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Abstract

In this paper, we formalize a folklore concept and formalkfide weak kerneldor (NP-
hard) search problems, which is about search space redumtitd Stands as a new generic
technique for designing FPT algorithms. We show that weakdds are different from the
(traditional) kernels for decision problems, by exhilgtian example out oP such that its
decision version has no kernel while the equivalent searoblem has a weak kernel. We
show a few applications of weak kernels, for which a tradgiokernelization seems hard to
apply. Among them, we present the first FPT algorithm for #idus Sorting by Minimum
Unsigned Reversals problem.
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1 Introduction

In the last four decades, we have seen the huge advance afiNplateness [14, 31, 21]. Nowadays,
NP-complete problems appear in almost all the areas whitivies combinatorial optimization, for
example in computational biology and bioinformatics. Amfirthe beginning a lot of people tended
to believe PENP (at least it seems to be hard to prove or disprove it), peopinediately started
to investigate different ways to handle NP-hard problemg.tdJtoday, the two most popular ways
to handle NP-hard problems, among researchers in algod#sign, are approximation algorithms
and exact (or FPT) algorithms, which were started with thaisal works of Johnson [29] and
Tarjan and Trojanowski [35] respectively. (Using heudstiethods to hand NP-hard problems, like
evolutionary computation, is beyond this paper.)

In some areas like computational biology and bioinfornsatibe data usually contain errors.
On top of this, if we design a factor-2 approximation to hanitilese data, whatever result we got
is not appealing to biologists. So, to make approximatigo@thms useful for these applications,
the approximation factors must be very close to one. Thewyally, FPT algorithm pops up as a
natural alternative for handling these problems. The twaieations we will discuss in this paper
all originate from computational biology.

On the other hand, the theory of fixed-parameter computatiebeen developed rigorously in
the last two decades. The first textbook was published in 1§9Bowney and Fellows [16] and
another couple were published in the last several years [£9)). Interested readers are referred to
[22] for further details and references.

In designing FPT algorithms, kernelization is one of the nfiosdamental techniques for de-
cision problems. Loosely speaking, kernelization is yedHta reduction i.e., with kernelization
one reduces the problem instance size (kernel size) to adevemall that one could even ap-
ply a brute-force method. Sometimes, even if the kernel isiztightly bigger (say2*) so that a
brute-force method is inappropriate, one can still makeofigiewith integer linear programming or
branch-and-bound to obtain almost optimal solutions irea@aable amount of time [22].

In this paper, we formalize a folklore method and formallyimeweak kernelsand weak ker-
nelization forsearchproblems. Again, loosely speaking, when viewing an NP-lmgotiimization
problem as a search problem (like for Vertex Cover, we arltyrsaarching for a set of vertices,
amongn input vertices, so that deleting thevertices leaves the resulting graph edge-less), weak
kernelization is really abowearch space reductionWe show that in general weak kernels and
kernels are not equivalent. This is done by showing an exawyd of P such that its search version
has a weak kernel but its equivalent decision version hagnwek (We comment that this “search
vs decision” question has been considered in the compléxitgry before, as early as in 1974 by



Valiant [37]. Interested readers are referred to [5] forftither development.)

The purpose for defining the weak kernels concept, on the bmed, is more on helping us
design FPT algorithms more easily. In other words, weakeéderation should be considered as a
new generic method for designing FPT algorithms efficieriigre, we show an application of weak
kernels to two problems, all known to be NP-complete, foralhive compute the corresponding
weak kernels efficiently (hence design efficient FPT alpanig). Among the two problems, Sorting
with Minimum Unsigned Reversals is a famous problem in camatanal biology and we do not
know of any non-trivial kernelization or FPT algorithm faor We show that Sorting with Minimum
Unsigned Reversals has a weak kernel of dizehence an FPT algorithm running (24, +
nlogn) time (and with a more detailed analysis, 2% n + nlog n) time).

2 Kernels vs Weak Kernels

2.1 Preliminaries

Basically, a fixed-parameter tractable (FPT) algorithmefdecisionproblemIT with solution value

k is an algorithm which solves the problemdn f(k)n) time, wheref is any function only on
k, n is the input size and is some fixed constant not relatedio FPT also stands for the set of
problems which admit such an algorithm [16]. In the follogijinve formally define some concepts
regarding FPT algorithms following the formal descripsasf Grohe and Flum [19].
Parameterized Problems.Let X be the alphabet, anl C X* be a classic decision problem. A
parameterized problem is a péft, ) wherex : ¥* — N is a polynomial computable function. An
instance of L, ) is a pair(x, x(x)) consisting of a string: € X* and an integek(x).
Fixed-Parameter Tractable. Let (L, ) be a parameterized problem. We sdy, ) is Fixed-
Parameter Tractable (FPT) if for each instaricex(x)), there is an algorithn which decides
whetherz € Lin f(x(x)) - p(|z|) time, wheref is an arbitrary computable function apds a
polynomial function.

Kernelization. Let (L, x) be a parameterized problem afd «(x)) a corresponding instance. A
polynomial computable functiok” : ¥* — >* is a kernelization with respect {d, ) if

1l zel < K(x)elL
(2) |k(K(x))| < g(k(z)) for some computable function

For a kernelizationk” andx € ¥*, K (x) is called thekernel
A more intuitive way to interpret kernelization is as follefd6]: a kernelization is a polynomial
time transformation that transforms a problem instaficé:) to another instancél’, k') such that
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(1) (I, k) is a yes-instance iffI’, k') is also a yes-instance; (2) < k; and (3)|I'| < f(k) for
some computable functiofi(—). (I’, k') is typically called akernel of the problem, with size
|I'|. Itis easy to see that if a problem has a kernel then it is in; RRreover, every problem in
FPT has a kernel. From this, kernelization is a way to perfdata-reduction with performance
guarantee, “a humble strategy for coping with hard prob|eaimost universally employed” [17].
More fundamental details on FPT algorithms can be foundén I9].

Recently, Bodlaendest al. conducted a seminal work by showing that a class of impoR&t
problems cannot have polynomial (e.g.(k?) size) kernels unless the polynomial hierarcRy(
collapses to the third level (i.ePH = Ei’;) [6]. (The fundamental technique of this work, however,
is adapted from [20].) One such problem is callelEAF OUT-BRANCHING (i.e., finding a
rooted oriented spanning tree with at leastaves in an input digrapP) [18].

2.2 Weak Kernels

As illustrated in the introduction, we view weak kernelipatas a way to reduce search space, i.e.,
a parameterized search space. In the following, we formalfie folklore concept and call it weak
kernel. We also prove some of its basic properties.

Definition 1 (Search Problem) Let X be the alphabet, a search problem is a binary relati®rc
Y* x X Forz,y € ¥F, we writeR(z,y) = 1if (z,y) € Rand R(z,y) = 0if (z,y) ¢ R. An
algorithm A calculatesR if for an input stringx € ¥*,

(1) If there exists somg € ¥* such thatR(z,y) = 1, then A outputs some € ¥* such that
R(z,z) = 1.

(2) If nostringy € ¥* such thatR(z,y) = 1, thenA rejectsz.
We can then define parameterized search problem in a natayal w
Definition 2 (NP-Search Problem) A search problenR is calledNP-search problem if
(1) There exists a polynomigalsuch that for anyz, y € ¥*, R(x,y) = 1 implies|y| < p(|z|).
(2) Foranyzx,y € ¥*, R(z,y) can be decided in polynomial time.
Let R be a search problem, we can associate it with a unique degsablem:
Lp:={r € X" : 3y € ¥*such thatR(z,y) = 1}

Let L C ¥* be a decision problem and € NP. Then we can associate it with &f-search
problemR;, such that for any: € ¥*, x € L if and only if there exists somg € ¥*, Ry (x,y) = 1.
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Notice thatR;, needs not to be unique. Intuitively, for an instance >*, an algorithmA calculates
Ry, can be viewed as computing the witness such:thatL.

Definition 3 (Search Space)Let(@ be a search problem, a search spac&)s a pair (S, R) where
S : ¥* — ¥*is a computable function anf is another search problem(.S, R) are required to
satisfy that for any:, y € ¥*, Q(x,y) = 1 impliesR(S(z),y) = 1.

For a finite setX, we use_ X _ to denote some encoding &f. For a functionW : ¥* —
¥ x ¥* eq.,W(z) = (u,v), we use notationsV; (x) = u, Wa(z) = v.

Example 1 Consider the search probleMERTEX COVER, where the instance is a pailG =

(V,E), k) and asks for a vertex cover i@ of sizek. One search space MERTEX COVER is a
pair (S, R) whereS(z) = LV if = is a legal encoding of some instance aRaonsists of all pair
(z,y) wherexz is the encoding of a vertex sBtandy is the encoding of another vertex $étsuch
thatV’' C V.

Definition 4 (Weak Kernelization) Let (Q, ) be a parameterized search problem afft] R) be
one of its search space. We U%en(.S) to denote the range &f. A polynomial computable function
W : Ran(S) — ¥* x ¥* is a weak kernelization af with respect to(S, R) if there is a search
problem R’ such that

(1) LetS'(x) := W1 (S(z)), then(S’, R') is a search space d&.

(2) Foranyz € Ran(S), W(x) = (w1, ws) where|w;| < f(x(x)) for some computable function
f and|wz| < p(|n|) for some polynomial functiop.

(3) For an input(wy,ws), there is an algorithmAy, of runtimeg(Jwi|) - ¢(|ws]) to list all the
y such thatR’((wq,ws),y) = 1 for some computable functianand polynomialy. We call
Ayw thesearching algorithnfior 17/

In the definition of weak kernelization, the runtime of thgaithm depends on two parts, i.e.,
g(lwy]) andq(|ws|) whereg is an arbitrary computable function ands a polynomial function. In
many practical cases;; contains the essential information to obtain the solutiod.a, only deals
with the encoding.

For instance, for the parameterized Vertex Cover (p-Ve@exer) with instance = (V, E), k),
lw2|=O(klog|V]) = O(klogn). Inthe traditional FPT theory, this encoding cost was igdofThis
issue was raised by Harnik and Naor before [23]. On the othed hfor our applications, as all the
problems are ilNP, this actual encoding blow-up can be almost always ignoféds is similar to
the RAM model, in which one can store a vertex/integer ughig) space; but in theory we need to
storelog n bits for a vertex if there are vertices to store.
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2.3 Kernels# Weak Kernels

Weak kernelization is somehow a generalization of keragbn to search problems. In essence,
weak kernelization deals with problems that search for aess. However, since in a decision
problem, the solution is “Yes” or “No” and always differembi its witness, these two notations
are different if we directly change a search problem to decisne. We show below that for some
logically equivalent decision and search problem bey@nkiernel and weak kernel cannot co-exist.
See the following example.

Example 2 Let L ¢ P be a decision problem. Consider a search prob@m:= {(z,1)|z € L} U
{(z,0)|z € L}. Clearly @y, is not anNP-search problem since checking whetligr(z,1) = 1in
P is equivalent to deciding in P. Consider a parameterizationwherex(z) = 1 for everyz. Then
(Qr, k) is a parameterized search problem af¥d ) is its corresponding parameterized decision
problem. We know thdtL, ) is not FPT (hence has no kernelization) since an FPT algoritor
(L, k) is also a polynomial-time algorithm fak under this parameterization. Howevé®);, )
has a weak kernelization: consider functid(x) = = for everyz, then(Z, Q) is a search space
for Q. A weak kernelizatiolV takes stringx as input and outputse, ), wheree is the empty
string. Then(S’, R') is a reduced search space @f,, whereS’(x) := W1(I(z)) = eand R’ :=
{(e,7)]7 € {0,1}}. The searching algorithmly, just outputs{0, 1} on input(e, €) and the empty
set otherwise.

We comment that the above result is related to the “searchaisidn” question in the traditional
complexity theory; namely, under a complexity assumpttbere is an associated search problem
p in NP which cannot be reduced to its corresponding decision prolfb].

However, forNP-search problems, weak kernelization implies kernelizati

Proposition 1 Let (Q, x) be a parameterize@{P-search problem andL, ) be its correspond-
ing parameterized decision problem. (i), <) has a weak kernelization for some search space
(Sq, Rg), then(Lg, ) has a kernelization.

Proof. Since( is anNP-search problemi, is in NP. By the definition of search space and weak
kernelization, for every input string € >*, there is a searching algorithay; that runs in FPT time
and can generate a $ésuch that)(x,y) = 1 impliesy € T for every stringy. Then we can check
all the stringsy € 7' whetherQ(x, y) = 1 in polynomial time. If for some € T, Q(z,y) = 1 then
x € Lqg. Otherwisex ¢ Lq. Therefore(Lq, ) is FPT and hence it has a kernelization. O

In general, for a parameterized search prob{éms) and its corresponding decision problem
(Lg, k), we do not know whether a kernelization foEq), x) implies a weak kernelization for
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(Q, k), even wherny) is anNP-search problem. The following example shows that in sonsesa
this is the case.

Example 3 Consider the search version pfVERTEX COVER. An instance(z, k) wherex en-
codesG = (V(QG), E(G)) asks for a vertex cover af of sizek. We fix some encoding and
denote it by.-1. One of its search spaces is a pai$, R) whereS(.(G,k)1) = .V (G)J and
R(z,y) = {(z,y)|lx = Vi,y = V',V C V}, whereV,V’ are set of vertices. L&k’ be the
kernelization ofp-VERTEX COVER by S. Buss [8], then we can define a weak kernelization for
its search version:

o Forz = ((G,k)s € X, W(S(x)) := (w1, wsz), wherew, := S(K(x)), we encodes labels
of vertices ofK () in G and vertices of degree large thann G.

e The corresponding search problef for W can be defined as follow®’ := {((w1, w2),v)},
wherew, , wo are defined in the above andencodes the union of two sedsand B, where A
is a subset of vertices i, with labels inG computed fromw, and B is the set of vertices of
degree large thark in G.

While the above arguments are not really difficult, they hiteresting theoretical implica-
tions. For instance, for a problem unlikely to have a kersal/¢-Dominating Set, which is W[2]-
complete), as long as it belongs to NP, it is equally unlikelyrave a weak kernel. Therefore, for
problems in NP, the true merit of the above concepts seems telping us design efficient FPT
algorithms via weak kernels directly.

Through a private communication with Mike Fellows, the iestl idea of using weak kernels
seems to be in [1], where Bonsma, Briiggemann and Woegihgeresl that the MAX LEAF prob-
lem has a weak kernel of siz&25k. (Note that MAX LEAF is the complement of the Minimum
Connected Dominating Set problem.) In the next section, wegvdwo new applications of weak
kernels.

3 Applications

We show below two examples of the applications of weak kerngbr both of them, we do not
know of better kernel bounds. For the famous Sorting withiMim Unsigned Reversals, this is
the first non-trivial FPT algorithm.

The two minimization problems we consider are all known tdNllecomplete: Minimum Co-
Path Set and Sorting with Minimum Unsigned Reversals (SMWR) will mainly focus on solving
these problems with weak kernels. For some of these prob{ergs Minimum Co-Path Set),
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it is possible to solve it with bounded search tree, on top eékvkernels. Yet in general it is
still unknown whether bounded search tree is always moreedfaivthan weak kernels. We will
comment on this at the end of this paper.

3.1 Minimum Co-Path Set

In this subsection, we study the following problem callechidium Co-Path Set. Given a simple
undirected graplds, a co-path sefs a setS of edges inGG whose removal leaves a graph in which
every connected component is a path. In the Minimum Co-PetiP@®blem, we need to compute a
minimum co-path set 7.

The Minimum Co-Path Set Problem originates from radiatighrid (Rh) mapping, which is
a powerful technique for mapping unigue DNA sequences dmtoncosomes and whole genomes
[11, 15, 32, 33]. In Rh mapping, chromosomes are randomlidranto small DNA fragments
through gamma radiation. A (random) subset of these DNAMfiexgs retain with healthy hamster
cells and grow up to build up a hybrid cell line. This processeipeated many times and the co-
retention rate of a pair of markers (labeled chromosoma) Indicates their physical distance on
the chromosome. In principle, when two markerandy are close, the probability thatandy are
broken by the gamma radiation is small, hence with a highaividity they are either co-present in
or co-absent from a DNA fragment.

A subset of markers that are co-present from DNA fragmentalled acluster LetV =
{1,2,---,n} be a set of markers and I6ét= {C;,C>,---,C,,} be a collection of clusters. The
Radiation Hybrid Map Construction Problem is to comput@edr ordering of the markers in which
the markers in each clustéf appear consecutively. In reality, a cluster might be formvét errors,
so no such linear ordering might exist. In this case, one s\e@demove the minimum number of
clusters so that the leftover clusters admit a linear onderWhen|C;| = 2 for all 7, this is exactly
the Minimum Co-Path Set Problem. Given a simple undirectegtyG = (V, E), each vertex in
V corresponds to a marker, an edgev) € E corresponds to a clustén, v}.

In [11], the Minimum Co-Path Set Problem was shown to be Nigiete [21]. The proof is by
a reduction from the Hamiltonian Path problem, with eachegdgv) being converted to a cluster
{u,v}. Itis easy to see that there is a Hamiltonian Path in the igmphG if and only if one has to
delete exactlyF| — n + 1 clusters. A factor-2 approximation was also proposed i, fdhich was
recently improved to 10/7 [13]. (The counterpart of the Minim Co-Path Set Problem is the well-
known Minimum Path Coveproblem [38] and will not be covered here.) Liebe the minimum
number of edges deleted for the problem. We show in this stibsethat the Minimum Co-Path
Set Problem is in FPT; in fact, it has a linear weak kernel o sit mostk, hence the problem can



be solved efficiently ir0 (236 (n + k)) time. In the following, we present the technical details.

If some connected component Gfhas maximum vertex degree at most 2 then the problem is
trivially solvable for that component. So from now on we ameuthat each connected component
of G has maximum vertex degree at least 3. Moreover, in the saolatisingle vertex could also be
considered as a (degenerate) path. The following lemmasistegrove.

Lemma 1 There is a solutionk for the minimum co-path set such thAt contains only edges
incident to some vertices of degree at least &/in

Proof. Assume to the contrary that a solutidhcontains some edde:, y) such that both: andy
have degree at most two (. Let G — R be the graph obtained fro by deleting all the edges in
R. When bothr andy have degrees at most 2(if, y) is in R then putting it back té&x — R would
have two possibilities: (1) make each connected comporfef@e- R) U {(z,y)} a path, or (2)
create some cycle itG — R) U {(x,y)}. In case (1), it contradicts the optimality & In case (2),
(z,y) is on some cycle i7. Hence we can find an edge’, ') on this cycle which is incident to
some vertex of degree at least 3Gh Then we simply swagz, y) with (z/,') in R. It is easy to
see that repeating this process we can eventually have aatetios R’ such thai R’| = |R| and
R’ contains only edges incident to some vertices of degreast &inG. O

Now let D be a solution for the minimum co-path set such thatontains only edges incident
to some vertices of degree at least 3dn The above lemma implies a simple weak kernelization
procedure.

1. Identify the vertices ofs with degree at least 3. Let this set Bg(G).

2. Letthe set of edges which are incident to some verticé3 (&) be E5(G).
ReturnEs(G) as a weak kernel.

We have the following lemma.

Lemma 2 The Minimum Co-Path Set Problem has a solution of sifeand only if the solution
can be obtained by deletingedges inF5(G).

Proof. We only need to show the ‘only-if’ part as the other part isiobs. By Lemma 1, we do not
need to include any edge I which is incident to vertices of degree only one or two. O
It remains to show the weak kernel size (i.e., the siz€{5)). We have the following lemma.

Lemma3 Letk = |D|, then|E5(G)| < 5k. In other words, the size of the weak kernel of the
Minimum Co-Path Set Problem ig:.



Proof. ¢From Lemma 2, we know that theedges ofD can be found i3 (G). After thesek edges
in D are deleted fronds, G — D is only composed of paths, i.e., the degrees of vertic€s in D
are at most 2. In other words, the edgedif{G) — D must also be incident to vertices ¢ — D
of degree at most 2 (note that these vertices originally kia &3(G)). As thek edges inD are
incident to at mos2k vertices inV3(G), [V3(G)| < 2k. Therefore, we have at mosk edges in
E3(G)—D. Counting the: edges inD back, we havéFs(G)| = |Es(G)—D|+|D| < 4k+k = 5k.
0

With the above lemmas, it is easy to have an FPT algorithmHerMinimum Co-Path Set
Problem. First, il V3(G)| > 2k or | E3(G)| > 5k then we can simply return NO. Otherwise, among
the (at mostpk edges inFs(G), select all combinations df edges to delete. For each setiof
edges selected, delete them frafmand check whether the resulting graph is composed of paths
only (using standard linear time graph algorithms like ddptt search). If we fail to find such a
set, then return ‘No solution of siZg; otherwise, just return the computed set of edge®ag he

5k ,
time complexity of the algorithm is dominated by checki<g . > ~ 2361k gplutions. We have

the following theorem.

Theorem 1 Letk be the size of the minimum co-path set. The Minimum Co-PatRrSklem has
a weak kernel of siz&k, hence can be solved @(2%5'% (n 4 k)) time.

3.2 Sorting with Minimum Unsigned Reversals

Sorting with Minimum Unsigned Reversals (SMUR) is a famousbfem in computational biol-
ogy, more specifically, in computational genomics. GivereagnmeH composed of a sequence of
n distinct genes (also formulated as a permutations oftegers{1,2,---,n}), i.e., assume that
H = 5159+ 8;8;41--5j-15j - - 5p, areversaloperation on the segmesfs; - - - s;_1s; trans-
formsH into H' = sysa-+-8;Sj_1 -+ Si+18i - - - Sp. The problem Sorting with Minimum Unsigned
Reversals is to use the minimum number of reversals to coiydnto the identity permutation
I =123---n. Example: GivenH = 15342, we can use two signed reversals to first change it to
15432 and finally to 12345.

When the genes are signed, we have a similar problem Sorithdginimum Signed Reversals.
Given a signed genom# ~ composed of a sequencerefistinct (signed) genes (also formulated
as a signed permutations ofintegers{1,2,---,n}), i.e., H~ = tito---titip1---tj_1tj - ty,
asigned reversabperation on the segmetyt;,; - - - t;_¢; transformsH ~ into H" = t1ty--- —
tj —tj—1--- —tiy1 — t;--- ty. The problem Sorting with Minimum Signed Reversals is tothse
minimum number of signed reversals to convArt into the identity permutatiod = 123 - - n.
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Example: GiverH = 1—534—2, we can use two signed reversals to first changelititd—4—3—2
and finally to 12345. (Note that in the literature it is als@emutable to converff~ to —1 =
—n---—3 —2— 1. We can enforce thaf ~ is converted td by adding two auxiliary genes, i.e.,
0H~(n + 1). This is a known trick in computational genomics.)

SMUR was shown to be NP-complete by Caprara [9] and the besbdmation algorithm has
a factor 1.375 [2]. However, no non-trivial FPT algorithmkisown for the problem. The trivial
solution is to use a bounded search tree algorithm whichirurmighly O (k°*)n) time. We show
below that with weak kernels, a much faster FPT algorithmtmadesigned.

We use Sorting with Minimum Signed Reversals as a subrodtin&MUR. Unlike SMUR,
Sorting with Minimum Signed Reversals can be solved in potgial time [25, 30, 36], with the best
running time beingD(nlogn) [34]. Computing the minimum signed reversal distance, hawe
can be done in linear time [4]. Lef be the (unsigned) genome to be sorted. It is easy to see that
each reversal can eliminate at most two breakpoints. (§nddse a breakpoint is a 2-substrifigj)
of H such thatjj — i| # 1.) Hence, if the optimal solution size is there would be at mostk
breakpoints inH. In other words, there are at mast genes which are in some breakpoints. Let
Hy, be the set of such (at mosty genes.Hy, is the weak kernel in this application.

Given H, let a maximal substring3 of H composed of at least two consecutive adjacen-
cies be called dlock with the first and last letters calldadead and tail of the block respec-
tively. (We also say that the head and the tail adgacent through the block in H.) Example:

H =(0,5,7,8,10,1,2,3,4,9,6,11), B = (1,2, 3,4) is a block with head and tail4. 7 and8 are
in H7 but form an adjacency i#/. 1 and4 are adjacent through the bloékin H. Following [24],
there is an optimal SMUR solution fdi which does not cut any block.

Let H, be the set of signed genomes obtained by addifig signs on these genes (involved in
some breakpoints) ;. (Following [24], if two such genes i#f;, are the head and tail of a block
B, then all the genes i® should be given the same sign, i.e., either all positive lanegative.) It
is easily seen tha#i, | < 2**. Moreover, we have the following lemma.

Lemma 4 There is a solution ok unsigned reversals for sorting if and only if the solution can
be found by sorting some sequencédin with k signed reversals.

Proof. If there is a solution ofc unsigned reversals for sorting, then we can trace these
reversals backwards and each time add signs accordinglgxBmple, assume that the last reversal
to obtain(0, 1, 2, 3, 4, 5) is (3, 2), then for sorting by signed reversals the second last sigaedme

is (0,1,—3,—2,4,5). Itis easily seen that after repeating this processnes, we have a signed
genomeH"” in H, . Certainly, one can sofi’” by k signed reversals.
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On the other hand, if there akesigned reversals which sorts some genom& n sayH”, one
can ignore the negative signs i’ (to obtain /) and perform the samk (unsigned) reversals to
sortH into I. O

Theorem 2 Sorting with Minimum Unsigned Reversals has a weak kerrakeflk, hence can be
solved inO(2%n + nlogn) time.

Proof. We first show a bound af (2% n + nlogn), which is straightforward from thék weak
kernel. First, following Lemma 4, the weak kernelizatioreasy: identify all the blocks i/ and
return (H, Hy, k). For each possible signed genomeHr (obtained fromH; by adding some
negative signs), we use th¢(n) time algorithm in [4] to check whether it can be sorted with
signed reversals. If so, we can compute accordinglykte@ned reversals using the algorithm by
Swensoret al. [34], to obtain thet (unsigned) reversals to saft in O(nlogn) time. If no valid
solution is found, we report NO. This algorithm clearly ran®) (2*%n + nlogn) time.

By a more detailed analysis (i.e., we do not have to try albfids ways to sign genes i),
the running time of the above algorithm can be improve@t@*n + nlogn) time. Now let the
genes inHy, form a total ofz adjacencies (possibly through some blocks). Followind,[#4wo
such genes form an adjacencyfin obviously they have to be given the same signs, i.e., dlitbtr
positive or both negative. If two such genes form an adjacémough some bloclB in H, all the
genes inB need to have the same signs. So the total number of ways tgeigs inH;, is bounded
by

97 y 9(4k—22)/2—1 _ 92k—1_

Hence we have an FPT algorithm with running tim&?*n + nlogn). O

We comment that, for the related Sorting with Minimum UnsidrTranslocation problem, ex-
actly the same idea can be applied to obtain a weak kernet@fsj hence an FPT algorithm with
running timeO(2%*n + n?). The relevant details can be found in [39, 3] (or from the nexfees
therein).

4 Concluding Remarks

We formally introduce a new (somehow a previous folkloredaapt called weak kernels for fixed-
parameter computation and prove some interesting prepestiweak kernels. We also show some
interesting applications with weak kernels. We believe fhacertain problems weak kernels are
more flexible and possibly more powerful than the traditidtexnels. This is certainly the case
with some of our applications, especially the famous Sgriith Minimum Unsigned Reversals
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(SMUR) problem. We know of no FPT algorithm which runs closext (2**) time for SMUR. It
turns out that weak kernels can also be applied to obtainfaieet FPT algorithm for the problem
of sorting linear genomes under the unsigned DCJ distarfelf2vould be interesting to see more
applications of weak kernels.

As an extra note for this revision, there seem to be two kifd&eak kernels: direct and
indirect ones — the difference lies in whether the searcbrilgn Ay, being trivial or not. Besides
Minimum Co-Path Set, Complementary Maximal Strip Reco\@W SR, which was discussed in
earlier versions of this paper) also admits a small direakneernel of sizel8% [28]. (In [28], a
direct weak kernel is also referred to as a “parameterizatthespace”.) What is interesting is that
both of them also admit traditional (linear) kernels [40] @8d admit efficient bounded search tree
algorithms [40, 26, 7]. Is this a coincidence? On the othedhdor problems admitting indirect
weak kernels, i.e., SMUR and Sorting by DCJ [27], no tradiiopolynomial kernel is known and
no efficient bounded search tree algorithm is known. Forlétier class of problems, is it possible
to prove formally that small (or polynomial) kernels do nzitst?
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