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Abstract

In this paper, we formalize a folklore concept and formalgfide weak kerneldor (NP-
hard) search problems, which is about search space reduatid stands as a new generic
technique for designing FPT algorithms. We show that weakdls are different from the
(traditional) kernels for decision problems, by exhibitian example out oP such that its
decision version has no kernel while the equivalent searoblem has a weak kernel. We
show a few applications of weak kernels, for which a tradisibkernelization seems hard to
apply. Among them, we present the first FPT algorithm for #smdus Sorting by Minimum
Unsigned Reversals problem.
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1 Introduction

In the last four decades, we have seen the huge advance aiNplateness [14, 30, 21]. Nowadays,
NP-complete problems appear in almost all the areas whicivies combinatorial optimization, for
example in computational biology and bioinformatics. Amfirthe beginning a lot of people tended
to believe BANP (at least it seems to be hard to prove or disprove it), geopediately started
to investigate different ways to handle NP-hard problemg.tdJtoday, the two most popular ways
to handle NP-hard problems, among researchers in algod#sign, are approximation algorithms
and exact (or FPT) algorithms, which were started with thaisal works of Johnson [28] and
Tarjan and Trojanowski [34] respectively. (Using heudstiethods to hand NP-hard problems, like
evolutionary computation, is beyond this paper.)

In some areas like computational biology and bioinfornsatibe data usually contain errors.
On top of this, if we design a factor-2 approximation to hanitiese data, whatever result we got
is not appealing to biologists. So, to make approximatigoihms useful for these applications,
the approximation factors must be very close to one. Themyaldy, FPT algorithm pops up as a
natural alternative for handling these problems. The thmgdications we will discuss in this paper
all originate from computational biology.

On the other hand, the theory of fixed-parameter computdtdsbeen developed rigorously in
the last two decades. The first textbook was published in 1§9Bowney and Fellows [16] and
another couple were published in the last several years [89]). Interested readers are referred to
[22] for further details and references.

In designing FPT algorithms, kernelization is one of the nfosdamental techniques for de-
cision problems. Loosely speaking, kernelization is sedhta reduction i.e., with kernelization
one reduces the problem instance size (kernel size) to & $evemall that one could even ap-
ply a brute-force method. Sometimes, even if the kernel isizightly bigger (say2*) so that a
brute-force method is inappropriate, one can still makeafisiewith integer linear programming or
branch-and-bound to obtain almost optimal solutions inres@aable amount of time [22].

In this paper, we formalize a folklore method and formallyineweak kernelsand weak ker-
nelization forsearchproblems. Again, loosely speaking, when viewing an NP-lmgtiimization
problem as a search problem (like for Vertex Cover, we artiyrsaarching for a set of vertices,
amongn input vertices, so that deleting thevertices leaves the resulting graph edge-less), weak
kernelization is really abowsearch space reductionWe show that in general weak kernels and
kernels are not equivalent. This is done by showing an exaum of P such that its search version
has a weak kernel but its equivalent decision version hasnwek (We comment that this “search
vs decision” question has been considered in the compléxitgry before, as early as in 1974 by



Valiant [36]. Interested readers are referred to [5] for filmther development.)

The purpose for defining the weak kernels concept, on the bdred, is more on helping us de-
sign FPT algorithms more easily. In other words, weak kézagbn should be considered as a new
generic method for designing FPT algorithms efficiently.réjave show an application of weak
kernels to three problems, all known to be NP-complete, fhictv we compute the correspond-
ing weak kernels efficiently (hence design efficient FPT allyms). Among the three problems,
Sorting with Minimum Unsigned Reversals is a famous probiermomputational biology and we
do not know of any non-trivial kernelization or FPT algorithfor it. We show that Sorting with
Minimum Unsigned Reversals has a weak kernel of dizehence an FPT algorithm running in
O(2*%n + nlogn) time (and with a more detailed analysis, 2% n 4 nlogn) time).

2 Kernels vs Weak Kernels

2.1 Preliminaries

Basically, a fixed-parameter tractable (FPT) algorithmadecisionproblemII with solution value

k is an algorithm which solves the problem @ f(k)n<) time, wheref is any function only on
k, n is the input size and is some fixed constant not related/to FPT also stands for the set of
problems which admit such an algorithm [16]. (B&be a finite alphabet. In the languages of [19],
a parameterized problen@, <) is composed of a s&) C X* of strings and a parameterization
x of ¥* (which mapsX* to N). An FPT algorithm for(Q, ) is then an algorithm which solves
itin f(k(x)) - p(|z|) time, wherex is the input length,f is any computation function andis a
polynomial function.)

Kernelization is a polynomial time transformation thanséorms a problem instandé, k) to
another instancél’, k) such that (1)1, k) is a yes-instance iffI’, k') is also a yes-instance; (2)
k' < k; and (3)|I'| < f(k) for some functionf(—). (I’,k’) is typically called akernelof the
problem, with sizg’|. It is easy to see that if a problem has a kernel then it is in; FRdreover,
every problem in FPT has a kernel. From this, kernelizat®ma way to perform data-reduction
with performance guarantee, “a humble strategy for copiith trard problems, almost universally
employed” [17]. More fundamental details on FPT algorithtaa be found in [16, 19].

Recently, Bodlaendeaat al. conducted a seminal work by showing that a class of impoR&xt
problems cannot have polynomial (e.Q.(k?) size) kernels unless the polynomial hierarckyj
collapses to the third level (i.ePH = E;’;) [6]. (The fundamental technique of this work, however,
is adapted from [20].) One such problem is calledlEAF OUT-BRANCHING (i.e., finding a
rooted oriented spanning tree with at leadeaves in an input digrapP) [18].



2.2 Weak Kernels

As illustrated in the introduction, we view weak kernelipatas a way to reduce search space. In
the following, we formalize the folklore concept and caligéak kernel. We also prove some of its
basic properties.

Definition 1 (Search Problem) Let ¥ be the alphabet and. C ¥* be a decidable language. A
search problem w.r.tL is a binary relationR;, C ¥* x ¥*. x € L iff 3y € ¥* such thatR(x, y).
We say a Turing machiri computesR if:

e If x € L, thenT acceptsr with outputy € ¥* such thatR(zx, y).

e If x & L, thenT rejectsz.

Intuitively, two stringsz, y € ¥* such thatR(z, y) means thay is a witness ofc € L.
With this definition, a search problem is NP if:

e Thereis a polynomigh : N — N, for anyz,y € ¥*, R(x,y) implies|y| < p(|z|).
e Foranyzx,y € ¥*, R(x,y) can be decided in PTIME.

Then the search space of a search problem is a language frimin gdiution could be extracted.

Definition 2 (Search Space)Given a search probleni; w.r.t. a languagel and x € ¥*, the
search space oR;, is a languagel’ with two algorithmsS and A such thatr € L iff S(x) € L'
andRp(z, A(S(x))).

Definition 3 (Weak Kernel) Let Ry be a parameterized search problem over alphabetith the
underlying decision problerf), x). LetT" be a Turing machine that comput&sand its runtime is
bounded by a functiorf.

A polynomial time computable functidi : X* — >* is a weak kernelization df), x) if there
exists an algorithmdy; such thatLy, := {W(z) : z € L} is a search space d®¢, moreover, for
eachz € ¥*, W(z) = (w1, w2) with |wi| < h(k(z)), |w2| < ¢(f(|z| + x(x))) and the runtime
of Ay (w1, w2) is bounded by (Jw1|) X p(|wz|) whereg, h are arbitrary computable functions and
p, g are polynomial functionsLyy is called the weak kernel.

Let W be a weak kernelization and’ (z) = (w1, w2) for somex € ¥*. We define the size of

weak kernel w.r.tz: as |wy]|.



In the definition of weak kernelization, the runtime 4f; depends on two parts, sgy|w:|)
andp(|ws|) whereg is an arbitrary computable function apds a polynomial function. In many
practical caseap, contains the essential information to obtain the solutiad @, only deals with
encoding.

Forinstance, for the parameterized Vertex Cover (p-Ve@exer) with instance® = (V, E), k),
lwa|=O(klog|V]) = O(klogn). This issue was raised by Harnik and Naor before [23]. Howeve
for our applications, as all the problems areN#®, this actual encoding blow-up can be almost
always ignored. This is similar to the RAM model, in which oren store a vertex/integer using
O(1) space; but in theory we need to stdse n bits for a vertex if there are vertices to store.

However, in the following example, the, part is used to verify the solution.

Example 1 p-SAT has no polynomial kernelization unle®d collapses to its third level (i.e.,
PH = ¥2) [20, 6]. But it has a weak kernelization such tHat(z) = (x(z), z).

2.3 Kernels# Weak Kernels

Weak kernelization is somehow a generalization of kera&bn to search problems. In essence,
weak kernelization deals with problems that search for megis. However, since in a decision
problem, the solution is “Yes” or “No” and always differembi its witness, these two notations
are different if we directly change a search problem to decisne. We show below that for some
logically equivalent decision and search problem, kernel\@eak kernel cannot co-exist.

Example 2 Let @ ¢ P be a language oveE such that for anyr € >*, whetherz € @ can be
decided inf(|z|) time. Define a search problef, as below:

o Vx e ¥* ifx € @, then(z,1) € Rg.
o Vz e ¥* ifx & Q, then(x,0) € Rg.

Letx(xz) = 1 for everyx € ¥*. ThenRg has a weak kernelization b(f), ) has no kernelization.

Proof. Itis easy to see thdt), ) has no kernelization for otherwise an FPT algorithm (fQr, )
would imply @ € P.

Rg has a trivial weak kernelization that (z) = z1/(2D) for all 2 € ©*. Thatis,W (z) is «
followed by f(]x|) 1's. (Note thatw; = { in this case.) The algorithmy; just testsR(z, 0) and
R(z,1). 0

We comment that the above result is related to the “searchaisidn” question in the traditional
complexity theory; namely, under a complexity assumpttbere is an associated search problem
p in NP which cannot be reduced to its corresponding decision proljb].
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However, if the underlying decision problem for a searchbpem is inNP, then weak kernel-
ization implies kernelization.

Proposition 1 LetR¢ be a search problem with underlying parameterized decigioblem(Q, ),
and(@ € NP, then a weak kernelization fd?, implies a kernelization fofQ, ).

Proof. Since@ € NP, Rgp can be computed in PTIME. The definition of weak kernelizatio
implies an FPT algorithm fofQ, ) and hence a kernelization. O

While the above proofs are not really difficult, they haveemssting theoretical implications. For
instance, for a problem unlikely to have a kernel ($apominating Set, which is W[2]-complete),
as long as it belongs to NP, it is equally unlikely to have akn@anel. Therefore, for problems in
NP, the true merit of the above concepts seems to be helpidgsign efficient FPT algorithms via
weak kernels directly.

Through a private communication with Mike Fellows, the st idea of using weak kernels
seems to be in [1], where Bonsma, Briiggemann and Woegihgeresl that the MAX LEAF prob-
lem has a weak kernel of size5k. (Note that MAX LEAF is the complement of the Minimum
Connected Dominating Set problem.) In the next section, veavshree new applications of weak
kernels.

3 Applications

We show below three examples of the applications of weakdtertiror all of them, we do not know
of better kernel bounds. For the famous Sorting with Minimunsigned Reversals, this is the first
non-trivial FPT algorithm.

The three minimization problems we consider are all knowhdd\P-complete: Complement
of Maximal Strip Recovery (CMSR), Minimum Co-Path Set andtiag with Minimum Unsigned
Reversals (SMUR). We will mainly focus on solving these peals with weak kernels. For some
of these problems (e.g., CMSR), it is possible to solve ihvlibunded search tree [41]. Yet in
general it is still unknown whether bounded search treensyd more powerful than weak kernels.

For CMSR, it was already shown that the CMSR problem has a wesaie! of size5k [38]. But
the weak kernel definition was not well formalized there arabwven called ‘kernel’ in [38]; also,
some cases were missing (which introduced some confus®a)we sketch a complete solution
here as a warm-up of weak kernel applications.



3.1 CMSR

Given two genomic map&'; andG, represented by a sequencenafene markers, strip (syntenic
block) is a sequence of distinct markers of length at leastvivich appear as subsequences in the
input maps, either directly or in reversed and negated fdrhre problemMaximal Strip Recovery
(MSR) is to find two subsequencéq andG? of G; andGy, respectively, such that the total length
of disjoint strips inG7 andG% is maximized (i.e., conversely, the complement of the mobCMSR

is to minimize the number of markers deleted to have a feasiblution). An example of MSR and
CMSR is shown in the following figure, in which each integgrresents a marker. Throughout this
paper, a sequence is either denoted as a list as in FiguretLaorjust be denoted as a string.

G = (1,2,3,4,5,6,7,8,9,10,11,12)

Go = (-9,-4,-7,-6,8,1,3,2,-12,—-11,—10, —5)
S1o= (1,2)

Sy = (6,7,9)

Sy = (10,11,12)

Gt = (1,2,6,7,9,10,11,12)

G5 = (—9,-7,-6,1,2,~12,—11, —10)

Figure 1: An example for the problem MSR and CMSR. MSR has atisal size of eight, with
three stripsSy, So, S3. CMSR has a solution size of four: the deleted markers ar® 3/4d 8.

MSR and CMSR were motivated by eliminating redundancieseimognic maps [13, 40]. Re-
cently, both MSR and CMSR are shown to be NP-complete [38hdhh APX-hard [7, 26, 27]. The
generalization to handle more than two genomic maps canurelfim [9, 38].

Before any marker is deleted, we can identify all maximal own substrings of length at least
one (possibly in negated and reversed form, which will als@&lled maximal common substrings
for convenience) of7; andG,. We also call a length-1 maximal common substring (which is a
letter) anisolatedletter orisolate Two substrings are calleteighborsif there is no other string in
between them.

Lemma 1 Before any marker is deleted, if a length-4 maximal commastsing zyzw or —w —
z —y — x appears in bothG; andGs (or, if xyzw appears inG; and—w — z — y — x appears in
G4, and vice versa), then there is an optimal solution for MSRWwhasxyzw or —w — z —y — x
as a strip.



Proof. Wlog, we only consider the case whepzw appears inG; and—w — z — y — x appears in
G>. The cases whenyzw (—w — z — y — x) appears in botli-; andG, are similar.

Let the length-6 substring i67; containingzyzw be p;(x)zyzws;(w) and let the length-6
substring inG, containing—w — z — y — z beps(w) — w — z — y — xso(z). When deleteryzw
from G; and —w — z — y — x from G3, at most two strips can be obtainegd; (x)s;(w) and
p2(w)se(x) (with a total length of 4). Clearly, retainingyzw and—w — z — y — x as a strip can
give us a solution at least as good as any optimal solutioncélehe lemma is proven. O

An example for the above lemma is as follow$; = cdaxyzwbef andGy = e —w — z —y —
xfedab. Tyzw appears inGi, —w — z — y — x appears inGs. So we have one optimal solution
G} = cdryzw andG5 = —w — z — y — xcd. On the other hand, the optimal solution is not unique
as we can sele@; = cdabef andG3 = efcdab.

The above lemma holds for maximal common substrings of leggtater than 4. In fact, similar
to that, we can show that a length-3 maximal common substrfiig; andG» which has at most 3
isolated neighbors if7; andG2 can be a strip in some optimal solution of MSR, etc.

Let 32 be the alphabet for the input ma@s§ andG,. The above results give us a weak kernel-
ization procedure.

1. Without deleting any gene marker@h andGs, identify a set of maximal common substrings
of length at least four, a set of maximal common substringemafth three which has at most
3 isolated neighbors, and a set of maximal common substofdsngth two which has at
most 2 isolated neighbors, from the two sequer@esindGs.

2. For each common substring identified, change it to a neerletX;, with 31 N2 = (. Let
the resulting sequences b4, G),. ReturnX as a weak kernel.

The correctness of this procedure follows from the fact thatmaximal common substrin§g
of lengthy in G; and G, hasgq isolated neighbors angl < p, thenS is a strip in some optimal
solution of MSR. (If not, then we could delete thasolated neighbors af, makeS a strip and
hence obtain a solution at least as good as before.) Consthgquee can focus on a special kind of
solution for CMSR in which the maximum number of isolateddet are deleted.

Let X1 be the set of new letters used in the weak kernelization pmaeith>; N X = (). The
two lemmas for obtaining the final result are: (1) There is ptinoal CMSR solution of sizé for
G, andG: if and only if the solution can be obtained by deletingnarkers in: from G, and G/,
respectively. (2) IG) (resp.GY), there are at mosik letters (markers) it [38]. To see a slightly
revised proof of the last lemma (due to the revised weak ligateon procedure), lek; be number



of length4 common substrings deleted in the optimal CMSR solution.sgquently we have
k= k1 + 2kg + 3ks.

The size of the weak kernel is the number of letters that casiply be deleted, i.e., ik. LetS
be a lengthp maximal common substring to be deleted.pl= 3, thenS has at most 4 isolated
neighbors and we have 7 associated letters$fdf p = 2, thenS has 3 or 4 isolated neighbors; and
we can have 6 associated letters fowhen we have 4 isolated neighbors), 7 or 8 (three isolated
neighbors and another neighbor of length-2 or length-3)w N us consider the remaining letters
which are all isolates. Let be a marker to be deleted, let it appeadhas---azb---cd--- and
let it appear inG,, as---czd---ab---. Clearly, in this example: is associated withz, a, b, ¢, d}.
In other words, for each isolate, we have 5 associated $etRatting these together, the number of
letters inX is

5k1 + 8ko + Tks < 5k1 + 10ke + 15k3 = bk.

Theorem 1 [38] CMSR has a weak kernel of siz& which implies directly an FPT algorithm
running inO(23-1%n, 4-n?) time.

Proof. From the above discussion, we can choose to délégers inX from G, G5,. The number

5k ~ 23.61k
k; )

using Stirling’s formula. For each choice, we can check Wweett is valid, i.e., whether all remain-

of choices, is hence bounded by

ing markers are in some strip (&, andGj. This can be done in linear time if we spefidn?) time
in advance, i.e., building a correspondence between aliefdentical markers i1, G3. So the
overall running time of the algorithm ©(23%1%n + n?) time. Note that the algorithm will report
‘no solution of sizek’, if none of the choices leads to a valid solution. O

We comment that with the bounded search tree method, the IgBfiitam can be improved to
run in O(3Fn + n?) time [41]. The details will not be reported here.

3.2 Minimum Co-Path Set

In this subsection, we study the following problem callechitium Co-Path Set. Given a simple
undirected graplds, a co-path seis a setS of edges inG whose removal leaves a graph in which
every connected component is a path. In the Minimum Co-Peti?®blem, we need to compute a
minimum co-path set 6.

The Minimum Co-Path Set Problem originates from radiatighrid (Rh) mapping, which is
a powerful technique for mapping unique DNA sequences dmtoncosomes and whole genomes
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[10, 15, 31, 32]. In Rh mapping, chromosomes are randomlkdmonto small DNA fragments
through gamma radiation. A (random) subset of these DNAegts retain with healthy hamster
cells and grow up to build up a hybrid cell line. This processdpeated many times and the co-
retention rate of a pair of markers (labeled chromosomd) ladicates their physical distance on
the chromosome. In principle, when two markerandy are close, the probability thatandy are
broken by the gamma radiation is small, hence with a highadviity they are either co-present in
or co-absent from a DNA fragment.

A subset of markers that are co-present from DNA fragmentsailed acluster LetV =
{1,2,---,n} be a set of markers and lét= {C1,C>,---,C,,} be a collection of clusters. The
Radiation Hybrid Map Construction Problem is to computaadir ordering of the markers in which
the markers in each clustél appear consecutively. In reality, a cluster might be formét errors,
so no such linear ordering might exist. In this case, one sig@demove the minimum number of
clusters so that the leftover clusters admit a linear orderiwhen|C;| = 2 for all 4, this is exactly
the Minimum Co-Path Set Problem. Given a simple undirecteplyG = (V, E), each vertex in
V' corresponds to a marker, an edgev) € E corresponds to a clusté, v}.

In [10], the Minimum Co-Path Set Problem was shown to be Nidgete [21]. The proof is by
a reduction from the Hamiltonian Path problem, with eacheddgv) being converted to a cluster
{u,v}. Itis easy to see that there is a Hamiltonian Path in the igmphG if and only if one has to
delete exactlyE| — n + 1 clusters. A factor-2 approximation was also proposed if, [iich was
recently improved to 10/7 [12]. (The counterpart of the Minim Co-Path Set Problem is the well-
known Minimum Path Coveproblem [37] and will not be covered here.) Lebe the minimum
number of edges deleted for the problem. We show in this stibsethat the Minimum Co-Path
Set Problem is in FPT; in fact, it has a linear weak kernel o sit mostk, hence the problem can
be solved efficiently irO (236 (n + k)) time. In the following, we present the technical details.

If some connected component @fhas maximum vertex degree at most 2 then the problem is
trivially solvable for that component. So from now on we amssuthat each connected component
of G has maximum vertex degree at least 3. Moreover, in the sol@isingle vertex could also be
considered as a (degenerate) path. The following lemmasistegprove.

Lemma 2 There is a solutionR for the minimum co-path set such thRtcontains only edges
incident to some vertices of degree at least &/in

Proof. Assume to the contrary that a solutidhcontains some edde:, y) such that both: andy
have degree at most two (. Let G — R be the graph obtained frodd by deleting all the edges in
R. When bothr andy have degrees at most 2,(if, y) is in R then putting it back t@x — R would
have two possibilities: (1) make each connected comporfef@e- R) U {(z,y)} a path, or (2)

10



create some cycle ifG — R) U {(x, y)}. In case (1), it contradicts the optimality & In case (2),

(z,y) is on some cycle i7. Hence we can find an edge’, ) on this cycle which is incident to

some vertex of degree at least 3Gh Then we simply swagz, y) with (z/,') in R. It is easy to

see that repeating this process we can eventually have aaletios R’ such thai R’| = |R| and

R’ contains only edges incident to some vertices of degreast &inG. O
Now let D be a solution for the minimum co-path set such thatontains only edges incident

to some vertices of degree at least 3dn The above lemma implies a simple weak kernelization

procedure.
1. Identify the vertices ofs with degree at least 3. Let this set Bg(G).

2. Letthe set of edges which are incident to some verticé3 (&) be E5(G).
ReturnEs(G) as a weak kernel.

We have the following lemma.

Lemma 3 The Minimum Co-Path Set Problem has a solution of siffieand only if the solution
can be obtained by deletingedges inF5(G).

Proof. We only need to show the ‘only-if’ part as the other part isiobg. By Lemma 2, we do not
need to include any edge i which is incident to vertices of degree only one or two. O
It remains to show the weak kernel size (i.e., the siz€4i7)). We have the following lemma.

Lemma4 Letk = |D|, then|E5(G)| < 5k. In other words, the size of the weak kernel of the
Minimum Co-Path Set Problem ig:.

Proof. From Lemma 3, we know that theedges ofD can be found inE3(G). After thesek edges
in D are deleted front7, G — D is only composed of paths, i.e., the degrees of vertic&s in D
are at most 2. In other words, the edgedi(G) — D must also be incident to vertices 0 — D
of degree at most 2 (note that these vertices originally lie &3(G)). As thek edges inD are
incident to at mosek vertices inV3(G), [V3(G)| < 2k. Therefore, we have at mosk edges in
E3(G)—D. Counting the: edges inD back, we havéFs(G)| = |Es(G)—D|+|D| < 4k+k = 5k.
0

With the above lemmas, it is easy to have an FPT algorithmHerMinimum Co-Path Set
Problem. First, if V3(G)| > 2k or |E5(G)| > 5k then we can simply return NO. Otherwise, among
the (at mostHk edges inFs(G), select all combinations df edges to delete. For each setkof
edges selected, delete them frafand check whether the resulting graph is composed of paths
only (using standard linear time graph algorithms like @iefitst search). If we fail to find such a
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set, then return ‘No solution of siZg; otherwise, just return the computed set of edge®ad he
time complexity of the algorithm is dominated by check|<g L > ~ 2361k splutions. We have

the following theorem.

Theorem 2 Let k be the size of the minimum co-path set. The Minimum Co-PatRrSklem has
a weak kernel of siz&k, hence can be solved @(2%5'%(n 4 k)) time.

3.3 Sorting with Minimum Unsigned Reversals

Sorting with Minimum Unsigned Reversals (SMUR) is a famousbfem in computational biol-
ogy, more specifically, in computational genomics. GivereagneH composed of a sequence of
n distinct genes (also formulated as a permutations oftegers{1,2,---,n}), i.e., assume that
H = s189---8;Si4+1- - 5j—15j - - - Sp, areversaloperation on the segmesfs;; - - - s;_1s; trans-
formsH into H' = sys2---5jSj_1- - Si+1Si - - - Sp. The problem Sorting with Minimum Unsigned
Reversals is to use the minimum number of reversals to co¥ento the identity permutation
I =123---n. Example: GivenH = 15342, we can use two signed reversals to first change it to
15432 and finally to 12345.

When the genes are signed, we have a similar problem SortthdWinimum Signed Reversals.
Given a signed genomE ~ composed of a sequencesofistinct (signed) genes (also formulated
as a signed permutations ofintegers{1,2,---,n}), i.e.,, H~ = tito---titip1---tj_1tj - ty,
asigned reversabperation on the segmetyt;,; - - - t;_¢; transformsH ~ into H" = tity--- —
tj —tj_1--- —tiy1 — t;-- - t,. The problem Sorting with Minimum Signed Reversals is to tinge
minimum number of signed reversals to convArt into the identity permutatiod = 123 - n.
Example: GiverH = 1—534—2, we can use two signed reversals to first changelittt —4—3—2
and finally to 12345. (Note that in the literature it is als@cequtable to conver~ to —1 =
—n---—3—2— 1. We can enforce thall ~ is converted td by adding two auxiliary genes, i.e.,
0H~(n + 1). This is a known trick in computational genomics.)

SMUR was shown to be NP-complete by Caprara [8] and the besbeimation algorithm has
a factor 1.375 [2]. However, no non-trivial FPT algorithmkisown for the problem. The trivial
solution is to use a bounded search tree algorithm whichirursughly O (k°(*)n) time. We show
below that with weak kernels, a much faster FPT algorithmlmadesigned.

We use Sorting with Minimum Signed Reversals as a subrodin&MUR. Unlike SMUR,
Sorting with Minimum Signed Reversals can be solved in pofgial time [25, 29, 35], with the best
running time beingD(nlogn) [33]. Computing the minimum signed reversal distance, have
can be done in linear time [4]. Lef be the (unsigned) genome to be sorted. It is easy to see that
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each reversal can eliminate at most two breakpoints. (fdfse a breakpoint is a 2-substrifigj)

of H such thatjj — i| # 1.) Hence, if the optimal solution size is there would be at mostk
breakpoints inH. In other words, there are at most genes which are in some breakpoints. Let
H;, be the set of such (at mosty genes.H,, is the weak kernel in this application.

Given H, let a maximal substring3 of H composed of at least two consecutive adjacen-
cies be called dlock with the first and last letters calleldead and tail of the block respec-
tively. (We also say that the head and the tail adgacent through the block in H.) Example:
H=1(0,5,7,8,10,1,2,3,4,9,6,11), B = (1,2,3,4) is a block with head and tail4. 7 and8 are
in H; but form an adjacency ifi/. 1 and4 are adjacent through the bloékin H. Following [24],
there is an optimal SMUR solution fdi which does not cut any block.

Let H, be the set of signed genomes obtained by addifig signs on these genes (involved in
some breakpoints) ifi/;,. (Following [24], if two such genes i, are the head and tail of a block
B, then all the genes iB should be given the same sign, i.e., either all positive lanegative.) It
is easily seen thdid, | < 2%k Moreover, we have the following lemma.

Lemma 5 There is a solution of unsigned reversals for sortingf if and only if the solution can
be found by sorting some sequencédin with k signed reversals.

Proof. If there is a solution ofk unsigned reversals for sorting, then we can trace these
reversals backwards and each time add signs accordinglgxample, assume that the last reversal
to obtain(0, 1,2, 3,4, 5) is @ then for sorting by signed reversals the second last sigaadme
is (0,1,—-3,—2,4,5). Itis easily seen that after repeating this proced¢snes, we have a signed
genomeH" in H, . Certainly, one can soff” by k signed reversals.

On the other hand, if there akesigned reversals which sorts some genom&jn sayH"”, one
can ignore the negative signs i’ (to obtain /) and perform the samk (unsigned) reversals to

sortH into I. O

Theorem 3 Sorting with Minimum Unsigned Reversals has a weak kernéteflg, hence can be
solved inO(2%n + nlogn) time.

Proof. We first show a bound af(2*n + nlogn), which is straightforward from thék weak
kernel. First, following Lemma 5, the weak kernelizatiore&sy: identify all the blocks i/ and
return (H, Hy, k). For each possible signed genomeHn (obtained fromH,, by adding some
negative signs), we use th@(n) time algorithm in [4] to check whether it can be sorted with
signed reversals. If so, we can compute accordinglyktegned reversals using the algorithm by
Swensoret al. [33], to obtain thet (unsigned) reversals to saf in O(nlogn) time. If no valid
solution is found, we report NO. This algorithm clearly ring)(2*%n + nlogn) time.
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By a more detailed analysis (i.e., we do not have to try alkfisde ways to sign genes ),
the running time of the above algorithm can be improve®t@?n + nlogn) time. Now let the
genes inH;, form a total ofz adjacencies (possibly through some blocks). Followind,[E4wo
such genes form an adjacencyhh obviously they have to be given the same signs, i.e., eitbir
positive or both negative. If two such genes form an adjacéimough some blockB in H, all the
genes inB need to have the same signs. So the total number of ways tgeigs inf}, is bounded

by
97 v 9(4k—22)/2—1 _ 92k—1

Hence we have an FPT algorithm with running tim&?*n + nlogn). O

We comment that, for the related Sorting with Minimum UnsdrnTranslocation problem, ex-
actly the same idea can be applied to obtain a weak kernet®ikj hence an FPT algorithm with
running timeO(2%*n + n2). The relevant details can be found in [39, 3] (or from the nefiees
therein).

4 Concluding Remarks

We formally introduce a new (somehow a previous folklorenaapt called weak kernels for fixed-
parameter computation and prove some interesting pregesfiweak kernels. We also show some
interesting applications with weak kernels. We believe thacertain problems weak kernels are
more flexible and possibly more powerful than the traditid@ainels. This is certainly the case with
our three applications, especially the famous Sorting Withimum Unsigned Reversals (SMUR)
problem. We know of no FPT algorithm which runs closeltt(24) time. It would be interesting
to see more applications of weak kernels.
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