
Weak Kernels

Haitao Jiang∗ Binhai Zhu†

January 3, 2010

Abstract

In this paper, we formalize a folklore concept and formally defineweak kernels for fixed-

parameter computation. We show that a problem has a (traditional) kernel then it also has a

weak kernel. It is unknown yet whether the converse is alwaystrue. On the other hand, for a

problem in NP, if it has a weak kernel then it admits an FPT algorithm (hence a kernel). We

show a few applications of weak kernels, for which a (traditional) kernelization seems hard to

apply. Among them, we present the first FPT algorithm for the famous Sorting by Minimum

Unsigned Reversals problem.

∗Department of Computer Science, Montana State University,Bozeman, MT 59717, USA. Email:

htjiang@cs.montana.edu.
†Corresponding author. Department of Computer Science, Montana State University, Bozeman, MT 59717, USA.

Email: bhz@cs.montana.edu.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 5 (2010)

1 Introduction

In the last four decades, we have seen the huge advance of NP-completeness [7, 16, 10]. Nowadays,

NP-complete problems appear in almost all the areas which involves combinatorial optimization, for

example in computational biology and bioinformatics. As from the beginning a lot of people tended

to believeP 6= NP (at least it seems to be hard to prove or disprove it), people immediately started

to investigate different ways to handle NP-hard problems. Up to today, the two most popular ways

to handle NP-hard problems, among researchers in algorithmdesign, are approximation algorithms

and exact (or FPT) algorithms, which were started with the seminal works of Johnson [14] and

Tarjan and Trojanowski [20] respectively. (Using heuristic methods to hand NP-hard problems, like

evolutionary computation, is beyond this paper.)

In some areas like computational biology and bioinformatics, the data usually contain errors.

On top of this, if we design a factor-2 approximation to handle these data, whatever result we got

is not appealing to biologists. So, to make approximation algorithms useful for these applications,

the approximation factors must be very close to one. Then, naturally, FPT algorithm pops up as a

natural alternative for handling these problems. The threeapplications we will discuss in this paper

all originate from computational biology.

On the other hand, the theory of fixed-parameter computationhas been developed rigorously

in the last two decades. The first textbook was published in 1999 by Downey and Fellows [9] and

another couple were published in the last several years. Interested readers are referred to [11] for

further details and references.

In designing FPT algorithms, kernelization is one of the most fundamental techniques. Loosely

speaking, kernelization is reallydata reduction; i.e., with kernelization one reduces the problem

instance size (kernel size) to a level so small that one couldeven apply a brute-force method. Some-

times, even if the kernel size is slightly bigger (say2k) so that a brute-force method is inappropriate,

one can still make use of it with integer linear programming or branch-and-bound to obtain almost

optimal solutions in a reasonable amount of time [11].

In this paper, we formalize a folklore method and formally define weak kernels and weak ker-

nelization. Again, loosely speaking, when viewing an NP-hard optimization problem as a searching

problem (like for Vertex Cover, we are really searching for aset ofk vertices, amongn input ver-

tices, so that deleting thek vertices leaves the resulting graph edge-less), weak kernelization is

really aboutsearch space reduction. Certainly, if a problem has a kernel then of course it has a

weak kernel (which we will prove formally). But whether the converse is true is unknown yet. We

show formally that for problems in NP the converse is in fact true.

The purpose for defining the weak kernels concept, on the other hand, is more on helping us de-

2

sign FPT algorithms more easily. Here, we show three applications, all known to be NP-complete,

for which we compute the corresponding weak kernels efficiently (hence design efficient FPT al-

gorithms). Among the three problems, Sorting with Minimum Unsigned Reversals is a famous

problem in computational biology and we do not know of any non-trivial kernelization or FPT al-

gorithm for it. We show that Sorting with Minimum Unsigned Reversals has a weak kernel of size

4k, hence an FPT algorithm running inO(24kn + n log n) time (and with a more detailed analysis,

in O(22kn + n log n) time).

This paper is organized as follows. In Section 2, we define weak kernels formally and prove its

relation with the (traditional) kernels. In Section 3, we show three applications of weak kernels. In

Section 4, we conclude the paper with several open problems.

2 Kernels vs Weak Kernels

2.1 Preliminaries

Basically, a fixed-parameter tractable (FPT) algorithm foran optimization problemΠ with optimal

solution valuek is an algorithm which solves the problem inO(f(k)nc) time, wheref is any

function only onk, n is the input size andc is some fixed constant not related tok. FPT also stands

for the set of problems which admit such an algorithm.

Kernelization is a polynomial time transformation that transforms a problem instance(I, k) to

another instance(I ′, k′) such that (1)(I, k) is a yes-instance iff(I ′, k′) is also a yes-instance; (2)

k′ ≤ k; and (3)|I ′| ≤ f(k) for some functionf(−). (I ′, k) is typically called akernel of the

problem, with size|I ′|. It is easy to see that if a problem has a kernel then it is in FPT; moreover,

every problem in FPT has a kernel. More details on FPT algorithms can be found in [9].

2.2 Weak Kernels

As illustrated in the introduction, we view weak kernelization (weak kernels) as a way to reduce

search space. Given an optimization problemΠ, let Π(I) be an instance ofΠ, and let a solution

of size k can be searched from a componentS(I) of Π(I). So we denote the resulting search

problem as(Π(I), S(I), k). For example, the corresponding search problem for Vertex Cover is

(G = (V,E), V, k).

A weak kernelization is a polynomial time transformation which transforms a search problem

instance(Π(I), S(I), k) into (Π(I ′), S′(I), k) such that (1)|Π(I ′)| ≤ |Π(I)|; (2) |S′(I)| ≤ f(k)

for some functionf(−); (3) (Π(I), S(I), k) is a yes-instance iff(Π(I ′), S′(I), k) is a yes-instance.

Note that condition (1) is not important in our definition, inother words, while we have to reduce

3

search space, we can but do not have to reduce the problem input size (e.g., we can even make

Π(I) = Π(I ′)). (Π(I ′), S′(I), k) (or simplyS′(I)) is also called the correspondingweak kernel for

Π, with size|S′(I)|.

We have the following results regarding weak kernels.

Lemma 1 If a problem Π has a kernel, then it has a weak kernel.

Proof. Let the kernel forΠ(I) be (Π(I1), k), with |Π(I1)| ≤ f(k) for some functionf(−). We

can view the (searching) problemΠ as(Π(I),Π(I1), k), which is the corresponding weak kernel;

i.e.,Π(I) can be solved by searching a solution of sizek from Π(I1) (which has size at mostf(k)).

Hence,Π has a weak kernel. ⊓⊔

The converse of Lemma 1 is not necessarily true (at least we cannot prove that the converse is

true). For instance, let an EXP-complete search problem(Π′(I), S(I), k) have a weak kernel of

sizew(k), say(Π′(I), S′(I), k) with S′(I) ≤ w(k). As Π′ is EXP-complete, checking whether a

solution of sizek from S′(I) is a YES/NO instance forΠ′(I) probably can not be done in polyno-

mial time (unless the complexity hierarchy collapses at certain place). How to find such an problem

Π′ beyond NP is open.

On the other hand, whenΠ ∈ NP , we can show that traditional kernels and weak kernels are

equivalent in theory. Of course, that does not imply their sizes are the same.

Theorem 1 If a problem Π ∈ NP has a weak kernel, then it admits an FPT algorithm.

Proof. Let the weak kernel be(Π(I), S′(I), k), with |S′(I)| ≤ f(k) for some functionf(−).

We can enumerate all possible solutions of sizek in S′(I) and for each one check whether it is a

YES/NO instance, which can be done in polynomial time asΠ ∈ NP . If no YES instance is found

then return NO; otherwise return the YES instance. Hence we have an FPT algorithm. ⊓⊔

Corollary 1 If a problem Π ∈ NP has a weak kernel, then it has a kernel.

Proof. If Π has a weak kernel, following Theorem 1, it admits an FPT algorithm. Following the

known result in FPT theory, a problem in FPT always has a kernel [9]. HenceΠ has a kernel. ⊓⊔

Combining this with Lemma 1, we have the following theorem.

Theorem 2 A problem Π ∈ NP has a weak kernel if and only if it has a kernel.

While the above proofs are not really difficult, the true merit of the corresponding results seems

to be helping us design efficient FPT algorithms via weak kernels directly. We show below three

examples of the applications of weak kernels. For all of them, we do not know of better kernel

bounds. For the famous Sorting with Minimum Unsigned Reversals, this is the first non-trivial FPT

algorithm.

4

3 Applications

We consider three minimization problems which are all knownto be NP-complete: Complement

of Maximal Strip Recovery (CMSR), Minimum Co-Path Set and Sorting with Minimum Unsigned

Reversals (SMUR).

3.1 CMSR

Given two genomic mapsG1 andG2 represented by a sequence ofn gene markers, astrip (syntenic

block) is a sequence of distinct markers of length at least two which appear as subsequences in the

input maps, either directly or in reversed and negated form.The problemMaximal Strip Recovery

(MSR) is to find two subsequencesG⋆
1 andG⋆

2 of G1 andG2, respectively, such that the total length

of disjoint strips inG⋆
1 andG⋆

2 is maximized (i.e., conversely, the complement of the problem CMSR

is to minimize the number of markers deleted to have a feasible solution). An example of MSR and

CMSR is shown in the following figure, in which each integer represents a marker. Throughout this

paper, a sequence is either denoted as a list as in Figure 1, orit can just be denoted as a string.

G1 = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12〉

G2 = 〈−9,−4,−7,−6, 8, 1, 3, 2,−12,−11,−10,−5〉

S1 = 〈1, 2〉

S2 = 〈6, 7, 9〉

S3 = 〈10, 11, 12〉

G⋆
1 = 〈1, 2, 6, 7, 9, 10, 11, 12〉

G⋆
2 = 〈−9,−7,−6, 1, 2,−12,−11,−10〉

Figure 1: An example for the problem MSR and CMSR. MSR has a solution size of eight, with

three stripsS1, S2, S3. CMSR has a solution size of four: the deleted markers are 3,4,5 and 8.

MSR and CMSR were motivated by eliminating redundancies in genomic maps [6, 24]. Re-

cently, both MSR and CMSR are shown to be NP-complete [23]. The generalization to handle more

than two genomic maps can be found in [4, 23].

The computation of weak kernel for CMSR was already presented in [23]. (Of course, it was

a folklore and was even called ‘kernel’ in [23]; likewise, MSR and CMSR was not properly distin-

guished in [23] even though they are complement to each other.) Due to the mis-use of terminology

5

and confusion, we sketch and revise the crucial parts of the method to have a clear one here, as the

first application of weak kernels.

Lemma 2 Before any marker is deleted, if xyzw or −w − z − y − x appears in both G1 and G2

(or, if xyzw appears in G1 and −w − z − y − x appears in G2, and vice versa), then there is an

optimal solution for MSR which has xyzw or −w − z − y − x as a strip.

Proof. Wlog, we only consider the case whenxyzw appears inG1 and−w − z − y − x appears in

G2. The cases whenxyzw (−w − z − y − x) appears in bothG1 andG2 are similar.

Let the length-6 substring inG1 containingxyzw be p1(x)xyzws1(w) and let the length-6

substring inG2 containing−w − z − y − x bep2(w) − w − z − y − xs2(x). When deletexyzw

from G1 and−w − z − y − x from G2, at most two strips can be obtained:p1(x)s1(w) and

p2(w)s2(x) (with a total length of 4). Clearly, retainingxyzw and−w − z − y − x as a strip can

give us a solution at least as good as any optimal solution. Hence, the lemma is proven. ⊓⊔

Let Σ be the alphabet for the input mapsG1 andG2. The above lemma gives us a weak kernel-

ization procedure.

1. Identify a set of strips of length at least four from the twosequences, without deleting any

gene marker.

2. For each strip identified, change it to a new letter inΣ1, with Σ1 ∩ Σ = ∅. Let the resulting

sequences beG′
1, G

′
2.

Let Σ1 be the set of new letters used in the weak kernelization process, withΣ1 ∩ Σ = ∅. The

two lemmas for obtaining the final result are: (1) There is an optimal CMSR solution of sizek for

G1 andG2 if and only if the solution can be obtained by deletingk markers inΣ from G′
1 andG′

2

respectively. (2) InG′
1 (resp.G′

2), there are at most5k letters (markers) inΣ [23]. To see the last

lemma, letx be a marker to be deleted, let it appear inG′
1 as...axb...cd... and let it appear inG′

2 as

...cxd...ab.... Clearly, in this examplex is associated with{x, a, b, c, d}.

Theorem 3 [23] CMSR has a weak kernel of size 5k which implies directly an FPT algorithm

running in O(23.61kn + n2) time.

Proof. From the above discussion, we can choose to deletek letters inΣ from G′
1, G

′
2. The number

of choices, is hence bounded by

5k

k

 ≈ 23.61k,

6

using Stirling’s formula. For each choice, we can check whether it is valid, i.e., whether all remain-

ing markers are in some strip inG′
1 andG′

2. This can be done in linear time if we spendO(n2) time

in advance, i.e., building a correspondence between all of the identical markers inG1, G2. So the

overall running time of the algorithm isO(23.61kn + n2) time. Note that the algorithm will report

‘no solution of sizek’, if none of the choices leads to a valid solution. ⊓⊔

We comment that with the bounded search tree method, the FPT algorithm can be improved to

run inO(3kn + n2) time [25]. The details will not be reported here.

3.2 Minimum Co-Path Set

In this subsection, we study the following problem called Minimum Co-Path Set. Given a simple

undirected graphG, a co-path set is a setS of edges inG whose removal leaves a graph in which

every connected component is a path. In the Minimum Co-Path Set Problem, we need to compute a

minimum co-path set inG.

The Minimum Co-Path Set Problem originates from radiation hybrid (Rh) mapping, which is

a powerful technique for mapping unique DNA sequences onto chromosomes and whole genomes

[5, 8, 17, 18]. In Rh mapping, chromosomes are randomly broken into small DNA fragments

through gamma radiation. A (random) subset of these DNA fragments retain with healthy hamster

cells and grow up to build up a hybrid cell line. This process is repeated many times and the co-

retention rate of a pair of markers (labeled chromosomal loci) indicates their physical distance on

the chromosome. In principle, when two markersx andy are close, the probability thatx andy are

broken by the gamma radiation is small, hence with a high probability they are either co-present in

or co-absent from a DNA fragment.

A subset of markers that are co-present from DNA fragments iscalled acluster. Let V =

{1, 2, ..., n} be a set of markers and letC = {C1, C2, ..., Cm} be a collection of clusters. The

Radiation Hybrid Map Construction Problem is to compute a linear ordering of the markers in

which the markers in each clusterCi appear consecutively. In reality, a cluster might be formed

with errors, so no such linear ordering might exist. In this case, one needs to remove the minimum

number of clusters so that the leftover clusters admit a linear ordering. When|Ci| = 2 for all i, this

is exactly the Minimum Co-Path Set Problem. Given a simple undirected graphG = (V,E), each

vertex inV corresponds to a marker, an edge(u, v) ∈ E corresponds to a cluster{u, v}.

In [5], the Minimum Co-Path Set Problem was shown to be NP-complete [10]. The proof is by

a reduction from the Hamiltonian Path problem, with each edge (u, v) being converted to a cluster

{u, v}. It is easy to see that there is a Hamiltonian Path in the inputgraphG if and only if one has

to delete exactly|E| − n + 1 clusters. A factor-2 approximation was also proposed in [5]. (The

7

counterpart of the Minimum Co-Path Set Problem is the well-knownMinimum Path Cover problem

[22] and will not be covered here.) Letk be the minimum number of edges deleted for the problem.

We show in this subsection that the Minimum Co-Path Set Problem is in FPT; in fact, it has a linear

weak kernel of size at most5k, hence the problem can be solved efficiently inO(23.61k(n + k))

time. In the following, we present the technical details.

If some connected component ofG has maximum vertex degree at most 2 then the problem is

trivially solvable for that component. So from now on we assume that each connected component

of G has maximum vertex degree at least 3. Moreover, in the solution a single vertex could also be

considered as a (degenerate) path. The following lemma is easy to prove.

Lemma 3 There is a solution R for the minimum co-path set such that R contains only edges

incident to some vertices of degree at least 3 in G.

Proof. Assume to the contrary that a solutionR contains some edge(x, y) such that bothx andy

have degree at most two inG. Let G−R be the graph obtained fromG by deleting all the edges in

R. When bothx andy have degrees at most 2, if(x, y) is in R then putting it back toG−R would

have two possibilities: (1) make each connected component of (G − R) ∪ {(x, y)} a path, or (2)

create some cycle in(G−R)∪ {(x, y)}. In case (1), it contradicts the optimality ofR. In case (2),

(x, y) is on some cycle inG. Hence we can find an edge(x′, y′) on this cycle which is incident to

some vertex of degree at least 3 inG. Then we simply swap(x, y) with (x′, y′) in R. It is easy to

see that repeating this process we can eventually have a new solution R′ such that|R′| = |R| and

R′ contains only edges incident to some vertices of degree at least 3 inG. ⊓⊔

Now letD be a solution for the minimum co-path set such thatD contains only edges incident

to some vertices of degree at least 3 inG. The above lemma implies a simple weak kernelization

procedure.

1. Identify the vertices ofG with degree at least 3. Let this set beV3(G).

2. Let the set of edges which are incident to some vertices inV3(G) beE3(G).

Return(G,E3(G), k) as a weak kernel.

We have the following lemma.

Lemma 4 The Minimum Co-Path Set Problem has a solution of size k if and only if the solution

can be obtained by deleting k edges in E3(G).

Proof. We only need to show the ‘only-if’ part as the other part is obvious. By Lemma 3, we do not

need to include any edge inD which is incident to vertices of degree only one or two. ⊓⊔

It remains to show the weak kernel size (i.e., the size ofE3(G)). We have the following lemma.

8

Lemma 5 Let k = |D|, then |E3(G)| ≤ 5k. In other words, the size of the weak kernel of the

Minimum Co-Path Set Problem is 5k.

Proof. From Lemma 4, we know that thek edges ofD can be found inE3(G). After thesek edges

in D are deleted fromG, G − D is only composed of paths, i.e., the degrees of vertices inG − D

are at most 2. In other words, the edges inE3(G) − D must also be incident to vertices inG − D

of degree at most 2 (note that these vertices originally are all in V3(G)). As thek edges inD are

incident to at most2k vertices inV3(G), |V3(G)| ≤ 2k. Therefore, we have at most4k edges in

E3(G)−D. Counting thek edges inD back, we have|E3(G)| = |E3(G)−D|+|D| ≤ 4k+k = 5k.

⊓⊔

With the above lemmas, it is easy to have an FPT algorithm for the Minimum Co-Path Set

Problem. First, if|V3(G)| > 2k or |E3(G)| > 5k then we can simply return No. Otherwise, among

the (at most)5k edges inE3(G), select all combinations ofk edges to delete. For each set ofk

edges selected, delete them fromG and check whether the resulting graph is composed of paths

only (using standard linear time graph algorithms like depth-first search). If we fail to find such a

set, then return ‘No solution of sizek’; otherwise, just return the computed set of edges asD.

The time complexity of the algorithm is dominated by checking

5k

k

 ≈ 23.61k solutions.

This presents an FPT algorithm for the Minimum Co-Path Set Problem which runs inO(23.61k(n +

k)) time. We have the following theorem.

Theorem 4 Let k be the size of the minimum co-path set. The Minimum Co-Path Set Problem has

a weak kernel of size 5k, hence can be solved in O(23.61k(n + k)) time.

Similar to CMSR, we show recently, with the bounded search tree method, that the Minimum

Co-Path Set Problem can be solved inO(2.46k(n+k)) time. The results will be reported elsewhere.

3.3 Sorting with Minimum Unsigned Reversals

Sorting with Minimum Unsigned Reversals (SMUR) is a famous problem in computational biol-

ogy, more specifically, in computational genomics. Given a genomeH composed of a sequence

of n distinct genes (also formulated as a permutations ofn integers{1, 2, ..., n}), i.e., assume that

H = s1s2 · · · sisi+1 · · · sj−1sj · · · sn, a reversal operation on the segmentsisi+1 · · · sj−1sj trans-

formsH into H ′ = s1s2 · · · sjsj−1 · · · si+1si · · · sn. The problem Sorting with Minimum Unsigned

Reversals is to use the minimum number of reversals to convert H into the identity permutation

I = 123...n. Example: GivenH = 15342, we can use two signed reversals to first change it to

15432 and finally to 12345.

9

When the genes are signed, we have a similar problem Sorting with Minimum Signed Reversals.

Given a signed genomeH− composed of a sequence ofn distinct (signed) genes (also formulated

as a signed permutations ofn integers{1, 2, ..., n}), i.e., H− = t1t2 · · · titi+1 · · · tj−1tj · · · tn, a

signed reversal operation on the segmenttiti+1 · · · tj−1tj transformsH− into H ′′ = t1t2 · · · −

tj − tj−1 · · · − ti+1 − ti · · · tn. The problem Sorting with Minimum Signed Reversals is to use

the minimum number of signed reversals to convertH− into the identity permutationI = 123...n.

Example: GivenH = 1−534−2, we can use two signed reversals to first change it to1−5−4−3−2

and finally to 12345. (Note that in the literature it is also acceptable to convertH− to −I =

−n... − 3 − 2 − 1. We can enforce thatH− is converted toI by adding two auxiliary genes, i.e.,

0H−(n + 1). This is a known trick in computational genomics.)

SMUR was shown to be NP-complete by Caprara [3] and the best approximation algorithm has

a factor 1.375 [1]. However, no non-trivial FPT algorithm isknown for the problem. The trivial

solution is to use a bounded search tree algorithm which runsin roughlyO(kO(k)n) time. We show

below that with weak kernels, a much faster FPT algorithm canbe designed.

We use Sorting with Minimum Signed Reversals as a subroutinefor SMUR. Unlike SMUR,

Sorting with Minimum Signed Reversals can be solved in polynomial time [13, 15, 21], with the best

running time beingO(n log n) [19]. Computing the minimum signed reversal distance, however,

can be done in linear time [2]. LetH be the (unsigned) genome to be sorted. It is easy to see that

each reversal can eliminate at most two breakpoints. (In this case a breakpoint is a 2-substring〈i, j〉

of H such that|j − i| 6= 1.) Hence, if the optimal solution size isk, there would be at most2k

breakpoints inH. In other words, there are at most4k genes which are in some breakpoints. Let

Hk be the set of such (at most)4k genes.

Given H, let a maximal substringB of H composed of at least two consecutive adjacen-

cies be called ablock, with the first and last letters calledhead and tail of the block respec-

tively. (We also say that the head and the tail areadjacent through the block B in H.) Example:

H = 〈0, 5, 7, 8, 10, 1, 2, 3, 4, 9, 6, 11〉, B = 〈1, 2, 3, 4〉 is a block with head1 and tail4. 7 and8 are

in H7 but form an adjacency inH. 1 and4 are adjacent through the blockB in H. Following [12],

there is an optimal SMUR solution forH which does not cut any block.

Let H−
k be the set of signed genomes obtained by adding+/− signs on these genes (involved in

some breakpoints) inHk. (Following [12], if two such genes inHk are the head and tail of a block

B, then all the genes inB should be given the same sign, i.e., either all positive or all negative.) It

is easily seen that|H−
k | ≤ 24k. Moreover, we have the following lemma.

Lemma 6 There is a solution of k unsigned reversals for sorting H if and only if the solution can

be found by sorting some sequence in H−
k with k signed reversals.

10

Proof. If there is a solution ofk unsigned reversals for sortingH, then we can trace thesek

reversals backwards and each time add signs accordingly. For example, assume that the last reversal

to obtain〈0, 1, 2, 3, 4, 5〉 is 〈3, 2〉, then for sorting by signed reversals the second last signedgenome

is 〈0, 1,−3,−2, 4, 5〉. It is easily seen that after repeating this processk times, we have a signed

genomeH ′′ in H−
k . Certainly, one can sortH ′′ by k signed reversals.

On the other hand, if there arek signed reversals which sorts some genome inH−
k , sayH ′′, one

can ignore the negative signs inH ′ (to obtainH) and perform the samek (unsigned) reversals to

sortH into I. ⊓⊔

Theorem 5 Sorting with Minimum Unsigned Reversals has a weak kernel of size 4k, hence can be

solved in O(22kn + n log n) time.

Proof. We first show a bound ofO(24kn + n log n), which is straightforward from the4k weak

kernel. First, following Lemma 6, the weak kernelization iseasy: identify all the blocks inH

and return(H,Hk, k). For each possible signed genome inH−
k (obtained fromHk by adding some

negative signs), we use the algorithm in [2] to check whetherit can be sorted withk signed reversals.

If so, we can compute accordingly thek signed reversals using the algorithm by Swensonet al. [19],

to obtain thek (unsigned) reversals to sortH in O(n log n) time. If no valid solution is found, we

report NO. This algorithm clearly runs inO(24kn + n log n) time.

By a more detailed analysis (i.e., we do not have to try all possible ways to sign genes inHk),

the running time of the above algorithm can be improved toO(22kn + n log n) time. Now let the

genes inHk form a total ofz adjacencies (possibly through some blocks). Following [12], if two

such genes form an adjacency inH, obviously they have to be given the same signs, i.e., eitherboth

positive or both negative. If two such genes form an adjacency through some blockB in H, all the

genes inB need to have the same signs. So the total number of ways to signgenes inHk is bounded

by

2z × 2(4k−2z)/2−1 = 22k−1.

Hence we have an FPT algorithm with running timeO(22kn + n log n). ⊓⊔

4 Concluding Remarks

We formally introduce a new (somehow a previous folklore) concept called weak kernels for fixed-

parameter computation and proved some interesting properties of weak kernels. We also show some

interesting applications with weak kernels. We believe that for certain problems weak kernels are

more flexible and possibly more powerful than the traditional kernels. This is certainly the case with

11

our three applications, especially the famous Sorting withMinimum Unsigned Reversals (SMUR)

problem. We know of no FPT algorithm which runs close toO∗(24k) time. It would be interesting

to see more applications of weak kernels.

We feel that the running times of the best FPT algorithms for the three problems can all be

further improved, maybe with some new techniques. At this point for decentk (sayk = 40), none

of them is really fast enough for practical datasets.

Finally, the Minimum Co-Path Set Problem only handles the special case of the Radiation Hy-

brid Map Construction Problem (i.e., when|Ci| = 2). It would also be interesting to tackle the

general problem with exact and approximation algorithms.

Acknowledgments

This research is partially supported by NSF of China under project 60928006. We also thank Mike

Fellows for some valuable comments.

References

[1] P. Berman, S. Hannenhalli and M. Karpinski. 1.375-approximation algorithm for sorting by

reversals. InProc. 10th European Symp. on Algorithms (ESA’02), Pages 200-210, Rome, Italy,

Sep, 2002 (LNCS series, 2461).

[2] D. Bader, B. Moret and M. Yan. A linear-time algorithm forcomputing inversion distance

between signed permutations with an experimental study.J. of Computational Biology, 8:483–

491, 2001.

[3] A. Caprara. Sorting by reversals is difficult. InProc. 1st Intl. Conf. on Research in Comput.

Molecular Biology (RECOMB’97), pages 75-83, 1997.

[4] Z. Chen, B. Fu, M. Jiang, and B. Zhu. On recovering syntenic blocks from comparative maps.

Journal of Combinatorial Optimization, 18:307–318, 2009.

[5] Y. Cheng, Z. Cai, R. Goebel, G. Lin and B. Zhu. The radiation hybrid map construction prob-

lem: recognition, hardness, and approximation algorithms. Unpublished Manuscript, 2008.

[6] V. Choi, C. Zheng, Q. Zhu, and D. Sankoff. Algorithms for the extraction of synteny blocks

from comparative maps. InProceedings of the 7th International Workshop on Algorithms in

Bioinformatics (WABI’07), pages 277–288, 2007.

12

[7] S. Cook. The complexity of theorem-proving procedures.In Proceedings of the 3rd ACM

Symp. on Theory of Computing (STOC’71), pages 151–158, 1971.

[8] D.R. Cox, M. Burmeister, E.R. Price, S. Kim, and R.M. Myers. Radiation hybrid mapping:

a somatic cell genetic method for constructing high resolution maps of mammalian chromo-

somes.Science, 250:245–250, 1990.

[9] R. Downey and M. Fellows.Parameterized Complexity, Springer-Verlag, 1999.

[10] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman, 1979.

[11] J. Guo and R. Niedermeier. Invitation to data reductionand problem kernelization.SIGACT

News, 38:31-45. 2007.

[12] S. Hannenhalli and P. Pevzner. To cut...or not to cut (Applications of comparative physical

maps in molecular evolution). InProceedings of the 7th ACM-SIAM Symp. on Discrete Algo-

rithms (SODA’96), pages 304–313, 1996.

[13] S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip: polynomial algorithm for

sorting signed permutations by reversals.J. ACM, 46(1):1-27. 1999.

[14] D. Johnson. Approximation algorithms for combinatorial problems.J. Comput. Sys. Sciences,

9:256-278, 1974.

[15] H. Kaplan, R. Shamir and R. Tarjan. A faster and simpler algorithm for sorting signed permu-

tations by reversals.SIAM J. Comput., 29:880-892, 1999.

[16] R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher (eds.),

Complexity of Computer Computations, Plenum Press, NY, pages 85–103, 1972.

[17] C.W. Richard, D.A. Withers, T.C. Meeker, S. Maurer, G.A., Evans, R.M. Myers, and D.R.

Cox. A radiation hybrid map of the proximal long arm of human chromosome 11, containing

the multiple endocrine neoplasia type 1 (MEN-1) and bcl-1 disease loci.American J. of Human

Genetics, 49:1189-1196, 1991.

[18] D. Slonim, L. Kruglyak, L. Stein, and E. Lander. Building human genome maps with radiation

hybrids.J. of Computational Biology, 4:487–504, 1997.

[19] K. Swenson, V. Rajan, Y. Lin, and B. Moret. Sorting signed permutations by inversions in

O(n log n) time. InProc. RECOMB’09, LNCS 5541, pages 386–399, 2009.

13

[20] R. Tarjan and A. Trojanowski. Finding a maximum independent set.SIAM J. Comput., 6:537-

546, 1977.

[21] E. Tannier and M-F. Sagot. Sorting by reversals in subquadratic time. InProc. 15th Symp.

Combinatorial Pattern Matching (CPM’04), Istanbul, Turkey, Pages 1-13, July, 2004 (LNCS

series, 3109).

[22] S. Vishwanathan. An approximation algorithm for the asymmetric travelling salesman problem

with distance one and two.Information Processing Letters, 44:297–302, 1992.

[23] L. Wang and B. Zhu. On the tractability of maximal strip recovery.J. of Computational Biol-

ogy, to appear, 2010. (An earlier version appeared in TAMC’09.)

[24] C. Zheng, Q. Zhu, and D. Sankoff. Removing noise and ambiguities from comparative maps

in rearrangement analysis.IEEE/ACM Transactions on Computational Biology and Bioinfor-

matics, 4:515–522, 2007.

[25] B. Zhu. Efficient algorithms for the complementary of maximal strip recovery.Submitted to

AAIM’10, 2010.

14

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

