
Weak Kernels

Haitao Jiang∗ Chihao Zhang† Binhai Zhu‡

October 9, 2010

Abstract

In this paper, we formalize a folklore concept and formally defineweak kernelsfor (NP-

hard) search problems, which is about search space reduction and stands as a new generic

technique for designing FPT algorithms. We show that weak kernels are different from the

(traditional) kernels for decision problems, by exhibiting an example out ofP such that its

decision version has no kernel while the equivalent search problem has a weak kernel. We

show a few applications of weak kernels, for which a traditional kernelization seems hard to

apply. Among them, we present the first FPT algorithm for the famous Sorting by Minimum

Unsigned Reversals problem.

∗Department of Computer Science, Montana State University,Bozeman, MT 59717, USA. Email:

htjiang@cs.montana.edu.
†Department of Computer Science, Shanghai Jiao Tong University, Shanghai 200030, China. Email:

chihao.zhang@gmail.com.
‡Corresponding author. Department of Computer Science, Montana State University, Bozeman, MT 59717, USA.

Email: bhz@cs.montana.edu.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 4 of Report No. 5 (2010)

1 Introduction

In the last four decades, we have seen the huge advance of NP-completeness [12, 27, 19]. Nowadays,

NP-complete problems appear in almost all the areas which involves combinatorial optimization, for

example in computational biology and bioinformatics. As from the beginning a lot of people tended

to believe P6=NP (at least it seems to be hard to prove or disprove it), people immediately started

to investigate different ways to handle NP-hard problems. Up to today, the two most popular ways

to handle NP-hard problems, among researchers in algorithmdesign, are approximation algorithms

and exact (or FPT) algorithms, which were started with the seminal works of Johnson [25] and

Tarjan and Trojanowski [31] respectively. (Using heuristic methods to hand NP-hard problems, like

evolutionary computation, is beyond this paper.)

In some areas like computational biology and bioinformatics, the data usually contain errors.

On top of this, if we design a factor-2 approximation to handle these data, whatever result we got

is not appealing to biologists. So, to make approximation algorithms useful for these applications,

the approximation factors must be very close to one. Then, naturally, FPT algorithm pops up as a

natural alternative for handling these problems. The two applications we will discuss in this paper

all originate from computational biology.

On the other hand, the theory of fixed-parameter computationhas been developed rigorously in

the last two decades. The first textbook was published in 1999by Downey and Fellows [14] and

another couple were published in the last several years (e.g., [17]). Interested readers are referred to

[20] for further details and references.

In designing FPT algorithms, kernelization is one of the most fundamental techniques for de-

cision problems. Loosely speaking, kernelization is really data reduction; i.e., with kernelization

one reduces the problem instance size (kernel size) to a level so small that one could even ap-

ply a brute-force method. Sometimes, even if the kernel sizeis slightly bigger (say2k) so that a

brute-force method is inappropriate, one can still make useof it with integer linear programming or

branch-and-bound to obtain almost optimal solutions in a reasonable amount of time [20].

In this paper, we formalize a folklore method and formally define weak kernelsand weak ker-

nelization forsearchproblems. Again, loosely speaking, when viewing an NP-hardoptimization

problem as a search problem (like for Vertex Cover, we are really searching for a set ofk vertices,

amongn input vertices, so that deleting thek vertices leaves the resulting graph edge-less), weak

kernelization is really aboutsearch space reduction. We show that in general weak kernels and

kernels are not equivalent. This is done by showing an example out ofP such that its search version

has a weak kernel but its equivalent decision version has no kernel. (We comment that this “search

vs decision” question has been considered in the complexitytheory before, as early as in 1974 by

2

Valiant [33]. Interested readers are referred to [5] for thefurther development.)

The purpose for defining the weak kernels concept, on the other hand, is more on helping us

design FPT algorithms more easily. In other words, weak kernelization should be considered as a

new generic method for designing FPT algorithms efficiently. Here, we show an application of weak

kernels to two problems, all known to be NP-complete, for which we compute the corresponding

weak kernels efficiently (hence design efficient FPT algorithms). Among the two problems, Sorting

with Minimum Unsigned Reversals is a famous problem in computational biology and we do not

know of any non-trivial kernelization or FPT algorithm for it. We show that Sorting with Minimum

Unsigned Reversals has a weak kernel of size4k, hence an FPT algorithm running inO(24kn +

n log n) time (and with a more detailed analysis, inO(22kn + n log n) time).

2 Kernels vs Weak Kernels

2.1 Preliminaries

Basically, a fixed-parameter tractable (FPT) algorithm foradecisionproblemΠ with solution value

k is an algorithm which solves the problem inO(f(k)nc) time, wheref is any function only on

k, n is the input size andc is some fixed constant not related tok. FPT also stands for the set of

problems which admit such an algorithm [14]. (LetΣ be a finite alphabet. In the languages of [17],

a parameterized problem(Q,κ) is composed of a setQ ⊆ Σ∗ of strings and a parameterization

κ of Σ∗ (which mapsΣ∗ to N). An FPT algorithm for(Q,κ) is then an algorithm which solves

it in f(κ(x)) · p(|x|) time, wherex is the input length,f is any computation function andp is a

polynomial function.)

Kernelization is a polynomial time transformation that transforms a problem instance(I, k) to

another instance(I ′, k′) such that (1)(I, k) is a yes-instance iff(I ′, k′) is also a yes-instance; (2)

k′ ≤ k; and (3)|I ′| ≤ f(k) for some functionf(−). (I ′, k′) is typically called akernelof the

problem, with size|I ′|. It is easy to see that if a problem has a kernel then it is in FPT; moreover,

every problem in FPT has a kernel. From this, kernelization is a way to perform data-reduction

with performance guarantee, “a humble strategy for coping with hard problems, almost universally

employed” [15]. More fundamental details on FPT algorithmscan be found in [14, 17].

Recently, Bodlaenderet al. conducted a seminal work by showing that a class of importantFPT

problems cannot have polynomial (e.g.,O(k2) size) kernels unless the polynomial hierarchy (PH)

collapses to the third level (i.e.,PH = Σ3
p) [6]. (The fundamental technique of this work, however,

is adapted from [18].) One such problem is calledk-LEAF OUT-BRANCHING (i.e., finding a

rooted oriented spanning tree with at leastk leaves in an input digraphD) [16].

3

2.2 Weak Kernels

As illustrated in the introduction, we view weak kernelization as a way to reduce search space. In

the following, we formalize the folklore concept and call itweak kernel. We also prove some of its

basic properties.

Definition 1 (Search Problem) Let Σ be the alphabet andL ⊆ Σ∗ be a decidable language. A

search problem w.r.t.L is a binary relationRL ⊆ Σ∗ × Σ∗. x ∈ L iff ∃y ∈ Σ∗ such thatR(x, y).

We say a Turing machineT computesR if:

• If x ∈ L, thenT acceptsx with outputy ∈ Σ∗ such thatR(x, y).

• If x 6∈ L, thenT rejectsx.

Intuitively, two stringsx, y ∈ Σ∗ such thatR(x, y) means thaty is a witness ofx ∈ L.

With this definition, a search problem is inNP if:

• There is a polynomialp : N → N, for anyx, y ∈ Σ∗, R(x, y) implies |y| ≤ p(|x|).

• For anyx, y ∈ Σ∗, R(x, y) can be decided in PTIME.

Then the search space of a search problem is a language from which solution could be extracted.

Definition 2 (Search Space)Given a search problemRL w.r.t. a languageL and x ∈ Σ∗, the

search space ofRL is a languageL′ with two algorithmsS andA such thatx ∈ L iff S(x) ∈ L′

andRL(x,A(S(x))).

Definition 3 (Weak Kernel) LetRQ be a parameterized search problem over alphabetΣ with the

underlying decision problem(Q,κ). LetT be a Turing machine that computesR and its runtime is

bounded by a functionf .

A polynomial time computable functionW : Σ∗ → Σ∗ is a weak kernelization of(Q,κ) if there

exists an algorithmAW such thatLW := {W (x) : x ∈ L} is a search space ofRQ, moreover, for

eachx ∈ Σ∗, W (x) = (w1, w2) with |w1| ≤ h(κ(x)), |w2| ≤ q(f(|x| + κ(x))) and the runtime

of AW (w1, w2) is bounded byg(|w1|)× p(|w2|) whereg, h are arbitrary computable functions and

p, q are polynomial functions.LW is called the weak kernel.

Let W be a weak kernelization andW (x) = (w1, w2) for somex ∈ Σ∗. We define the size of

weak kernel w.r.t.x as |w1|.

4

In the definition of weak kernelization, the runtime ofAW depends on two parts, sayg(|w1|)

andp(|w2|) whereg is an arbitrary computable function andp is a polynomial function. In many

practical cases,w1 contains the essential information to obtain the solution and w2 only deals with

encoding.

For instance, for the parameterized Vertex Cover (p-Vertex-Cover) with instance (G = (V,E), k),

|w2|=O(k log |V |) = O(k log n). This issue was raised by Harnik and Naor before [21]. However,

for our applications, as all the problems are inNP, this actual encoding blow-up can be almost

always ignored. This is similar to the RAM model, in which onecan store a vertex/integer using

O(1) space; but in theory we need to storelog n bits for a vertex if there aren vertices to store.

However, in the following example, thew2 part is used to verify the solution.

Example 1 P-SAT has no polynomial kernelization unlessPH collapses to its third level (i.e.,

PH = Σ3
p) [18, 6]. But it has a weak kernelization such thatW (x) = (κ(x), x).

2.3 Kernels 6= Weak Kernels

Weak kernelization is somehow a generalization of kernelization to search problems. In essence,

weak kernelization deals with problems that search for a witness. However, since in a decision

problem, the solution is “Yes” or “No” and always different from its witness, these two notations

are different if we directly change a search problem to decision one. We show below that for some

logically equivalent decision and search problem, kernel and weak kernel cannot co-exist.

Example 2 Let Q 6∈ P be a language overΣ such that for anyx ∈ Σ∗, whetherx ∈ Q can be

decided inf(|x|) time. Define a search problemRQ as below:

• ∀x ∈ Σ∗, if x ∈ Q, then(x, 1) ∈ RQ.

• ∀x ∈ Σ∗, if x 6∈ Q, then(x, 0) ∈ RQ.

Letκ(x) = 1 for everyx ∈ Σ∗. ThenRQ has a weak kernelization but(Q,κ) has no kernelization.

Proof. It is easy to see that(Q,κ) has no kernelization for otherwise an FPT algorithm for(Q,κ)

would implyQ ∈ P.

RQ has a trivial weak kernelization thatW (x) = x1f(|x|) for all x ∈ Σ∗. That is,W (x) is x

followed byf(|x|) 1’s. (Note thatw1 = ∅ in this case.) The algorithmAW just testsR(x, 0) and

R(x, 1). ⊓⊔

We comment that the above result is related to the “search vs decision” question in the traditional

complexity theory; namely, under a complexity assumption,there is an associated search problem

ρ in NP which cannot be reduced to its corresponding decision problem [5].

5

However, if the underlying decision problem for a search problem is inNP, then weak kernel-

ization implies kernelization.

Proposition 1 LetRQ be a search problem with underlying parameterized decisionproblem(Q,κ),

andQ ∈ NP, then a weak kernelization forRQ implies a kernelization for(Q,κ).

Proof. SinceQ ∈ NP, RQ can be computed in PTIME. The definition of weak kernelization

implies an FPT algorithm for(Q,κ) and hence a kernelization. ⊓⊔

While the above proofs are not really difficult, they have interesting theoretical implications. For

instance, for a problem unlikely to have a kernel (sayk-Dominating Set, which is W[2]-complete),

as long as it belongs to NP, it is equally unlikely to have a weak kernel. Therefore, for problems in

NP, the true merit of the above concepts seems to be helping usdesign efficient FPT algorithms via

weak kernels directly.

Through a private communication with Mike Fellows, the earliest idea of using weak kernels

seems to be in [1], where Bonsma, Brüggemann and Woeginger showed that the MAX LEAF prob-

lem has a weak kernel of size3.5k. (Note that MAX LEAF is the complement of the Minimum

Connected Dominating Set problem.) In the next section, we show two new applications of weak

kernels.

3 Applications

We show below two examples of the applications of weak kernels. For both of them, we do not

know of better kernel bounds. For the famous Sorting with Minimum Unsigned Reversals, this is

the first non-trivial FPT algorithm.

The two minimization problems we consider are all known to beNP-complete: Minimum Co-

Path Set and Sorting with Minimum Unsigned Reversals (SMUR). We will mainly focus on solving

these problems with weak kernels. For some of these problems(e.g., Minimum Co-Path Set), it

is possible to solve it with bounded search tree, on top of weak kernels. Yet in general it is still

unknown whether bounded search tree is always more powerfulthan weak kernels.

3.1 Minimum Co-Path Set

In this subsection, we study the following problem called Minimum Co-Path Set. Given a simple

undirected graphG, a co-path setis a setS of edges inG whose removal leaves a graph in which

every connected component is a path. In the Minimum Co-Path Set Problem, we need to compute a

minimum co-path set inG.

6

The Minimum Co-Path Set Problem originates from radiation hybrid (Rh) mapping, which is

a powerful technique for mapping unique DNA sequences onto chromosomes and whole genomes

[9, 13, 28, 29]. In Rh mapping, chromosomes are randomly broken into small DNA fragments

through gamma radiation. A (random) subset of these DNA fragments retain with healthy hamster

cells and grow up to build up a hybrid cell line. This process is repeated many times and the co-

retention rate of a pair of markers (labeled chromosomal loci) indicates their physical distance on

the chromosome. In principle, when two markersx andy are close, the probability thatx andy are

broken by the gamma radiation is small, hence with a high probability they are either co-present in

or co-absent from a DNA fragment.

A subset of markers that are co-present from DNA fragments iscalled acluster. Let V =

{1, 2, · · · , n} be a set of markers and letC = {C1, C2, · · · , Cm} be a collection of clusters. The

Radiation Hybrid Map Construction Problem is to compute a linear ordering of the markers in which

the markers in each clusterCi appear consecutively. In reality, a cluster might be formedwith errors,

so no such linear ordering might exist. In this case, one needs to remove the minimum number of

clusters so that the leftover clusters admit a linear ordering. When|Ci| = 2 for all i, this is exactly

the Minimum Co-Path Set Problem. Given a simple undirected graphG = (V,E), each vertex in

V corresponds to a marker, an edge(u, v) ∈ E corresponds to a cluster{u, v}.

In [9], the Minimum Co-Path Set Problem was shown to be NP-complete [19]. The proof is by

a reduction from the Hamiltonian Path problem, with each edge (u, v) being converted to a cluster

{u, v}. It is easy to see that there is a Hamiltonian Path in the inputgraphG if and only if one has to

delete exactly|E| − n + 1 clusters. A factor-2 approximation was also proposed in [9], which was

recently improved to 10/7 [11]. (The counterpart of the Minimum Co-Path Set Problem is the well-

known Minimum Path Coverproblem [34] and will not be covered here.) Letk be the minimum

number of edges deleted for the problem. We show in this subsection that the Minimum Co-Path

Set Problem is in FPT; in fact, it has a linear weak kernel of size at most5k, hence the problem can

be solved efficiently inO(23.61k(n + k)) time. In the following, we present the technical details.

If some connected component ofG has maximum vertex degree at most 2 then the problem is

trivially solvable for that component. So from now on we assume that each connected component

of G has maximum vertex degree at least 3. Moreover, in the solution a single vertex could also be

considered as a (degenerate) path. The following lemma is easy to prove.

Lemma 1 There is a solutionR for the minimum co-path set such thatR contains only edges

incident to some vertices of degree at least 3 inG.

Proof. Assume to the contrary that a solutionR contains some edge(x, y) such that bothx andy

have degree at most two inG. Let G−R be the graph obtained fromG by deleting all the edges in

7

R. When bothx andy have degrees at most 2, if(x, y) is in R then putting it back toG−R would

have two possibilities: (1) make each connected component of (G − R) ∪ {(x, y)} a path, or (2)

create some cycle in(G−R)∪ {(x, y)}. In case (1), it contradicts the optimality ofR. In case (2),

(x, y) is on some cycle inG. Hence we can find an edge(x′, y′) on this cycle which is incident to

some vertex of degree at least 3 inG. Then we simply swap(x, y) with (x′, y′) in R. It is easy to

see that repeating this process we can eventually have a new solution R′ such that|R′| = |R| and

R′ contains only edges incident to some vertices of degree at least 3 inG. ⊓⊔

Now letD be a solution for the minimum co-path set such thatD contains only edges incident

to some vertices of degree at least 3 inG. The above lemma implies a simple weak kernelization

procedure.

1. Identify the vertices ofG with degree at least 3. Let this set beV3(G).

2. Let the set of edges which are incident to some vertices inV3(G) beE3(G).

ReturnE3(G) as a weak kernel.

We have the following lemma.

Lemma 2 The Minimum Co-Path Set Problem has a solution of sizek if and only if the solution

can be obtained by deletingk edges inE3(G).

Proof. We only need to show the ‘only-if’ part as the other part is obvious. By Lemma 1, we do not

need to include any edge inD which is incident to vertices of degree only one or two. ⊓⊔

It remains to show the weak kernel size (i.e., the size ofE3(G)). We have the following lemma.

Lemma 3 Let k = |D|, then |E3(G)| ≤ 5k. In other words, the size of the weak kernel of the

Minimum Co-Path Set Problem is5k.

Proof. From Lemma 2, we know that thek edges ofD can be found inE3(G). After thesek edges

in D are deleted fromG, G − D is only composed of paths, i.e., the degrees of vertices inG − D

are at most 2. In other words, the edges inE3(G) − D must also be incident to vertices inG − D

of degree at most 2 (note that these vertices originally are all in V3(G)). As thek edges inD are

incident to at most2k vertices inV3(G), |V3(G)| ≤ 2k. Therefore, we have at most4k edges in

E3(G)−D. Counting thek edges inD back, we have|E3(G)| = |E3(G)−D|+|D| ≤ 4k+k = 5k.

⊓⊔

With the above lemmas, it is easy to have an FPT algorithm for the Minimum Co-Path Set

Problem. First, if|V3(G)| > 2k or |E3(G)| > 5k then we can simply return NO. Otherwise, among

the (at most)5k edges inE3(G), select all combinations ofk edges to delete. For each set ofk

8

edges selected, delete them fromG and check whether the resulting graph is composed of paths

only (using standard linear time graph algorithms like depth-first search). If we fail to find such a

set, then return ‘No solution of sizek’; otherwise, just return the computed set of edges asD. The

time complexity of the algorithm is dominated by checking

(

5k

k

)

≈ 23.61k solutions. We have

the following theorem.

Theorem 1 Let k be the size of the minimum co-path set. The Minimum Co-Path Set Problem has

a weak kernel of size5k, hence can be solved inO(23.61k(n + k)) time.

3.2 Sorting with Minimum Unsigned Reversals

Sorting with Minimum Unsigned Reversals (SMUR) is a famous problem in computational biol-

ogy, more specifically, in computational genomics. Given a genomeH composed of a sequence of

n distinct genes (also formulated as a permutations ofn integers{1, 2, · · · , n}), i.e., assume that

H = s1s2 · · · sisi+1 · · · sj−1sj · · · sn, a reversaloperation on the segmentsisi+1 · · · sj−1sj trans-

formsH into H ′ = s1s2 · · · sjsj−1 · · · si+1si · · · sn. The problem Sorting with Minimum Unsigned

Reversals is to use the minimum number of reversals to convert H into the identity permutation

I = 123 · · · n. Example: GivenH = 15342, we can use two signed reversals to first change it to

15432 and finally to 12345.

When the genes are signed, we have a similar problem Sorting with Minimum Signed Reversals.

Given a signed genomeH− composed of a sequence ofn distinct (signed) genes (also formulated

as a signed permutations ofn integers{1, 2, · · · , n}), i.e., H− = t1t2 · · · titi+1 · · · tj−1tj · · · tn,

a signed reversaloperation on the segmenttiti+1 · · · tj−1tj transformsH− into H ′′ = t1t2 · · · −

tj − tj−1 · · · − ti+1 − ti · · · tn. The problem Sorting with Minimum Signed Reversals is to usethe

minimum number of signed reversals to convertH− into the identity permutationI = 123 · · · n.

Example: GivenH = 1−534−2, we can use two signed reversals to first change it to1−5−4−3−2

and finally to 12345. (Note that in the literature it is also acceptable to convertH− to −I =

−n · · · − 3 − 2 − 1. We can enforce thatH− is converted toI by adding two auxiliary genes, i.e.,

0H−(n + 1). This is a known trick in computational genomics.)

SMUR was shown to be NP-complete by Caprara [7] and the best approximation algorithm has

a factor 1.375 [2]. However, no non-trivial FPT algorithm isknown for the problem. The trivial

solution is to use a bounded search tree algorithm which runsin roughlyO(kO(k)n) time. We show

below that with weak kernels, a much faster FPT algorithm canbe designed.

We use Sorting with Minimum Signed Reversals as a subroutinefor SMUR. Unlike SMUR,

Sorting with Minimum Signed Reversals can be solved in polynomial time [23, 26, 32], with the best

9

running time beingO(n log n) [30]. Computing the minimum signed reversal distance, however,

can be done in linear time [4]. LetH be the (unsigned) genome to be sorted. It is easy to see that

each reversal can eliminate at most two breakpoints. (In this case a breakpoint is a 2-substring〈i, j〉

of H such that|j − i| 6= 1.) Hence, if the optimal solution size isk, there would be at most2k

breakpoints inH. In other words, there are at most4k genes which are in some breakpoints. Let

Hk be the set of such (at most)4k genes.Hk is the weak kernel in this application.

Given H, let a maximal substringB of H composed of at least two consecutive adjacen-

cies be called ablock, with the first and last letters calledhead and tail of the block respec-

tively. (We also say that the head and the tail areadjacent through the blockB in H.) Example:

H = 〈0, 5, 7, 8, 10, 1, 2, 3, 4, 9, 6, 11〉, B = 〈1, 2, 3, 4〉 is a block with head1 and tail4. 7 and8 are

in H7 but form an adjacency inH. 1 and4 are adjacent through the blockB in H. Following [22],

there is an optimal SMUR solution forH which does not cut any block.

Let H−
k be the set of signed genomes obtained by adding+/− signs on these genes (involved in

some breakpoints) inHk. (Following [22], if two such genes inHk are the head and tail of a block

B, then all the genes inB should be given the same sign, i.e., either all positive or all negative.) It

is easily seen that|H−
k | ≤ 24k. Moreover, we have the following lemma.

Lemma 4 There is a solution ofk unsigned reversals for sortingH if and only if the solution can

be found by sorting some sequence inH−
k with k signed reversals.

Proof. If there is a solution ofk unsigned reversals for sortingH, then we can trace thesek

reversals backwards and each time add signs accordingly. For example, assume that the last reversal

to obtain〈0, 1, 2, 3, 4, 5〉 is 〈3, 2〉, then for sorting by signed reversals the second last signedgenome

is 〈0, 1,−3,−2, 4, 5〉. It is easily seen that after repeating this processk times, we have a signed

genomeH ′′ in H−
k . Certainly, one can sortH ′′ by k signed reversals.

On the other hand, if there arek signed reversals which sorts some genome inH−
k , sayH ′′, one

can ignore the negative signs inH ′′ (to obtainH) and perform the samek (unsigned) reversals to

sortH into I. ⊓⊔

Theorem 2 Sorting with Minimum Unsigned Reversals has a weak kernel of size4k, hence can be

solved inO(22kn + n log n) time.

Proof. We first show a bound ofO(24kn + n log n), which is straightforward from the4k weak

kernel. First, following Lemma 4, the weak kernelization iseasy: identify all the blocks inH and

return (H,Hk, k). For each possible signed genome inH−
k (obtained fromHk by adding some

negative signs), we use theO(n) time algorithm in [4] to check whether it can be sorted withk

10

signed reversals. If so, we can compute accordingly thek signed reversals using the algorithm by

Swensonet al. [30], to obtain thek (unsigned) reversals to sortH in O(n log n) time. If no valid

solution is found, we report NO. This algorithm clearly runsin O(24kn + n log n) time.

By a more detailed analysis (i.e., we do not have to try all possible ways to sign genes inHk),

the running time of the above algorithm can be improved toO(22kn + n log n) time. Now let the

genes inHk form a total ofz adjacencies (possibly through some blocks). Following [22], if two

such genes form an adjacency inH, obviously they have to be given the same signs, i.e., eitherboth

positive or both negative. If two such genes form an adjacency through some blockB in H, all the

genes inB need to have the same signs. So the total number of ways to signgenes inHk is bounded

by

2z × 2(4k−2z)/2−1 = 22k−1.

Hence we have an FPT algorithm with running timeO(22kn + n log n). ⊓⊔

We comment that, for the related Sorting with Minimum Unsigned Translocation problem, ex-

actly the same idea can be applied to obtain a weak kernel of size4k, hence an FPT algorithm with

running timeO(22kn + n2). The relevant details can be found in [35, 3] (or from the references

therein).

4 Concluding Remarks

We formally introduce a new (somehow a previous folklore) concept called weak kernels for fixed-

parameter computation and prove some interesting properties of weak kernels. We also show some

interesting applications with weak kernels. We believe that for certain problems weak kernels are

more flexible and possibly more powerful than the traditional kernels. This is certainly the case with

our two applications, especially the famous Sorting with Minimum Unsigned Reversals (SMUR)

problem. We know of no FPT algorithm which runs close toO∗(24k) time for SMUR. It turns

out that weak kernels can also be applied to obtain an efficient FPT algorithm for the problem of

sorting linear genomes under the unsigned DCJ distance [24]. It would be interesting to see more

applications of weak kernels.

Acknowledgments

This research is partially supported by NSF of China under project 60928006. We also thank Yijia

Chen, Mike Fellows and Angsheng Li for several valuable comments.

11

References

[1] P. Bonsma, T. Brüggemann and G. Woeginger. A fast FPT algorithm for finding spanning

trees with many leaves. InProc. 28th Intl. Symp. on Mathematical Foundations of Computer

Science (MFCS’03), pages 259-268, 2003.

[2] P. Berman, S. Hannenhalli and M. Karpinski. 1.375-approximation algorithm for sorting by

reversals. InProc. 10th European Symp. on Algorithms (ESA’02), pages 200-210, Rome, Italy,

Sep, 2002.

[3] A. Bergeron, J. Mixtacki and J. Stoye. On sorting by translocation. InProc. 9th Intl. Conf. on

Research in Comput. Molecular Biology (RECOMB’05),pages 615-629, 2005.

[4] D. Bader, B. Moret and M. Yan. A linear-time algorithm forcomputing inversion distance

between signed permutations with an experimental study.J. of Computational Biology, 8:483–

491, 2001.

[5] M. Bellare and S. Goldwasser. The complexity of decisionversus search.SIAM J. Comput.,

23:97–119, 1994.

[6] H. Bodlaender, R. Downey, M. Fellows and D. Hermelin. On problems without polyno-

mial kernels. InProc. 35th Intl. Colloquium on Automata, Languages and Programming

(ICALP’08), pages 563-574, 2008.

[7] A. Caprara. Sorting by reversals is difficult. InProc. 1st Intl. Conf. on Research in Comput.

Molecular Biology (RECOMB’97),pages 75-83, 1997.

[8] Z. Chen, B. Fu, M. Jiang, and B. Zhu. On recovering syntenic blocks from comparative maps.

Journal of Combinatorial Optimization, 18:307–318, 2009.

[9] Y. Cheng, Z. Cai, R. Goebel, G. Lin and B. Zhu. The radiation hybrid map construction prob-

lem: recognition, hardness, and approximation algorithms. Unpublished Manuscript, 2008.

[10] Y. Chen and J. Flum. A logic for PTIME and a parameterizedhalting problem. InProc. 24th

Annl. IEEE Symp. on Logic in Computer Science (LICS’09), pages 397-406, 2009.

[11] Z. Chen, G. Lin and L. Wang. An approximation algorithm for the minimum co-path set prob-

lem.Algorithmica, to appear, 2010.

[12] S. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd ACM

Symp. on Theory of Computing (STOC’71), pages 151-158, 1971.

12

[13] D.R. Cox, M. Burmeister, E.R. Price, S. Kim, and R.M. Myers. Radiation hybrid mapping:

a somatic cell genetic method for constructing high resolution maps of mammalian chromo-

somes.Science, 250:245–250, 1990.

[14] R. Downey and M. Fellows.Parameterized Complexity, Springer-Verlag, 1999.

[15] M. Fellows. The lost continent of polynomial time: preprocessing and kernelization. InProc.

2nd Intl. Workshop on Parameterized and Exact Computation (IWPEC’06), LNCS 4169, pages

276-277, 2006.

[16] H. Fernau, F. Fomin, D. Lokshtanov, D. Raible, S. Saurabh and Y. Villanger. Kernel(s) for

problems with no kernel: on out-trees with many leaves. InProc. 26th Intl. Symp. on Theoret-

ical Aspects of Computer Science (STACS’09), pages 421-432, 2009.

[17] J. Flum and M. Grohe.Parameterized Complexity Theory, Springer-Verlag. 2006.

[18] L. Fortnow and R. Santhanam. Infeasibility of instancecompression and succinct PCPs for

NP. In Proc. 40th ACM Symp. Theory of Computation (STOC’08), pages133-142, Victoria,

Canada, 2008.

[19] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman, 1979.

[20] J. Guo and R. Niedermeier. Invitation to data reductionand problem kernelization.SIGACT

News, 38:31-45. 2007.

[21] D. Harnik and M. Naor. On the compressibility of NP instances and cryptographic applica-

tions. InProc. 47th IEEE Symp. Foundations of Computer Science (FOCS’06), pages 719-728,

Berkeley, CA, 2006.

[22] S. Hannenhalli and P. Pevzner. To cut...or not to cut (Applications of comparative physical

maps in molecular evolution). InProceedings of the 7th ACM-SIAM Symp. on Discrete Algo-

rithms (SODA’96), pages 304-313, 1996.

[23] S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip: polynomial algorithm for

sorting signed permutations by reversals.J. ACM, 46(1):1–27. 1999.

[24] H. Jiang, B. Zhu and D. Zhu. Algorithms for sorting linear genomes under the unsigned DCJ

distance.Bioinformatics, submitted for publication, 2010.

13

[25] D. Johnson. Approximation algorithms for combinatorial problems.J. Comput. Sys. Sciences,

9:256–278, 1974.

[26] H. Kaplan, R. Shamir and R. Tarjan. A faster and simpler algorithm for sorting signed permu-

tations by reversals.SIAM J. Comput., 29:880–892, 1999.

[27] R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher (eds.),

Complexity of Computer Computations, Plenum Press, NY, pages 85–103, 1972.

[28] C.W. Richard, D.A. Withers, T.C. Meeker, S. Maurer, G.A., Evans, R.M. Myers, and D.R.

Cox. A radiation hybrid map of the proximal long arm of human chromosome 11, containing

the multiple endocrine neoplasia type 1 (MEN-1) and bcl-1 disease loci.American J. of Human

Genetics, 49:1189–1196, 1991.

[29] D. Slonim, L. Kruglyak, L. Stein, and E. Lander. Building human genome maps with radiation

hybrids.J. of Computational Biology, 4:487–504, 1997.

[30] K. Swenson, V. Rajan, Y. Lin, and B. Moret. Sorting signed permutations by inversions in

O(n log n) time. InProc. RECOMB’09, LNCS 5541, pages 386-399, 2009.

[31] R. Tarjan and A. Trojanowski. Finding a maximum independent set.SIAM J. Comput., 6:537–

546, 1977.

[32] E. Tannier and M-F. Sagot. Sorting by reversals in subquadratic time. InProc. 15th Symp.

Combinatorial Pattern Matching (CPM’04), Istanbul, Turkey, pages 1-13, July, 2004.

[33] L. Valiant. On the relative complexity of checking and evaluating.University of Leeds Techni-

cal Report LS29JT, October, 1974.

[34] S. Vishwanathan. An approximation algorithm for the asymmetric travelling salesman problem

with distance one and two.Information Processing Letters, 44:297–302, 1992.

[35] L. Wang, D. Zhu, X. Liu and S. Ma. AnO(n2) algorithm for signed translocation.J. Comput.

Sys. Sciences, 70:284–299, 2005.

14

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

