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Abstract

In this paper, we formalize a folklore concept and formalkbfide weak kernels for fixed-
parameter computation. We show that a problem has a (adi)i kernel then it also has a
weak kernel. It is unknown yet whether the converse is alviays On the other hand, for a
problem in NP, if it has a weak kernel then it admits an FPT dtigm (hence a kernel). We
show a few applications of weak kernels, for which a (tradhitil) kernelization seems hard to
apply. Among them, we present the first FPT algorithm for #fsmdus Sorting by Minimum
Unsigned Reversals problem.
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1 Introduction

In the last four decades, we have seen the huge advance aiNplateness [11, 23, 17]. Nowadays,
NP-complete problems appear in almost all the areas whicivies combinatorial optimization, for
example in computational biology and bioinformatics. Amfirthe beginning a lot of people tended
to believeP # N P (at least it seems to be hard to prove or disprove it), peapieadiately started
to investigate different ways to handle NP-hard problemg.tdJtoday, the two most popular ways
to handle NP-hard problems, among researchers in algod#sign, are approximation algorithms
and exact (or FPT) algorithms, which were started with thaisal works of Johnson [21] and
Tarjan and Trojanowski [27] respectively. (Using heudstiethods to hand NP-hard problems, like
evolutionary computation, is beyond this paper.)

In some areas like computational biology and bioinfornstibe data usually contain errors.
On top of this, if we design a factor-2 approximation to hanitiese data, whatever result we got
is not appealing to biologists. So, to make approximatigoihms useful for these applications,
the approximation factors must be very close to one. Themyaldy, FPT algorithm pops up as a
natural alternative for handling these problems. The thpgdications we will discuss in this paper
all originate from computational biology.

On the other hand, the theory of fixed-parameter computdtdsbeen developed rigorously in
the last two decades. The first textbook was published in 1§9Bowney and Fellows [13] and
another couple were published in the last several yearsrdsiied readers are referred to [18] for
further details and references.

In designing FPT algorithms, kernelization is one of the nfimsdamental techniques. Loosely
speaking, kernelization is reallyata reduction; i.e., with kernelization one reduces the problem
instance size (kernel size) to a level so small that one aadd apply a brute-force method. Some-
times, even if the kernel size is slightly bigger ($4Y so that a brute-force method is inappropriate,
one can still make use of it with integer linear programmimdpi@nch-and-bound to obtain almost
optimal solutions in a reasonable amount of time [18].

In this paper, we formalize a folklore method and formallyineweak kernels and weak ker-
nelization. Again, loosely speaking, when viewing an NPdhaptimization problem as a searching
or decision problem (like for Vertex Cover, we are reallyrsbing for a set of vertices, among
input vertices, so that deleting thevertices leaves the resulting graph edge-less), weak lkeane
tion is really abousearch space reduction. Certainly, if a problem has a kernel then of course it has
a weak kernel (which we will prove formally). But whether thenverse is true is unknown yet. We
show formally that for problems in NP the converse is in fagét

The purpose for defining the weak kernels concept, on the bdred, is more on helping us de-



sign FPT algorithms more easily. Here, we show three agpics, all known to be NP-complete,
for which we compute the corresponding weak kernels effthigihence design efficient FPT al-
gorithms). Among the three problems, Sorting with Minimumdigined Reversals is a famous
problem in computational biology and we do not know of any-trbnal kernelization or FPT al-
gorithm for it. We show that Sorting with Minimum Unsigned\Resals has a weak kernel of size
4k, hence an FPT algorithm running @(2**n + nlogn) time (and with a more detailed analysis,
in O(2%n + nlogn) time).

This paper is organized as follows. In Section 2, we definekvkeanels formally and prove its
relation with the (traditional) kernels. In Section 3, weshthree applications of weak kernels. In
Section 4, we conclude the paper with several open problems.

2 KernesvsWeak Kernels

2.1 Preiminaries

Basically, a fixed-parameter tractable (FPT) algorithmafalecision probleniI with solution value

k is an algorithm which solves the problem @ f(k)n<) time, wheref is any function only on
k, n is the input size and is some fixed constant not relatedio FPT also stands for the set of
problems which admit such an algorithm.

Kernelization is a polynomial time transformation thanséorms a problem instandé, k) to
another instancél’, k') such that (1)1, k) is a yes-instance iffI’, k') is also a yes-instance; (2)
k' < k; and (3)|I'| < f(k) for some functionf(—). (I’,k) is typically called akernel of the
problem, with sizd’|. It is easy to see that if a problem has a kernel then it is in; FRdreover,
every problem in FPT has a kernel. From this, kernelizat®ma way to perform data-reduction
with performance guarantee, “a humble strategy for copiitg thard problems, almost universally
employed” [14]. More fundamental details on FPT algoritheas be found in [13].

Recently, Bodlaendegt al. conducted a seminal work by showing that a class of important
FPT problems cannot have polynomial (e.Q(k?) size) kernels unless the polynomial hierar-
chy collapses to the third level (i.ePH = Ef,) [5]. One such problem is callek-LEAF OUT-
BRANCHING (i.e., finding a rooted oriented spanning treeweit least leaves in an input digraph
D) [16]. On the other hand, Fernatial. showed that the ROOTER-LEAF OUT-BRANCHING
has a polynomial kernel, hence implying that EAF OUT-BRANCHING has a Turing kerneliza-
tion [16].



2.2 Weak Kernds

As illustrated in the introduction, we view weak kernelipat (weak kernels) as a way to reduce
search space. Given a decision probldet I1(7) be an instance dff, and let a solution of sizé
can be searched from a spag€/) which is a component dfi(/) or can be constructed from some
components ofI(I). So we denote the resulting search problenil&d ), S(I), k). For example,
the corresponding search problem for Vertex Coveids= (V, E), V, k). Similarly, for k-LEAF
OUT-BRANCHING, the corresponding search probleniis= (V, E), L, k), whereL represents
the super-set of vertices each corresponding to the seaweédebelonging to some rooted oriented
spanning trees db.

A weak kernelization is a polynomial time transformation which transforms a skagroblem
instance(II(1), S(I), k) into (II(I"), S'(I), k) such that (1)II(I")| < [II(1)|; (2) |S"(1)| < f(k)
for some functionf (—); (3) (IL(I), S(I), k) is a yes-instance iff[I("), S’(I), k) is a yes-instance.
Note that condition (1) is not important in our definition,dther words, while we have to reduce
search space, we can but do not have to reduce the problemsizeu(e.g., we can even make
II(1) = 1I(I")). (II(I"), S'(I), k) (or simply S’(I)) is also called the correspondimgeak kernel for
I1, with size|S’(I)|.

We have the following results regarding weak kernels.

Lemma 1 If aproblem II has a kernel, then it has a weak kerndl.

Proof. Let the kernel fodI(I) be (II(1;), k), with |II(1;)| < f(k) for some functionf(—). (Note
that following the traditional definition of kernels we cdutave a kerne{II(I"), k'), with ¥’ < k.
This is usually due to the preprocessing steps, With &’ items included in any optimal solution.
Putting these items and whatever related to them backlliff¢), we can easily havelI(I;), k).)
We can view the (searching) probldmas (I1(1),II(1;), k), which is the corresponding weak ker-
nel; i.e.,II(I) can be solved by searching a solution of sizieom II(1;) (which has size at most
f(k)). Hence IT has a weak kernel. O

The converse of Lemma 1 is not necessarily true (at least weatgrove that the converse is
true at this point). For instance, let an EXP-complete $eproblem(II'(7), S(I), k) have a weak
kernel of sizew(k), say (II'(1), S'(I), k) with S’(I) < w(k). AsIl’ is EXP-complete, checking
whether a solution of sizke from S’(7) is a YES/NO instance fdd’(1) probably cannot be done in
polynomial time (unless the complexity hierarchy collapsat certain place). How to find such an
problemII’ beyond NP is open.

On the other hand, wheld € N P, we can show that traditional kernels and weak kernels are
equivalent in theory. Of course, that does not imply theesiare the same.



Theorem 1 If aproblemIT € N P has aweak kernel, then it admits an FPT algorithm.

Proof. Let the weak kernel béIl(1),S'(I), k), with |S'(I)| < f(k) for some functionf(—).
We can enumerate all possible solutions of dize S’(I) and for each one check whether it is a
YES/NO instance, which can be done in polynomial timélas N P. If no YES instance is found
then return NO; otherwise return the YES instance. Henceave n FPT algorithm. O

Corollary 1 If aprablemII € N P has a weak kernel, then it has a kernel.

Proof. If II has a weak kernel, following Theorem 1, it admits an FPT dtgor. Following the
known result in FPT theory, a problem in FPT always has a két3¢. Hencell has a kernel. O
Combining this with Lemma 1, we have the following theorem.

Theorem 2 AproblemIl € N P has aweak kernel if and only if it has a kernel.

While the above proofs are not really difficult, they havesiesting theoretical implications.
For instance, for a problem unlikely to have a polynomialnie{5], as long as it belongs to NP,
it is equally unlikely to have a weak kernel. However, thestraerit of the corresponding results
seems to be helping us design efficient FPT algorithms vikwkemnels directly. (Through a private
communication with Mike Fellows, the earliest idea of usivepk kernels seems to be in [1], where
Bonsma, Briiggemann and Woeginger showed that the MAX LE#BIpm has a weak kernel of
size3.5k. Note that MAX LEAF is the complement of the Minimum Connetf@ominating Set
problem.) We show below three examples of the applicatidngeak kernels. For all of them, we
do not know of better kernel bounds. For the famous Sortirth Wiinimum Unsigned Reversals,
this is the first non-trivial FPT algorithm.

3 Applications

We consider three minimization problems which are all knaeitbe NP-complete: Complement
of Maximal Strip Recovery (CMSR), Minimum Co-Path Set andtifig with Minimum Unsigned
Reversals (SMUR).

31 CMSR

Given two genomic map&; andG, represented by a sequencenajene markers, grip (syntenic
block) is a sequence of distinct markers of length at leastvilvich appear as subsequences in the
input maps, either directly or in reversed and negated forhre problemMaximal Srip Recovery



(MSR) is to find two subsequencéd andG; of G; andGs, respectively, such that the total length
of disjoint strips inGT andG3 is maximized (i.e., conversely, the complement of the mobCMSR

is to minimize the number of markers deleted to have a feasiblution). An example of MSR and

CMSR is shown in the following figure, in which each integgrresents a marker. Throughout this
paper, a sequence is either denoted as a list as in Figurettaorjust be denoted as a string.

Gy = (1,2,3,4,5,6,7,8,9,10,11,12)

Gy, = (-9,-4,-7,-6,8,1,3,2,—12,—11, 10, —5)
S = (1,2)

Sy = (6,7,9)

Sy = (10,11,12)

Gr = (1,2,6,7,9,10,11,12)

G5 = (—=9,-7,-6,1,2,—12,—11, —10)

Figure 1: An example for the problem MSR and CMSR. MSR has atisal size of eight, with
three stripsSy, So, S3. CMSR has a solution size of four: the deleted markers ar® 3/4d 8.

MSR and CMSR were motivated by eliminating redundancieseimognic maps [10, 32]. Re-
cently, both MSR and CMSR are shown to be NP-complete [308.gémeralization to handle more
than two genomic maps can be found in [7, 30].

The computation of weak kernel for CMSR was already preskim¢30]. (Of course, it was
a folklore and was even called ‘kernel’ in [30]; likewise, R&nd CMSR was not properly distin-
guished in [30] even though they are complement to each.ptbee to the mis-use of terminology
and confusion, we sketch and revise the crucial parts of thioad to have a clear one here, as the
first application of weak kernels.

Lemma 2 Before any marker is deleted, if xyzw or —w — z — y — x appears in both G; and G-
(or, if xyzw appearsin G; and —w — z — y — x appears in G, and vice versa), then there is an
optimal solution for MSR which has zyzw or —w — z — y — x asa strip.

Proof. Wlog, we only consider the case whepzw appears iG; and—w — z — y — x appears in
G5. The cases whenyzw (—w — z — y — x) appears in botlkd’; andG, are similar.

Let the length-6 substring iG/; containingzyzw be pi(z)ryzws;(w) and let the length-6
substring inG; containing—w — z — y — x bepy(w) — w — z — y — xse(x). When deleteryzw



from G; and —w — z — y — x from G, at most two strips can be obtainegd; (x)s;(w) and
p2(w)se(x) (with a total length of 4). Clearly, retainingyzw and—w — z — y — x as a strip can
give us a solution at least as good as any optimal solutioncélghe lemma is proven. O

Let X be the alphabet for the input ma@s andG,. The above lemma gives us a weak kernel-
ization procedure.

1. Identify a set of strips of length at least four from the tagguences, without deleting any
gene marker.

2. For each strip identified, change it to a new letteEin with ¥; N X = (). Let the resulting
sequences b@’, G5.

Let X1 be the set of new letters used in the weak kernelization pmaeith>; N X = (). The
two lemmas for obtaining the final result are: (1) There is ptinoal CMSR solution of sizé for
G1 andG,, if and only if the solution can be obtained by deletingnarkers inX from G andGY
respectively. (2) InG (resp. G5), there are at mosik letters (markers) irt [30]. To see the last
lemma, letz be a marker to be deleted, let it appeadh as---axb---cd--- and let it appear in
G, as---cxd---ab---. Clearly, in this example is associated withz, a, b, ¢, d}.

Theorem 3 [30] CMSR has a weak kernel of size 5k which implies directly an FPT algorithm
running in O(2361%n, 4-n?) time.

Proof. From the above discussion, we can choose to déleters inX from G/, G,. The number

5k ~ 23.61k
k )

using Stirling’s formula. For each choice, we can check Wweeit is valid, i.e., whether all remain-

of choices, is hence bounded by

ing markers are in some strip (&) andGY. This can be done in linear time if we spefidn?) time
in advance, i.e., building a correspondence between aliefdentical markers i1, G3. So the
overall running time of the algorithm ©(23%1%n + n?) time. Note that the algorithm will report
‘no solution of sizek’, if none of the choices leads to a valid solution. O

We comment that with the bounded search tree method, the IgBfiitam can be improved to
run in O(3n + n?) time [33]. The details will not be reported here.

3.2 Minimum Co-Path Set

In this subsection, we study the following problem callechiium Co-Path Set. Given a simple
undirected grapld-, a co-path set is a setS of edges inG whose removal leaves a graph in which
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every connected component is a path. In the Minimum Co-Petti?@®blem, we need to compute a
minimum co-path set k.

The Minimum Co-Path Set Problem originates from radiatigbrid (Rh) mapping, which is
a powerful technique for mapping unique DNA sequences dmtoncosomes and whole genomes
[8, 12, 24, 25]. In Rh mapping, chromosomes are randomly dardkto small DNA fragments
through gamma radiation. A (random) subset of these DNAnfiexgts retain with healthy hamster
cells and grow up to build up a hybrid cell line. This processdpeated many times and the co-
retention rate of a pair of markers (labeled chromosomad) ladicates their physical distance on
the chromosome. In principle, when two markerandy are close, the probability thatandy are
broken by the gamma radiation is small, hence with a highadsdity they are either co-present in
or co-absent from a DNA fragment.

A subset of markers that are co-present from DNA fragmentiled acluster. LetV =
{1,2,---,n} be a set of markers and l1ét= {C;,C5,---,C,,} be a collection of clusters. The
Radiation Hybrid Map Construction Problem is to computaadir ordering of the markers in which
the markers in each clustéf appear consecutively. In reality, a cluster might be form@éd errors,
s0 no such linear ordering might exist. In this case, one :g@demove the minimum number of
clusters so that the leftover clusters admit a linear onderiVhen|C;| = 2 for all 7, this is exactly
the Minimum Co-Path Set Problem. Given a simple undirecteglyG = (V, E), each vertex in
V corresponds to a marker, an edgev) € E corresponds to a clustér, v}.

In [8], the Minimum Co-Path Set Problem was shown to be NPgieta [17]. The proof is by
a reduction from the Hamiltonian Path problem, with eachegdgv) being converted to a cluster
{u,v}. Itis easy to see that there is a Hamiltonian Path in the igmphG if and only if one has to
delete exactlyfE| — n + 1 clusters. A factor-2 approximation was also proposed iny8iich was
recently improved to 10/7 [9]. (The counterpart of the Minimm Co-Path Set Problem is the well-
known Minimum Path Cover problem [29] and will not be covered here.) Lebe the minimum
number of edges deleted for the problem. We show in this stibsethat the Minimum Co-Path
Set Problem is in FPT; in fact, it has a linear weak kernel o sit mosbtk, hence the problem can
be solved efficiently ir0 (236 (n 4 k)) time. In the following, we present the technical details.

If some connected component Gfhas maximum vertex degree at most 2 then the problem is
trivially solvable for that component. So from now on we assuthat each connected component
of G' has maximum vertex degree at least 3. Moreover, in the solatisingle vertex could also be
considered as a (degenerate) path. The following lemmasistegprove.

Lemma 3 There is a solution R for the minimum co-path set such that R contains only edges
incident to some vertices of degree at least 3in G.



Proof. Assume to the contrary that a solutidhcontains some edde:, y) such that bothr andy
have degree at most two (. Let G — R be the graph obtained frodd by deleting all the edges in
R. When bothr andy have degrees at most 2,(if, y) is in R then putting it back t@x — R would
have two possibilities: (1) make each connected comporfefe- R) U {(z,y)} a path, or (2)
create some cycle ifG — R) U {(z,y)}. In case (1), it contradicts the optimality & In case (2),
(x,y) is on some cycle i7. Hence we can find an edg@e’, ') on this cycle which is incident to
some vertex of degree at least 3Gh Then we simply swagz, y) with (z’, ') in R. Itis easy to
see that repeating this process we can eventually have aoletios R’ such thajR’| = |R| and
R’ contains only edges incident to some vertices of degreast &inG. O

Now let D be a solution for the minimum co-path set such thatontains only edges incident
to some vertices of degree at least 3in The above lemma implies a simple weak kernelization
procedure.

1. Identify the vertices ofs with degree at least 3. Let this set bg(G).

2. Letthe set of edges which are incident to some verticé3 (&) be E5(G).
Return(G, E5(G), k) as a weak kernel.

We have the following lemma.

Lemma4 The Minimum Co-Path Set Problem has a solution of size & if and only if the solution
can be obtained by deleting k£ edgesin E5(G).

Proof. We only need to show the ‘only-if’ part as the other part isiobg. By Lemma 3, we do not
need to include any edge in which is incident to vertices of degree only one or two. O
It remains to show the weak kernel size (i.e., the siz€i7)). We have the following lemma.

Lemma5 Let k£ = |D|, then |E3(G)| < 5k. In other words, the size of the weak kernel of the
Minimum Co-Path Set Problemis 5k.

Proof. From Lemma 4, we know that theedges ofD can be found inE;(G). After thesek edges
in D are deleted frontz, G — D is only composed of paths, i.e., the degrees of vertic&s in D
are at most 2. In other words, the edgesi(G) — D must also be incident to vertices W — D
of degree at most 2 (note that these vertices originally kie &5(G)). As thek edges inD are
incident to at mosRk vertices inV3(G), |V3(G)| < 2k. Therefore, we have at mosk edges in
E5(G)—D. Counting the: edges inD back, we havéF;(G)| = |Es(G)—D|+|D| < 4k+k = 5k.
O

With the above lemmas, it is easy to have an FPT algorithmHerMinimum Co-Path Set
Problem. First, il V3(G)| > 2k or |E5(G)| > 5k then we can simply return NO. Otherwise, among
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the (at mostpk edges inEs(G), select all combinations of edges to delete. For each setkof
edges selected, delete them frafand check whether the resulting graph is composed of paths
only (using standard linear time graph algorithms like @iefrist search). If we fail to find such a
set, then return ‘No solution of siZg; otherwise, just return the computed set of edge®as

5k .
The time complexity of the algorithm is dominated by chegk(l B ) ~ 2361k splutions.

This presents an FPT algorithm for the Minimum Co-Path Sebem which runs irO(2361% (n +
k)) time. We have the following theorem.

Theorem 4 Let k be the size of the minimum co-path set. The Minimum Co-Path Set Problem has
aweak kernel of size 5k, hence can be solved in O(2361% (n, 4 k)) time.

Similar to CMSR, we show recently, with the bounded seareh tnethod, that the Minimum
Co-Path Set Problem can be solvedi(2.46* (n+k)) time. The results will be reported elsewhere.
This problem is also closely related to the problem of detethe minimum number of vertices in
G so that the remaining vertices have max-degreé (€.9., 2), which has a linear kernel for any
fixed d [15].

3.3 Sorting with Minimum Unsigned Reversals

Sorting with Minimum Unsigned Reversals (SMUR) is a famousbfem in computational biol-
ogy, more specifically, in computational genomics. GivereaameH composed of a sequence of
n distinct genes (also formulated as a permutations oftegers{1,2,---,n}), i.e., assume that
H = 5189+ 8;8;41--5j_15j - Sp, areversal operation on the segmesfs; ; - - - s;_1s; trans-
formsH into H' = sys2-+-8;Sj_1 -+ Si+18i - - - Sp. The problem Sorting with Minimum Unsigned
Reversals is to use the minimum number of reversals to co¥ento the identity permutation
I =123..-n. Example: GivenH = 15342, we can use two signed reversals to first change it to
15432 and finally to 12345.

When the genes are signed, we have a similar problem SortthdWinimum Signed Reversals.
Given a signed genom# ~ composed of a sequenceseflistinct (signed) genes (also formulated
as a signed permutations ofintegers{1,2,---,n}), i.e., H~ = tito---titip1---tj_1tj - ty,
asigned reversal operation on the segmetyt; ;- - - t;_1t; transformsH ~ into H” = tity--- —
tj —tj—1--- —tiy1 — t;--- ty. The problem Sorting with Minimum Signed Reversals is to tinse
minimum number of signed reversals to convart into the identity permutatiod = 123 - n.
Example: Giverd = 1—534—2, we can use two signed reversals to first changelitt6—4—3—2
and finally to 12345. (Note that in the literature it is alscemtable to converH~ to —1 =
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—n---—3 —2— 1. We can enforce thatf ~ is converted td by adding two auxiliary genes, i.e.,
0H~(n + 1). This is a known trick in computational genomics.)

SMUR was shown to be NP-complete by Caprara [6] and the besbeimation algorithm has
a factor 1.375 [2]. However, no non-trivial FPT algorithmkisown for the problem. The trivial
solution is to use a bounded search tree algorithm whichirursughly O (k°*)) time. We show
below that with weak kernels, a much faster FPT algorithmlmadesigned.

We use Sorting with Minimum Signed Reversals as a subrodin&MUR. Unlike SMUR,
Sorting with Minimum Signed Reversals can be solved in pofgial time [20, 22, 28], with the best
running time beingD(nlogn) [26]. Computing the minimum signed reversal distance, hane
can be done in linear time [4]. Lef be the (unsigned) genome to be sorted. It is easy to see that
each reversal can eliminate at most two breakpoints. (fdfse a breakpoint is a 2-substrifigj)
of H such thatjj — i| # 1.) Hence, if the optimal solution size is there would be at mostk
breakpoints inH. In other words, there are at most genes which are in some breakpoints. Let
H;, be the set of such (at mostk genes.

Given H, let a maximal substring3 of H composed of at least two consecutive adjacen-
cies be called dlock, with the first and last letters callelsead and tail of the block respec-
tively. (We also say that the head and the tail adgacent through the block B in H.) Example:
H=(0,5,7,8,10,1,2,3,4,9,6,11), B = (1,2,3,4) is a block with head and tail4. 7 and8 are
in H7 but form an adjacency i#/. 1 and4 are adjacent through the blodkin H. Following [19],
there is an optimal SMUR solution fdi which does not cut any block.

Let H,  be the set of signed genomes obtained by addifig signs on these genes (involved in
some breakpoints) ifi/;,.. (Following [19], if two such genes i, are the head and tail of a block
B, then all the genes iB should be given the same sign, i.e., either all positive lanegative.) It
is easily seen tha#i, | < 2**. Moreover, we have the following lemma.

Lemma6 Thereisa solution of & unsigned reversals for sorting H if and only if the solution can
be found by sorting some sequence in H,~ with k signed reversals.

Proof. If there is a solution ofc unsigned reversals for sorting, then we can trace these
reversals backwards and each time add signs accordinglgx@mple, assume that the last reversal
to obtain(0, 1,2, 3,4, 5) is (3, 2), then for sorting by signed reversals the second last sigaadme
is (0,1,—3,—2,4,5). Itis easily seen that after repeating this processnes, we have a signed
genomeH"” in H,_. Certainly, one can soff” by k signed reversals.

On the other hand, if there akesigned reversals which sorts some genom&jn sayH”, one
can ignore the negative signs i’ (to obtain /) and perform the samk (unsigned) reversals to

sortH into 1. O
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Theorem 5 Sorting with Minimum Unsigned Reversals has a weak kernel of size 4k, hence can be
solved in O(2%n + nlogn) time.

Proof. We first show a bound af(2*n + nlogn), which is straightforward from thék weak
kernel. First, following Lemma 6, the weak kernelizatioreasy: identify all the blocks i/ and
return (H, Hy, k). For each possible signed genomeHn (obtained fromH), by adding some
negative signs), we use th@(n) time algorithm in [4] to check whether it can be sorted with
signed reversals. If so, we can compute accordinglyktegned reversals using the algorithm by
Swensoret al. [26], to obtain thet (unsigned) reversals to saf in O(nlogn) time. If no valid
solution is found, we report NO. This algorithm clearly ring)(2%n + nlogn) time.

By a more detailed analysis (i.e., we do not have to try alkflide ways to sign genes i),
the running time of the above algorithm can be improved®t@*n + nlogn) time. Now let the
genes inH;, form a total ofz adjacencies (possibly through some blocks). Followind,[f9wo
such genes form an adjacencyhh obviously they have to be given the same signs, i.e., eitbir
positive or both negative. If two such genes form an adjacéimough some blockB in H, all the
genes inB need to have the same signs. So the total number of ways tgeigrs inH;, is bounded
by

97 y 9(4k—22)/2—1 _ 92k—1

Hence we have an FPT algorithm with running tim&?*n + nlogn). O

We comment that, for the related Sorting with Minimum UnsidrTranslocation problem, ex-
actly the same idea can be applied to obtain a weak kernet@fkj hence an FPT algorithm with
running timeO(2%*n + n2). The relevant details can be found in [31, 3] (or from the nefiees
therein).

4 Concluding Remarks

We formally introduce a new (somehow a previous folklorenaapt called weak kernels for fixed-
parameter computation and proved some interesting piepatweak kernels. We also show some
interesting applications with weak kernels. We believe thacertain problems weak kernels are
more flexible and possibly more powerful than the traditidmanels. This is certainly the case with
our three applications, especially the famous Sorting WMthimum Unsigned Reversals (SMUR)
problem. We know of no FPT algorithm which runs closeltt(2*) time. It would be interesting
to see more applications of weak kernels.

We feel that the running times of the best FPT algorithms lier three problems can all be
further improved, maybe with some new techniques. At thisfpor decentk (sayk = 40), none

12



of them is really fast enough for practical datasets.

Finally, the Minimum Co-Path Set Problem only handles trecip case of the Radiation Hy-
brid Map Construction Problem (i.e., whé@;| = 2). It would also be interesting to tackle the
general problem with exact and approximation algorithms.
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