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Abstract

We prove that TAUT has a p-optimal proof system if and only if L≤, a logic introduced in [11], is
a P-bounded logic for P. Furthermore, using the method developed in [4], we show that TAUT has no
effective p-optimal proof system under some reasonable complexity-theoretic assumption.

1. Introduction

As the title already indicates, this paper relates two topics which at first glance seem to be unrelated. On the
one hand we consider optimal proof systems. A proof system in the sense of Cook and Reckhow [5], say
for the class TAUT of tautologies of propositional logic, is a polynomial time computable function defined
on {0, 1}∗ and with TAUT as range. A proof system is p-optimal if it simulates any other proof system
in polynomial time appropriately.1 In their fundamental paper [14] Krajı́c̆ek and Pudlák derive a series of
statements equivalent to the existence of a p-optimal proof system for TAUT and state the conjecture:

Conjecture 1. There is no p-optimal proof system for TAUT.

On the other hand, the question of whether there is a logic capturing polynomial time remains the central
open problem in descriptive complexity. There are artificial logics capturing polynomial time, but they do
not fulfill a natural requirement to logics in this context:

There is an algorithm that decides whether A is a model of ϕ for all structures A and
sentences ϕ of the logic and that does this for fixed ϕ in time polynomial in the size ‖A‖ of A. (1)

If this condition is fulfilled for a logic capturing polynomial time, we speak of a P-bounded logic for P.
In [11] Gurevich states the conjecture:

Conjecture 2. There is no P-bounded logic for P.

The conjecture is false if one waives the effectivity condition (1). This is shown in [11, Section 7,
CLAIM 2]) by considering a logic introduced by Blass and Gurevich and which we denote by L≤. Essen-
tially, for any vocabulary, the sentences of L≤ are the sentences of least fixed-point logic in a vocabulary
with an additional binary relation symbol for orderings. In L≤ for a structure A to be a model of ϕ it is
required that in all structures of cardinality less than or equal to that of A, the validity of ϕ (as a sentence
of least fixed-point logic) does not depend on the chosen ordering.

As L≤ satisfies all other requirements of a P-bounded logic for P, Gurevich implicitly states the con-
jecture:

Conjecture 2a. L≤ is not a P-bounded logic for P.

The main result of this paper (cf. Theorem 7) tells us that

Conjecture 1 is true ⇐⇒ Conjecture 2a is true. (2)

1All notions will be defined in a precise manner in Section 2.
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We mentioned that at first glance “p-optimal proof systems for TAUT” and “logics for P” seem to be
unrelated topics. However, there are reformulations of Conjecture 1 and Conjecture 2 that are alike. In fact,
it is known [17] that TAUT has a p-optimal proof system if and only if there is a (computable) enumeration
of all subsets of TAUT that are in P by means of Turing machines that decides them. And it is not hard
to see that there is a P-bounded logic for P if and only if there is an enumeration of all polynomial time
decidable classes of graphs closed under isomorphisms, again an enumeration in terms of Turing machines
that decide these classes. In fact the question for a logic for P was stated in this way by Chandra and
Harel [2] in the context of an analysis of the complexity and expressiveness of query languages.

Hence one consequence of (2) (which we only mention in this Introduction) is:

Theorem 1. If there is an enumeration of all polynomial time decidable subsets of TAUT, then there is an
enumeration of all polynomial time decidable classes of graphs closed under isomorphisms.

Using a special feature of the semantics of the logic L≤, one can construct a logic that is an effectively
P-bounded logic for P, if L≤ is a P-bounded logic for P (cf. Proposition 12). Here this “effectively” means
that in (1) we can compute from ϕ a polynomial bounding the time to decide whether A is a model of
ϕ. In this way we can strengthen the conclusion of Theorem 1 by requiring that every Turing machine in
the enumeration comes with a polynomial time clock. Apparently this is a strengthening, while from any
enumeration of the polynomial time decidable subsets of TAUT we obtain one with polynomial time clocks
in a trivial manner, namely by systematically adding such clocks.

There is a further consequence of (1) that we do not mention in the main text. Due to our result [3,
Theorem 7]) on L≤, we get:

Theorem 2. The following are equivalent:

– TAUT has a p-optimal proof system.

– There is an algorithm deciding for every nondeterministic Turing machine M and every natural num-
ber m, given in unary, whether M accepts the empty input tape in ≤ m steps and the algorithm does
this for every fixed M in time polynomial in m.

In general, the experts tend to believe Conjecture 1, as the existence of an p-optimal proof system for TAUT
would have various consequences which seem to be unlikely (see [13, 14]). It is worthwhile to emphasize
that Conjecture 1 is equivalent to Conjecture 2a and not to Conjecture 2, as the situation with Conjecture 2
is quite different; no unexpected consequences are known. Moreover, due to results showing that there are
logics capturing polynomial time on always larger classes of structures, Grohe [9] “mildly leans towards
believing” that there is a P-bounded logic for P.

In [3] we have shown that L≤ is not an effectively P-bounded logic for P under the assumption
NP[TC] 6⊆ P[TClog TC], which means that NTIME(hO(1)) 6⊆ DTIME(hO(log h)) for every time constructible
and increasing function h. Under this assumption, we get (see Theorem 15) that TAUT has no effectively
p-optimal proof system. Here a proof system P for TAUT is effectively p-optimal if from every other proof
system for TAUT we can compute a simulation by P .

On the other hand, Krajı́c̆ek and Pudlák [14] showed, assuming E = NE, that TAUT has a p-optimal
proof system. Using our result [3] that under the assumption E = NE the logic

(
L= and hence

)
L≤ is an

effectively P-bounded logic for P, we can derive (see Corollary 25) that TAUT has an effectively p-optimal
proof system if E = NE.

Finally, in Section 5 we extract the main idea underlying the proof of (1) and apply it to other problems.

2. Preliminaries

In this section we recall concepts and results from complexity theory and logic that we will use later and
fix some notation.

2.1. Complexity. We denote the alphabet {0, 1} by Σ. The length of a string x ∈ Σ∗ is denoted by |x|. We
identify problems with subsets Q of Σ∗. Clearly, as done mostly, we present concrete problems in a verbal,
hence uncodified form. We denote by P the class of problems Q such that x ∈ Q is solvable in polynomial
time.
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All Turing machines have Σ as their alphabet and are deterministic ones if not stated otherwise explic-
itly. Where necessary we identify Turing machines with (their codes, that is, with) strings over the alphabet
Σ. If M is a Turing machine we denote by ‖M‖ the length of its encoding.

By mO(1) we denote the class of polynomially bounded functions from N to N. Sometimes statements
containing a formulation like “there is d ∈ N such that for all x ∈ Σ∗: . . . ≤ |x|d” can be wrong for x ∈ Σ∗

with |x| = 1. We trust the reader’s common sense to interpret such statements reasonably.

Optimal proof systems, almost optimal algorithms and enumerations of P-easy subsets. Let Q be a
problem, Q ⊆ Σ∗.

A proof system for Q is a surjective function P : Σ∗ → Q computable in polynomial time. The
proof system P for Q is polynomially optimal or p-optimal if for every proof system P ′ for Q there is a
polynomial time computable T : Σ∗ → Σ∗ such that for all w ∈ Σ∗ we have

P (T (w)) = P ′(w).

If A is any algorithm we denote by tA(x) the number of steps of the run of A on input x; if A on x does
not stop, then tA(x) is not defined.

An algorithm A deciding Q is almost optimal or optimal on positive instances of Q if for every algo-
rithm B deciding Q there is a polynomial p ∈ N[X] such that for all x ∈ Q

tA(x) ≤ p(tB(x) + |x|).

(note that nothing is required of the relationship between tA(x) and tB(x) for x /∈ Q).

By definition a subset Q′ of Q is P-easy if Q′ ∈ P. An enumeration of P-easy subsets of Q is a
computable function M : N → Σ∗ such that

– for every i ∈ N the string M(i) is a Turing machine deciding a P-easy subset of Q;

– for every P-easy subset Q′ of Q there is i ∈ N such that M(i) decides Q′.

We denote by TAUT the class of tautologies of propositional logic. The following theorem is well-known
(cf. [14] for the equivalence of the first two statements and [17] for the equivalence to the third one):

Theorem 3. The following are equivalent:

– TAUT has a p-optimal proof system.

– TAUT has an almost optimal algorithm.

– TAUT has an enumeration of the P-easy subsets.

2.2. Logic. A vocabulary τ is a finite set of relation symbols. Each relation symbol has an arity. A
structure A of vocabulary τ , or τ -structure (or, simply structure), consists of a nonempty set A called the
universe, and an interpretation RA ⊆ Ar of each r-ary relation symbol R ∈ τ . We say that A is finite, if
A is a finite set. All structures in this paper are assumed to be finite.

For a structure A we denote by ‖A‖ the size of A, that is, the length of a reasonable encoding of A as
string in {0, 1}∗ (e.g., cf. [7] for details). If necessary, we can assume that the universe of a finite structure
is [m] := {1, . . . ,m} for some natural number m ≥ 1, as all the properties of structures we consider are
invariant under isomorphisms; in particular, it suffices that from the encoding of A we can recover A up
to isomorphism. The reader will easily convince himself that we can assume that there is a computable
function lgth such that for every vocabulary τ and m ≥ 1 (we just collect the properties of lgth we will use
in this paper):

– ‖A‖ = lgth(τ,m) for every τ -structure A with universe of cardinality m (that is, for fixed τ and m,
the encoding of each τ -structure with universe of m elements has length equal to lgth(τ,m));

– for fixed τ , the function m 7→ lgth(τ,m) is computable in polynomial time if m is given in unary;
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– lgth(τ ∪ {R},m) = O(lgth(τ,m) + mr) for every r-ary relation symbol R not in τ .

We assume familiarity with first-order logic and its extension least fixed-point logic LFP (e.g. see [6]).
We denote by LFP[τ ] the set of sentences of vocabulary τ of LFP. By a result due to Immerman [12] and
Vardi [18] we know that LFP captures polynomial time on the class of ordered structures.

As we will introduce further semantics for the formulas of least fixed-point logic, we write A |=LFP ϕ
if the structure A is a model of the LFP-sentence ϕ. An algorithm based on the inductive definition of the
satisfaction relation for LFP shows (see [19]):

Proposition 4. The model-checking problem A |=LFP ϕ for structures A and LFP-sentences ϕ can be
solved in time

‖A‖O(|ϕ|).

Logics capturing polynomial time. For our purposes a logic L consists

– for every vocabulary τ of a set L[τ ] of strings, the set of L-sentences of vocabulary τ ;

– of an algorithm that for every vocabulary τ and every string ξ decides whether ξ ∈ L[τ ] (in particular,
L[τ ] is decidable for every τ );

– of a satisfaction relation |=L; if (A, ϕ) ∈ |=L, then, for some τ , we have that A is a τ -structure and
ϕ ∈ L[τ ]; furthermore for each ϕ ∈ L[τ ] the class of structures A with A |=L ϕ is closed under
isomorphisms.

We say that A is a model of ϕ if A |=L ϕ
(
that is, if (A, ϕ) ∈ |=L

)
. We set

ModL(ϕ) :=
{
A | A |=L ϕ

}
and say that ϕ axiomatizes the class ModL(ϕ).

We partly take over the following terminology from [16].

Definition 5. Let L be a logic.

(a) L is a logic for P if for all vocabularies τ and all classes C (of encodings) of τ -structures closed under
isomorphisms we have

C ∈ P ⇐⇒ C = ModL(ϕ) for some ϕ ∈ L[τ ].

(b) L is a P-bounded logic for P if (a) holds and if there is an algorithm A deciding |=L (that is, for every
structure A and L-sentence ϕ the algorithm A decides whether A |=L ϕ) and if moreover, for every
fixed ϕ the algorithm A runs in time polynomial in ‖A‖.

Hence, if L is a P-bounded logic for P, then for every L-sentence ϕ the algorithm A witnesses that
ModL(ϕ) ∈ P. However, we do not necessarily know ahead of time the bounding polynomial.

(c) L is an effectively P-bounded logic for P if L is a P-bounded logic for P and if in addition to the
algorithm A as in (b) there is a computable function that assigns to every L-sentence ϕ a polynomial
q ∈ N[X] such that A decides whether A |=L ϕ in ≤ q(‖A‖) steps.

The logic L≤ and invariant sentences. In this section we introduce the logic L≤, a variant of least
fixed-point logic.

For every vocabulary τ we let τ< := τ ∪ {<}, where < is a binary relation symbol not in τ chosen in
some canonical way. We set

L≤[τ ] = LFP[τ<]

for every vocabulary τ . Before we define the satisfaction relation for L≤ we introduce the notion of ≤ m-
invariant.
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Definition 6. Let ϕ be an L≤[τ ]-sentence.

– For m ≥ 1 we say that ϕ is ≤ m-invariant if for all structures A with |A| ≤ m we have

(A, <1) |=LFP ϕ ⇐⇒ (A, <2) |=LFP ϕ.

for all orderings <1 and <2 on A.

– ϕ is invariant if it is ≤ m-invariant for all m ≥ 1.

Finally we introduce the semantics for the logic L≤ by

A |=L≤ ϕ ⇐⇒
(
ϕ is ≤ |A|-invariant and (A, <A) |=LFP ϕ

)
,

where here (and later) <A denotes some ordering on A, say, the ordering on A given by the encoding of
A. As least fixed-point logic captures P on ordered structures it is not hard to see that L≤ is a logic for P.

For later purposes we remark that for every L≤[τ ]-sentence ϕ and m ≥ 1 we have

ϕ is ≤ m-invariant ⇐⇒ ¬ϕ is ≤ m-invariant,

and thus for every τ -structure A

(ϕ, ≤ |A|) ∈ INV ⇐⇒
(
A |=L≤ ϕ or A |=L≤ ¬ϕ

)
. (3)

In particular,
ϕ is ≤ m-invariant ⇐⇒

(
A(τ,m) |=L≤ ϕ or A(τ,m) |=L≤ ¬ϕ

)
, (4)

where Am is the τ -structure with universe {1, . . . ,m}, where every relation symbol in τ is interpreted by
the empty relation of the corresponding arity.

3. The main theorem

The main result of this paper reads as follows:

Theorem 7. The following are equivalent:

(1) TAUT has an p-optimal proof system.

(2) L≤ is a P-bounded logic for P.

In view of Theorem 3 we show one direction of Theorem 7 with the following lemma.

Lemma 8. If L≤ is a P-bounded logic for P, then there is an enumeration of the P-easy subsets of TAUT.

Proof: It is easy to introduce a vocabulary τ such that in polynomial time we can associate with every
propositional formula α a τ -structure A(α) such that

– we can recover α from any B isomorphic to A(α) in polynomial time;

– every variable X corresponds to two distinct elements aX , bX of A(α) and there is a unary relation
symbol P ∈ τ such that PA(α) = {aX | X variable of α};

– there is a first-order sentence ϕ(PROP) of vocabulary τ axiomatizing the class{
B | B ∼= A(α) for some α ∈ PROP

}
.
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Again let τ< := τ ∪ {<} with a new binary <. Note that a τ<-structure of the form (A(α), <) yields
an assignment of the variables of α, namely the assignment sending a variable X to TRUE if and only if
aX < bX . There is an LFP[τ<]-formula ϕ(sat) that for every α ∈ PROP expresses in (A(α), <) that the
assignment given by < satisfies α.

We introduce the L≤[τ ]-sentence

ϕ0 := (ϕ(PROP) → ϕ(sat)).

By the definition of |=L≤ we see that for every α ∈ PROP and every L≤[τ ]-sentence ϕ

if A(α) |=L≤ (ϕ0 ∧ ϕ), then α ∈ TAUT. (5)

We claim that the class of models of (ϕ0 ∧ ϕ), more precisely,

Q(ϕ) :=
{
α ∈ PROP | A(α) |=L≤ (ϕ0 ∧ ϕ)

}
,

where ϕ ranges over all L≤[τ ]-sentences, yields the desired enumeration of P-easy subsets of TAUT. By
(5), we have Q(ϕ) ⊆ TAUT.

For ϕ ∈ L≤[τ ] let the Turing machine Mϕ, given an input α ∈ PROP, first construct A(α) and then
check whether A(α) |=L≤ (ϕ0 ∧ ϕ). Clearly, Mϕ decides Q(ϕ) and does this in polynomial time, as L≤
is a P-bounded logic for P.

Conversely, let Q be a P-easy subset of TAUT. If Q is finite, it is easy to see that Q = Q(ϕ) for some
ϕ ∈ L≤[τ0]. Now let Q be infinite. The class{

B | B ∼= A(α) for some α ∈ Q
}

is in P, and therefore it is axiomatizable by an L≤[τ ]-sentence ϕ. As the class contains arbitrarily large
structures, the formula ϕ is invariant. We show that Q = Q(ϕ).

Assume first that α ∈ Q(ϕ), i.e.,A(α) |=L≤ (ϕ0∧ϕ). Then, by invariance of ϕ, we haveA(α) |=L≤ ϕ,
that is, Q(ϕ) ⊆ Q.

Conversely, assume that α ∈ Q. Then A(α) |=L≤ ϕ. As α ∈ TAUT, in order to get A(α) |=L≤ (ϕ0 ∧
ϕ) (and hence, α ∈ Q(ϕ)) it suffices to show that (ϕ0 ∧ϕ) is ≤ |A(α)|-invariant. So let B be a τ -structure
with |B| ≤ |A(α)|. If B 6|=L≤ ϕ, then, by invariance of ϕ, we have (B, <B) 6|=LFP (ϕ0∧ϕ) for all orderings
<B on B; if B |=L≤ ϕ, then B ∼= A(β) for some β ∈ Q ⊆ TAUT. Hence, (B, <B) |=LLFP (ϕ0 ∧ϕ) for all
orderings <B on B. 2

Remark 9. In the previous proof we have used the definition of the satisfaction relation |=L≤ in order to
express the universal second-order quantifier in the statement “all assignments satisfy α.” Similarly, we
can do with every Π1

1-sentence ∀Rϕ, where ϕ is a first-order formula or (equivalently) LFP-formula and
show in this way that there is an enumeration of the P-easy subsets closed under isomorphisms of the class
of models of such a sentence, if L≤ is a P-bounded logic for P. In fact, let k be the arity of R. If a structure
A has n elements, we consider a structure B with additional unary disjoint relations UB, PB

0 , PB
1 such that

B = UB ∪ PB
0 ∪ PB

1 , UB = A, |PB
0 | = nk |PB

1 | = nk

and with an ordering <B.
With the elements in PB

0 interpreted as 0s and the elements in PB
1 interpreted as 1s, the first nk-elements

of the ordering in PB
0 ∪ PB

1 represent a natural number < 2nk

and thus a k-ary relation R on A, which
we can compute in polynomial time (polynomial in n); hence we can express R by an LFP-formula. As in
this way, by changing the ordering, we have access to all such k-ary relations R on A, we can express the
quantifier ∀R using the invariance requirement of |=L≤ . In the terminology of classical model theory this
shows that the class of models of such a Π1

1-sentence is the class of relativized reducts of models of some
L≤-sentence.

For example, let C be the class of all pairs (G,H) of graphs such that H is not a homomorphic image
of G. Of course, a subclass D of C is closed under isomorphisms if

G ∼= G′, H ∼= H′ and (G,H) ∈ D imply (G′,H′) ∈ D.
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By the previous observation, we see that there is an enumeration of the P-easy subclasses of C closed under
isomorphisms if L≤ is a P-bounded logic for P.

As the models of such a Π1
1-sentence corresponds to a problem Q in co-NP, a simple complexity-

theoretic argument shows that there is an enumeration of the P-easy subsets of Q provided there is one for
the P-easy subsets of TAUT (see also [1]). However, in this way, in the previous example we would not get
an enumeration of those P-easy subclasses that are closed under isomorphisms.

The remaining direction in Theorem 7 is provided by the following result.

Lemma 10. If TAUT has an almost optimal algorithm, then L≤ is a P-bounded logic for P.

Proof: We assume that TAUT has an almost optimal algorithm O and have to show that there exists a
function h and an algorithm that decides B |=L≤ ϕ in time ‖B‖h(ϕ).

By the definition of B |=L≤ ϕ it suffices to show the existence of an algorithm A that for every L≤-
sentence ϕ and every m ∈ N decides whether ϕ is ≤ m-invariant and does this for fixed ϕ in time mO(1).

We set

Q :=
{(

χ, `, lgth(τ, `)|χ|
) ∣∣∣τ a vocabulary , χ ∈ LFP[τ ], ` ≥ 1, lgth(τ, `)|χ| in unary,

there is a structure B with
(
|B| ≤ ` and B |=LFP χ

) }
(compare Section 2.2 for the definition of the function lgth). By Proposition 4, Q ∈ NP. Thus there is a
polynomial time reduction R : Q ≤p SAT. We can assume that from R(x) we can recover x in polynomial
time.

Let ϕ be an L≤[τ ]-sentence. Then

ϕ is not ≤ m-invariant
⇐⇒ there is a structure B and orderings <1, <2 with(

|B| ≤ m, (B, <1) |=LFP ϕ(<1) and (B, <2) |=LFP ¬ϕ(<2)
)

⇐⇒ there is a structure B and orderings <1, <2 with(
|B| ≤ m and (B, <1, <2) |=LFP (ϕ(<1) ∧ ¬ϕ(<2))︸ ︷︷ ︸

ϕ∗

)
⇐⇒

(
ϕ∗,m, lgth(τ ∪ {<1, <2}, `)|ϕ

∗|
)
∈ Q

⇐⇒ R
(
ϕ∗,m, lgth(τ ∪ {<1, <2}, `)|ϕ

∗|
)
∈ SAT.

We set
α(ϕ, m) := R

(
ϕ∗,m, lgth(τ ∪ {<1, <2}, `)|ϕ

∗|
)

.

Hence
ϕ is ≤ m-invariant ⇐⇒ ¬α(ϕ, m) ∈ TAUT. (6)

It is clear that there is an algorithm that on input (ϕ, m), where m is given in unary, computes α(ϕ, m) and
for fixed ϕ

it computes α(ϕ, m) in time mO(1), in particular, |α(ϕ, m)| ≤ mO(1), (7)

as for fixed τ , the function m 7→ lgth(τ,m) is polynomial in m.
Let S be the algorithm that on input ϕ by systematically going through all structures with universe {1},

all with universe {1, 2},. . . computes

m(ϕ) := the least m such that ϕ is not ≤ m-invariant.

If ϕ is invariant, m(ϕ) is not defined and S does not stop.
We show that the following algorithm A has the desired properties.
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A(ϕ, m)
//ϕ an L≤-sentence, m ∈ N in unary

1. Compute α(ϕ, m).

2. In parallel simulate S on input ϕ and O on input ¬α(ϕ, m).

3. if O stops first, then output its answer.

4. if S stops first, then
5. if m < m(ϕ) then accept else reject.

By our assumptions on O and S and by (6), it should be clear that A on input (ϕ, m) decides whether ϕ is
≤ m-invariant. We have to show that for fixed ϕ it does it in time polynomial in m.

Case “ϕ is invariant”: Then for all m we have ¬α(ϕ, m) ∈ TAUT. Thus the following algorithm Oϕ

decides TAUT: on input β ∈ PROP the algorithm Oϕ checks whether β = ¬α(ϕ, m) for some m ≥ 1. If
so, it accepts and otherwise it runs O on input β and answers accordingly. By (7), we have

tOϕ
(¬α(ϕ, m)) ≤ mO(1).

As O is optimal, we know that there is a constant d such that for all β ∈ TAUT

tO(β) ≤
(
|β|+ tOϕ

(β)
)d

. (8)

In particular, we have

tO(¬α(ϕ, m)) ≤
(
|¬α(ϕ, m)|+ tOϕ

(¬α(ϕ, m))
)d ≤ mO(1).

By this inequality and (7), we see that for invariant ϕ we have tA(ϕ, m) ≤ mO(1).

Case “ϕ is not invariant”: Then S will stop on input ϕ. Thus, in the worst case, A on input (ϕ, m) has to
wait till the simulation of S on ϕ stops and then must check whether the result m(ϕ) of the computation
of S is bigger than m or not and answer accordingly. So the algorithm A at most takes time mO(1) +
O(tS(ϕ) + m) ≤ mO(1) (note that we fix ϕ, so that tS(ϕ) is a constant). 2

Proof of Theorem 7. The claimed equivalence follow from Lemma 8 and Lemma 10 using Theorem 3. 2

Corollary 11. If TAUT has an p-optimal proof system, then there is an effectively P-bounded logic for P.

This result follows from Theorem 7 using the following proposition.

Proposition 12. If L≤ is a P-bounded logic for P, then there is an effectively P-bounded logic for P.

Proof: In Section 2.2 we have seen that for every L≤-sentence ϕ and m ≥ 1 we have that

ϕ is ≤ m-invariant ⇐⇒
(
A(τ,m) |=L≤ ϕ or A(τ,m) |=L≤ ¬ϕ

)
,

where A(τ,m) denotes the “empty structure” of vocabulary τ with universe {1, . . . ,m}.
Now assume that L≤ is a P-bounded logic for P and let A be an algorithm deciding |=L≤ and witness-

ing that L≤ is a P-bounded logic for P. By (4), there is function h assigning to every L≤-sentence ϕ a
polynomial h(ϕ) ∈ N[X] such that A decides whether ϕ is ≤ m-invariant in time h(ϕ)(m).

We consider the logic T (L≤), time-clocked L≤, defined as follows:

– for every vocabulary τ

T (L≤)[τ ] :=
{
(ϕ, p) | ϕ ∈ L≤[τ ] and p ∈ N[X]

}
;

– A |=T (L≤) ϕ iff (a) and (b) are fulfilled, where
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(a) A shows via (4) in ≤ p(|A|) steps that ϕ is ≤ |A|-invariant;

(b) (A, <A) |=LFP ϕ (recall that by <A we denote the ordering of A given by the encoding of A).

It is not hard to verify that T (L≤) is an effectively P-bounded logic for P. 2

Remark 13. In a slightly different way but using the same idea one can define the time-clocked version
T (L) for any P-bounded logic L for P. However, in general, T (L) is not an effectively P-bounded logic
L for P, as the class of models of a T (L)-sentence must not be closed under isomorphisms. In the case of
T (L≤) this is guaranteed by the fact that condition (a) in the definition of A |=T (L≤) ϕ only refers to the
cardinality of the universe of A.

4. Effective versions

Let
NP[TC] 6⊆ P[TClog TC]

mean that NTIME(hO(1)) 6⊆ DTIME(hO(log h)) for every time constructible and increasing function h. In
[3] we have shown:

Proposition 14. Assume that NP[TC] 6⊆ P[TClog TC]. Then L≤ is not an effectively P-bounded logic for P.

Moreover, in [4] we have seen that NP[TC] 6⊆ P[TClog TC] holds under the assumption that NP contains an
E-bi-immune problem. In fact, NP[TC] 6⊆ P[TClog TC] seems to be a much weaker assumption.

Are there natural effective versions of the properties on TAUT listed in Theorem 3 equivalent to the
statement “L≤ is not an effectively P-bounded logic for P” and which therefore, by Proposition 14, could
not hold under the assumption NP[TC] 6⊆ P[TClog TC]? We did not find them (see Remark 26). However,
by analyzing the proof of Proposition 14, we isolate a property of an effective P-bounded logic for P that
cannot be fulfilled if NP[TC] 6⊆ P[TClog TC]. It turns out that this is equivalent to natural effective versions
of the properties on TAUT under consideration. Before defining them, we already state the result we aim
at.

Theorem 15. Assume that NP[TC] 6⊆ P[TClog TC]. Then:

(1) TAUT has no effectively p-optimal proof system.

(2) TAUT has no effectively almost optimal algorithm.

(3) There is no effective enumeration of the P-easy subsets of TAUT.

Definition 16. (1) We define the binary relation INV between L≤-sentences and natural numbers m ≥ 1
by

(ϕ, m) ∈ INV ⇐⇒ ϕ is a ≤ m-invariant sentence.

(2) We say that INV is effectively decidable on invariant sentences (more precisely, we should say decid-
able and effectively decidable on invariant sentences) if there is an algorithm A deciding INV and a
computable function f such that for all invariant ϕ and m ≥ 1

tA(ϕ, m) ≤ mf(ϕ).

The following is immediate by Proposition 14 and (4):

Lemma 17. If L≤ is an effectively P-bounded logic for P, then INV is decidable effectively on invariant
sentences.

Definition 18. Let Q ⊆ Σ∗. We say that Q has an effective enumeration of P-easy subsets, if it has an
enumeration M : N → Σ∗ of P-easy subsets of Q such that there are functions I : Σ∗ × N[X] → N and
b : Σ∗ × N[X] → N[X] such that for every Turing machine M and polynomial p ∈ N[X],

if the Turing machine M recognizes a subset Q′ ⊆ Q with time bound p ∈ N[X], then the
machine M(I(M, p)) recognizes Q′ with time bound b(M, p).
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We turn to the effective version of Lemma 8.

Lemma 19. If INV is effectively decidable on invariant sentences, then there is an effective enumeration
of the P-easy subsets of TAUT.

Sketch of Proof. We use the terminology of Lemma 8, in particular, let τ and ϕ0 be as there. We show that
the enumeration of P-easy subsets of TAUT given there has the desired effectivity property. By the proof
of the Immerman-Vardi Theorem (stating that least fixed-point logic captures P on ordered structures) we
know that we can assign to every Turing machine M that recognizes a subset Q of PROP with time bound
p ∈ N[X] an LFP[τ<]-sentence ϕ(M, p) such that

Q =
{
α ∈ PROP

∣∣ (A(α), <) |=LFP ϕ(M, p) for some ordering on A(α)
}

=
{
α ∈ PROP

∣∣ (A(α), <) |=LFP ϕ(M, p) for all orderings on A(α)
}
.

Hence, the sentence ϕ(M, p) is invariant. As we assume that INV is effectively decidable on invariant
sentences, we therefore can compute from (M, p) a polynomial bounding the time needed to recognize Q.
2

Definition 20. Let Q ⊆ Σ∗ and A an algorithm deciding Q. The algorithm A is effectively almost optimal
if there is a computable function b : Σ∗ → N[x] such that for every algorithm B deciding Q we have for
every x ∈ Σ∗ we have

tA(x) ≤ b(B)
(
tB(x) + |x|

)
. (9)

We now come to the effective version of Lemma 10.

Lemma 21. If TAUT has an effectively almost optimal algorithm, then INV is effectively decidable on
invariant sentences.

Sketch of Proof. The result is obtained by analyzing the proof of Lemma 10. Of course, now we assume
that O is an effectively almost optimal algorithm for TAUT. It should be clear that we can associate with
every L≤-sentence ϕ a polynomial p such that we can replace (7) by

there is an algorithm that on input (ϕ, m) computes α(ϕ, m) in time p(m).

Furthermore, from ϕ we can compute in polynomial time the algorithm Oϕ. By the effectivity property of
O, we also can compute the constant d satisfying (8) from ϕ. This shows that the algorithm A in the proof
has the required effectivity property. 2

Finally we define:

Definition 22. Let Q ⊆ Σ∗. A proof system P for Q is effectively p-optimal if there are two computable
functions S : Σ∗ × N[X] → Σ∗ and b : Σ∗ × N[X] → N[X] such that for every proof system P ′ for Q
with time bound p ∈ N[x] and every w ∈ Σ∗, we have

P ′(w) = P (S(P ′, p)(w)),

where S(P ′, p) is (the code of) a Turing machine with time bound b(P ′, p) and S(P ′, p)(w) denotes the
output of S(P ′, p) on input w.

Theorem 23. The following are equivalent:

(1) TAUT has an effectively p-optimal proof system.

(2) TAUT has an effectively almost optimal algorithm.

(3) TAUT has an effective enumeration of the P -easy subsets.

(4) INV is effectively decidable on invariant sentences.
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Proof: We already know that (2) implies (4) and (4) implies (3). The equivalence of (1), (2), and (3) are
shown by refining known proofs of the equivalence of the non-effective versions of (1)–(3). We shall give
the proof in the full version of the paper. 2

Lemma 24. If NP[TC] 6⊆ P[TClog TC], then INV is not effectively decidable on invariant sentences.

Proof: In [3] we have shown the following fact (already more or less explicit in [16]). There is an algorithm
that assigns to every nondeterministic Turing machine M a natural number m0(M) ≥ 1 and an L≤-sentence
ϕM such that for every m ≥ m0(M)

(ϕM,≤ m) ∈ INV ⇐⇒ M does not accept the empty input tape in ≤ m steps. (10)

By contradiction, we assume that INV is effectively decidable on invariant sentences. Then, by (10), there is
a computable function f : N → N and an algorithm A deciding for every nondeterministic Turing machine
M and every m ≥ 1 (not only for m ≥ m0(M)) whether M does not accept the empty input in ≤ m steps
and doing this in time

mf(‖M‖) (11)

for machines M with the property that all runs started with the empty input are infinite. We may assume
that f is increasing.

For any nondeterministic Turing machine M and every x ∈ Σ∗ we let Mx be the nondeterministic
Turing machine that, started with empty input tape, first writes x on some tape and then simulates M
started with x. Clearly we can define Mx such that ‖Mx‖ = O(‖M‖ + |x| · log |x|). We choose e ∈ N
such that

‖Mx‖ ≤ e · (‖M‖+ |x|2). (12)

Now we choose an increasing and time constructible function h : N → N such that f(2e · n2) ≤ h(n) for
all n ∈ N. Then, for all x, y ∈ N

f(e · (x + y2)) ≤ h(x) + h(y). (13)

We define g : N → N by g(n) := 2h(n); clearly g is time constructible and increasing, too. We show that
NTIME(gO(1)) ⊆ DTIME(gO(log g)), which yields the desired contradiction.

Let Q ⊆ Σ∗ be in NTIME(gO(1)). We choose a nondeterministic Turing machine M and constants
c, d ∈ N such that the machine M decides whether x ∈ Q in time c · (g|x|)d. As g is time constructible, we
can assume that every run of M on every instance x either accepts x in time c · g(|x|)d steps or is infinite.

For x ∈ {0, 1}∗ we have (recall the definition of Mx)

x ∈ Q ⇐⇒ Mx accepts the empty input tape in at most |x|+ c · g(|x|)d steps
⇐⇒ Mx accepts the empty input tape in at most 2c · g(|x|)d steps
⇐⇒ A accepts

(
Mx, 2c · g(|x|)d

)
.

and
x /∈ Q ⇐⇒ all runs of Mx started with empty input tape are infinite.

Hence, for x /∈ Q, the running time of A on input (Mx, 2c · g(|x|)d), by (11), (12), and (13), is bounded by(
2c · g(|x|)d

)f(e·(‖M‖+|x|2)) ≤ O
(
g(|x|)d·

(
h(‖M‖)+h(|x|)

))
≤ O

(
g(|x|)d·

(
h(‖M‖)+log g(|x|)

))
.

The desired algorithm B witnessing that Q ∈ DTIME(gO(log g)) runs as follows. On input x it simulates
(2c · (g(|x|))d·f(e·(‖M‖+|x|2)) steps of A. If A stops in that time, then B answers accordingly, otherwise B
accepts x. 2

Proof of Theorem 15. Immediate by Theorem 23 and Lemma 24. 2

In [3] we have shown that if E = NE, then (the logic L= and hence) L≤ are effectively P-bounded
logics for P . By Theorem 23 and Lemma 17 we obtain the following “effective versions” of a result due
to Krajı́c̆ek and Pudlák.
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Corollary 25. Assume E = NE. Then:

– TAUT has an effectively optimal proof system.

– TAUT has an effectively almost optimal algorithm.

– There is an effective enumeration of the P -easy subsets of TAUT.

Remark 26. More or less in the same way as we showed Lemma 24 one can derive:

If NP[TC] 6⊆ P[TClog TC], then INV is decidable and effectively decidable on noninvariant sen-
tences.

Clearly, L≤ is an effectively P-bounded logic for P if and only if INV is decidable, effectively decidable on
noninvariant sentences, and effectively decidable on invariant sentences.

As already mentioned we do not know any natural effectivity property of optimal proof systems equiv-
alent to ‘”L≤ is an effectively P-bounded logic for P” and by the previous observation thus equivalent to
“INV is decidable and effectively decidable on noninvariant sentences.”

Of course, there are equivalent versions, but there are not in the spirit of the properties we consider
here, e.g.:

The following are equivalent:

(a) L≤ is an effectively P-bounded logic for P.
(b) There is an algorithm B and a computable g such that for every Turing machine M and

constant c, if for every i ∈ N the machine M on input i in unary computes αi ∈ PROP in
time ic and (

αi+1 ∈ TAUT implies αi ∈ TAUT
)
,

then the algorithm B applied to M, c, i decides whether αi ∈ TAUT in time ig(M,c).

5. Slicewise monotone parameterized problems

Among others we have shown in Section 3 that L≤ is a P-bounded logic for P if TAUT has an almost
optimal algorithm. Extracting the idea underlying that proof we obtain the following general result that we
already state, even though we haven’t defined all the notions appearing in it so far.

Theorem 27. Let (Q,κ) be a slicewise monotone parameterized problem with decidable Q. If Σ∗ \Q has
an almost optimal algorithm, then (Q,κ) ∈ XPuni.

As every problem in co-NP has an almost optimal algorithm if TAUT has one, we immediately get:

Corollary 28. Let (Q,κ) be a slicewise monotone parameterized problem with Q in NP. If TAUT has an
almost optimal algorithm, then (Q,κ) ∈ XPuni.

We view parameterized problems as pairs (Q,κ) consisting of a problem Q ⊆ Σ∗ and a parameter-
ization κ : Σ∗ → N, which is required to be computable in polynomial time. We exemplify our way of
presenting parameterized problems by introducing the parameterized invariance problem p-INV, a param-
eterized version of the problem INV,

p-INV
Instance: An L≤-sentence ϕ and m ≥ 1 in unary.

Parameter: |ϕ|.
Problem: Is ϕ ≤ m-invariant?

A parameterized problem (Q,κ) is in the class XP if x ∈ Q is solvable in time |x|f(κ(x)) (more precisely,
in time O(|x|f(κ(x)))) for some computable f : N → N. Besides this class of the usual (strongly uni-
form) parameterized complexity theory we need its uniform version XPuni: (Q,κ) ∈ FPTuni if there is an
algorithm solving x ∈ Q in time |x|f(κ(x)) for some arbitrary f : N → N.

The relationship of these concepts with topics of this paper is already exemplified by the following
simple observation.
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Proposition 29. Let L be a logic for P and define p-|=L by

p-|=L

Instance: A structure A and an L-sentence ϕ.
Parameter: |ϕ|.

Problem: Is A |=L ϕ

Then

L is an effectively P-bounded logic for P ⇐⇒ p-|=L ∈ XP
L is a P-bounded logic for P ⇐⇒ p-|=L ∈ XPuni

and for L := L≤ we even have

L≤ is an effectively P-bounded logic for P ⇐⇒ p-|=L≤ ∈ XP
⇐⇒ p-INV ∈ XP

L≤ is a P-bounded logic for P ⇐⇒ p-|=L≤ ∈ XPuni

⇐⇒ p-INV ∈ XPuni.

A parameterized problem (Q, κ) is slicewise monotone if its instances have the form (x, n), where
x ∈ {0, 1}∗ and n ∈ N is given in unary, if κ(x, n) = |x|, and finally if for all x ∈ {0, 1}∗ and n, n′ ∈ N
we have

(x, n) ∈ Q and n < n′ imply (x, n′) ∈ Q.

The “complement” of p-INV, more precisely the problem

p-NOT-INV
Instance: An L≤-sentence ϕ and m ≥ 1 in unary.

Parameter: |ϕ|.
Problem: Is ϕ not ≤ m-invariant?

is slicewise monotone. Clearly,
(
p-NOT-INV ∈ XP ⇐⇒ p-INV ∈ XP

)
and the classical problem

underlying p-NOT-INV is in NP.
Further slicewise monotone problems with underlying classical problem in NP are:

p-GÖDEL
Instance: A first-order sentence ϕ and n ∈ N in unary.

Parameter: |ϕ|.
Problem: Does ϕ have a proof of length ≤ n?

p-FO-FINITE-GRAPH
Instance: A first-order sentence ϕ of vocabulary {E} with binary E and

n ∈ N in unary.
Parameter: |ϕ|.

Problem: Is there a graph G with G |= ϕ and |G| ≤ n?

p-ACC≤
Instance: A nondeterministic Turing machine M and n ∈ N in unary.

Parameter: ‖M‖.
Problem: Does M accept the empty input tape in ≤ n steps?
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Proof of Theorem 27. Let (Q,κ) be slicewise monotone and Q be an algorithm deciding Q. Assume that
Σ∗ \Q has an almost optimal algorithm O. We have to show that (Q,κ) ∈ XPuni.

Let S be the algorithm that, on x ∈ Σ∗, by systematically applying Q to the inputs (x, 0), (x, 1),. . .
computes

n(x) := the least n such that (x, n) ∈ Q.

If (x, n) /∈ Q for all n ∈ N, then n(x) is not defined and S does not stop.
We show that the following algorithm A witnesses that (Q, κ) ∈ XPuni.

A(x, n)
//x ∈ Σ∗, n ∈ N in unary

1. In parallel simulate S on input x and O on input (x, n).

2. if O stops first, then
3. if O accepts then reject else accept.

4. if S stops first, then
5. if n < n(x) then reject else accept.

By our assumptions on O and S and the slicewise monotonicity of Q, it should be clear that A decides Q.
We have to show that it does it in the time required by XPuni.

Case “(x, `) /∈ Q for all ` ∈ N.” In this case S on input x does not stop. Hence, the running time of A on
input (x, n) is determined by O. The following algorithm Ox decides Σ∗ \Q: on input (y, `) the algorithm
Ox checks whether y = x. If so, it accepts and otherwise it runs O on input (y, `) and answers accordingly.
Clearly

tOx
((x, `)) ≤ O(|x|).

As O is optimal, we know that there is a constant dx ∈ N (depending on x) such that for all (y, `) ∈ Σ∗ \Q

tO((y, `)) ≤
(
|(y, `)|+ tOx

((y, `))
)dx

.

In particular, we have
tO((x, n)) ≤

(
|(x, n)|+ O(|x|)

)dx ≤ nd′x

for some constant d′x ∈ N (depending on x).

Case “(x, `) ∈ Q for some ` ∈ N.” Then S will stop on input x. Thus, in the worst case, A on input
(x, n) has to wait till the simulation of S on x stops and then must check whether the result n(x) of the
computation of S is bigger than n or not and answer according to Line 5. So in the worst case the algorithm
A takes time O(tS(x) + O(n)) ≤ nO(tS(x)). 2

By the previous remarks, we get:

Corollary 30. If there is an almost optimal algorithm for TAUT, then p-GÖDEL, p-FO-FINITE-GRAPH
and p-ACC≤ are in XPuni.
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