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Abstract

We construct pseudorandom generators that fool functions of halfspaces (threshold functions)
under a very broad class of product distributions. This class includes not only familiar cases such
as the uniform distribution on the discrete cube, the uniform distribution on the solid cube, and
the multivariate Gaussian distribution, but also includes any product of discrete distributions
with probabilities bounded away from 0.

Our first main result shows that a recent pseudorandom generator construction of Meka
and Zuckerman [MZ09], when suitably modified, can fool arbitrary functions of d halfspaces
under product distributions where each coordinate has bounded fourth moment. To ε-fool
any size-s, depth-d decision tree of halfspaces, our pseudorandom generator uses seed length
O((d log(ds/ε) + log n) · log(ds/ε)). For monotone functions of d halfspaces, the seed length can
be improved to O((d log(d/ε)+ log n) · log(d/ε)). We get better bounds for larger ε; for example,
to 1/polylog(n)-fool all monotone functions of (log n)/ log log n halfspaces, our generator requires
a seed of length just O(log n).

Our second main result generalizes the work of Diakonikolas et al. [DGJ+09] to show that
bounded independence suffices to fool functions of halfspaces under product distributions. As-
suming each coordinate satisfies a certain stronger moment condition, we show that any function
computable by a size-s, depth-d decision tree of halfspaces is ε-fooled by Õ(d4s2/ε2)-wise inde-
pendence.

Our technical contributions include: a new multidimensional version of the classical Berry-
Esseen theorem; a derandomization thereof; a generalization of Servedio [Ser07]’s regularity
lemma for halfspaces which works under any product distribution with bounded fourth moments;
an extension of this regularity lemma to functions of many halfspaces; and, new analysis of the
sandwiching polynomials technique of Bazzi [Baz09] for arbitrary product distributions.
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1 Introduction

Halfspaces, or threshold functions, are a central class of Boolean-valued functions. A halfspace is a
function h : Rn → {0, 1} of the form h(x1, . . . , xn) = 1[w1x1 + · · ·+ wnxn ≥ θ] where the weights
w1, . . . , wn and the threshold θ are arbitrary real numbers. These functions have been studied ex-
tensively in theoretical computer science, social choice theory, and machine learning. In computer
science, they were first studied in the context of switching circuits; see for instance [Der65, Hu65,
LC67, She69, Mur71]. Halfspaces (with non-negative weights) have also been studied extensively
in game theory and social choice theory as models for voting; see e.g. [Pen46, Isb69, DS79, TZ92].
Halfspaces are also ubiquitous in machine learning contexts, playing a key role in many impor-
tant algorithmic techniques, such as Perceptron , Support Vector Machine, Neural Networks,
and AdaBoost. One of the outstanding open problems in circuit lower bounds is to find an ex-
plicit function that cannot be computed by a depth two circuit (“neural network”) of threshold
gates [HMP+93, Kra91, KW91, FKL+01].

In this work we investigate the problem of constructing explicit pseudorandom generators for
functions of halfspaces.

Definition 1.1. A function G : {0, 1}s → B is a pseudorandom generator (PRG) with seed length
s and error ε for a class F of functions from B to {0, 1} under distribution D on B — or more
succinctly, G ε-fools F under D with seed length s — if for all f ∈ F ,∣∣∣ Pr

X∼D
[f(X) = 1]− Pr

Y ∼{0,1}s
[f(G(Y )) = 1]

∣∣∣ ≤ ε.
Under the widely-believed complexity-theoretic assumption BPP = P, there must be a determin-

istic algorithm that can approximate the fraction of satisfying assignments to any polynomial-size
circuit of threshold gates. Finding such an algorithm even for simple functions of halfspaces has
proven to be a difficult derandomization problem. Very recently, however, there has been a burst
of progress on constructing PRGs for halfspaces [RS08, DGJ+09, MZ09]. The present paper makes
progress on this problem in several different directions, as do several concurrent and independent
works [HKM09, DKN09, BELY09].

This flurry of work on PRGs for functions of halfspaces has several motivations beyond its status
as a fundamental derandomization task. For one, it can be seen as a natural geometric problem,
with connections to deterministic integration; for instance, the problem of constructing PRGs for
halfspaces under the uniform distribution on the n-dimensional sphere amounts to constructing a
poly(n)-sized set that hits every spherical cap with roughly the right frequency [RS08]. Second,
PRGs for halfspaces have applications in streaming algorithms [GR09], while PRGs for functions
of halfspaces can be used to derandomize the Goemans-Williamson Max-Cut algorithm, algorithms
for approximate counting, algorithms for dimension reduction and intractability results in compu-
tational learning [KS08]. Finally, proving lower bounds for the class TC0 of small depth threshold
circuits is an outstanding open problem in circuit complexity. An explicit PRG for a class is easily
seen to imply lower bounds against that class. Constructions of explicit PRGs might shed light on
structural properties of threshold circuits and the lower bound problem.

1.1 Previous work

The work of Rabani and Shpilka [RS08] constructed a hitting set generator for halfspaces under
the uniform distribution on the sphere. Diakonikolas et al. [DGJ+09] constructed the first PRG
for halfspaces over bits; i.e., the uniform distribution on {−1, 1}n. They showed that any k-wise
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independent distribution ε-fools halfspaces with respect to the uniform distribution for k = Õ(1/ε2),
giving PRGs with seed length (log n) · Õ(1/ε2).

Meka and Zuckerman constructed a pseudorandom generator that ε-fools degree-d polynomial
threshold functions (“PTFs”, a generalization of halfspaces) over uniformly random bits with seed
length (log n)/εO(d) [MZ09]. Their generator is a simplified version of Rabani and Shpilka’s hitting
set generator. In the case of halfspaces, they combine their generator with generators for small-
width branching programs due to Nisan and Nisan-Zuckerman [Nis92, NZ96] to bring the seed
length down to O((log n) log(1/ε)). This is the only previous or independent work where the seed
length depends logarithmically on 1/ε.

1.2 Independent concurrent work

Independently and concurrently, a number of other researchers have extended some of the afore-
mentioned results, mostly to intersections of halfspaces and polynomial threshold functions over
the hypercube or Gaussian space.

Diakonikolas et al. [DKN09] showed that O(1/ε9)-wise independence suffices to fool degree-2
PTFs under the uniform distribution on the hypercube and under the Gaussian distribution. They
also prove that poly(d, 1/ε)-wise independence suffices to fool intersections of d degree-2 PTFs in
these settings.

Harsha et al. [HKM09] obtain a PRG that fools intersections of d halfspaces under the Gaus-
sian distribution with seed length O((log n) · poly(log d, 1/ε)). They obtain similar parameters for
intersections of d “regular” halfspaces under the uniform distribution on {−1, 1}n (a halfspace is
regular if all of its coefficients have small magnitude compared to their sum of squares).

Ben-Eliezer et al. [BELY09] showed that roughly exp((d/ε)d)-wise independence ε-fools degree-d
PTFs which depend on a small number of linear functions.

1.3 Our Results

In this work, we construct pseudorandom generators for arbitrary functions of halfspaces under (al-
most) arbitrary product distributions. Our work diverges from previous work in making minimal
assumptions about the distribution we are interested in, and in allowing general functions of halfs-
paces. For both of our main results, we only assume that the distribution is a product distribution
where each coordinate satisfies some mild conditions on its moments. These conditions include
most distributions of interest, such as the Gaussian distribution, the uniform distribution on the
hypercube, the uniform distribution on the solid cube, and discrete distributions with probabilities
bounded away from 0. Our results can also be used to fool the uniform distribution on the sphere,
even though it is not a product distribution. This allows us to derandomize the hardness result of
Khot and Saket [KS08] for learning intersections of halfspaces.

We also allow for arbitrary functions of d halfspaces, although the seed length improves sig-
nificantly if we consider monotone functions or small decision trees. In particular, we get strong
results for intersections of halfspaces.

1.3.1 The Meka-Zuckerman Generator

We show that a suitable modification of the Meka-Zuckerman (MZ) generator can fool arbi-
trary functions of d halfspaces under any product distribution, where the distribution on each
coordinate has bounded fourth moments. More precisely, we consider product distributions on
X = (x1, . . . ,xn) where for every i ∈ [n], E[xi] = 0,E[x2

i ] = 1, E[x4
i ] ≤ C where C ≥ 1 is a

parameter of the generator G. We say that the distribution X has C-bounded fourth moments.
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We get our best results for monotone functions of d halfspaces, such as intersections of d halfs-
paces. For distributions with polynomially bounded fourth moments, our modified MZ PRG fools
the intersection of d halfspaces with polynomially small error using a seed of length O(d log2 n).
Many natural distributions have O(1)-bounded fourth moments. Even for polylog(n)-bounded
fourth moments, our PRG fools the intersection of (log n)/ log logn halfspaces with error 1/polylog(n)
using a seed of length just O(log n). Both of these cases are captured in the following theorem.

Theorem 1.2. Let X be sampled from a product distribution on Rn with C-bounded fourth mo-
ments. The modified MZ generator ε-fools any monotone function of d halfspaces with seed length
O((d log(Cd/ε) + log n) log(Cd/ε)). When Cd/ε ≥ log−c n for any c > 0, the seed length becomes
O(d log(Cd/ε) + log n).

As a corollary, we get small seed length for functions of halfspaces that have small decision
tree complexity. In the theorem below we could even take s to be the minimum of the number of
0-leaves and 1-leaves.

Theorem 1.3. Let X be as in Theorem 1.2. The modified MZ generator ε-fools any size-s, depth-d
function of halfspaces, using a seed of length O((d log(Cds/ε) + log n) log(Cds/ε)). When Cds/ε ≥
log−c n for any c > 0, the seed length becomes O(d log(Cds/ε) + log n).

Since the decision tree complexity is at most 2d, we deduce the following.

Corollary 1.4. Let X be as in theorem 1.2. The modified MZ generator ε-fools any function of
d halfspaces, using a seed of length O((d2 + d log(Cd/ε) + log n)(d+ log(Cd/ε))). When Cd2d/ε ≥
log−c n for any c > 0, the seed length becomes O(d2 + d log(Cd/ε) + log n).

1.3.2 Bounded Independence fools functions of halfspaces

We prove that under a large class of product distributions, bounded independence suffices to fool
functions of d halfspaces. This significantly generalizes the result of Diakonikolas et al. [DGJ+09]
who proved that bounded independence fools halfspaces under the uniform distribution on {−1, 1}n.
The condition necessary on the product distributions is unfortunately somewhat technical; we state
here a theorem that covers the main cases of interest:

Theorem 1.5. Suppose f is computable as a size-s, depth-d function of halfspaces over the inde-
pendent random variables x1, . . . ,xn. If we assume the xj’s are discrete, then k-wise independence
suffices to ε-fool f , where

k = Õ(d4s2/ε2) · poly(1/α).

Here 0 < α ≤ 1 is the least nonzero probability of any outcome for an xj. Moreover, the same
result holds with α = 1 for certain continuous random variables xj, including Gaussians (possibly
of different variance) and random variables which are uniform on (possibly different) intervals.

For example, whenever α ≥ 1/polylog(d/ε) it holds that Õ(d6/ε2)-wise independence suffices
to ε-fool intersections of m halfspaces. For random variables that do not satisfy the hypotheses of
Theorem 1.5, it may still be possible to extract a similar statement from our techniques. Roughly
speaking, the essential requirement is that the random variables xj be “(p, 2, p−c)-hypercontractive”
for large values of p and some constant c < 1.
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Notation: Throughout, all random variables take values in R or Rd. Random variables will
be in boldface. Real scalars will be lower-case letters; real vectors will be upper-case letters.
If X is a d-dimensional vector, we will write X[1], X[2], . . . , X[d] for its coordinates values and

‖X‖ =
√∑d

i=1X[i]2 for its Euclidean length. When M is a matrix, we also use the notation
M [i, j] for its (i, j) entry. If X is a vector-valued random variable, we write ‖‖‖X‖‖‖p = E[‖X‖p]1/p.
We typically use i to index dimensions and j to index sequences. Given x ∈ R we define sgn(x) = 1
if x ≥ 0 and sgn(x) = −1 if x < 0. If X is a d-dimensional vector, then −→sgn(X) denotes the vector
in {−1, 1}d with −→sgn(X)[i] = sgn(X[i]).

Our results concern arbitrary functions of d halfspaces. Thus we have vectors W1, . . . ,Wn,Θ ∈
Rd, and we’re interested in functions f : {−1, 1}d → {0, 1} of the vector −→sgn(x1W1+. . .+xnWn−Θ),
which we abbreviate to −→sgn(W ·X −Θ) where W = (W1, . . . ,Wn) and X = (x1, . . . , xn).

Organization: We give an overview of our results and their proofs in 2. We prove the multi-
dimensional Berry-Esseen type theorems in Section 4. In Section 5, we prove a regularity lemma
for multiple halfspaces in the general setting of hypercontractive variables. We state modified MZ
generator in Section 6, and analyze it using the machinery above in Section 7. In Section 8, we
show how to combine it with PRGs for branching programs to get our Theorems 1.2 and 1.3. We
prove Theorem 1.5 in Section 10. In Section 11, we show how our results apply to fooling the
uniform distribution on the sphere, and use it to derandomize the hardness result of [KS08].

2 Overview of the main results

In this section, we give an overview on how we construct and analyze the following two types
of PRGs for functions of halfspaces under general product distributions: i) the modified Meka-
Zuckerman generator (in Section 2.1) and ii) the bounded independence generator (in Section 2.2)

2.1 The Meka-Zuckerman Generator

There are five steps in the analysis:
1. Discretize the distribution X so that it is the product of discrete distributions whose moments

nearly match those of X.
2. Prove a multidimensional version of the classical Berry-Esseen theorem, and a derandomization

thereof under general product distributions. This allows us to handle functions of regular
halfspaces. See Subsection 2.1.1.

3. Generalize the regularity lemma/critical index lemma (see [Ser07, DGJ+09]) to d halfspaces
under general product distributions. This gives a small set of variables such that after condi-
tioning on these variables, each halfspace becomes either regular or close to a constant function.
See Subsection 2.1.2.

4. Use the regularity lemma to reduce analyzing functions of d arbitrary halfspaces to analyzing
functions of d (or fewer) regular halfspaces.

5. Finally, generalize the monotone trick from [MZ09], which previously worked only for a single
“monotone” branching program, to monotone functions of monotone branching programs. This
enables us to get seed length logarithmic in 1/ε. See Subsection 2.1.3.
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2.1.1 Multi-Dimensional Berry-Esseen Theorem

The classic Berry-Esseen Theorem is a quantitative version of the Central Limit Theorem. This
theorem is essential in the analyses of [MZ09] and [DGJ+09] for one halfspace. Since we seek
to fool functions of several halfspaces, we prove a multi-dimensional version of the Berry-Esseen
theorem, which approximates the distribution of

∑
i xiWi. The error of the approximation is small

when all the halfspaces are regular (no coefficient is too large). While there are multi-dimensional
versions known, we were unable to find in the literature any theorems which we could use in a
“black-box” fashion. The reason for this is twofold: known results tend to focus on measuring the
difference between probability distributions vis-a-vis convex sets; whereas, we are interested in more
specialized sets, unions of orthants. Second, results in the literature tend to assume a nonsingular
covariance matrix and/or have a dependence in the error bound on its least eigenvalue; whereas,
we need to work with potentially singular covariance matrices. We believe this theorem could be
of independent interest.

Next we show how this theorem can be derandomized in a certain sense. This derandomization
enables us to show that our modified MZ PRG fools regular halfspaces.

2.1.2 Multi-Dimensional Critical Index

The concept of critical index was introduced in the work of Servedio [Ser07]. It is used to
prove a regularity lemma for halfspaces, which asserts that every halfspace contains a head con-
sisting of constantly many variables, such that once these variables are set randomly, the re-
sulting function is either close to constant, or close to a regular halfspace. This lemma has
found numerous applications in complexity and learning theoretic questions related to halfspaces
[Ser07, OS08, FGRW09, DGJ+09, MZ09].

The obvious generalization of the one-dimensional theorem to multiple halfspaces would be to
take the union of the heads of each halfspace. This does not work, since setting variables in a
regular halfspace can make it irregular. We prove a multidimensional version of this lemma, which
moreover holds in the setting of product distributions with bounded fourth moments. Our analysis
shows that the lemma only requires some basic concentration and anti-concentration properties,
which are enjoyed by any random variable with bounded fourth moments.

2.1.3 Monotone Branching Programs

The only known method to get logarithmic dependence on 1/ε for PRGs for halfspaces, due to Meka
and Zuckerman, considers the natural branching program accepting a halfspace. This branching
program is “monotone,” in the sense that in every layer the set of accepting suffixes forms a
total order under inclusion. Meka and Zuckerman showed that any monotone branching program
of arbitrary width can be sandwiched between two small-width monotone branching programs.
Therefore, PRGs for small-width branching programs, such as those by Nisan [Nis92] can be used.

Since we deal with several halfspaces, we get several monotone branching programs. We consider
monotone functions of monotone branching programs, to encompass intersections of halfspaces.
However, such functions are not necessarily computable by monotone branching programs. Nev-
ertheless, we show how to sandwich such functions between two small-width branching programs,
and thus can use the PRGs like Nisan’s.
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2.2 Bounded Independence fools functions of halfspaces

2.2.1 Sandwiching “polynomials”

To prove that bounded independence can fool functions of halfspaces (Theorem 1.5), we use the
“sandwiching polynomials” method as introduced by Bazzi [Baz09] and used by [DGJ+09]. However
in our setting of general random variables it is not appropriate to use polynomials per se. The
essence of the sandwiching polynomial method is showing that only groups of d random variables
need to be “simultaneously controlled’. When the random variables are ±1-valued, controlling sub-
functions of at most d random variables is equivalent to controlling polynomials of degree at most d.
But for random variables with more than two outcomes, a function of d random variables requires
degree higher than d in general, a price we should not be forced to pay. We instead introduce the
following notions:

Definition 2.1. Let Ω = Ω1 × · · · × Ωn be a product set. We say that p : Ω → R is a k-junta if
f(x1, . . . , xn) depends on at most k of the xj’s. We say that p is a generalized polynomial of order
(at most) k if it is expressible as a sum of simple functions of order at most k. In the remainder
of this section we typically drop the word “generalized” from “generalized polynomial”, and add the
modifier “ordinary” when referring to “ordinary polynomials”.

We now give the simple connection to fooling functions with bounded independence:

Definition 2.2. Let X = (x1, . . . ,xn) be a vector of independent random variables, where xj has
range Ωj. Let f : Ω → R, where Ω = Ω1 × · · · × Ωn. We say that polynomials pl, pu : Ω → R are
ε-sandwiching for f if

pl(X) ≤ f(X) ≤ pu(X) for all X ∈ Ω, and E[pu(X)]− ε ≤ E[f(X)] ≤ E[pl(X)] + ε.

Proposition 2.3. Suppose pl, pu are ε-sandwiching for f as in Definition 2.2 and have order at
most k. Then f is ε-fooled by k-wise independence. I.e., if Y = (y1, . . . ,yn) is a vector of random
variables such that each marginal of the form (yj1 , . . . ,yjk) matches the corresponding marginal
(xj1 , . . . ,xjk), then

|E[f(X)]−E[f(Y )]| ≤ ε.

Proof. Write pu =
∑

t qt, where each qt is a k-junta. Then

E[f(Y )] ≤ E[pu(Y )] = E[
∑
t
qt(Y )] =

∑
t

E[qt(Y )] =
∑
t

E[qt(X)] = E[pu(X)] ≤ E[f(X)] + ε,

where in addition to the sandwiching properties of pu we used the fact that qt is a k-junta to deduce
E[qt(Y )] = E[qt(X)]. We obtain the bound E[f(Y )] ≥ E[f(bX)]− ε similarly, using pl.

2.2.2 Upper polynomials for intersections suffice

We begin with a trivial observation:

Proposition 2.4. Let C be a class of functions Ω → {0, 1}, and suppose that for every f ∈ C we
have just the “upper sandwiching polynomial”, pu, of an ε-sandwiching pair for f . Then if C is
closed under Boolean negation, we obtain a matching “lower polynomial” pl of the same order as
pu automatically.
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This is simply because given pu for f , we may take pl = 1−pu. Since the Boolean negation of a
halfspace is a halfspace, this observation could have been used for slight simplification in [DGJ+09].

Our Theorem 1.5 is concerned with the class of 0-1 functions f computable as size-s, depth-d
functions of halfspaces. This class is closed under Boolean negation; hence it suffices for us to
obtain upper sandwiching polynomials. Furthermore, every such f can be written as f =

∑s′

t=1Ht,
where s′ ≤ s and Ht is an intersection (AND) of up to d halfspaces. To see this, simply sum the
indicator function for each root-to-leaf path in the decision tree (this again uses the fact that the
negation of a halfspace is a halfspace). Thus if we have (ε/s)-sandwiching upper polynomials of
order k for each Ht, by summing them we obtain an ε-sandwiching upper polynomial for f of the
same order. Hence to prove our main Theorem 1.5, it suffices to prove the following:

Theorem 2.5. Suppose f is the intersection of d halfspaces h1, . . . , hd over the independent random
variables x1, . . . ,xn. Suppose α is as in Theorem 1.5. Then there exists an ε-sandwiching upper
polynomial for f of order k ≤ Õ(d4/ε2) · poly(1/α).

2.2.3 Polynomial construction techniques

Suppose for simplicity we are only concerned with the intersection f of d halfspaces h1, . . . , hd over
uniform random ±1 bits xj . The work of Diakonikolas et al. [DGJ+09] implies that there are is an
ε0-sandwiching upper polynomial pi of order Õ(1/ε20) for each hi. To obtain an ε-sandwiching upper
polynomial for the intersection h1h2 · · ·hd, a natural first idea is simply to try p = p1p2 · · · pd. This
is certainly an upper-bounding polynomial; however the ε-sandwiching aspect is unclear. We can
begin the analysis as follows. Let hi = hi(X) and pi = pi(X). By telescoping,

E[p1 · · ·pd]−E[h1 · · ·hd] = E[(p1 − h1)p2 · · ·pd] + · · ·
. . . + E[h1 · · ·hi−1(pi − hi)pi+1 · · ·pd] + · · · (1)
. . . + E[h1 · · ·hd−1(pd − hd)].

Now the last term here could be upper-bounded as

E[h1 · · ·hd−1(pd − hd)] ≤ E[pd − hd] ≤ ε0,

since each 0 ≤ hi ≤ 1 with probability 1. But we cannot make an analogous bound for the
remaining terms because we have no a priori control over the values of the pi’s beyond the individual
sandwiching inequalities

E[pi − hi] ≤ ε0.

Nevertheless, we will be able to make this strategy work by establishing additional boundedness
conditions on the polynomials pi; specifically, that each pi exceeds 1 + 1/d2 extremely rarely, and
that even the high 2d-norm of pi is not much more than 1.

Establishing these extra properties requires significant reworking the construction in [DGJ+09].
Even in the case of uniform random ±1 bits, the calculations are not straightforward, since the
upper sandwiching polynomials implied by [DGJ+09] are only fully explicit in the case of regular
halfspaces. And to handle general random variables xj , we need more than just our new Regularity
Lemma 5.3 for halfspaces. We also need to assume a stronger hypercontractivity property of the
random variables to ensure they have rapidly decaying tails.
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3 Hypercontractivity

The notion of of hypercontractive random variables was introduced in [KS88] and developed by
Krakowiak, Kwapień, and Szulga:

Definition 3.1. We say that a real random variable x is (p, q, η)-hypercontractive for 1 ≤ q ≤
p <∞ and 0 < η < 1 if ‖‖‖x‖‖‖p <∞, and for all a ∈ R, ‖‖‖a+ ηx‖‖‖p ≤ ‖‖‖a+ x‖‖‖q.

In this paper we will be almost exclusively concerned with the simplest case, p = 4, q = 2. Let
us abbreviate the definition in this case (and also exclude constantly-0 random variables):

Definition 3.2. A real random variable x is η-HC for 0 < η < 1 if 0 < ‖‖‖x‖‖‖4 < ∞ and for all
a ∈ R, ‖‖‖a+ ηx‖‖‖4 ≤ ‖‖‖a+ x‖‖‖2, i.e. E[(a+ ηx)4] ≤ E[(a+ x)2]2.

Essentially, a mean 0 real random variable is η-HC with large η if and only if it has a small 4th
moment (compared to its 2nd moment). Random variables with small 4th moment are known to
enjoy some basic concentration and anti-concentration properties. We work with hypercontractivity
rather than 4th moments because it tends to slightly shorten proofs and improve constants; the
main convenience is that a linear combination of η-HC random variables is also η-HC.

Here we list some basic and useful properties of η-HC random variables, all of which have
elementary proofs. Note that Facts 3 and 4 imply that the upper bound on the 4th norm C =
Θ(1/η4).

Fact 3.3. [KS88, MOO05, Wol06a, Wol06b]
1. If x is η-HC then it is also η′-HC for all η′ < η.
2. If x is η-HC then x is centered, E[x] = 0.
3. If x is η-HC then E[x4] ≤ (1/η)4 E[x2]2.
4. Conversely, if E[x] = 0 and E[x4] ≤ (1/η)4 E[x2]2, then x is (η/2

√
3)-HC. If x is also sym-

metric (i.e., −x has the same distribution as x) then X is min(η, 1/
√

3)-HC.
5. If x is ±1 with probability 1/2 each, then x is (1/

√
3)-HC. The same is true if x has the standard

Gaussian distribution or the uniform distribution on [−1, 1].
6. If x is η-HC then in fact η ≤ 1/

√
3.

7. If x is a centered discrete random variable and α ≤ 1/2 is the least nonzero value of x’s
probability mass function, then x is η-HC for η = α1/4/2

√
3.

8. If x1, . . . ,xn are independent η-HC random variables, then so is c1x1 + · · · cnxn for any real
constants c1, . . . , cn, not all 0. (Indeed, 4-wise independence suffices.)

9. If x is η-HC, and y is a random variable with the same rth moments as x for all r = 0, 1, 2, 3, 4,
then y is also η-HC.

The notion of hypercontractivity can be extended to Rd-valued random variables:

Definition 3.4. An Rd-random variable X is η-HC for 0 < η < 1 if ‖‖‖X‖‖‖4 < ∞ and for all
A ∈ Rd, ‖‖‖A+ ηX‖‖‖4 ≤ ‖‖‖A+X‖‖‖2.

We require the following facts about vector-valued hypercontractivity:

Fact 3.5. [Szu90]
1. If W ∈ Rd is a fixed vector and x is an η-HC real random variable, then X = xW is an η-HC.
2. If X1, . . . ,Xn are independent η-HC random vectors, then so is c1X1 + · · · cnXn for any real

constants c1, . . . , cn. (Again, 4-wise independence also suffices.)
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Hypercontractive real random variables possess the following good concentration and anti-
concentration properties.

Proposition 3.6. If x is η-HC then for all t > 0, Pr[|x| ≥ t‖‖‖x‖‖‖2] ≤ 1
η4t4

.

Proof. Apply Markov to the event “x4 ≥ t4 E[x2]2”.

Proposition 3.7. If x is η-HC then for all θ ∈ R and 0 < t < 1, Pr[|x− θ| > t‖‖‖x‖‖‖2] ≥ η4(1−t2)2.

Proof. By scaling x it suffices to consider the case ‖‖‖x‖‖‖2 = 1. Consider the random variable
y = (x− θ)2. We have

E[y] = E[x2]− 2θE[x] + θ2 = 1 + θ2,

E[y2] = η−4 E[(−ηθ + ηx)4] ≤ η−4 E[(−ηθ + x)2]2 = η−4(1 + η2θ2)2 = (η−2 + θ2)2,

where we used the fact that x is η-HC in the second calculation (and then used the first calculation
again). We now apply the Paley-Zygmund inequality (with parameter 0 < t2/(1 + θ2) < 1):

Pr[|x− θ| > t] = Pr[y > t2] = Pr
[
y >

t2

1 + θ2
E[y]

]
≥
(

1− t2

1 + θ2

)2 E[y]2

E[y2]

≥
(

1− t2

1 + θ2

)2 (1 + θ2)2

(η−2 + θ2)2
=
(
η2(1− t2) + η2θ2

1 + η2θ2

)2

. (2)

Treat η and t as fixed and θ as varying. Writing u = η2(1 − t2), we have 0 < u < 1; hence the
fraction (u+ η2θ2)/(1 + η2θ2) appearing in (2) is positive and increasing as η2θ2 increases. Thus it
is minimized when θ = 0; substituting this into (2) gives the claimed lower bound.

4 The Multi-Dimensional Berry-Esseen Theorem

In this section we prove a Berry-Esseen-style results in the setting of multidimensional random
variables, and a derandomization of it.

We assume the following setup: X1, . . . ,Xn are independent Rd-valued η-HC random variables,
not necessarily identically distributed, satisfying E[Xj ] = 0 for all j ∈ [n]. We let S = X1+· · ·+Xn.
We write Mj = Cov[Xj ] ∈ Rd×d for the covariance matrix of Xj , which is positive semidefinite.
We also write M = Cov[S] for the covariance matrix of S; by the independence and mean-zero
assumptions we have M = M1 + · · ·+Mn. We will also assume that

M [i, i] =
n∑
j=1

E
[
Xj [i]2

]
= 1 for all i ∈ [d].

If we write σ2
j = ‖‖‖Xj‖‖‖2, it follows that

∑n
j=1 σ

2
j = d. We introduce new independent random

variablesG1, . . . ,Gn, whereGj is a d-dimensional Gaussian random variable with covariance matrix
Mj ; we also write also G = G1 + · · ·+Gn. We say that A ⊆ Rd is a translate of a union of orthants
if there exists some vector Θ ∈ Rd such that X ∈ A depends only on −→sgn(X −Θ).

Theorem 4.1. Let S and G be as above. Let A ⊆ Rd be a translate of a union of orthants. Then

|Pr[S ∈ A]−Pr[G ∈ A]| ≤ O(η−1/2d13/8) ·
( n∑
j=1

σ4
j

)1/8
.
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We now show that this result can be “derandomized” using the output of the MZ generator Y
in place of X. We describe here a simplified version of the output of their generator.

Definition 4.2. A family H = {h : [n]→ [t]} of hash functions is b-collision preserving if

1. For all i ∈ [n], ` ∈ [t], Prh∈uH[h(i) = `] ≤ b/t.

2. For all i 6= j ∈ [n], Prh∈uH[h(i) = h(j)] ≤ b/t.

Efficient constructions of size |H| = O(nt) are known for any constant b ≥ 1. b = 1 is optimal,
and can be achieved by a pairwise independent family. In our construction we use b = 1, but we
will need larger b in our analysis. A hash function induces a partition of [n].

We choose a partition H1, . . . ,Ht of [n] into t buckets using a b-collision preserving family of
hash functions (where b ≤ 2). The vector of variables {Yj}j∈H`

is generated 4-wise independently.
There is full independence across different buckets. Let T = Y1 + · · ·+ Yn.

Theorem 4.3. Let T and G be as above. Let A ⊆ Rd be a translate of a union of orthants. Then

|Pr[T ∈ A]−Pr[G ∈ A]| ≤ O(η−1/2d13/8) ·
(d2

t
+

n∑
j=1

σ4
j

)1/8
.

Putting these two theorems together, we have shown the following statement

Theorem 4.4. Let S and T be as above. Let A ⊆ Rd be a translate of a union of orthants. Then

|Pr[S ∈ A]−Pr[T ∈ A]| ≤ O(η−1/2d13/8) ·
(d2

t
+

n∑
j=1

σ4
j

)1/8
.

In the rest of the section, we prove above theorems; our aim is not to get the best bounds possible
(for which one might pursue the methods of Bentkus [Ben04]). Rather, we aim to provide a simple
method which achieves a reasonable bound, and thus use the Lindeberg method, following [MOO05,
Mos08] very closely.

4.1 The basic lemma

In what follows, K will denote a d-dimensional multi-index (k1, . . . , kd) ∈ Nd, with |K| denoting
j1 + · · · + jd and K! denoting k1!k2! · · · kd!. Given a vector H ∈ Rd, the expression HK denotes∏d
i=1H[i]ki . Given a function ψ : Rd → R, the expression ψ(K) denotes the mixed partial derivative

taken ki times in the ith coordinate; we will always assume ψ is smooth enough that the order of
the derivatives does not matter.

The following lemma is essentially proven in, e.g., [Mos08, Theorem 4.1]. To obtain it, simply
repeat Mossel’s proof in the degree 1 case, until equation (31). (Although Mossel assumes that
the covariance matrices Mj are identity matrices, this is not actually necessary; it suffices that
Cov[Xj ] = Cov[Gj ].) Then instead of using hypercontractivity, skip directly to summing the
error terms over all coordinates.

Lemma 4.5. Let ψ : Rd → R be a C3 function with
∣∣ψ(K)

∣∣ ≤ b for all |K| = 3. Then

|E[ψ(S)]−E[ψ(G)]| ≤ b
∑
|K|=3

1
K!

n∑
j=1

(
E
[∣∣XK

j

∣∣]+ E
[∣∣GK

j

∣∣]) . (3)

We further deduce:

10



Corollary 4.6. In the setting of Lemma 4.5,

|E[ψ(S)]−E[ψ(G)]| ≤ 2bd3
n∑
j=1

‖‖‖Xj‖‖‖33.

Proof. Fix a multi-index K with |K| = 3 and also an index j. We will show that

E
[∣∣XK

j

∣∣]+ E
[∣∣GK

j

∣∣] ≤ 2.6‖‖‖Xj‖‖‖33. (4)

Substituting this into (3) completes the proof, since

b
∑
|K|=3

2.6
K!
≤ 2bd3.

Let the nonzero coordinates in K be i1, i2, i3 ∈ [d], written with multiplicity. Write also

σ2
i = Mj [i, i] = E

[
Gj [i]2

]
= E

[
Xj [i]2

]
.

On one hand, by Hölder we have

E
[∣∣GK

j

∣∣] = E [|Gj [i1]Gj [i2]Gj [i3]|] ≤ 3

√
E
[
|Gj [i1]|3

]
E
[
|Gj [i2]|3

]
E
[
|Gj [i3]|3

]
.

Note that the distribution of Gj [i1] is N(0, σ2
i1

). It is elementary that such a random variable has
third absolute moment equal to 2

√
2/π ·σ3

i1
≤ 2.6σ3

i1
. As the same is true for i2 and i3, we conclude

that

E
[∣∣GK

j

∣∣] ≤ 1.6σi1σi2σi3 . (5)

On the other hand, we can similarly upper-bound

E
[∣∣XK

j

∣∣] ≤ 3

√
E
[
|Xj [i1]|3

]
E
[
|Xj [i2]|3

]
E
[
|Xj [i3]|3

]
(6)

But

3

√
E
[
|Xj [i1]|3

]
E
[
|Xj [i2]|3

]
E
[
|Xj [i3]|3

]
≥ 3

√
E
[
|Xj [i1]|2

]3/2
E
[
|Xj [i2]|2

]3/2
E
[
|Xj [i3]|2

]3/2
= σi1σi2σi3 ,

and hence from (5) and (6) we conclude

E
[∣∣XK

j

∣∣]+ E
[∣∣GK

j

∣∣] ≤ 2.6 3

√
E
[
|Xj [i1]|3

]
E
[
|Xj [i2]|3

]
E
[
|Xj [i3]|3

]
.

Finally, we clearly have |Xj [i1]| ≤ ‖Xj‖ always, and similarly for j2, j3. Hence

E
[∣∣XK

j

∣∣]+ E
[∣∣GK

j

∣∣] ≤ 2.6 3

√
E
[
‖Xj‖3

]
E
[
‖Xj‖3

]
E
[
‖Xj‖3

]
= 2.6‖‖‖Xj‖‖‖33,

confirming (4).
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Corollary 4.7. In the setting of Lemma 4.5,

|E[ψ(S)]−E[ψ(G)]| ≤ 2bd7/2

√√√√ n∑
j=1

‖‖‖Xj‖‖‖44.

Proof. Using Cauchy-Schwarz twice,

n∑
j=1

‖‖‖Xj‖‖‖33 =
n∑
j=1

E
[
‖Xj‖3

]
=

n∑
j=1

E
[
‖Xj‖ ‖Xj‖2

]
≤

n∑
j=1

√
E
[
‖Xj‖2

]√
E
[
‖Xj‖4

]

≤

√√√√ n∑
j=1

E
[
‖Xj‖2

]√√√√ n∑
j=1

E
[
‖Xj‖4

]
=
√
d

√√√√ n∑
j=1

‖‖‖Xj‖‖‖44,

where we also used
∑
σ2
j = d.

4.2 Derandomization and hypercontractivity

We now show that this result can be “derandomized” in a certain sense. This idea is essentially
due to Meka and Zuckerman [MZ09, Sec. 4.1].

Definition 4.8. We say that the sequences of Rd-valued random vectors X1, . . . ,Xn and Y1, . . . ,Yn
satisfy the r-matching-moments condition, r ∈ N, if the following holds: E[XK ] = E[YK ] for
all multi-indices |K| ≤ r, where X is the Rdn-valued random vector gotten by concatenating
X1, . . . ,Xn, and Y is defined similarly.

In this section, we suppose that Y1, . . . ,Yn satisfy the 4-matching-moments condition with
respect to X1, . . . ,Xn. We will not suppose that they are independent, but rather that they have
some limited independence. Let T = Y1 + · · ·+ Yn.

Proposition 4.9. Let H1, . . . ,Ht form a partition of [n], and write Z` =
∑

j∈H` Yj. Assume that
Z1, . . . ,Zt are independent. Then

|E[ψ(T )]−E[ψ(G)]| ≤ 2bd7/2

√√√√ t∑
`=1

‖‖‖
∑
j∈H`

Xj‖‖‖44.

Proof. We simply apply Corollary 4.7 to the random variables Z1, . . . ,Zt. To check that it is
applicable, we note the following: The random variables are independent. They satisfy E[Z`] = 0,
because each E[Yj ] = 0 by 1-matching-moments. The covariance matrix

∑t
`=1 Cov[Z`] = M , by

2-matching-moments.
Thus Corollary 4.7 gives

|E[ψ(T )]−E[ψ(G)]| ≤ 2bd7/2

√
t∑̀
=1

‖‖‖Z`‖‖‖44.

But for each `,

‖‖‖Z`‖‖‖44 = ‖‖‖
∑
j∈H`

Yj‖‖‖44 = E
[
〈
∑
j∈H`

Yj ,
∑
j∈H`

Yj〉2
]

= E
[
〈
∑
j∈H`

Xj ,
∑
j∈H`

Xj〉2
]

= ‖‖‖
∑
j∈H`

Xj‖‖‖44,

using 4-matching-moments, completing the proof.
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Remark 4.10. The full 4-matching-moments condition is not essential for our results; it would
suffice to have 2-matching-moments, along with a good upper bound on the 4th moments of the Yj’s
with respect to those of the Xj’s.

We can simplify the previous bounds if we assume hypercontractivity.

Corollary 4.11. If we additionally assume that the random vectors X1, . . . ,Xn are η-HC, then
we have

|E[ψ(S)]−E[ψ(G)]| ≤ (2bd7/2/η2)

√
n∑
j=1

σ4
j ,

|E[ψ(T )]−E[ψ(G)]| ≤ (2bd7/2/η2)

√
t∑̀
=1

( ∑
j∈H`

σ2
j

)2
.

Proof. We prove only the second statement, the first being simpler. It suffices to show

‖‖‖
∑
j∈H`

Xj‖‖‖44 ≤ (1/η)4
( ∑
j∈H`

σ2
j

)2
.

Since the random variables {Xj : j ∈ H`} are independent and η-HC, it follows that the (vector-
valued) random variable

∑
j∈H`Xj is η-HC. Hence

‖‖‖
∑
j∈H`

Xj‖‖‖44 ≤ (1/η)4
(
‖‖‖
∑
j∈H`

Xj‖‖‖22
)2
.

But

‖‖‖
∑
j∈H`

Xj‖‖‖22 =
∑
j∈H`

σ2
j

by the Pythagorean Theorem.

We now consider the case when the partition H1, . . . ,Ht chosen randomly using a b-collison
preserving family of hash functions (see Definition 4.2).

Proposition 4.12. In the setting of Corollary 4.11, if the partition H1, . . . ,Ht is chosen using a
b-collision preserving family of hash functions, then

|E[ψ(T )]−E[ψ(G)]| ≤ (2bb1/2d7/2/η2)

√
d2

t
+

n∑
j=1

σ4
j .

where the expectation E[ψ(T )] is with respect to both the choice of H1, . . . ,Ht and Y1, . . . ,Yn.

Proof. By the triangle inequality for real numbers, it suffices to show

E
H1,...,Ht

[√
t∑̀
=1

( ∑
j∈H`

σ2
j

)2
]
≤

√√√√b

(
d2

t
+

n∑
j=1

σ4
j

)
.

By Cauchy-Schwarz, this reduces to showing

E
H1,...,Ht

[
t∑̀
=1

( ∑
j∈H`

σ2
j

)2
]
≤ b

d2

t
+

n∑
j=1

σ4
j

 .
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But

E
H1,...,Ht

[
t∑̀
=1

( ∑
j∈H`

σ2
j

)2
]

=
t∑

`=1

E

[( n∑
j=1

1{j∈H`}σ
2
j

)2
]

=
t∑

`=1

n∑
j1,j2=1

σ2
j1σ

2
j2 E[1{j1∈H`}1{j2∈H`}]

≤
t∑

`=1

b
t

n∑
j=1

σ4
j

+
∑
j1 6=j2

σ2
j1σ

2
j2

t∑
`=1

E[1{j1∈H`}1{j2∈H`}] ≤ b
n∑
j=1

σ4
j+

b

t

∑
j1 6=j2

σ2
j1σ

2
j2 ≤

bd2

t
+b

n∑
j=1

σ4
j ,

as needed, because

∑
j1 6=j2

σ2
j1σ

2
j2 ≤

 n∑
j=1

σ2
j

2

= d2.

4.3 Smoothing

Ideally we would like to use the results from the previous sections with ψ equal to certain indicator
functions χ : Rd → {0, 1}; however these are not C3. As usual in the Lindeberg method (see,
e.g., [MOO05]), we overcome this by working with mollified versions of these functions. For most of
this section, we will work with our underandomized result, the statement about S in Corollary 4.7.
Identical considerations apply to the statement about T in Proposition 4.12, and we will draw the
necessary conclusions at the end.

Let ξ : R→ R be the “standard mollifier”, a smooth density function supported on [−1, 1]. We
will use the fact that there is some universal constant b0 such that

∫ ∣∣ξ(k)
∣∣ dx ≤ b0 for k = 1, 2, 3

(where ξ(k) denotes the kth derivative of ξ). Given ε > 0 we define ξε(x) = ξ(x/ε)/ε, the standard
mollifier with support [−ε, ε]. Finally, define the density function Ξε on Rd by Ξε(x1, . . . , xd) =∏d
i=1 ξε(xi). We now prove an elementary lemma:

Lemma 4.13. Let χ : Rd → [−1, 1] be measurable, let ε > 0, and define ψ = Ξε ∗ χ, a smooth
function. Then for any multi-index |K| = 3 we have

∣∣ψ(K)
∣∣ ≤ (b0/ε)3.

Proof. Using the fact that |χ| ≤ 1 everywhere, we have

∣∣∣ψ(K)(a)
∣∣∣ =

∣∣∣Ξ(K)
ε ∗ χ(a)

∣∣∣ ≤ ∫ ∣∣∣Ξ(K)
ε

∣∣∣ =
∫

[−ε,ε]d

∣∣∣∣∣
d∏
i=1

∂ki

∂xkii
ξε(xi)

∣∣∣∣∣ dx1 · · · dxd =
d∏
i=1

∫ ε

−ε

∣∣∣∣ ∂ki∂xki
ξε(x)

∣∣∣∣ dx.
Note that ∂k

∂xk
ξε(x) = ξ(k)(x/ε)/εk+1, from which it follows that∫ ε

−ε

∣∣∣∣ ∂k∂xk ξε(x)
∣∣∣∣ dx ≤ b0/εk

for k = 1, 2, 3. For k = 0 we of course have∫ ε

−ε
|ξε(x)| dx =

∫ ε

−ε
ξε(x) dx = 1.

Since |K| = 3, we therefore achieve the claimed upper bound of (b0/ε)3.
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Suppose now A ⊆ Rd is a measurable set. We define:

A+ε = {x ∈ Rd : x+ [−ε/2, ε/2]d ∩A 6= ∅}, A−ε = {x ∈ Rd : x+ [−ε/2, ε/2]d ⊆ A}, aεA = A+ε \A−ε.

We also define ψA+ε = Ξε ∗ χA+ε as in Lemma 4.13, where χA+ε is the 0-1 indicator of A+ε, and
similarly define ψA−ε . Applying now Corollary 4.7, we conclude:

Lemma 4.14. For ψ = ψA+ε or ψ = ψA−ε it holds that

|E[ψ(S)]−E[ψ(G)]| ≤ (2b0d7/2/η2ε3)

√
n∑
j=1

σ4
j .

It is clear from the definitions that both ψA+ε and ψA−ε have range [0, 1], and that pointwise,
ψA−ε ≤ χA ≤ ψA+ε . Thus

E[ψA−ε(S)] ≤ Pr[S ∈ A] ≤ E[ψA+ε(S)],

E[ψA−ε(G)] ≤ Pr[G ∈ A] ≤ E[ψA+ε(G)].

From Lemma 4.14 we have that the two left-hand sides above are close and that the two right-hand
sides are close. Because of good anti-concentration of Gaussians, it may also be that the left-hand
and right-hand sides on the second line are also close, in which Pr[S ∈ A] and Pr[G ∈ A] will also
be close. This motivates the following observation: ψA+ε = ψA−ε = 1 on A−ε and ψA+ε = ψA−ε = 0
on the complement of A+ε. Hence

E[ψA+ε(G)]−E[ψA−ε(G)] ≤ Pr[G ∈ aεA].

Putting together these observations, we conclude:

Theorem 4.15. We have

|Pr[S ∈ A]−Pr[G ∈ A]| ≤ (2b0d7/2/η2ε3)

√
n∑
j=1

σ4
j + Pr[G ∈ aεA].

4.4 Translates of unions of orthants

Let us now specialize to the case where A ⊆ Rd is a translate of a union of orthants. Recall that
this means that there exists some vector Θ ∈ Rd such that X ∈ A depends only on −→sgn(X − Θ).
We make the following observation, whose proof is trivial.

Proposition 4.16. If A ⊆ Rd is a union of orthants then

aεA ⊆
d⋃
i=1

W ε
i ,

where

W ε
i = {X ∈ Rd : |X[j]−Θ[j]| ≤ ε/2}.

But we also have the following:
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Proposition 4.17. Assuming the d-dimensional Gaussian G with covariance matrix M satisfies
M [i, i] = 1 for all i ∈ [d], it holds that

Pr

[
G ∈

d⋃
i=1

W ε
i

]
≤ dε/

√
2π.

Proof. By a union bound it suffices to prove that Pr[|G[i]−Θ[i]| ≤ ε/2] ≤ ε/
√

2π. This is straight-
forward, as G[i] has distribution N(0, 1) and hence has pdf bounded above by 1/

√
2/π.

We now prove Theorem 4.1

Proof. (Theorem 4.1) For any ε > 0, we may combine Propositions 4.16 and 4.17 with Theo-
rem 4.15 and conclude

|Pr[S ∈ A]−Pr[G ∈ A]| ≤ (2b0d2/η2ε3)

√
n∑
j=1

σ4
j + dε/

√
2π.

The proof is completed by taking ε = η−1/2d5/8(
∑n

j=1 σ
4
j )

1/8 (which is strictly positive since
∑
σ4
j =

0 is impossible).

Identical reasoning gives the proof of Theorem 4.3. Combining Theorems 4.1 and 4.3 gives
Theorem 4.4.

5 Critical Index for Hypercontractive Random Variables

In this section, we generalize the critical index to random variables that are hypercontractive. We
will consider η-HC random variables x0, . . . ,xn which are at least pairwise independent. Write
σ2
j = ‖‖‖xj‖‖‖22, and note that pairwise independence implies ‖‖‖x0 + · · · + xn‖‖‖22 = σ2

0 + · · · + σ2
n. We

also write τ2
i = ‖‖‖xi + xi+1 + · · ·+ xn‖‖‖22 =

∑
j≥i σ

2
j .

Definition 5.1. For 0 < δ < 1, we say that the collection of random variables x0, . . . ,xn is δ-

regular if
∑n

j=0 ‖‖‖xj‖‖‖44 ≤ δ
(∑n

j=0 ‖‖‖xj‖‖‖22
)2

= δτ4
0 .

Definition 5.2. Suppose the sequence x0, . . . ,xn is ordered, meaning that σ2
0 ≥ σ2

1 ≥ σ2
2 ≥ · · · .

Then for 0 < δ < 1, the δ-critical index is defined to be the smallest index ` such that the sequence
x`,x`+1, . . . ,xn is δ-regular, or ` =∞ no such index exists.

Theorem 5.3. Let 0 < δ < 1, 0 < ε < 1/2, and s > 1 be parameters. Let L = br, where
b = d(2/η4) ln(1/ε)e and r = d(1/η4δ) ln(1 + 16s2)e; note that

L ≤ O
(

log(s) log(1/ε)
η8

)
· 1
δ
.

Assume the sequence x0, . . . ,xn is ordered, that n ≥ L, and that x0, . . . ,xL−1 are independent.
Then if ` is the δ-critical index for the sequence, and ` ≥ L, then for all θ ∈ R,

Pr [|x0 + · · ·+ xL−1 − θ| ≤ s · τL] ≤ ε+
O(ln(1/ε))

η8s4
.
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Proof. For any 0 ≤ j < L, since the critical index ` is at least j we have

δτ4
j <

∑
i≥j
‖‖‖xi‖‖‖44 ≤ (1/η4)

∑
i≥j

σ4
i (since each xi is η-HC) ≤ (σ2

j /η
4)
∑
i≥j

σ2
i = (σ2

j /η
4)τ2

j .

where we used hypercontractivity and the fact that σis are ordered. Hence for all 0 ≤ j < L,

η4δτ2
j < σ2

j = τ2
j − τ2

j+1 ⇒ τ2
j+1 < (1− η4δ)τ2

j .

It follows that for all 0 ≤ k < b,

τ2
(k+1)r < (1− η4δ)rτ2

kr <
1

1 + 16s2
τ2
kr, (7)

where we used the definition of r.
Now for each 0 ≤ k < b define yk = xkr + xkr+1 + xkr+2 + · · · + x(k+1)r−1 and υ2

k = ‖‖‖yk‖‖‖22 =
τ2
kr − τ2

(k+1)r. Using (7) we have immediately conclude

υ2
k > 16s2τ2

(k+1)r ⇒ υk > 4sτ(k+1)r. (8)

Since all of x0, . . . ,xL−1 are independent and η-HC, we have that y0,y1, . . . ,yb−1 are independent
η-HC random variables. For 0 ≤ k < b, define the event Ak = “|y0 +y1 + · · ·+yk− θ| ≤ (1/2)υk”,.
We claim that for any 0 ≤ k < b,

Pr[Ak | A0 ∧A1 ∧ · · · ∧Ak−1] < 1− η4/2.

To see this, note that conditioning only affects the values of random variables y0, . . . ,yk−1, of which
yk is independent. Further, for every choice of values for y0, . . . ,yk−1, the event Ak is an anti-
concentration event of the type in Proposition 3.7, with some shifted θ. Hence the claim follows
from this Proposition, as (1− (1/2)2)2 > 1/2. Having established the claim, we conclude

Pr[A0 ∧A1 ∧ · · · ∧Ab−1] < (1− η4/2)b ≤ ε. (9)

Let us now define, for each 1 ≤ k < b, random variables zk = yk + yk+1 + · · · + yb−1. These
random variables are also η-HC, and they satisfy ‖‖‖zk‖‖‖22 ≤ τ2

kr. If we define the events Bk = “|zk| ≥
sτkr”, then Proposition 3.6 implies Pr[Bk] ≤ 1/η4s4. Hence

Pr[B1 ∨B2 ∨ · · · ∨Bb−1] ≤ (b− 1)/η4s4 < b/η4s4. (10)

Combining (9) and (10) we see that except with probability less than ε+ b/η4s4 ≤ ε+ O(ln(1/ε))
η8s4

,
at least one event Ak occurs, and none of the events Bk occurs. Since this is the error bound in the
Theorem, it remains to show that in this case, the desired result “|x0 + · · · + xL−1 − θ| > s · τL”
occurs. Assume then that Am occurs and Bm+1 does not occur, 0 ≤ m < b. (For m = b − 1 we
need not make the latter assumption.) Thus

|y0 + y1 + · · ·+ ym − θ| > (1/2)υm and |zm+1| ≤ sτ(m+1)r < (1/4)υm,

where we used (8). (This makes sense also in the case m = b− 1 if we naturally define zb ≡ 0.) By
definition of zm+1, we therefore obtain

|y0 + y1 + · · ·+ yb−1 − θ| = |x0 + · · ·+ xL−1 − θ| > (1/4)υm ≥ (1/4)υb−1 ≥ sτbr = sτL,

as desired, where we used (8).
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We now state the high-dimensional generalization of Theorem 5.3. Assume x1, . . . ,xn are η-HC
real random variables which are at least pairwise independent. Assume also that W1, . . . ,Wn are
arbitrary fixed vectors in Rd, and write Xj = xjWj .

Theorem 5.4. Let δ, ε, s, L be as in Theorem 5.3. Then there exists a set of coordinates H0 ⊆ [n],
|H0| ≤ dL, with the following property. Assuming the collection of random variables {xj : j ∈ H0}
is independent, for each coordinate i ∈ [d] we have either:
1. the sequence of real random variables {Xj [i] : j 6∈ H0} is δ-regular; or,
2. for all θ ∈ R,

Pr

∣∣∣∑
j∈H0

Xj [i]− θ
∣∣∣ ≤ s ·√∑

j 6∈H0

‖‖‖Xj [i]‖‖‖22

 ≤ ε+
O(ln(1/ε))

η8s4
.

The fact that the sequence x0, . . . ,xn was ordered by decreasing 2-norm in Theorem 5.3 was
mainly used for notational convenience. We can extract from the proof the following corollary for
unordered sequences (whose proof we omit):

Corollary 5.5. Let δ, ε, s, b, r, L be as in Theorem 5.3. For the unordered collection x0, . . . ,xn,
assume we have a sequence of indices 0 ≤ j0 < j1 < · · · < jL−1 < n such that:

• for each 0 ≤ t < L, σ2
jt
≥ σ2

j′ for all j′ > jt;

• for each 0 ≤ t < L, {xjt ,xjt+1, . . . ,xn} is not δ-regular.

Assume also that x0, . . . ,xjL are independent. Then for all θ ∈ R,

Pr
[∣∣x0 + · · ·+ xjL−1 − θ

∣∣ ≤ s · τjL−1+1

]
≤ ε+

O(ln(1/ε))
η8s4

.

The case when jt = t for 0 ≤ t < L corresponds to Theorem 5.3.
We now prove Theorem 5.4.

Proof. We construct H0 according to an iterative process. Initially, H0 = ∅, and we define ci = 0
for all i ∈ [d]. In each step of the process, we do the following: First, we select any i such that
ci < L and such that the collection {Xj [i] : j 6∈ H0} is not δ-regular. If there is no such i then we
stop the whole process. Otherwise, we continue the step by choosing j ∈ [n]\H0 so as to maximize
‖‖‖Xj [i]‖‖‖22. We then end the step by adding j into H0 and incrementing ci.

Note that the process must terminate with |H0| ≤ dL; this is because each step increments one
of c1, . . . , cd, but no ci can exceed L. When the process terminates, for each i we have either that
{Xj [i] : j 6∈ H0} is δ-regular or that ci = L.

It suffices then to show that when ci = L, the anti-concentration statement holds for i. To see
this, first reorder the sequence of random variables (Xj [i])j so that the first |H0| are in the order
that the indices were added to H0, and the remaining n − |H0| are in an arbitrary order. Write
1 ≤ j0 < j1 < · · · < jL−1 ≤ |H0| for the indices that were added to H0 on those steps which
incremented ci. Then by the definition of the iterative process, for each 0 ≤ t < L we have that
‖‖‖Xjt [i]‖‖‖22 ≥ ‖‖‖Xj′ [i]‖‖‖22 for all j′ > jt and that {Xjt [i],Xjt+1[i], · · · ,Xn[i]} is not δ-regular. The
anti-concentration statement now follows from Corollary 5.5.
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6 The Meka-Zuckerman Generator

For the Meka-Zuckerman generator, the first step is to reduce the problem of fooling functions of
halfspaces under an arbitrary C-bounded product distribution to fooling an O(C)-bounded discrete
product distribution with support poly(n,C, ε−1) in each co-ordinate.

Lemma 6.1. Given a C-bounded distribution X, there is a discrete product distribution Y such
that if f : Rn → {−1, 1} is a function of d halfspaces {hi : Rn → {−1, 1}}i∈[d], then

|E[f(X)]−E[f(Y )]| ≤ O
(
dε2

nC2

)
.

Each yi is distributed uniformly over a multiset Ωi = {b1(i) ≤ · · · ≤ bg(i)} where |bj(i)| ≤
(nC2ε−1)

1
4 . For every i, we have |Ωi| = 2s = O(n2C2ε−2) and Further E[yi] = 0,E[y2

i ] =
1, E[y4

i ] ≤ O(C).

We are interested in d << n, so the error in going from X to Y is o(ε2). Since |Ωi| = 2s for
all i, sampling k-wise independently from Y reduces to generating n strings of length s in a k-wise
independent manner: this can be done using kmax(log n, s) = O(k log(nC/ε)) random bits.

This lemma is proved by sandwiching X between two discrete product distributions Y u and
Y ` which are close to each other in statistical distance. The proof is in section 9. Henceforth, we
will rename Y as X and focus on fooling discrete product distributions.

We now describe the main generator of Meka-Zuckerman, modified so that random variables
take values in

∏
j Ωj instead of simply ±1. At a high level, the generator hashes variables into

buckets and uses bounded independence for the variables within each bucket. We use a weaker
property of hash functions than used in [MZ09].

The generator first picks a partition of [n] = H1 ∪ . . . ∪ Ht using a random element from H,
a 1-collision preserving family of hash functions. For each i ∈ [t], it then generates a 5-wise
independent distribution (yj)j∈Hi on

∏
j∈Hi Ωj . Such a distribution on n random variables can be

generated using a seed of length k log max(n, |Ω|). These t distributions are chosen independently.
The generator outputs Y = (y1, . . . ,yn). The seedlength required is log(2n) + 5t log max(n, |Ω|)
where log(2n) are required for the hash function and 5 log max(n, |Ω|) bits are needed for each Hi,
i ∈ [t].

7 Analyzing the Meka-Zuckerman Generator

We first prove that the indices in the set H0 are likely to be hashed into distinct buckets.

Definition 7.1. A hash function h : [n] → [t] is S-isolating if for all x 6= y ∈ S, h(x) 6= h(y). A
family of hash functions H = {h : [n]→ [t]} is (`, β)-isolating if for any S ⊆ [n], |S| ≤ `,

Pr
h∈uH

[h is not S-isolating] ≤ β.

A b-collision preserving hash family is likely to be isolating for small sets:

Lemma 7.2. Assume t is a power of 2. A b-collision preserving family of hash functions H = {h :
[n]→ [t]} is (`, β)-collision free for β = b`2/(2t).
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Proof. The expected number of collisions for a set S is at most(
|S|
2

)
b

t
≤ b`2

2t
.

By increasing n to the next largest power of 2, since t is a power of 2, there is a field F of size
n where t|n. Then there is a hash family of size n for b = 1. For any element a ∈ F, define a hash
function ha(x) = (ax) mod t. Here x is viewed as a field element, the multiplication is done in the
field, and the product is then viewed as a nonnegative integer less than n before taking the mod.
We can increase n and t to be the nearest powers of 2. We can therefore take H to have size at
most 2n for b = 1.

We want the set H0 to be isolated with error ε, so we want ` = dL and β = ε. Hence we set t
to be the smallest power of 2 larger than `2/ε = (dL)2/ε.

We will aim to achieve error O(dε) (rather than O(ε)), as this makes the notation easier. We
set the parameters s and δ in Theorem 5.4 as

s = 1/(η2√ε), δ =
η4ε8

d7
.

This implies that

L = O

(
log(s) log(1/ε)

η8

)
· 1
δ

= O

(
d7 log2(εη)
η12ε8

)
, t = O

(
(dL)2

ε

)
= O

(
d15 log4(εη)
η24ε17

)
.

7.1 Analysis for functions of regular halfspaces

Recall that our goal is to fool functions of −→sgn(
∑

j xjWj − θ). Let Yj = yjWj and T =
∑n

j=1 Yj .
Similarly let Xj = xjWj and S =

∑n
j=1Xj . Thus we are interested in bounding

|Pr
X

[S ∈ A]−Pr
Y

[T ∈ A]|

where A is a translate of union of orthants: membership of a point X ∈ Rd in A is a function of
−→sgn(X −Θ). By rescaling the Wj and Θ, we may assume without loss of generality that

M [i, i] =
n∑
j=1

E
[
Xj [i]2

]
= 1 for all i ∈ [d].

The regular case is when the vectors W1, . . . ,Wn are such that for every i, the sequence of random
variables {Xj [i]}nj=1 is δ-regular. In this case, we can directly appeal to the Berry-Esseen theorem
to prove th correctness of the MZ generator.

Theorem 7.3. If the sequence of random variables {Xj [i]}nj=1 is δ-regular for all i ∈ [d], then the
MZ generator O(dε)-fools any function of sgn(W ·X −Θ) for all Θ ∈ Rd.

Proof. We can therefore apply the machinery developed above. For the regular case, we only need
to use 4-wise independence. Thus, the random variables Y1, . . . ,Yn satisfy the 4-matching-moments
condition with respect to X1, . . . ,Xn, as defined in Subsection 4.2.

The definition of δ-regular is given in Definition 5.1. Let σi,j = ‖‖‖Xj [i]‖‖‖2. Suppose that for all i,
the set of real random variables {Xj [i]} is δ-regular, i.e.,

n∑
j=1

‖‖‖Xj [i]‖‖‖44 ≤ δ
( n∑
j=1

‖‖‖Xj [i]‖‖‖22
)2

= δ(σ2
i,1 + · · ·+ σ2

i,n)2 = δ,
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where the last equality is from our normalization. We wish to apply Theorem 4.4. Since σi,j =
‖‖‖Xj [i]‖‖‖2 ≤ ‖‖‖Xj [i]‖‖‖4, we conclude that for all i,

n∑
j=1

σ4
i,j ≤

n∑
j=1

‖‖‖Xj [i]‖‖‖44 ≤ δ.

Since σ2
j =

∑d
i=1 σ

2
i,j , by Cauchy-Schwarz we get

σ4
j =

(
d∑
i=1

σ2
i,j

)2

≤ d

 n∑
j=1

σ4
i,j

 ≤ dδ.
Therefore

∑n
j=1 σ

4
j ≤ d2δ. Hence we can apply Theorem 4.4 to obtain

|Pr[S ∈ A]−Pr[T ∈ A]| ≤ O
(

(1/η)1/2d15/8) · (t−1 + δ)1/8
)
≤ O(dε).

where the last inequality follows from the choice of t, δ.

7.2 Analysis for functions of general halfspaces

We now combine Theorem 5.4 with the analysis of the Regular case (Theorem 7.3), to prove that
the MZ generator fools functions of arbitrary halfspaces.

Theorem 7.4. The MZ generator O(dε)-fools any function of d halfspaces with seed length

O(t log(max(n, |Ω|))) = O

(
d15 log4(εη) log(n/εη)

η24ε17

)
.

Proof. Apply Theorem 5.4 with these parameters. Then there exists a set H0 ⊆ [n] of size at most
dL such that the coordinates [d] can be partitioned into two sets, REG and JUNTA, such that the
following holds.

1. For i ∈ REG, the set of real random variables {Xj [i] : j 6∈ H0} is δ-regular.

2. For i ∈ JUNTA, for all θ ∈ R,

Pr

∣∣∣∑
j∈H0

Xj [i]− θ
∣∣∣ ≤ s ·√∑

j 6∈H0

‖‖‖Xj [i]‖‖‖22

 ≤ ε+
O(log(1/ε))

η8s4
≤ 2ε (11)

We condition on the hash function h being S-collision free, which happens with probability at
least 1 − ε. Therefore, at most one variable from H0 lands in each set in the partition. Since the
distribution in each partition set is 5-wise independent, this means that the distribution on H0 is
fully independent. This allows us to construct a coupling of X and Y : let Xj = Yj for j ∈ H0,
and then sample the rest according to the correct marginal distribution.

We say that the variables in H0 are good if∣∣∣∑
j∈H0

Yj [i]− θ[i]
∣∣∣ > s ·

√∑
j 6∈H0

‖‖‖Yj [i]‖‖‖22 for all i ∈ V
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By Equation 11,

Pr[{Xj = Yj}j∈H0 are not good] ≤ 2dε. (12)

We condition on these variables being good.
With this conditioning, we show that the halfspaces in JUNTA are nearly constant: with high

probability they do not depend on the variables outside H0. To see this, observe that conditioned
on the variables in H0, the remaining variables are still 4-wise independent (in both X and Y ), so
by Chebychev

Pr

∣∣∣∑
j 6∈H0

Yj [i]
∣∣∣ ≥ s ·√∑

j 6∈H0

‖‖‖Yj [i]‖‖‖22

 ≤ 1/s2 ≤ ε. (13)

But if this does not happen, then

sign(
n∑
j=1

Yj [i]−Θ[i]) = sign(
∑
j∈H0

Yj [i]−Θ[i])].

A similar analysis holds forX. Thus for bothX and Y , with error probability at most 2d/s2 ≤ 2dε,
we can assume that the halfspaces in JUNTA are fixed to constant functions for a good choice of
variables in H0.

Recall that we are interested in fooling functions of the form g(h1(X), . . . , hk(X)). Conditioned
on the variables in H0 being good, the halfspaces hj for j ∈ JUNTA are close to constant functions.
Thus, the function g is 2dε close to a function g′ of halfspace {hj}j∈REG under both distributions
X and Y . Thus it suffices to show that the bias of g′ under X and Y is close.

Conditioning on Xj = Yj for j ∈ H0 gives a halfspace on the remaining variables in each
coordinate i ∈ REG. Define

Θ′[i] = (Θ[i]−
∑
j 6∈H0

Xj [i])), S′[i] =
∑
j 6∈H0

Xj [i], T ′[i] =
∑
j 6∈H0

Yj [i].

then
sgn(S[i]−Θ[i]) = sgn(S′[i]−Θ′[i]).

Thus there exists a union of orthants A′ ∈ R|REG| such that g′(X) = 1 if X ∈ A′. Our goal is to
bound ∣∣Pr[S′ ∈ A′]−Pr[T ′ ∈ A′]

∣∣ .
The set of random variables {Xj [i] : j 6∈ H0} is δ-regular. Hence we can apply our result

for the regular case. We’ve already conditioned on the hash function h being H0-collision free.
Since this happens with probability at least 1− ε, the resulting function is b-collision preserving for
b = 1/(1 − ε) ≤ 2, since conditioning on an event which happens with probability p can increase
the probability of any other event by a factor of at most 1/p. So now applying the analysis from
the regular case,∣∣∣∣Pr

S′
[S′ ∈ A′]−Pr

T ′
[T ′ ∈ A′]

∣∣∣∣ ≤ O(η−1/2d15/8 · (1
t

+ δ)1/8

)
≤ O(dε). (14)
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Hence, conditioned on h and the variables in H0 being good, we have∣∣∣∣Pr
S

[S ∈ A]−Pr
T

[T ∈ A]
∣∣∣∣ ≤ O(dε) + 2dε. (15)

Removing the conditioning gives∣∣∣∣Pr
S

[S ∈ A]−Pr
T

[T ∈ A]
∣∣∣∣ ≤ O(dε) + 2dε+ ε+ 2dε = O(dε)

8 Generalized Monotone Trick

We generalize the “monotone trick” introduced in Meka and Zuckerman [MZ09] and show that a
generator that fools small-width “monotone” branching programs also fools any monotone function
of several arbitrary-width monotone branching programs.

First we define read-once branching programs. Branching programs corresponding to space S
have width 2S . We use the following notation from [MZ09].

Definition 8.1 (ROBP). An (S,D, T )-branching program B is a layered multi-graph with a layer
for each 0 ≤ i ≤ T and at most 2S vertices (states) in each layer. The first layer has a single vertex
v0 and each vertex in the last layer is labeled with 0 (rejecting) or 1 (accepting). For 0 ≤ i ≤ T ,
a vertex v in layer i has at most 2D outgoing edges each labeled with an element of {0, 1}D and
pointing to a vertex in layer i+ 1.

Let B be an (S,D, T )-branching program and v a vertex in layer i of B. We now define the set
of accepting suffixes.

Definition 8.2. We say z is an accepting suffix from vertex v if the path in B starting at v and
following edges labeled according to z leads to an accepting state. We let AccB(v) denote the set of
accepting suffixes from v. If B is understood we may abbreviate this Acc(v).

Nisan [Nis92] and Impagliazzo et al. [INW94] gave PRGs that fool (S,D, T )-branching programs
with error exp(2−Ω(S+D)) and seed length r = O((S + D + log T ) log T ). For T = poly(S,D),
the PRG of Nisan and Zuckerman [NZ96] fools (S,D, T )-branching programs with seed length
r = O(S + D). Meka and Zuckerman showed that the above PRGs in fact fool arbitrary width
branching programs of a certain form called monotone, defined next.

Definition 8.3 (Monotone ROBP). An (S,D, T )-branching program B is said to be monotone
if for all 0 ≤ i < T , there exists an ordering {v1 ≺ v2 ≺ . . . ≺ vLi} of the vertices in layer i such
that v ≺ w implies AccB(v) ⊆ AccB(w).

Note that the natural ROBP accepting a halfspace, where states correspond to partial sums, is
monotone. However, the natural ROBP accepting the intersection of just two halfspaces may not
be monotone.

The following theorem is the only known way to obtain PRGs for halfspaces using seed length
which depends logarithmically on 1/ε (and polylogarithmically on n).

Theorem 8.4. [MZ09] Let 0 < ε < 1 and G : {0, 1}R → ({0, 1}D)T be a PRG that δ-fools
monotone (log(4T/ε), D, T )-branching programs. Then G (ε+δ)-fools monotone (S,D, T )-branching
programs for arbitrary S with error at most ε+ δ.
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We now generalize Theorem 8.4 to the intersection of monotone branching programs, or even to
any monotone function of monotone branching programs. (Of course, the intersection corresponds
to the monotone function AND.)

Theorem 8.5. Let 0 < ε < 1 and G : {0, 1}R → ({0, 1}D)T be a PRG that δ-fools monotone
(d log(4Td/ε), D, T )-branching programs. Then G (ε+ δ)-fools any monotone function of d mono-
tone (S,D, T )-branching programs for arbitrary S.

We now generalize monotone functions to decision trees. First note that the complement of
a monotone branching program is a monotone branching program. Now consider any decision
tree, where each node of the decision tree is a monotone branching program. Any leaf of this tree
represents the intersection of monotone branching programs. Thus, the error of the function above
for such decision trees is at most s times the error for each leaf. This gives the following corollary.

Corollary 8.6. Let 0 < ε < 1 and G : {0, 1}R → ({0, 1}D)T be a PRG that δ-fools monotone
(d log(4Td/ε), D, T )-branching programs. Then G (s(ε + δ))-fools any decision tree with s leaves,
where each decision tree node is a monotone (S,D, T )-branching programs for arbitrary S.

In the above, we can even take s to be the minimum of the number of 0 and 1 leaves. We
now prove Theorem 8.5, using the ideas of [MZ09] based on “sandwiching” monotone branching
programs between small-width branching programs.

Definition 8.7. A pair of functions (fdown, fup), each with the same domain and range as a func-
tion f : B → {0, 1}, is said to ε-sandwich f if the following hold.

1. For all z ∈ B, fdown(z) ≤ f(z) ≤ fup(z).

2. Prz∈uB[fup(z) = 1]−Prz∈uB[fdown(z) = 1] ≤ ε.

The following lemma shows that it suffices to fool functions which sandwich the given target
function. Bazzi [Baz09] used sandwiching in showing that polylog-wise independence fools DNF
formulas. The lemma below is a small modification of a lemma in [MZ09].

Lemma 8.8. If (fdown, fup) ε-sandwich f , and a PRG G δ-fools fdown and fup, then G (ε + δ)-
fools f .

Meka and Zuckerman then showed that any monotone branching program can be sandwiched
between two small-width branching programs.

Lemma 8.9. [MZ09] For any monotone (S,D, T )-branching program B, there exist monotone
(log(4T/ε), D, T )-branching programs (Bdown, Bup) that ε-sandwich B.

Using this, we can show that any monotone function of monotone branching programs is sand-
wiched by a small-width branching program.

Lemma 8.10. Any monotone function of d (S,D, T )-branching programs has a pair of (d log(4T/ε), D, T )-
branching programs (Bdown, Bup) that (dε)-sandwich it.

Proof. For a monotone branching program B, let (Bdown, Bup) denote monotone (log(4T/ε), D, T )-
branching programs that ε-sandwich B, as given by Lemma 8.9. Suppose our given function is
f(z) = g(B1(z), B2(z), . . . , Bd(z)) for g monotone. Then f(z) is sandwiched by (fdown, fup) given
by

fdown(z) = f
(
Bdown

1 (z), Bdown
2 (z), . . . , Bdown

d (z)
)

fup(z) = f
(
Bup

1 (z), Bup
2 (z), . . . , Bup

d (z)
)
.
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Moreover,

f−1
up (1)− f−1

down(1) ⊆
d⋃
i=1

(
(Bup

i )−1(1)− (Bdown
i )−1(1)

)
.

Since Prz[B
up
i (z) = 1] − Prz[Bdown

i (z) = 1] ≤ ε, it follows that Prz[fup(z) = 1] − Prz[fdown(z) =
1] ≤ dε.

Theorem 8.5 now follows from Lemmas 8.8 and 8.10. Without using any of the hard work we’ve
done in other sections, this theorem gives us PRGs for monotone functions of halfspaces (such as
intersections) using a random seed of length O(d(log n) log(n/ε)). We improve this seed length now.

8.1 Combining the Monotone Trick and the main construction

Fix a hash function h, which fixes the partition into t sets. Then any monotone function of
−→sgn(y1W1 + . . .+ ynWn −Θ) may be computed by a monotone function of d monotone branching
programs, with t layers each. Thus, we can apply Theorem 8.5 and Corollary 8.6 to deduce
Theorem 1.2.

We can set T = t and D = O(log n) to store the seed for the 5-wise independent distribution.
Also note that log η−1 = Θ(logC). With these parameters, using Nisan’s PRG gives a seed length of
O((d log(dT/ε) +D+ log T ) log T ) = O((d log(Cd/ε) + log n) log(Cd/ε)) to fool monotone functions
of d halfspaces. For functions computable by size s decision trees of halfspaces, the seed length
becomes O((d log(Cds/ε) + log n) log(Cds/ε)).

When Cd/ε ≥ log−c n for any c > 0, then t = polylog(n) and we can use the Nisan-Zuckerman
PRG. This gives a seed length of O(d log(dT/ε)+D+log T ) = O(d log(Cd/ε)+log n) for monotone
functions of d halfspaces. For functions computable by size s decision trees of halfspaces, the seed
length becomes O(d log(Cds/ε) + log n).

More generally, using Armoni’s interpolation of Nisan and Nisan-Zuckerman will shave off an
extra log log n factor off of Nisan’s PRG when t/ε ≤ exp(−(log n)1−γ) for some γ > 0. We omit the
details.

9 Discretizing the distribution

The first step is to truncate each xi to lie in the range (−B,B).

Lemma 9.1. Set B = (nC2ε−1)
1
4 . For each i ∈ [n], let yi = xi · I(|xi| < B). Define the product

random variable Y = (y1,y2, . . . ,yn) where the yis are independent. Then we have

• SD(X,Y ) ≤ ε.

• E[y2
i ] ≥ 1

2 ,E[y4
i ] ≤ C.

Proof. Note that xi = yi when |xi| ≤ B and yi = 0 otherwise. But we have

Pr[|xi| ≥ B] = Pr[|xi|4 ≥ B4] ≤ C

B4
=

ε

nC
.

Thus it follows that
SD(xi,yi) ≤

ε

nC
⇒ SD(X,Y ) ≤ ε

C
≤ ε.
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It is clear that E[y4
i ] ≤ E[x4

i ] ≤ C. Thus we only need to prove the claim about the two-norm.
We have

xi = xi · I(|xi| < B) + xi · I(|xi| ≥ B) = yi + xi · I(|xi| ≥ B)

from which it follows that
E[x2

i ] = E[y2
i ] + E[x2

i · I(|xi| ≥ B)].

By the Cauchy-Schwartz inequality, we have

E[x2
i · I(|xi| ≥ B)] ≤ E[x4

i ]
1
2 (Pr[|xi| ≥ B)])

1
2 ≤
√
C

√
ε

nC
=
√
ε

n
<

1
2

Hence we have E[y2
i ] ≥ 1

2 .
By a similar argument, one can show that |E[yi]| ≤ ε

nC .

By suitable shifting and rescaling, we can assume that the distribution satisfies E[xi] = 0,E[x2
i ] = 1,

E[x4
i ] ≤ C and |xi| < B .
The next step is to suitably discretize the distribution. Assume that the random variable xi has

a cumulative distibution function Fi where Fi(x) = Pr[xi ≤ x]. Since |xi| < B we have F (−B) = 0
and F (B) = 1. We will define two sandwiching discrete distributions x`i and xui whose cdfs F `i and
F iu satisfy:

F `i (x) ≤ Fi(x) ≤ F `i (x) + γ

F ui (x)− γ ≤ Fi(x) ≤ F ui (x)

where γ is a granularity paramater (which will be chosen as inverse polynomial in n).
Let g = 1

γ . Our goal is to define bucket boundaries b0, . . . , bg by picking bk that stisfy Fi(bk) =
kγ.

Definition 9.2. For k ∈ {0, . . . , g}, let bk be the smallest x ∈ [−B,B] so that Fi(x) ≥ kγ.

We can sample xi by first picking a bucket k ∈ {0, . . . , g − 1} and then sampling from this
bucket according to the suitable conditional distribution, resulting in xi ∈ [bk, bk+1].

We now define the sandwiching distributions:

Definition 9.3. The random variable x`i is uniformly distributed on {b0, . . . , bg−1} while xui the
uniform distributed on {b1, . . . , bg}. We define the family F of 2n product distributions on Rn

where each co-ordinate is distributed independently according to x`i or xui .

It follows that SD(x`i ,x
u
i ) ≤ γ. Hence if we take any pair of variables Y ,Z from F , by the

union bound we have SD(Y ,Z) ≤ γn. The following lemma allows us to reduce the problem of
fooling halfspaces under the distribution X to the problem of fooling a single distribution from the
family F .

Lemma 9.4. Let h : Rn → {−1, 1} for i ∈ [k] be a halfspace and let Y ∈ F . Then

|E[h(X)]−E[h(Y )]| ≤ 4γn.

Proof. We will pick sandwiching distributions Y ` = (y`1, . . . ,y
`
n) and Y u = (yu1 , . . . ,y

u
n) from F

(depending on the halfspace h) and construct a coupling of the three distributions Y `,X and Y u

so that

h(Y `) ≤ h(X) ≤ h(Y u). (16)
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Let h(x) = sgn(
∑

iwixi − θ). If wi ≥ 0 for all i, then we set

y`i = x`i , yui = xui .

Whereas if wi < 0, then we set
y`i = xui , yui = x`i .

Next we describe the coupling, co-ordinate by co-ordinate. Fix co-ordinate i. Pick k ∈
{0, . . . , g − 1} at random. Set x`i = bk and xui = bk+1. We now set the random variables yi,yi`
and yui to be eiher x`i or xui , based on their defintion. We pick xi conditioned on the kth bucket,
so that bk ≤ xi ≤ bk+1. It follows that

wiy
`
i ≤ wixi ≤ wiyui

and hence ∑
i

wiy
`
i ≤

∑
i

wixi ≤
∑
i

wiy
u
i

which implies Equation 16.
Since a halfspace is a statistical test, we have

Pr[h(X) 6= h(Y u)] ≤ Pr[h(Y `) 6= h(Y u)] ≤ SD(Y u,Y `) ≤ γn. (17)

If we replace Y u with Y ∈ F , we have

Pr[h(X) 6= h(Y )] ≤ Pr[h(X) 6= h(Y u)]|+ Pr[h(Y ) 6= h(Y u)]| ≤ 2γn

where we use Equations 17 and the fact that SD(Y ,Y u) ≤ γn. The claim follows since h(X) and
h(Y ) take values over {−1, 1}.

This lemma extends to fooling functions of halfspaces.

Lemma 9.5. Let f : Rn → {−1, 1} be a function of d halfsapces hi : Rn → {−1, 1} given by
f = g(h1, . . . , hd) where g : {−1, 1}k → {−1, 1}. Then for any Y ∈ F ,

|E[f(X)]−E[f(Y )]| ≤ 4γdn.

Proof. We consider the same coupling used in Lemma 9.4. We have

Pr[g(X) 6= g(Y )] ≤ Pr[(hi(X), . . . , hd(X)) 6= (h1(Y ), . . . , hd(Y ))] ≤
∑
i

Pr[hi(X) 6= hi(Y )] ≤ 2γdn.

The claim now follows since g is Boolean valued.

Finally, we need to show that for a suitable choice of γ, the expectation and the second and
fourth moments of x`i and xui are nearly the same as those of xi. We prove the claim for the fourth
moment, the other arguments are similar.

Lemma 9.6. We have

|E[(xi)4]−E[(xui )4]| ≤ 2B4γ, |E[(xi)4]−E[(x`i)
4]| ≤ 2B4γ
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Proof. It is clear that

E[(x`i)
4] = γ(

g−1∑
k=0

b4k), E[(xui )4] = γ(
g∑

k=1

b4k).

Our goal is to compare these with the 4th moment of xi. The contribution of the kth bucket to
E[x4

i ] can be upper bounded by γmax(b4k, b
4
k+1) and lower bounded by γmin(b4k, b

4
k+1). Hence

γ

g−1∑
k=0

min(b4k, b
4
k+1) ≤ E[x4

i ] ≤ γ
g−1∑
k=0

max(b4k, b
4
k+1).

By case analysis, the sequence max(b4k, b
4
k+1) takes on g distinct values from {b0, . . . , bg}. Simi-

larly, min(b4k, b
4
k+1) can take some value twice but every other value at most once. Hence both the

upper and lower bounds are within 2B4γ of both E[(x`i)
4] and E[(xui )4].

A similar argument shows that the second moment changes by at most 2B2γ and the expectation
by 2Bγ. We pick γ < ε

2nB4 = O( ε2

n2C2 ), which is of the form 2−s for some integer s. We have
2s < O(n

2C2

ε2
) hence s = log(n2C2/ε2) + O(1). To sample from x`i (Xu

i ), we pick a random bit-
string of length s, treat it as a number j ∈ {0, g − 1}, and output bj (bj+1).

Finally we rescale and shift, so that we again have E[yi] = 0,E[y2
i = 1] and E[y4

i ] ≤ C.

10 Bounded Independence fools functions of halfspaces

In this section, we prove Theorem 1.5.

10.1 Reduction to upper polynomials for single halfspaces

We now flesh out the reduction described in Section 2, i.e., we show how to prove Theorem 2.5
given upper sandwiching polynomials for a single halfspace with extra properties.

Lemma 10.1. Let X be a random vector on the product set Ω, and suppose we have order-k
polynomials p1, . . . , pd : Ω→ R, as well as functions h1, . . . , hd : Ω→ {0, 1}. Write p = pi(X) and
hi = hi(X). Assume that for each i ∈ [k]:

1. p ≥ hi with probability 1;

2. E[p− hi] ≤ ε0;

3. Pr[p > 1 + 1/d2] ≤ γ;

4. ‖‖‖p‖‖‖2d ≤ 1 + 2/d2.

If we write p = p1p2 · · · pd, h = h1h2 · · ·hd, then p is a polynomial of order at most dk, p(X) ≥ h(X)
with probability 1, and

E[p(X)− h(X)] ≤ 2dε0 + 3d2√γ. (18)

Proof. The first two parts of the claim are immediate, so it suffices to verify (18). We use the
telescoping sum (1), and thus it suffices to bound the general term as follows:

E[h1 · · ·hi−1(p− hi)pi+1 · · ·pd] ≤ 2ε0 + 3d
√
γ. (19)
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We have

E[h1 · · ·hi−1(pi − hi)pi+1 · · ·pd]
≤ E[p1 · · ·pi−1(pi − hi)pi+1 · · ·pd]
< 2 E[pi − hi] + E[1[p1 · · ·pi−1pi+1 · · ·pd ≥ 2]p1 · · ·pi−1(pi − hi)pi+1 · · ·pd]

≤ 2ε0 + E
[(

d∑
i′=1

1
[
pi′ > 1 + 1/d2

]) d∏
i=1
pi

]
,

where in the last term we used the bounds (1 + 1/d2)d−1 < 2 and pi − hi ≤ pi. Thus we can
establish (19) by showing the bound

d∑
i′=1

E
[
1
[
pi′ > 1 + 1/d2

] d∏
i=1
pi

]
≤ 3d

√
γ.

This follows by bounding each summand individually:

E
[
1
[
pi′ > 1 + 1/d2

] d∏
i=1
pi

]
≤ ‖‖‖1

[
pi′ > 1 + 1/d2

]
‖‖‖2 ·

d∏
i=1

‖‖‖pi‖‖‖2d (Hölder’s inequality)

≤ √
γ · (1 + 2/d2)d ≤ 3

√
γ,

as needed.

10.2 Tools for upper polynomials

We construct the upper sandwiching polynomial needed in Lemma 10.1 using two key tools:
“DGJSV Polynomials”, the family of univariate real polynomial constructed in [DGJ+09] for ap-
proximating the sgn function; and, our Regularity Lemma for halfspaces over general random
variables 5.3.

Regarding the DGJSV Polynomials, the following is a key theorem from [DGJ+09] (slightly
adjusted for our purposes):

Theorem 10.2. ([DGJ+09]) Let 0 < a, b < 1. Then there exists an even integer K = Ka,b with

K ≤ C0
log(2/b)

a
(C0 is a universal constant)

as well as an ordinary univariate real polynomial P = Pa,b : R→ R of degree K with the following
behavior:

• P (x) ≥ 0 for x ∈ (−∞,−1],

• 0 ≤ P (x) ≤ b for x ∈ [−1,−a];

• 0 ≤ P (x) ≤ 1 for x ∈ [−a, 0];

• 1 ≤ P (x) ≤ 1 + b for x ∈ [0, 1];
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• P (x) ≥ 1 for x ∈ [1,∞);

• P (x) ≤ (4x)K for all |x| ≥ 1.

Note that the first five conditions imply P (x) ≥ 1[x ≥ 0] for all x ∈ R.

Regarding our Regularity Lemma for general halfspaces, we will use the following rephrasing of
Theorem 5.3 with simplified parameters:

Theorem 10.3. Let t > 1, 0 < δ < 1 and 0 < η be parameters. Then there exists an integer L
satisfying

L ≤ poly(log t, 1/η) · 1
δ

such that the following holds. Suppose x1, . . . ,xn is a sequence of independent η-HC random vari-
ables, θ ∈ R, and n ≥ L. Then there exists a set of coordinates H ⊆ [n] of cardinality L such that,
denoting

θ′ = θ −
∑
j∈H

xj , z =
∑
j 6∈H

xj

(these random variables are independent), we have three mutually exclusive and collectively exhaus-
tive events depending only on θ′:

• Event BAD: |θ′| ≤ t‖‖‖z‖‖‖2 and the collection {xj : j 6∈ H} is not δ-regular;

• Event NEAR: |θ′| ≤ t‖‖‖z‖‖‖2 and the collection {xj : j 6∈ H} is δ-regular;

• Event FAR: |θ′| > t‖‖‖z‖‖‖2.

Furthermore, BAD has probability at most O(1/t4).

The reader will note that events BAD, NEAR, and FAR are defined somewhat peculiarly:
Neither ‖‖‖z‖‖‖2 nor the (ir)regularity of {xj : j 6∈ H} is actually random. Furthermore, by our original
Theorem 5.3, we either have that {xj : j 6∈ H} is δ-regular, in which case NEAR and FAR are
the only possible events, or the collection is not δ-regular, in which case BAD and FAR are the
only possible events. Nevertheless, this tripartition of events makes our future analysis simpler.

10.3 Statement of the main technical theorem, and how it completes the proof

The main technical result we will prove is the following:

Theorem 10.4. Let k ≥ 1, 0 < δ < 1, and t > 4 be parameters. Let X = (x1, . . . ,xn) be a vector
of independent η-HC random variables. Furthermore, let T be an even integer such that the xi’s
are (T, 2, 4/t)-hypercontractive. Assume T ≥ C1d log(dt), where C1 is a universal constant. Let
θ ∈ R and let

h(x1, . . . , xn) = 1[x1 + · · ·+ xn − θ ≥ 0] .

Then there exists a polynomial p(x1, . . . , xn) of order k, with

k ≤ poly(log t, 1/η) · 1
δ

+O(T/d),

satisfying the 4 properties appearing in Lemma 10.1, with

ε0 = O(
√
δ) +O(ε1), ε1 =

dt log(dt)
T

, γ = 2−T/d.
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As we now show, using Theorem 10.4 and Lemma 10.1, we can deduce Theorem 2.5 and hence
Theorem 1.5 simply by choosing parameters appropriately. Note that it is sufficient to prove The-
orem 2.5 with ε · polylog(d/ε) in place of ε.

We will apply Theorem 10.4 with δ = Θ(ε2/d2) and

t = C2
d2

εα
,

where C2 is a large constant of our choosing. Regarding the hypercontractivity parameters, using
Fact 3.3, we may take

η = Θ(α−1/4), T = Θ(t2 · α ln(2/α)).

The necessary assumption that

T ≥ C1d log(td) ⇔ C2
2 ·Θ

(
d4 ln(2/α)

ε2α

)
≥ C1d log

(
C2

d3

εα

)
is valid provided that C2 is a sufficiently large constant.

We obtain from the theorem an upper ε2-sandwiching polynomial for h with order

k = Õ(d2/ε2) · poly(1/α) +O(d3/ε2) · poly(1/α) ≤ O(d3/ε2) · poly(1/α),

where

ε0 = O(ε/d) + Õ(ε/d) = Õ(ε/d)

and γ is exponentially small in d/(εα). By using such polynomials in Lemma 10.1, we get upper
sandwiching polynomials for intersections of d halfspaces with the claimed degree kd = Õ(d4/ε2) ·
poly(1/α) and the claimed error dε0 = ε · polylog(d/ε).

10.4 Proof of Theorem 10.4

In this section, we prove Theorem 10.4. Let H be the set of cardinality L = poly(log t, 1/η) · (1/δ)
coming from Theorem 10.3, and assume without loss of generality that H = {1, . . . , L}. We use
the notation θ′ = θ − (x1 + · · · + xL), z = xL+1 + · · · + xn, BAD = BAD(x1, . . . , xL) etc., with
boldface indicating randomness as usual. Given the outcomes for x1, . . . ,xL, we will handle the
three events BAD, NEAR, and FAR with separate ordinary real polynomials. More precisely,
our final (generalized) polynomial will be

p(x1, . . . , xn) = 1[BAD] · 1 + 1[NEAR] · pnear
θ′ (z) + 1[FAR] · pfar

θ′ (z),

where

pnear
θ′ (z) = P

(
z − θ′

2t‖‖‖z‖‖‖2

)
,

and

pfar
θ′ (z) = 1

[
θ′ > 0

]
· 1 + 1

[
θ′ ≤ 0

]
·
( z
θ′

)q
,
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where q is a positive integer and P is an ordinary real univariate polynomial to be specified later.
For typographic simplicity, we will write simply pθ′ in place of pnear

θ′ and pfar
θ′ , with context dictating

which we are referring to.

Let us walk through the properties of p we need to prove. Regarding its order, we will prove
that both

q ≤ O(T/d), degP ≤ O(T/d);

i.e. when θ′ is fixed, pθ′(xL+1, . . . , xn) has degree at most O(T/d) as an ordinary multivariate real
polynomial. Since θ′, BAD, NEAR, and FAR are determined by x1, . . . , xL alone, it follows that
our final polynomial p is a generalized polynomial of order at most L+O(T/d), as needed for the
theorem.

Next, we discuss Condition 1, that p(X) ≥ h(X) always. For the BAD outcomes for x1, . . . ,xL
we have p(X) = 1 ≥ h(X). For the remaining outcomes, we will have p(X) ≥ h(X) as required
provided that in all cases

pθ′(z) ≥ hθ′(z) for all θ′ and z (20)

where

hθ′(z) = 1
[
z − θ′ ≥ 0

]
.

Next, we discuss Condition 2, the bound E[p(X) − h(X)] ≤ ε1. It suffices to prove an upper
bound of O(ε1). Recall that

ε1 =
dt log(dt)

T
.

Note also that we will always T ≤ t2, since no random variable has stronger hypercontractivity
than do Gaussians, for which T ≤ 1 + t2/16. It follows that we will always have ε1 ≥ 1/t. Thus
the probability of BAD, which is at most O(1/t4), is much smaller than O(ε1) and can therefore
be neglected. Hence it suffices to show that

E[pθ′(z)− hθ′(z)] ≤ O(ε1) (21)

holds in both of the following cases:

Case Near: |θ′| ≤ t‖‖‖z‖‖‖2 and the collection {xL+1, . . . ,xn} is δ-regular.

Case Far: |θ′| > t‖‖‖z‖‖‖2.

Next we discuss Condition 3, the bound Pr[p(X) > 1 + 1/d2] ≤ 2−T/d. Again, since p(X) = 1
for the bad outcomes x1, . . . , xL, it suffices to show that

Pr[pθ′(z) > 1 + 1/d2] ≤ 2−T/d (22)

holds in both Case a and Case b.
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Finally, we discuss the bound ‖‖‖p(X)‖‖‖2d ≤ 1 + 2/d2. We have

E[p(X)2k] ≤ (1 + 1/d2)2d + E[p(X)2d · 1
[
p(X) > 1 + 1/d2

]
] ≤ 1 + 3/d+ E[p(X)2d · 1

[
p(X) > 1 + 1/d2

]
].

If we can show that

E[p(X)2d · 1
[
p(X) > 1 + 1/d2

]
] ≤ 1/d,

then we will have shown

E[p(X)2d] ≤ 1 + 4/d ≤ (1 + 2/d2)2d,

as required. Thus it remains to establish the previous upper bound. Again, since p(X) = 1 for the
BAD outcomes x1, . . . , xL, it suffices to show that

E[pθ′(z)2d · 1
[
pθ′(z) > 1 + 1/d2

]
] ≤ 1/d (23)

holds in both Case Near and Case Far.
Summarizing, our goal is to construct univariate polynomials pθ′(z) of degree at most O(T/d)

for each of Case Near and Case Far so that (20), (21), (22), and (23) all hold. We will first handle
Case Near, the more difficult case.

10.4.1 Case Near

In this case we have |θ′| ≤ t‖‖‖z‖‖‖2, where z = xL+1 + · · · + xn is the sum of a δ-regular collection
of independent random variables. Our task is to construct a real polynomial pθ′(z) of degree at
most O(T/d) such that bounds (20), (21), (22), and (23) all hold with respect to the function
hθ′(z) = 1[z − θ′ ≥ 0].

Given the parameters d and t, choose

a = 16C0
d log(td)

T
, b = min(1/d2, 1/t4);

we have a < 1 assuming that the C1 in our assumption on T is large enough. Let K = Ka,b and
P = Pa,b be the resulting even integer and univariate polynomial from Theorem 10.2. Our choice
of a was arranged so that

K ≤ T

4d
. (24)

We will define

pθ′(z) = pnear(θ′, z) = P (w), where w =
z − θ′

2t‖‖‖z‖‖‖2
.

Thus pθ′(z) has degree K = O(T/d) as necessary, and it also satisfies (20), using the property
that P ≥ 0 on (−∞, 0] and P ≥ 1 on [0,∞).

Next we check (23). i.e.,

E[pθ′(z)2d · 1
[
pθ′(z) > 1 + 1/d2

]
] ≤ 1/d.

Since b ≤ 1/d2, we have that pθ′(z) > 1 + 1/d2 only if |w| ≥ 1.
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Also notice that pθ′(z) ≤ (4w)K , it suffice to bound E[1[|w| ≥ 1] · (4w)2dK ] and we will prove a
stronger result:

E[(4w)2dK · 1[|w| ≥ 1]] ≤ 2−T . (25)

To see this, since we are in Case Near we have |θ′| < t‖‖‖z‖‖‖2. Thus if |w| ≥ 1, we must have
|z| > t‖‖‖z‖‖‖2. This also implies |z − θ′| < 2 |z|; hence we have

|4w| = 2
|z − θ′|
t‖‖‖z‖‖‖2

<
4
t
·
∣∣∣∣ z

‖‖‖z‖‖‖2

∣∣∣∣ .
Thus we have

E
[
1[|w| ≥ 1] · (4w)2dK

]
≤ E

[
1[|z| > t‖‖‖z‖‖‖2] ·

(
4
t

)2dK ( z

‖‖‖z‖‖‖2

)2dK
]

=
(

4
t

)2dK

·E

[
1
[∣∣∣∣ z

‖‖‖z‖‖‖2

∣∣∣∣ > t

]
·
(

z

‖‖‖z‖‖‖2

)2dK
]
. (26)

It is easy to check that

1
[∣∣∣∣ z

‖‖‖z‖‖‖2

∣∣∣∣ > t

]
·
(

z

‖‖‖z‖‖‖2

)2dK

≤
(

z

t‖‖‖z‖‖‖2

)T
· t2dK ,

using the fact that 2dK ≤ T . Thus we may upper-bound (26) by

42dKt−T
‖‖‖z‖‖‖TT
‖‖‖z‖‖‖T2

≤ 42dKt−T (t/4)T = 42dK−T ,

where we used the (T, 2, 4/t)-hypercontractivity of z. Since we have

2dK ≤ T/2, (27)

by virtue of (24), we conclude

E[pθ′(z)2d · 1
[
pθ′(z) > 1 + 1/d2

]
] ≤ 4−T/2 = 2−T ≤ 1/d. (28)

Let us move on to showing (22) in this Case Near; i.e., upper-bounding Pr[pθ′(z) > 1 + 1/d2].
Since b ≤ 1/d2, again we have that pθ′(z) > 1/d2 only if |w| ≥ 1. But by (25)

E[1[|w| ≥ 1] · (4w)dK ] ≤ 2−T ,

and the left-hand side is clearly an upper bound on Pr[|w| ≥ 1]. Thus we have established (22) in
Case Near.

Last, we will work to upper bound E[pθ′(z) − hθ′(z)] so as to show (21) in Case Near. We
analyze three subcases, depending on the magnitude of w.
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Case i: −a ≤ w ≤ 0. In this case, we upper-bound pθ′(z) − hθ′(z) simply by 1, and argue that
Case i occurs with low probability. Specifically,

Pr[−a ≤ w ≤ 0] ≤ Pr[|w| ≤ a] = Pr[
∣∣z − θ′∣∣ ≤ 2ta · ‖‖‖z‖‖‖2].

We can upper-bound this probability using the Berry-Esseen Theorem [MZ09, Corollary 4.5]. Since
we have δ-regularity of xL+1, . . . ,xn in Case Near, we get

Pr[
∣∣z − θ′∣∣ ≤ 2ta · ‖‖‖z‖‖‖2] ≤ O(

√
δ + ta)

By definition of a we have O(ta) = O(ε1). Thus we conclude for Case i,

E[1[Case i] · (pθ′(z)− hθ′(z))] ≤ O(
√
δ + ε1). (29)

Case ii: |w| ≤ 1 but not Case i. In this case, we have pθ′(z) − hθ′(z) ≤ b ≤ 1/t4, by
construction. Thus

E[1[Case ii] · (pθ′(z)− hθ′(z))] ≤ 1/t4 ≤ O(ε1). (30)

Case iii: |w| > 1. I.e., |z − θ′| > 2t‖‖‖z‖‖‖2. Notice that pθ′(z)− hθ′(z) ≤ pθ′(z) and therefore

E[1[Case iii] · (pθ′(z)− hθ′(z))] ≤ E[pθ′(z) · 1[|w| ≥ 1]] ≤ E
[
1[|w| ≥ 1] (4w)dK

]
≤ 2−T ≤ O(ε1)

(the second last inequality is due to (25)).

10.4.2 Case Far

If θ < 0 then hθ′ is almost always 1. As stated, in this case we simply have pθ′(z) ≡ 1. Bounds (20),
(22), and (23) become trivial; for (21) it suffices to show

Pr[z ≤ θ′] ≤ ε1. (31)

We will show a stronger statement in the course of handling the case that θ′ > 0.

So it remains to handle the θ′ > 0 case. As stated, in this case we define

pθ′(z) = pfar(θ′, z) =
( z
θ′

)q
,

where

q =
⌊
T

2d

⌋
even

,

meaning T/2d rounded down to the nearest even integer. Note that pθ′(z) has the claimed degree
bound O(T/d) (treating θ′ as a constant). Also note that pθ′(z) ≥ 1 if and only if |z| ≥ θ′. This
establishes (20).

Let’s move to (22); we need

Pr[pθ′(z) ≥ 1 + 1/d2] ≤ 2−T/d.
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Certainly

pθ′(z) ≥ 1 + 1/d2 ⇒ pθ′(z) ≥ 1 ⇒ |z| ≥
∣∣θ′∣∣ .

It thus suffices to show

Pr[|z| ≥
∣∣θ′∣∣] ≤ 2−T/d,

which, once shown, also establishes (31), since 2−T/d � ε1. We will in fact show the stronger
statement

E
[( z
θ′

)q]
≤ 2−T/d. (32)

And this stronger statement establishes (21), again because 2−T/d ≤ ε1.

To prove (32) we appeal to the condition of Case Far, |θ′| > t‖‖‖z‖‖‖2. Thus

E
[( z
θ′

)q]
≤ E

[(
z

t‖‖‖z‖‖‖2

)q]

≤ E

[(
z

t‖‖‖z‖‖‖2

)T]q/T
(Jensen, since T/q ≥ 1)

= t−q
(
‖‖‖z‖‖‖TT
‖‖‖z‖‖‖T2

)q/T
≤ t−q

(
t

4

)q
(by (T, 2, 4/t)-hypercontractivity of z)

= 4−q = 2−T/d,

using the definition of q.

Finally, to prove (23) it certainly suffices to show

1/d ≥ E[pθ′(z)2d] = E
[( z
θ′

)2d
]
.

By repeating the previous inequality with 2d in place of q (we still have T/2d ≥ 1), we can upper-
bound the expectation by 4−2d, which is indeed at most 1/d. This concludes the verification of
Case Far, and thus all of Theorem 10.4.

11 Fooling the uniform distribution on the sphere

In this section, we will show that our PRG can also be used to fool any function of d halfspaces
over the uniform distribution on the n dimensional unit sphere; building such a PRG also has an
application in derandomizing the hardness of learning reduction in [KS08].

The main idea is to show that the n dimensional Gaussian distribution can be use to fool the
uniform distribution on the sphere. Therefore, it suffice to fool the n dimensional Gaussian which is
studied in the previous sections (either using the modified MZ generator or k-wise independence).

Specifically, we first show the following connection between the n dimensional Gaussian distri-
bution N (0, 1/

√
n)n and the uniform distribution on the n dimensional unit sphere Sn−1.
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Lemma 11.1. For any θ1, θ2, ..θd ∈ R and W1,W2, ..Wd ∈ Rn and hi(X) = sgn(Wi ·X − θi) and
f : {0, 1}d → {0, 1}, there is some universal constant C such that

∣∣ E
X∈uSn−1

[f(h1(X), .., hd(X))]− E
X∈uN (0,1/

√
n)n

[f(h1(X), h2(X)..hd(X)]
∣∣ ≤ Cd log n

n1/4
(33)

Proof. Notice that if we choose x ∈u N (0, 1/
√
n)n, then x

‖x‖2 follows the uniform distribution on
the sphere. Therefore, we only need to bound:

∣∣ E
X∈uN (0,1/

√
n)n

(f(h1(
X

‖X‖2
), .., hd(

X

‖X‖2
))− E

x∈uN (0,1/
√
n)n

f(h1(X), h2(X)..hd(X))|

≤ Pr
x∈uN (0,1/

√
n)n

(
f(h1(

X

‖X‖2
), .., hd(

X

‖X‖2
)) 6= f(h1(X), h2(X)..hd(X))

)
≤

d∑
i=1

Pr
x∈uN (0,1/

√
n)n

(hi(
X

‖X‖2
) 6= hi(X)) (34)

By Lemma 6.2 in [MZ09], we know that:

Pr
X∈uN (0,1/

√
n)n

(hi(
X

‖X‖2
) 6= hi(x)) ≤ C log n

n1/4
.

Combining above inequality with (34), we prove (33).

Therefore to fool any function of d halfspaces over the uniform distribution on the n dimensional
sphere with accuracy Ω(C logn

n1/4 ), it suffice to build a PRG for n dimensional Gaussian distribution
with the same accuracy.

11.1 Derandomized hardness of learning intersections of halfspaces

One of the application of above PRG is that we can use it to derandomize the hardness of learning
result in [KS08]. In [KS08], Khot and Saket showed that assuming NP6=RP, for any ε > 0 and
positive integer d, given a set of examples such that there is a intersection of two halfspaces that
is consistent with all the examples, it is NP-hard to find a function of any d halfspaces that is
consistent with a 1/2 +O(ε) fraction of the examples. Our PRGs can be used to derandomize the
hardness reduction and obtain the same hardness result assuming NP6= P.

To see why our PRG works, we need to look into the details of [KS08]. Let us explain in
high level why our PRG helps, without entering into the details of the reduction. The hardness of
learning result in [KS08] is based on a reduction from a Label Cover instance L to a distribution D0

on negative examples and a distribution D1 on positive examples. Such a reduction would preserve
the following two properties:

• (Completeness) if the optimum value of L is 1, then there is a intersection of two halfspaces
f(x) that agrees with all the examples; i.e., ED1 [f(X)] = ED0 [f(X)] + 1.

• (Soundness) if the optimum value of L is small, then for any h(x) which is a function of d
halfspaces, we have that

∣∣ED0 [h(X)] − ED1 [h(X)]
∣∣ = O(ε) which implies that h(x) agrees

with at most 1/2 +O(ε) fraction of the examples.
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The Di for (i = 0, 1) constructed in [KS08] is a mixture of uniform distribution on the sphere
located at different center and the number of the different spheres is poly(n), where n is the size
of the Label Cover instance. Then by the PRG in this paper, we can derandomize each sphere
with some distribution that only has support of size poly(n) to ε-fool functions of d halfspaces; and
overall we can get distribution P0 and P1 with poly(n) support and it has the property that for any
function h(x) of l halfspaces, |EDi [f(X)]−EPi [f(X)]| ≤ O(ε) for i = 0, 1. If we replaceDi with Pi in
the hardness reduction, we still get the soundness guarantee that |EP1 [f(X)]−EP0 [f(X)]| = O(ε).

We also need to verify that the completeness property will hold if we replace Di with Pi. If we
look into the reduction of [KS08], as long as the distribution Pi has all its support points on the
sphere, the reduction will preserve the completeness property. Therefore, to make the reduction
work, we need to build a PRG for functions of d-halfspaces over the uniform distribution on the
sphere with the additional property that all the points generated by the PRG are all on the unit
sphere as well.

This is also achievable and we summarize the high level idea here. As is shown in Lemma 11.1,
it suffice to fool functions of d halfspaces over n dimensional Gaussian instead of the uniform
distribution on the sphere. In addition, by the proof of Theorem 4.4, if we only want to fool any
functions of d ε-regular halfspaces, it suffice just to fool uniform distribution on {−1/

√
n, 1/

√
n}n

instead. For the uniform distribution over {−1/
√
n, 1/

√
n}n. we know that it can be fooled by

PRG with all the support points in {−1/
√
n, 1/

√
n}n which is a subset of the unit sphere. To

handle the case that d halfspaces are not all ε-regular, we can follow the idea of [MZ09] Lemma 6.3
by showing that there exists a set of poly(n) unitary rotations and with high probability that all
of the d halfspaces become regular under a rotation randomly chosen from the set.

References

[Baz09] L. Bazzi. Polylogarithmic independence can fool DNF formulas. SIAM Journal on
Computing, 38:2220–2272, 2009.

[BELY09] Ido Ben-Eliezer, Shachar Lovett, and Ariel Yadin. Polynomial threshold functions:
Structure, approximation and pseudorandomness. In Submitted, 2009.

[Ben04] Vidmantas Bentkus. A Lyapunov type bound in Rd. Theory of Probability and its
Applications, 49(2):311–322, 2004.

[Der65] M. Dertouzos. Threshold logic: a synthesis approach. MIT Press, Cambridge, MA,
1965.

[DGJ+09] Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio, and
Emanuele Viola. Bounded independence fools halfspaces. In Proceedings of the 50th
IEEE Symposium on Foundations of Computer Science, 2009.

[DKN09] I. Diakonikolas, D. Kane, and J. Nelson. Bounded independence fools degree-2 threshold
functions. In Submitted, 2009.

[DS79] P. Dubey and L.S. Shapley. Mathematical properties of the banzhaf power index.
Mathematics of Operations Research, 4:99–131, 1979.

[FGRW09] V. Feldman, V. Guruswami, P. Raghavendra, and Y. Wu. Agnostic learning of mono-
mials by halfspaces is hard. In FOCS, 2009.

38



[FKL+01] J. Forster, M. Krause, S.V. Lokam, R. Mubarakzjanov, N. Schmitt, and H.-U. Simon.
Relations between communication complexity, linear arrangements, and computational
complexity. In FSTTCS, pages 171–182, 2001.

[GR09] P. Gopalan and J. Radhakrishnan. Finding duplicates in a data stream. In Proc. 20th
Annual Symposium on Discrete Algorithms (SODA’09), pages 402–411, 2009.

[HKM09] Prahladh Harsha, Adam Klivans, and Raghu Meka. An invariance principle for poly-
topes. In Submitted, 2009.

[HMP+93] A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Turan. Threshold circuits of
bounded depth. Journal of Computer and System Sciences, 46:129–154, 1993.

[Hu65] S.T. Hu. Threshold Logic. University of California Press, 1965.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In STOC, pages 356–364, 1994.

[Isb69] J.R. Isbell. A Counterexample in Weighted Majority Games. Proceedings of the AMS,
20(2):590–592, 1969.

[Kra91] M. Krause. Geometric arguments yield better bounds for threshold circuits and dis-
tributed computing. In Proc. 6th Structure in Complexity Theory Conference, pages
314–322, 1991.

[KS88] Wies law Krakowiak and Jerzy Szulga. Hypercontraction principle and random multi-
linear forms. Probability Theory and Related Fields, 77(3):325–342, 1988.

[KS08] S. Khot and R. Saket. On hardness of learning intersection of two halfspaces. In STOC,
2008.

[KW91] M. Krause and S. Waack. Variation ranks of communication matrices and lower bounds
for depth two circuits having symmetric gates with unbounded fanin. In Proc. 32nd
IEEE Symposium on Foundations of Computer Science (FOCS), pages 777–782, 1991.

[LC67] P.M. Lewis and C.L. Coates. Threshold Logic. New York, Wiley, 1967.

[MOO05] Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of func-
tions with low influences: invariance and optimality. In Proceedings of the 46th IEEE
Symposium on Foundations of Computer Science, pages 21–30, 2005. To appear, Annals
of Mathematics 2010.

[Mos08] Elchanan Mossel. Gaussian bounds for noise correlation of functions and tight analysis
of long codes. In Proceedings of the 49th IEEE Symposium on Foundations of Computer
Science, pages 156–165, 2008.

[Mur71] S. Muroga. Threshold logic and its applications. Wiley-Interscience, New York, 1971.

[MZ09] Raghu Meka and David Zuckerman. Pseudorandom generators for polynomial threshold
functions, 2009. arXiv:0910.4122 [cs.CC].

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinator-
ica, 12(4):449–461, 1992.

39



[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, 52(1):43–52, 1996.

[OS08] R. O’Donnell and R. Servedio. The Chow Parameters Problem. In STOC, pages 517–
526, 2008.

[Pen46] L.S. Penrose. The elementary statistics of majority voting. Journal of the Royal Sta-
tistical Society, 109(1):53–57, 1946.

[RS08] Y. Rabani and A. Shpilka. Explicit construction of a small epsilon-net for linear thresh-
old functions. In STOC, 2008.

[Ser07] R. Servedio. Every linear threshold function has a low-weight approximator. Compu-
tational Complexity, 16(2):180–209, 2007.

[She69] Q. Sheng. Threshold Logic. London, New York, Academic Press, 1969.

[Szu90] Jerzy Szulga. A note on hypercontractivity of stable random variables. The Annals of
Probability, 18(4):1746–1758, 1990.

[TZ92] A. Taylor and W. Zwicker. A Characterization of Weighted Voting. Proceedings of the
AMS, 115(4):1089–1094, 1992.

[Wol06a] Pawe l Wolff. Hypercontractivity of random variables and geometry of linear normed
spaces, 2006. Unpublished.

[Wol06b] Pawe l Wolff. Hypercontractivity of simple random variables. Studia Mathematica,
180(3):219–236, 2006.

40

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


