
Weak Kernels

Haitao Jiang∗ Chihao Zhang† Binhai Zhu‡

September 23, 2012

Abstract

In this paper, we formalize a folklore concept and formally defineweak kernelsfor (NP-

hard) search problems, which is about search space reduction and stands as a new generic

technique for designing FPT algorithms. We show that weak kernels are different from the

(traditional) kernels for decision problems, by exhibiting an example out ofP such that its

decision version has no kernel while the equivalent search problem has a weak kernel. We

show a few applications of weak kernels, for which a traditional kernelization seems hard to

apply. Among them, we present the first FPT algorithm for the famous Sorting by Minimum

Unsigned Reversals problem.

∗Department of Computer Science, Montana State University,Bozeman, MT 59717, USA. Email:

htjiang@cs.montana.edu.
†Department of Computer Science, Shanghai Jiao Tong University, Shanghai 200030, China. Email:

chihao.zhang@gmail.com.
‡Corresponding author. Department of Computer Science, Montana State University, Bozeman, MT 59717, USA.

Email: bhz@cs.montana.edu.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 6 of Report No. 5 (2010)

1 Introduction

In the last four decades, we have seen the huge advance of NP-completeness [14, 31, 21]. Nowadays,

NP-complete problems appear in almost all the areas which involves combinatorial optimization, for

example in computational biology and bioinformatics. As from the beginning a lot of people tended

to believe P6=NP (at least it seems to be hard to prove or disprove it), people immediately started

to investigate different ways to handle NP-hard problems. Up to today, the two most popular ways

to handle NP-hard problems, among researchers in algorithmdesign, are approximation algorithms

and exact (or FPT) algorithms, which were started with the seminal works of Johnson [29] and

Tarjan and Trojanowski [35] respectively. (Using heuristic methods to hand NP-hard problems, like

evolutionary computation, is beyond this paper.)

In some areas like computational biology and bioinformatics, the data usually contain errors.

On top of this, if we design a factor-2 approximation to handle these data, whatever result we got

is not appealing to biologists. So, to make approximation algorithms useful for these applications,

the approximation factors must be very close to one. Then, naturally, FPT algorithm pops up as a

natural alternative for handling these problems. The two applications we will discuss in this paper

all originate from computational biology.

On the other hand, the theory of fixed-parameter computationhas been developed rigorously in

the last two decades. The first textbook was published in 1999by Downey and Fellows [16] and

another couple were published in the last several years (e.g., [19]). Interested readers are referred to

[22] for further details and references.

In designing FPT algorithms, kernelization is one of the most fundamental techniques for de-

cision problems. Loosely speaking, kernelization is really data reduction; i.e., with kernelization

one reduces the problem instance size (kernel size) to a level so small that one could even ap-

ply a brute-force method. Sometimes, even if the kernel sizeis slightly bigger (say2k) so that a

brute-force method is inappropriate, one can still make useof it with integer linear programming or

branch-and-bound to obtain almost optimal solutions in a reasonable amount of time [22].

In this paper, we formalize a folklore method and formally define weak kernelsand weak ker-

nelization forsearchproblems. Again, loosely speaking, when viewing an NP-hardoptimization

problem as a search problem (like for Vertex Cover, we are really searching for a set ofk vertices,

amongn input vertices, so that deleting thek vertices leaves the resulting graph edge-less), weak

kernelization is really aboutsearch space reduction. We show that in general weak kernels and

kernels are not equivalent. This is done by showing an example out ofP such that its search version

has a weak kernel but its equivalent decision version has no kernel. (We comment that this “search

vs decision” question has been considered in the complexitytheory before, as early as in 1974 by

2

Valiant [37]. Interested readers are referred to [5] for thefurther development.)

The purpose for defining the weak kernels concept, on the other hand, is more on helping us

design FPT algorithms more easily. In other words, weak kernelization should be considered as a

new generic method for designing FPT algorithms efficiently. Here, we show an application of weak

kernels to two problems, all known to be NP-complete, for which we compute the corresponding

weak kernels efficiently (hence design efficient FPT algorithms). Among the two problems, Sorting

with Minimum Unsigned Reversals is a famous problem in computational biology and we do not

know of any non-trivial kernelization or FPT algorithm for it. We show that Sorting with Minimum

Unsigned Reversals has a weak kernel of size4k, hence an FPT algorithm running inO(24kn +

n log n) time (and with a more detailed analysis, inO(22kn + n log n) time).

2 Kernels vs Weak Kernels

2.1 Preliminaries

Basically, a fixed-parameter tractable (FPT) algorithm foradecisionproblemΠ with solution value

k is an algorithm which solves the problem inO(f(k)nc) time, wheref is any function only on

k, n is the input size andc is some fixed constant not related tok. FPT also stands for the set of

problems which admit such an algorithm [16]. In the following, we formally define some concepts

regarding FPT algorithms following the formal descriptions of Grohe and Flum [19].

Parameterized Problems.Let Σ be the alphabet, andL ⊆ Σ∗ be a classic decision problem. A

parameterized problem is a pair(L, κ) whereκ : Σ∗ → N is a polynomial computable function. An

instance of(L, κ) is a pair(x, κ(x)) consisting of a stringx ∈ Σ∗ and an integerκ(x).

Fixed-Parameter Tractable. Let (L, κ) be a parameterized problem. We say(L, κ) is Fixed-

Parameter Tractable (FPT) if for each instance(x, κ(x)), there is an algorithmA which decides

whetherx ∈ L in f(κ(x)) · p(|x|) time, wheref is an arbitrary computable function andp is a

polynomial function.

Kernelization. Let (L, κ) be a parameterized problem and(x, κ(x)) a corresponding instance. A

polynomial computable functionK : Σ∗ → Σ∗ is a kernelization with respect to(L, κ) if

(1) x ∈ L ⇐⇒ K(x) ∈ L

(2) |κ(K(x))| ≤ g(κ(x)) for some computable functiong.

For a kernelizationK andx ∈ Σ∗, K(x) is called thekernel.

A more intuitive way to interpret kernelization is as follows [16]: a kernelization is a polynomial

time transformation that transforms a problem instance(I, k) to another instance(I ′, k′) such that

3

(1) (I, k) is a yes-instance iff(I ′, k′) is also a yes-instance; (2)k′ ≤ k; and (3)|I ′| ≤ f(k) for

some computable functionf(−). (I ′, k′) is typically called akernel of the problem, with size

|I ′|. It is easy to see that if a problem has a kernel then it is in FPT; moreover, every problem in

FPT has a kernel. From this, kernelization is a way to performdata-reduction with performance

guarantee, “a humble strategy for coping with hard problems, almost universally employed” [17].

More fundamental details on FPT algorithms can be found in [16, 19].

Recently, Bodlaenderet al. conducted a seminal work by showing that a class of importantFPT

problems cannot have polynomial (e.g.,O(k2) size) kernels unless the polynomial hierarchy (PH)

collapses to the third level (i.e.,PH = Σ3
p) [6]. (The fundamental technique of this work, however,

is adapted from [20].) One such problem is calledk-LEAF OUT-BRANCHING (i.e., finding a

rooted oriented spanning tree with at leastk leaves in an input digraphD) [18].

2.2 Weak Kernels

As illustrated in the introduction, we view weak kernelization as a way to reduce search space, i.e.,

a parameterized search space. In the following, we formalize the folklore concept and call it weak

kernel. We also prove some of its basic properties.

Definition 1 (Search Problem) Let Σ be the alphabet, a search problem is a binary relationR ⊆

Σ∗ × Σ∗. For x, y ∈ Σ∗, we writeR(x, y) = 1 if (x, y) ∈ R andR(x, y) = 0 if (x, y) 6∈ R. An

algorithmA calculatesR if for an input stringx ∈ Σ∗,

(1) If there exists somey ∈ Σ∗ such thatR(x, y) = 1, thenA outputs somez ∈ Σ∗ such that

R(x, z) = 1.

(2) If no stringy ∈ Σ∗ such thatR(x, y) = 1, thenA rejectsx.

We can then define parameterized search problem in a natural way.

Definition 2 (NP-Search Problem) A search problemR is calledNP-search problem if

(1) There exists a polynomialp such that for anyx, y ∈ Σ∗, R(x, y) = 1 implies|y| ≤ p(|x|).

(2) For anyx, y ∈ Σ∗, R(x, y) can be decided in polynomial time.

Let R be a search problem, we can associate it with a unique decision problem:

LR := {x ∈ Σ∗ : ∃y ∈ Σ∗such thatR(x, y) = 1}

Let L ⊆ Σ∗ be a decision problem andL ∈ NP. Then we can associate it with anNP-search

problemRL such that for anyx ∈ Σ∗, x ∈ L if and only if there exists somey ∈ Σ∗, RL(x, y) = 1.

4

Notice thatRL needs not to be unique. Intuitively, for an instancex ∈ Σ∗, an algorithmA calculates

RL can be viewed as computing the witness such thatx ∈ L.

Definition 3 (Search Space)LetQ be a search problem, a search space ofQ is a pair(S,R) where

S : Σ∗ → Σ∗ is a computable function andR is another search problem.(S,R) are required to

satisfy that for anyx, y ∈ Σ∗, Q(x, y) = 1 impliesR(S(x), y) = 1.

For a finite setX, we usexXy to denote some encoding ofX. For a functionW : Σ∗ →

Σ∗ × Σ∗, e.g.,W (x) = (u, v), we use notationsW1(x) = u,W2(x) = v.

Example 1 Consider the search problemVERTEX COVER, where the instance is a pair(G =

(V,E), k) and asks for a vertex cover inG of sizek. One search space ofVERTEX COVER is a

pair (S,R) whereS(x) = xV y if x is a legal encoding of some instance andR consists of all pair

(x, y) wherex is the encoding of a vertex setV andy is the encoding of another vertex setV ′ such

thatV ′ ⊆ V .

Definition 4 (Weak Kernelization) Let (Q,κ) be a parameterized search problem and(S,R) be

one of its search space. We useRan(S) to denote the range ofS. A polynomial computable function

W : Ran(S) → Σ∗ × Σ∗ is a weak kernelization ofQ with respect to(S,R) if there is a search

problemR′ such that

(1) LetS′(x) := W1(S(x)), then(S′, R′) is a search space ofR.

(2) For anyx ∈ Ran(S), W (x) = (w1, w2) where|w1| ≤ f(κ(x)) for some computable function

f and |w2| ≤ p(|n|) for some polynomial functionp.

(3) For an input(w1, w2), there is an algorithmAW of runtimeg(|w1|) · q(|w2|) to list all the

y such thatR′((w1, w2), y) = 1 for some computable functiong and polynomialq. We call

AW thesearching algorithmfor W .

In the definition of weak kernelization, the runtime of the algorithm depends on two parts, i.e.,

g(|w1|) andq(|w2|) whereg is an arbitrary computable function andq is a polynomial function. In

many practical cases,w1 contains the essential information to obtain the solution andw2 only deals

with the encoding.

For instance, for the parameterized Vertex Cover (p-Vertex-Cover) with instance (G = (V,E), k),

|w2|=O(k log |V |) = O(k log n). In the traditional FPT theory, this encoding cost was ignored. This

issue was raised by Harnik and Naor before [23]. On the other hand, for our applications, as all the

problems are inNP, this actual encoding blow-up can be almost always ignored.This is similar to

the RAM model, in which one can store a vertex/integer usingO(1) space; but in theory we need to

storelog n bits for a vertex if there aren vertices to store.

5

2.3 Kernels 6= Weak Kernels

Weak kernelization is somehow a generalization of kernelization to search problems. In essence,

weak kernelization deals with problems that search for a witness. However, since in a decision

problem, the solution is “Yes” or “No” and always different from its witness, these two notations

are different if we directly change a search problem to decision one. We show below that for some

logically equivalent decision and search problem beyondP, kernel and weak kernel cannot co-exist.

See the following example.

Example 2 LetL 6∈ P be a decision problem. Consider a search problemQL := {(x, 1)|x ∈ L}∪

{(x, 0)|x 6∈ L}. ClearlyQL is not anNP-search problem since checking whetherQL(x, 1) = 1 in

P is equivalent to decidingL in P. Consider a parameterizationκ whereκ(x) = 1 for everyx. Then

(QL, κ) is a parameterized search problem and(L, κ) is its corresponding parameterized decision

problem. We know that(L, κ) is not FPT (hence has no kernelization) since an FPT algorithm for

(L, κ) is also a polynomial-time algorithm forL under this parameterization. However,(QL, κ)

has a weak kernelization: consider functionI(x) = x for everyx, then(I,QL) is a search space

for QL. A weak kernelizationW takes stringx as input and outputs(ǫ, ǫ), whereǫ is the empty

string. Then(S′, R′) is a reduced search space ofQL, whereS′(x) := W1(I(x)) = ǫ andR′ :=

{(ǫ, i)|i ∈ {0, 1}}. The searching algorithmAW just outputs{0, 1} on input(ǫ, ǫ) and the empty

set otherwise.

We comment that the above result is related to the “search vs decision” question in the traditional

complexity theory; namely, under a complexity assumption,there is an associated search problem

ρ in NP which cannot be reduced to its corresponding decision problem [5].

However, forNP-search problems, weak kernelization implies kernelization.

Proposition 1 Let (Q,κ) be a parameterizedNP-search problem and(LQ, κ) be its correspond-

ing parameterized decision problem. If(Q,κ) has a weak kernelization for some search space

(SQ, RQ), then(LR, κ) has a kernelization.

Proof. SinceQ is anNP-search problem,LQ is in NP. By the definition of search space and weak

kernelization, for every input stringx ∈ Σ∗, there is a searching algorithmAW that runs in FPT time

and can generate a setT such thatQ(x, y) = 1 impliesy ∈ T for every stringy. Then we can check

all the stringsy ∈ T whetherQ(x, y) = 1 in polynomial time. If for somey ∈ T , Q(x, y) = 1 then

x ∈ LQ. Otherwise,x 6∈ LQ. Therefore,(LQ, κ) is FPT and hence it has a kernelization. ⊓⊔

In general, for a parameterized search problem(Q,κ) and its corresponding decision problem

(LQ, κ), we do not know whether a kernelization for(LQ, κ) implies a weak kernelization for

6

(Q,κ), even whenQ is anNP-search problem. The following example shows that in some cases

this is the case.

Example 3 Consider the search version ofp-VERTEX COVER. An instance(x, k) wherex en-

codesG = (V (G), E(G)) asks for a vertex cover ofG of sizek. We fix some encoding and

denote it byx·y. One of its search spaces is a pair(S,R) whereS(x(G, k)y) = xV (G)y and

R(x, y) := {(x, y)|x = xV y, y = xV ′
y, V ′ ⊆ V }, whereV, V ′ are set of vertices. LetK be the

kernelization ofp-VERTEX COVER by S. Buss [8], then we can define a weak kernelization for

its search version:

• For x = x(G, k)y ∈ Σ∗, W (S(x)) := (w1, w2), wherew1 := S(K(x)), w2 encodes labels

of vertices ofK(x) in G and vertices of degree large thank in G.

• The corresponding search problemR′ for W can be defined as follow:R′ := {((w1, w2), y)},

wherew1, w2 are defined in the above andy encodes the union of two setsA andB, whereA

is a subset of vertices inw1 with labels inG computed fromw2 andB is the set of vertices of

degree large thank in G.

While the above arguments are not really difficult, they haveinteresting theoretical implica-

tions. For instance, for a problem unlikely to have a kernel (sayk-Dominating Set, which is W[2]-

complete), as long as it belongs to NP, it is equally unlikelyto have a weak kernel. Therefore, for

problems in NP, the true merit of the above concepts seems to be helping us design efficient FPT

algorithms via weak kernels directly.

Through a private communication with Mike Fellows, the earliest idea of using weak kernels

seems to be in [1], where Bonsma, Brüggemann and Woeginger showed that the MAX LEAF prob-

lem has a weak kernel of size3.5k. (Note that MAX LEAF is the complement of the Minimum

Connected Dominating Set problem.) In the next section, we show two new applications of weak

kernels.

3 Applications

We show below two examples of the applications of weak kernels. For both of them, we do not

know of better kernel bounds. For the famous Sorting with Minimum Unsigned Reversals, this is

the first non-trivial FPT algorithm.

The two minimization problems we consider are all known to beNP-complete: Minimum Co-

Path Set and Sorting with Minimum Unsigned Reversals (SMUR). We will mainly focus on solving

these problems with weak kernels. For some of these problems(e.g., Minimum Co-Path Set),

7

it is possible to solve it with bounded search tree, on top of weak kernels. Yet in general it is

still unknown whether bounded search tree is always more powerful than weak kernels. We will

comment on this at the end of this paper.

3.1 Minimum Co-Path Set

In this subsection, we study the following problem called Minimum Co-Path Set. Given a simple

undirected graphG, a co-path setis a setS of edges inG whose removal leaves a graph in which

every connected component is a path. In the Minimum Co-Path Set Problem, we need to compute a

minimum co-path set inG.

The Minimum Co-Path Set Problem originates from radiation hybrid (Rh) mapping, which is

a powerful technique for mapping unique DNA sequences onto chromosomes and whole genomes

[11, 15, 32, 33]. In Rh mapping, chromosomes are randomly broken into small DNA fragments

through gamma radiation. A (random) subset of these DNA fragments retain with healthy hamster

cells and grow up to build up a hybrid cell line. This process is repeated many times and the co-

retention rate of a pair of markers (labeled chromosomal loci) indicates their physical distance on

the chromosome. In principle, when two markersx andy are close, the probability thatx andy are

broken by the gamma radiation is small, hence with a high probability they are either co-present in

or co-absent from a DNA fragment.

A subset of markers that are co-present from DNA fragments iscalled acluster. Let V =

{1, 2, · · · , n} be a set of markers and letC = {C1, C2, · · · , Cm} be a collection of clusters. The

Radiation Hybrid Map Construction Problem is to compute a linear ordering of the markers in which

the markers in each clusterCi appear consecutively. In reality, a cluster might be formedwith errors,

so no such linear ordering might exist. In this case, one needs to remove the minimum number of

clusters so that the leftover clusters admit a linear ordering. When|Ci| = 2 for all i, this is exactly

the Minimum Co-Path Set Problem. Given a simple undirected graphG = (V,E), each vertex in

V corresponds to a marker, an edge(u, v) ∈ E corresponds to a cluster{u, v}.

In [11], the Minimum Co-Path Set Problem was shown to be NP-complete [21]. The proof is by

a reduction from the Hamiltonian Path problem, with each edge (u, v) being converted to a cluster

{u, v}. It is easy to see that there is a Hamiltonian Path in the inputgraphG if and only if one has to

delete exactly|E| −n + 1 clusters. A factor-2 approximation was also proposed in [11], which was

recently improved to 10/7 [13]. (The counterpart of the Minimum Co-Path Set Problem is the well-

known Minimum Path Coverproblem [38] and will not be covered here.) Letk be the minimum

number of edges deleted for the problem. We show in this subsection that the Minimum Co-Path

Set Problem is in FPT; in fact, it has a linear weak kernel of size at most5k, hence the problem can

8

be solved efficiently inO(23.61k(n + k)) time. In the following, we present the technical details.

If some connected component ofG has maximum vertex degree at most 2 then the problem is

trivially solvable for that component. So from now on we assume that each connected component

of G has maximum vertex degree at least 3. Moreover, in the solution a single vertex could also be

considered as a (degenerate) path. The following lemma is easy to prove.

Lemma 1 There is a solutionR for the minimum co-path set such thatR contains only edges

incident to some vertices of degree at least 3 inG.

Proof. Assume to the contrary that a solutionR contains some edge(x, y) such that bothx andy

have degree at most two inG. Let G−R be the graph obtained fromG by deleting all the edges in

R. When bothx andy have degrees at most 2, if(x, y) is in R then putting it back toG−R would

have two possibilities: (1) make each connected component of (G − R) ∪ {(x, y)} a path, or (2)

create some cycle in(G−R)∪ {(x, y)}. In case (1), it contradicts the optimality ofR. In case (2),

(x, y) is on some cycle inG. Hence we can find an edge(x′, y′) on this cycle which is incident to

some vertex of degree at least 3 inG. Then we simply swap(x, y) with (x′, y′) in R. It is easy to

see that repeating this process we can eventually have a new solution R′ such that|R′| = |R| and

R′ contains only edges incident to some vertices of degree at least 3 inG. ⊓⊔

Now letD be a solution for the minimum co-path set such thatD contains only edges incident

to some vertices of degree at least 3 inG. The above lemma implies a simple weak kernelization

procedure.

1. Identify the vertices ofG with degree at least 3. Let this set beV3(G).

2. Let the set of edges which are incident to some vertices inV3(G) beE3(G).

ReturnE3(G) as a weak kernel.

We have the following lemma.

Lemma 2 The Minimum Co-Path Set Problem has a solution of sizek if and only if the solution

can be obtained by deletingk edges inE3(G).

Proof. We only need to show the ‘only-if’ part as the other part is obvious. By Lemma 1, we do not

need to include any edge inD which is incident to vertices of degree only one or two. ⊓⊔

It remains to show the weak kernel size (i.e., the size ofE3(G)). We have the following lemma.

Lemma 3 Let k = |D|, then |E3(G)| ≤ 5k. In other words, the size of the weak kernel of the

Minimum Co-Path Set Problem is5k.

9

Proof. ¿From Lemma 2, we know that thek edges ofD can be found inE3(G). After thesek edges

in D are deleted fromG, G − D is only composed of paths, i.e., the degrees of vertices inG − D

are at most 2. In other words, the edges inE3(G) − D must also be incident to vertices inG − D

of degree at most 2 (note that these vertices originally are all in V3(G)). As thek edges inD are

incident to at most2k vertices inV3(G), |V3(G)| ≤ 2k. Therefore, we have at most4k edges in

E3(G)−D. Counting thek edges inD back, we have|E3(G)| = |E3(G)−D|+|D| ≤ 4k+k = 5k.

⊓⊔

With the above lemmas, it is easy to have an FPT algorithm for the Minimum Co-Path Set

Problem. First, if|V3(G)| > 2k or |E3(G)| > 5k then we can simply return NO. Otherwise, among

the (at most)5k edges inE3(G), select all combinations ofk edges to delete. For each set ofk

edges selected, delete them fromG and check whether the resulting graph is composed of paths

only (using standard linear time graph algorithms like depth-first search). If we fail to find such a

set, then return ‘No solution of sizek’; otherwise, just return the computed set of edges asD. The

time complexity of the algorithm is dominated by checking

(

5k

k

)

≈ 23.61k solutions. We have

the following theorem.

Theorem 1 Let k be the size of the minimum co-path set. The Minimum Co-Path Set Problem has

a weak kernel of size5k, hence can be solved inO(23.61k(n + k)) time.

3.2 Sorting with Minimum Unsigned Reversals

Sorting with Minimum Unsigned Reversals (SMUR) is a famous problem in computational biol-

ogy, more specifically, in computational genomics. Given a genomeH composed of a sequence of

n distinct genes (also formulated as a permutations ofn integers{1, 2, · · · , n}), i.e., assume that

H = s1s2 · · · sisi+1 · · · sj−1sj · · · sn, a reversaloperation on the segmentsisi+1 · · · sj−1sj trans-

formsH into H ′ = s1s2 · · · sjsj−1 · · · si+1si · · · sn. The problem Sorting with Minimum Unsigned

Reversals is to use the minimum number of reversals to convert H into the identity permutation

I = 123 · · · n. Example: GivenH = 15342, we can use two signed reversals to first change it to

15432 and finally to 12345.

When the genes are signed, we have a similar problem Sorting with Minimum Signed Reversals.

Given a signed genomeH− composed of a sequence ofn distinct (signed) genes (also formulated

as a signed permutations ofn integers{1, 2, · · · , n}), i.e., H− = t1t2 · · · titi+1 · · · tj−1tj · · · tn,

a signed reversaloperation on the segmenttiti+1 · · · tj−1tj transformsH− into H ′′ = t1t2 · · · −

tj − tj−1 · · · − ti+1 − ti · · · tn. The problem Sorting with Minimum Signed Reversals is to usethe

minimum number of signed reversals to convertH− into the identity permutationI = 123 · · · n.

10

Example: GivenH = 1−534−2, we can use two signed reversals to first change it to1−5−4−3−2

and finally to 12345. (Note that in the literature it is also acceptable to convertH− to −I =

−n · · · − 3 − 2 − 1. We can enforce thatH− is converted toI by adding two auxiliary genes, i.e.,

0H−(n + 1). This is a known trick in computational genomics.)

SMUR was shown to be NP-complete by Caprara [9] and the best approximation algorithm has

a factor 1.375 [2]. However, no non-trivial FPT algorithm isknown for the problem. The trivial

solution is to use a bounded search tree algorithm which runsin roughlyO(kO(k)n) time. We show

below that with weak kernels, a much faster FPT algorithm canbe designed.

We use Sorting with Minimum Signed Reversals as a subroutinefor SMUR. Unlike SMUR,

Sorting with Minimum Signed Reversals can be solved in polynomial time [25, 30, 36], with the best

running time beingO(n log n) [34]. Computing the minimum signed reversal distance, however,

can be done in linear time [4]. LetH be the (unsigned) genome to be sorted. It is easy to see that

each reversal can eliminate at most two breakpoints. (In this case a breakpoint is a 2-substring〈i, j〉

of H such that|j − i| 6= 1.) Hence, if the optimal solution size isk, there would be at most2k

breakpoints inH. In other words, there are at most4k genes which are in some breakpoints. Let

Hk be the set of such (at most)4k genes.Hk is the weak kernel in this application.

Given H, let a maximal substringB of H composed of at least two consecutive adjacen-

cies be called ablock, with the first and last letters calledhead and tail of the block respec-

tively. (We also say that the head and the tail areadjacent through the blockB in H.) Example:

H = 〈0, 5, 7, 8, 10, 1, 2, 3, 4, 9, 6, 11〉, B = 〈1, 2, 3, 4〉 is a block with head1 and tail4. 7 and8 are

in H7 but form an adjacency inH. 1 and4 are adjacent through the blockB in H. Following [24],

there is an optimal SMUR solution forH which does not cut any block.

Let H−
k be the set of signed genomes obtained by adding+/− signs on these genes (involved in

some breakpoints) inHk. (Following [24], if two such genes inHk are the head and tail of a block

B, then all the genes inB should be given the same sign, i.e., either all positive or all negative.) It

is easily seen that|H−
k | ≤ 24k. Moreover, we have the following lemma.

Lemma 4 There is a solution ofk unsigned reversals for sortingH if and only if the solution can

be found by sorting some sequence inH−
k with k signed reversals.

Proof. If there is a solution ofk unsigned reversals for sortingH, then we can trace thesek

reversals backwards and each time add signs accordingly. For example, assume that the last reversal

to obtain〈0, 1, 2, 3, 4, 5〉 is 〈3, 2〉, then for sorting by signed reversals the second last signedgenome

is 〈0, 1,−3,−2, 4, 5〉. It is easily seen that after repeating this processk times, we have a signed

genomeH ′′ in H−
k . Certainly, one can sortH ′′ by k signed reversals.

11

On the other hand, if there arek signed reversals which sorts some genome inH−
k , sayH ′′, one

can ignore the negative signs inH ′′ (to obtainH) and perform the samek (unsigned) reversals to

sortH into I. ⊓⊔

Theorem 2 Sorting with Minimum Unsigned Reversals has a weak kernel ofsize4k, hence can be

solved inO(22kn + n log n) time.

Proof. We first show a bound ofO(24kn + n log n), which is straightforward from the4k weak

kernel. First, following Lemma 4, the weak kernelization iseasy: identify all the blocks inH and

return (H,Hk, k). For each possible signed genome inH−
k (obtained fromHk by adding some

negative signs), we use theO(n) time algorithm in [4] to check whether it can be sorted withk

signed reversals. If so, we can compute accordingly thek signed reversals using the algorithm by

Swensonet al. [34], to obtain thek (unsigned) reversals to sortH in O(n log n) time. If no valid

solution is found, we report NO. This algorithm clearly runsin O(24kn + n log n) time.

By a more detailed analysis (i.e., we do not have to try all possible ways to sign genes inHk),

the running time of the above algorithm can be improved toO(22kn + n log n) time. Now let the

genes inHk form a total ofz adjacencies (possibly through some blocks). Following [24], if two

such genes form an adjacency inH, obviously they have to be given the same signs, i.e., eitherboth

positive or both negative. If two such genes form an adjacency through some blockB in H, all the

genes inB need to have the same signs. So the total number of ways to signgenes inHk is bounded

by

2z × 2(4k−2z)/2−1 = 22k−1.

Hence we have an FPT algorithm with running timeO(22kn + n log n). ⊓⊔

We comment that, for the related Sorting with Minimum Unsigned Translocation problem, ex-

actly the same idea can be applied to obtain a weak kernel of size4k, hence an FPT algorithm with

running timeO(22kn + n2). The relevant details can be found in [39, 3] (or from the references

therein).

4 Concluding Remarks

We formally introduce a new (somehow a previous folklore) concept called weak kernels for fixed-

parameter computation and prove some interesting properties of weak kernels. We also show some

interesting applications with weak kernels. We believe that for certain problems weak kernels are

more flexible and possibly more powerful than the traditional kernels. This is certainly the case

with some of our applications, especially the famous Sorting with Minimum Unsigned Reversals

12

(SMUR) problem. We know of no FPT algorithm which runs close to O∗(24k) time for SMUR. It

turns out that weak kernels can also be applied to obtain an efficient FPT algorithm for the problem

of sorting linear genomes under the unsigned DCJ distance [27]. It would be interesting to see more

applications of weak kernels.

As an extra note for this revision, there seem to be two kinds of weak kernels: direct and

indirect ones — the difference lies in whether the search algorithm AW being trivial or not. Besides

Minimum Co-Path Set, Complementary Maximal Strip Recovery(CMSR, which was discussed in

earlier versions of this paper) also admits a small direct weak kernel of size18k [28]. (In [28], a

direct weak kernel is also referred to as a “parameterized search space”.) What is interesting is that

both of them also admit traditional (linear) kernels [40, 28] and admit efficient bounded search tree

algorithms [40, 26, 7]. Is this a coincidence? On the other hand, for problems admitting indirect

weak kernels, i.e., SMUR and Sorting by DCJ [27], no traditional polynomial kernel is known and

no efficient bounded search tree algorithm is known. For thislatter class of problems, is it possible

to prove formally that small (or polynomial) kernels do not exist?

Acknowledgments

This research is partially supported by NSF of China under project 60928006. We also thank Yijia

Chen, Mike Fellows and Angsheng Li for several valuable comments.

References

[1] P. Bonsma, T. Brüggemann and G. Woeginger. A fast FPT algorithm for finding spanning

trees with many leaves. InProc. 28th Intl. Symp. on Mathematical Foundations of Computer

Science (MFCS’03), pages 259-268, 2003.

[2] P. Berman, S. Hannenhalli and M. Karpinski. 1.375-approximation algorithm for sorting by

reversals. InProc. 10th European Symp. on Algorithms (ESA’02), pages 200-210, Rome, Italy,

Sep, 2002.

[3] A. Bergeron, J. Mixtacki and J. Stoye. On sorting by translocation. InProc. 9th Intl. Conf. on

Research in Comput. Molecular Biology (RECOMB’05),pages 615-629, 2005.

[4] D. Bader, B. Moret and M. Yan. A linear-time algorithm forcomputing inversion distance

between signed permutations with an experimental study.J. of Computational Biology, 8:483–

491, 2001.

13

[5] M. Bellare and S. Goldwasser. The complexity of decisionversus search.SIAM J. Comput.,

23:97–119, 1994.

[6] H. Bodlaender, R. Downey, M. Fellows and D. Hermelin. On problems without polyno-

mial kernels. InProc. 35th Intl. Colloquium on Automata, Languages and Programming

(ICALP’08), pages 563-574, 2008.

[7] L. Bulteau, G. Fertin, M. Jiang and I. Rusu. Tractabilityand approximability of maximal strip

recovery.Theoretical Computer Science, 440-441:14-28, 2012.

[8] J. Buss and J. Goldsmith. Nondeterminism with P.SIAM J. Comput., 22:560–572, 1993.

[9] A. Caprara. Sorting by reversals is difficult. InProc. 1st Intl. Conf. on Research in Comput.

Molecular Biology (RECOMB’97),pages 75-83, 1997.

[10] Z. Chen, B. Fu, M. Jiang, and B. Zhu. On recovering syntenic blocks from comparative maps.

Journal of Combinatorial Optimization, 18:307–318, 2009.

[11] Y. Cheng, Z. Cai, R. Goebel, G. Lin and B. Zhu. The radiation hybrid map construction prob-

lem: recognition, hardness, and approximation algorithms. Unpublished Manuscript, 2008.

[12] Y. Chen and J. Flum. A logic for PTIME and a parameterizedhalting problem. InProc. 24th

Annl. IEEE Symp. on Logic in Computer Science (LICS’09), pages 397-406, 2009.

[13] Z. Chen, G. Lin and L. Wang. An approximation algorithm for the minimum co-path set prob-

lem.Algorithmica, 60(4):969-986, 2011.

[14] S. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd ACM

Symp. on Theory of Computing (STOC’71), pages 151-158, 1971.

[15] D.R. Cox, M. Burmeister, E.R. Price, S. Kim, and R.M. Myers. Radiation hybrid mapping:

a somatic cell genetic method for constructing high resolution maps of mammalian chromo-

somes.Science, 250:245–250, 1990.

[16] R. Downey and M. Fellows.Parameterized Complexity, Springer-Verlag, 1999.

[17] M. Fellows. The lost continent of polynomial time: preprocessing and kernelization. InProc.

2nd Intl. Workshop on Parameterized and Exact Computation (IWPEC’06), LNCS 4169, pages

276-277, 2006.

14

[18] H. Fernau, F. Fomin, D. Lokshtanov, D. Raible, S. Saurabh and Y. Villanger. Kernel(s) for

problems with no kernel: on out-trees with many leaves. InProc. 26th Intl. Symp. on Theoret-

ical Aspects of Computer Science (STACS’09), pages 421-432, 2009.

[19] J. Flum and M. Grohe.Parameterized Complexity Theory, Springer-Verlag. 2006.

[20] L. Fortnow and R. Santhanam. Infeasibility of instancecompression and succinct PCPs for

NP. In Proc. 40th ACM Symp. Theory of Computation (STOC’08), pages133-142, Victoria,

Canada, 2008.

[21] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman, 1979.

[22] J. Guo and R. Niedermeier. Invitation to data reductionand problem kernelization.SIGACT

News, 38:31-45. 2007.

[23] D. Harnik and M. Naor. On the compressibility of NP instances and cryptographic applica-

tions. InProc. 47th IEEE Symp. Foundations of Computer Science (FOCS’06), pages 719-728,

Berkeley, CA, 2006.

[24] S. Hannenhalli and P. Pevzner. To cut...or not to cut (Applications of comparative physical

maps in molecular evolution). InProceedings of the 7th ACM-SIAM Symp. on Discrete Algo-

rithms (SODA’96), pages 304-313, 1996.

[25] S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip: polynomial algorithm for

sorting signed permutations by reversals.J. ACM, 46(1):1–27. 1999.

[26] H. Jiang, Z. Li, G. Lin, L. Wang and B. Zhu. Exact and approximation algorithms for the

complementary maximal strip recovery problem.J. of Combinatorial Optimization, 23(4):493-

506, 2012.

[27] H. Jiang, B. Zhu and D. Zhu. Algorithms for sorting unsigned linear genomes by the DCJ

operations.Bioinformatics, 27:311-316, Feb, 2011.

[28] H. Jiang and B. Zhu. A linear kernel for the complementary maximal strip recovery problem.

In Proceedings of the 23rd Symp. on Combinatorial Pattern Matching (CPM’12), pages 349-

359, 2012.

[29] D. Johnson. Approximation algorithms for combinatorial problems.J. Comput. Sys. Sciences,

9:256–278, 1974.

15

[30] H. Kaplan, R. Shamir and R. Tarjan. A faster and simpler algorithm for sorting signed permu-

tations by reversals.SIAM J. Comput., 29:880–892, 1999.

[31] R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher (eds.),

Complexity of Computer Computations, Plenum Press, NY, pages 85–103, 1972.

[32] C.W. Richard, D.A. Withers, T.C. Meeker, S. Maurer, G.A., Evans, R.M. Myers, and D.R.

Cox. A radiation hybrid map of the proximal long arm of human chromosome 11, containing

the multiple endocrine neoplasia type 1 (MEN-1) and bcl-1 disease loci.American J. of Human

Genetics, 49:1189–1196, 1991.

[33] D. Slonim, L. Kruglyak, L. Stein, and E. Lander. Building human genome maps with radiation

hybrids.J. of Computational Biology, 4:487–504, 1997.

[34] K. Swenson, V. Rajan, Y. Lin, and B. Moret. Sorting signed permutations by inversions in

O(n log n) time. InProc. RECOMB’09, LNCS 5541, pages 386-399, 2009.

[35] R. Tarjan and A. Trojanowski. Finding a maximum independent set.SIAM J. Comput., 6:537–

546, 1977.

[36] E. Tannier and M-F. Sagot. Sorting by reversals in subquadratic time. InProc. 15th Symp.

Combinatorial Pattern Matching (CPM’04), Istanbul, Turkey, pages 1-13, July, 2004.

[37] L. Valiant. On the relative complexity of checking and evaluating.University of Leeds Techni-

cal Report LS29JT, October, 1974.

[38] S. Vishwanathan. An approximation algorithm for the asymmetric travelling salesman problem

with distance one and two.Information Processing Letters, 44:297–302, 1992.

[39] L. Wang, D. Zhu, X. Liu and S. Ma. AnO(n2) algorithm for signed translocation.J. Comput.

Sys. Sciences, 70:284–299, 2005.

[40] C. Zhang, H. Jiang and B. Zhu. Radiation hybrid map construction problem parameterized.

In Proceedings of the 6th Intl. Conf. on Combinatorial Optimization and Applications (CO-

COA’12), LNCS 7402, pages 127-137, 2012.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

