with head 1 and tail 4.7 and 8 are in H_{7} but form an adjacency in $H .1$ and 4 are adjacent through the block B in H. Following [12], there is an optimal SMUR solution for H which does not cut any block.

Let H_{k}^{-}be the set of signed genomes obtained by adding $+/-$signs on these genes (involved in some breakpoints) in H_{k}. (Following [12], if two such genes in H_{k} are the head and tail of a block B, then all the genes in B should be given the same sign, i.e., either all positive or all negative.) It is easily seen that $\left|H_{k}^{-}\right| \leq 2^{4 k}$. Moreover, we have the following lemma.

Lemma 6 There is a solution of k unsigned reversals for sorting H if and only if the solution can be found by sorting some sequence in H_{k}^{-}with k signed reversals.

Proof. If there is a solution of k unsigned reversals for sorting H, then we can trace these k reversals backwards and each time add signs accordingly. For example, assume that the last reversal to obtain $\langle 0,1,2,3,4,5\rangle$ is $\langle 3,2\rangle$, then for sorting by signed reversals the second last signed genome is $\langle 0,1,-3,-2,4,5\rangle$. It is easily seen that after repeating this process k times, we have a signed genome $H^{\prime \prime}$ in H_{k}^{-}. Certainly, one can sort $H^{\prime \prime}$ by k signed reversals.

On the other hand, if there are k signed reversals which sorts some genome in H_{k}^{-}, say $H^{\prime \prime}$, one can ignore the negative signs in H^{\prime} (to obtain H) and perform the same k (unsigned) reversals to sort H into I.

Theorem 5 Sorting with Minimum Unsigned Reversals has a weak kernel of size $4 k$, hence can be solved in $O\left(2^{2 k} n+n \log n\right)$ time.

Proof. We first show a bound of $O\left(2^{4 k} n+n \log n\right)$, which is straightforward from the $4 k$ weak kernel. First, following Lemma 6, the weak kernelization is easy: identify all the blocks in H and return $\left(H, H_{k}, k\right)$. For each possible signed genome in H_{k}^{-}(obtained from H_{k} by adding some negative signs), we use the algorithm in [2] to check whether it can be sorted with k signed reversals. If so, we can compute accordingly the k signed reversals using the algorithm by Swenson et al. [19], to obtain the k (unsigned) reversals to sort H in $O(n \log n)$ time. If no valid solution is found, we report NO. This algorithm clearly runs in $O\left(2^{4 k} n+n \log n\right)$ time.

By a more detailed analysis (i.e., we do not have to try all possible ways to sign genes in H_{k}), the running time of the above algorithm can be improved to $O\left(2^{2 k} n+n \log n\right)$ time. Now let the genes in H_{k} form a total of z adjacencies (possibly through some blocks). Following [12], if two such genes form an adjacency in H, obviously they have to be given the same signs, i.e., either both positive or both negative. If two such genes form an adjacency through some block B in H, all the genes in B need to have the same signs. So the total number of ways to sign genes in H_{k} is bounded by

$$
2^{z} \times 2^{(4 k-2 z) / 2-1}=2^{2 k-1}
$$

Hence we have an FPT algorithm with running time $O\left(2^{2 k} n+n \log n\right)$.

4 Concluding Remarks

We formally introduce a new (somehow a previous folklore) concept called weak kernels for fixedparameter computation and proved some interesting properties of weak kernels. We also show some interesting applications with weak kernels. We believe that for certain problems weak kernels are more flexible and possibly more powerful than the traditional kernels. This is certainly the case with
our three applications, especially the famous Sorting with Minimum Unsigned Reversals (SMUR) problem. We know of no FPT algorithm which runs close to $O^{*}\left(2^{4 k}\right)$ time. It would be interesting to see more applications of weak kernels.

We feel that the running times of the best FPT algorithms for the three problems can all be further improved, maybe with some new techniques. At this point for decent k (say $k=40$), none of them is really fast enough for practical datasets.

Finally, the Minimum Co-Path Set Problem only handles the special case of the Radiation Hybrid Map Construction Problem (i.e., when $\left|C_{i}\right|=2$). It would also be interesting to tackle the general problem with exact and approximation algorithms.

Acknowledgments

This research is partially supported by NSF of China under project 60928006. We also thank Mike Fellows for some valuable comments.

References

[1] P. Berman, S. Hannenhalli and M. Karpinski. 1.375-approximation algorithm for sorting by reversals. In Proc. 10th European Symp. on Algorithms (ESA'02), Pages 200-210, Rome, Italy, Sep, 2002 (LNCS series, 2461).
[2] D. Bader, B. Moret and M. Yan. A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. J. of Computational Biology, 8:483491, 2001.
[3] A. Caprara. Sorting by reversals is difficult. In Proc. 1st Intl. Conf. on Research in Comput. Molecular Biology (RECOMB'97), pages 75-83, 1997.
[4] Z. Chen, B. Fu, M. Jiang, and B. Zhu. On recovering syntenic blocks from comparative maps. Journal of Combinatorial Optimization, 18:307-318, 2009.
[5] Y. Cheng, Z. Cai, R. Goebel, G. Lin and B. Zhu. The radiation hybrid map construction problem: recognition, hardness, and approximation algorithms. Unpublished Manuscript, 2008.
[6] V. Choi, C. Zheng, Q. Zhu, and D. Sankoff. Algorithms for the extraction of synteny blocks from comparative maps. In Proceedings of the 7th International Workshop on Algorithms in Bioinformatics (WABI’07), pages 277-288, 2007.
[7] S. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd ACM Symp. on Theory of Computing (STOC’71), pages 151-158, 1971.
[8] D.R. Cox, M. Burmeister, E.R. Price, S. Kim, and R.M. Myers. Radiation hybrid mapping: a somatic cell genetic method for constructing high resolution maps of mammalian chromosomes. Science, 250:245-250, 1990.
[9] R. Downey and M. Fellows. Parameterized Complexity, Springer-Verlag, 1999.
[10] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NPCompleteness. W. H. Freeman, 1979.
[11] J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelization. SIGACT News, 38:31-45. 2007.
[12] S. Hannenhalli and P. Pevzner. To cut...or not to cut (Applications of comparative physical maps in molecular evolution). In Proceedings of the 7th ACM-SIAM Symp. on Discrete Algorithms (SODA'96), pages 304-313, 1996.
[13] S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM, 46(1):1-27. 1999.
[14] D. Johnson. Approximation algorithms for combinatorial problems. J. Comput. Sys. Sciences, 9:256-278, 1974.
[15] H. Kaplan, R. Shamir and R. Tarjan. A faster and simpler algorithm for sorting signed permutations by reversals. SIAM J. Comput., 29:880-892, 1999.
[16] R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher (eds.), Complexity of Computer Computations, Plenum Press, NY, pages 85-103, 1972.
[17] C.W. Richard, D.A. Withers, T.C. Meeker, S. Maurer, G.A., Evans, R.M. Myers, and D.R. Cox. A radiation hybrid map of the proximal long arm of human chromosome 11, containing the multiple endocrine neoplasia type 1 (MEN-1) and bcl-1 disease loci. American J. of Human Genetics, 49:1189-1196, 1991.
[18] D. Slonim, L. Kruglyak, L. Stein, and E. Lander. Building human genome maps with radiation hybrids. J. of Computational Biology, 4:487-504, 1997.
[19] K. Swenson, V. Rajan, Y. Lin, and B. Moret. Sorting signed permutations by inversions in $O(n \log n)$ time. In Proc. RECOMB'09, LNCS 5541, pages 386-399, 2009.
[20] R. Tarjan and A. Trojanowski. Finding a maximum independent set. SIAM J. Comput., 6:537546, 1977.
[21] E. Tannier and M-F. Sagot. Sorting by reversals in subquadratic time. In Proc. 15th Symp. Combinatorial Pattern Matching (CPM'04), Istanbul, Turkey, Pages 1-13, July, 2004 (LNCS series, 3109).
[22] S. Vishwanathan. An approximation algorithm for the asymmetric travelling salesman problem with distance one and two. Information Processing Letters, 44:297-302, 1992.
[23] L. Wang and B. Zhu. On the tractability of maximal strip recovery. J. of Computational Biology, to appear, 2010. (An earlier version appeared in TAMC'09.)
[24] C. Zheng, Q. Zhu, and D. Sankoff. Removing noise and ambiguities from comparative maps in rearrangement analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4:515-522, 2007.
[25] B. Zhu. Efficient algorithms for the complementary of maximal strip recovery. Submitted to AAIM'10, 2010.

[^0]: ${ }^{*}$ Department of Computer Science, Montana State University, Bozeman, MT 59717, USA. Email: htjiang@cs.montana.edu.
 ${ }^{\dagger}$ Corresponding author. Department of Computer Science, Montana State University, Bozeman, MT 59717, USA. Email: bhz@cs.montana.edu.

