
On the Power of Unambiguity in Logspace∗

Aduri Pavan† Raghunath Tewari‡ N. V. Vinodchandran§

January 12, 2010

Abstract

We report progress on the NL vs UL problem.

- We show unconditionally that the complexity class ReachFewL ⊆ UL. This improves
on the earlier known upper bound ReachFewL ⊆ FewL.

- We investigate the complexity of min-uniqueness - a central notion in studying the
NL vs UL problem.

– We show that min-uniqueness is necessary and sufficient for showing NL = UL.
– We revisit the class OptL[log n] and show that ShortestPathLength - com-

puting the length of the shortest path in a DAG, is complete for OptL[log n].
– We introduce UOptL[log n], an unambiguous version of OptL[log n], and show

that (a) NL = UL if and only if OptL[log n] = UOptL[log n], (b) LogFew ≤
UOptL[log n] ≤ SPL.

- We show that the reachability problem over graphs embedded on 3 pages is complete
for NL. This contrasts with the reachability problem over graphs embedded on 2
pages which is logspace equivalent to the reachability problem in planar graphs and
hence is in UL.

∗Research supported in part by NSF grants CCF-0830730, CCF-0916525, CCF-0830479, CCF-0916797.
†Department of Computer Science, Iowa State University: email:pavan@cs.iastate.edu
‡Department of Computer Science and Engineering, University of Nebraska-Lincoln:

email:rtewari@cse.unl.edu
§Department of Computer Science and Engineering, University of Nebraska-Lincoln:

email:vinod@cse.unl.edu

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 9 (2010)

1 Introduction

This paper is centered around the NL vs UL problem. Can nondeterministic space bounded
computations be made unambiguous? This fundamental question was first raised by Rein-
hardt and Allender in the paper entitled “Making Nondeterminism Unambiguous” [RA00].
Reinhardt and Allender showed that in the non-uniform setting it is indeed possible to simu-
late any nondeterministic logspace computation by an unambiguous one (that is, NL/poly =
UL/poly) thus giving the first strong evidence that this relation might hold in the uniform
setting as well.

A nondeterministic machine is unambiguous if it has at most one accepting path on any
input [Val76]. UL is the class of decision problems that are decided by unambiguous logspace
bounded nondeterministic machines. Clearly UL is the natural logspace analog of UP [Val76],
the unambiguous version of NP. Historically, several researchers have investigated this class
(for example, [BHS93, AJ93, BJLR91, BDHM92]) in different contexts. But Buntrock et
al. [BJLR91] are the first to conduct a focused study of the complexity class UL and its
variations.

Since the above-mentioned paper due to Reinhardt and Allender, there has been signifi-
cant progress reported on the NL vs UL problem. In [ARZ99], Allender, Reinhard, and Zou
showed that, under the (very plausible) hardness assumption that deterministic linear space
has functions that can not be computed by circuits of size 2εn, the constructions given by
Reinhardt and Allender can be derandomized to show that NL = UL [ARZ99]. As the reach-
ability problem for directed graphs is complete for NL, it is natural to investigate the space
complexity of reachability for subclasses of directed graphs and indeed the recent progress has
been in this direction. In [BTV09], it is shown that reachability for directed planar graphs is
in UL. Subsequently, Thierauf and Wagner showed that reachability for K3,3-free and K5-free
graphs can be reduced to planar reachability in logspace [TW09]. Kynčl and Vyskočil showed
that reachability for bounded genus graphs also reduces to the planar case [KV09]. Thus
reachability for these classes of graphs is also in UL.

These results provide significant evidence that NL equals UL and establishing this funda-
mental equivalence may be within the reach of current techniques.

Our Results

Complexity of ReachFewL

FewL, the logspace analog of the polynomial time class FewP [All86, CH90], is the class of
languages that are decided by nondeterministic logpsace machines with the promise that on
any input there are at most polynomially many accepting paths [BJLR91, BDHM92]. Is
FewL = UL? As FewL ⊆ NL, this is a very interesting restriction of NL = UL question (it is
known that FewL is in LpromiseUL [All06]). While we are unable to show that FewL ⊆ UL , as
our first result we show that the class ReachFewL ⊆ UL.

Result 1. ReachFewL ⊆ UL ∩ coUL.
ReachFewL is a restriction of FewL [BJLR91]. We call a nondeterministic machine M

a reach-few machine, if for any input x and any configuration c of M(x), the number of
paths from the start configuration to c, is bounded by a polynomial. ReachFewL is the
class of languages decided by a reach-few machine that is logspace bounded. Notice that
for a machine accepting a FewL language there can be (useless) configurations which does

2

not lead to any accepting configuration but still with exponentially many paths from the
start configuration to them. For a reach-few machine, the number of paths from the start
configuration to any configuration is bounded by a polynomial. It is worth noting that such
distinctions are not meaningful in the polynomial time setting as there is enough space to store
the entire computation path during a nondeterministic computation. Our result improves on
the previous known trivial upper bound of ReachFewL ⊆ FewL.

The class ReachFewL was also investigated by Buntrock, Hemachandra, and Siefkes [BHS93]
under the notation Nspace-Ambiguity(log n, nO(1)). In [BHS93], the authors define, for a space
bound s and an unambiguity parameter a, the class Nspace-Ambiguity(s(n), a(n)) as the class
of languages accepted by s(n) space bounded nondeterministic machines for which the number
of paths from the start configuration to any configuration is at most a(n). They show that
Nspace-Ambiguity(s(n), a(n)) ⊆ Uspace(s(n) log a(n)) (hence Nspace-Ambiguity(log n,O(1)) ⊆
UL). Our method can be used to show that Nspace-Ambiguity(s(n), a(n)) ⊆ Uspace(s(n) +
log a(n)), thus substantially improving their upper bound.

We extend our first result to show that in fact we can count the number of accepting paths
of a ReachFewL computation using an oracle in UL∩ coUL and this implies that ReachLFew ⊆
UL ∩ coUL (ReachLFew is similar to the class Few [CH90] in the polynomial-time setting).

Complexity of Min-uniqueness

Our second consideration is the notion of min-uniqueness which is a central notion in the
study of unambiguity in the logspace setting. Min-uniqueness was first used by Wigderson to
show that NL ⊆ ⊕L non-uniformly [Wig94]. For a directed graph G and two nodes s and t,
G is called st-min-unique if the minimum length s to t path is unique (if it exists). G is min-
unique with respect to s, if it is sv-min-unique for all vertices v. While st-min-uniqueness
was sufficient for Wigderson’s result, Reinhardt and Allender used the stronger version of
min-uniqueness to show that NL ⊆ UL/poly. In particular, they essentially showed that a
logspace algorithm that transforms a directed graph into a min-unique graph with respect
to the start vertex can be used to design an unambiguous algorithm for reachability. This
technique was subsequently used in [BTV09] to show that reachability for planar directed
graphs is in UL. These results strongly indicate that understanding min-uniqueness is crucial
to resolving the NL vs UL problem.

Our second set of results is aimed at understanding min-uniqueness from a complexity-
theoretic point of view. First we observe that min-uniqueness is necessary to show that
NL = UL: if NL = UL, then there is a UL algorithm that makes any directed graph min-
unique with respect to the start vertex. It is an easy observation that Reinhardt and Allender’s
technique will work even if the algorithm that makes a directed graph min-unique is only UL
computable. Thus min-uniqueness is necessary and sufficient for showing NL = UL.

Result 2: NL = UL if and only if there is a polynomially-bounded UL-computable weight
function f so that for any directed acyclic graphs G, f(G) is min-unique with respect to s.

Graph reachability problems and logspace computations are fundamentally related. While,
reachability in directed graphs characterizes NL, Reingold’s break-through results implies that
reachability in undirected graphs captures L [Rei08]. We ask the following question. Can we
investigate the notion of min-uniqueness in the context of complexity classes? We introduce
a logspace function class UOptL[log n] towards this goal.

OptL is the function class defined by Àlvarez and Jenner (in [AJ93]) as the logpsace analog

3

of Krentel’s OptP [Kre88]. OptL is the class of functions whose values are the maximum over
all the outputs of an NL-transducer. Àlvarez and Jenner showed that this class captures the
complexity of some natural optimization problems in the logspace setting (eg. computing the
lexicographically maximum path of length ≤ n from s to t in a directed graph).

We consider OptL[log n], the restriction of OptL where the function values are bounded by
a polynomial. Àlvarez and Jenner considered this restriction and showed that OptL[log n] =
FLNL[log n]. However, previously there were no completeness results known for this class. We
show the first completeness result for OptL[log n]. Consider the problem: Given G and two
nodes s and t. Compute the length of the shortest path from s to t (denoted by Shortest-
PathLength). We show that ShortestPathLength is complete for the class OptL[log n]
(under metric reductions).

Result 3. ShortestPathLength is complete for OptL[log n] = FLNL[log n].

Motivated by this completeness result, we define a new unambiguous function class UOptL[log n]
(unambiguous OptL: the minimum is output on a unique computation path). We show that
NL = UL is equivalent to to the question whether OptL[log n] = UOptL[log n].

Result 4. NL = UL if and only if OptL[log n] = UOptL[log n].

SPL, the ‘gap’ version of UL, is an interesting logspace class first studied in [ARZ99]. The
authors showed that the ‘matching problem’ is contained in a non-uniform version of SPL.
They also show that SPL is powerful enough to contain FewL. We show that UOptL[log n] ⊆
FLSPL[log n]. Thus any language that is reducible to UOptL[log n] is in the complexity class
SPL. This contrasts with the equivalence OptL[log n] = FLNL[log n]. We also show that the
class LogFew reduces to UOptL[log n] (refer to the next section for the definition of LogFew).

Result 5. LogFew ≤ UOptL[log n] ⊆ FLSPL[log n].

Figures 1 and 2 depict the relations among various unambiguous and ‘few’ classes known
before and new relations that we establish in this paper, respectively. Definitions of these
complexity classes are given in subsequent sections.

Three pages are sufficient for NL

Finally we consider the reachability problem for directed graphs embedded on 3 pages and
show that it is complete for NL. This is in contrast with reachability for graphs on 2 pages
which is logspace equivalent to reachability in grid graphs and hence is in UL by the result
of [BTV09]. Thus in order to show that NL = UL, it is sufficient to extend the results of
[BTV09] to graphs on 3 pages. It is also interesting to note that reachability for graphs on 1
page is equivalent to reachability in trees and is complete for L.

Result 6. Reachability in directed graphs embedded on 3 pages is complete for NL.

We use a combination of existing techniques for proving our results.

2 Logspace Complexity Classes

We assume familiarity with the basics of complexity theory and in particular the log-space
bounded complexity class NL. It is well known that checking for st-connectivity for general

4

ReachUL

ReachFewL UL ∩ coUL

UL

FewUL

LogFewFewL

LFew

NL ∩ SPL

ReachUL

ReachFewL

ReachLFew

UL ∩ coUL

UL

FewUL

LogFewFewL

LFew UOptL[logn]

NL ∩ SPL

1

Figure 1: Relations known before.

ReachUL

ReachFewL UL ∩ coUL

UL

FewUL

LogFewFewL

LFew

NL ∩ SPL

ReachUL

ReachFewL

ReachLFew

UL ∩ coUL

UL

FewUL

LogFewFewL

LFew UOptL[logn]

NL ∩ SPL

1

Figure 2: New relations.

directed graphs is NL-complete. We call a nondeterministic logspace machine an NL machine.
For an NL machine M , let accM (x) and rejM (x) denote the number of accepting computations
and the number of rejecting computations respectively. Denote gapM (x) = accM (x)−rejM (x).

We are interested in various restrictions of NL machines with few accepting paths. In
the literature (eg [BJLR91, BDHM92, AJ93, ARZ99]) various versions of unambiguity and
fewness have been studied. We first define them all here.

Definition 1. (Unambiguous machines) A nondeterministic logspace machine M is
- reach-unambiguous if for any input and for any configuration c, there is at most one

path from the start configuration to c. (The prefix ‘reach’ in the term indicates that
the property should hold for all configurations reachable from the start configuration).

- unambiguous if for any input there is at most one accepting path.
- weakly unambiguous if for any accepting configuration c there is at most one path from

the start configuration to c.

Definition 2. (Unambiguous classes)

- ReachUL - class of languages that are decided by reach-unambiguous machines with at
most one accepting path on any input.

- UL - class of languages that are decided by unambiguous machines.

- FewUL - class of languages that are decided by weakly unambiguous machines.

- LogFew - class of languages L for which there exists a weakly unambiguous machine M
and a logspace computable predicate R such that x ∈ L if and only if R(x, accM (x)) is
true.

We could define a ‘reach’ version of FewUL. But that coincides with ReachUL as shown
in [BJLR91]. The following containments are easy: ReachUL ⊆ UL ⊆ FewUL ⊆ LogFew. It is
also known that FewUL is Ld(UL) (logspace disjunctive truth-table closure of UL) [BJLR91].

By relaxing the unambiguity condition to a polynomial bound on the number of paths,
we get analogous ‘few’ classes.

5

Definition 3. (Few machines) A nondeterministic logspace machine M is a

- reach-few machine if there is a polynomial p so that for any input x and for any config-
uration c, there are at most p(|x|) paths from the start configuration to c.

- few machine if there is a polynomial p so that for any input x there are at most p(|x|)
accepting path.

Definition 4. (Few classes)

- ReachFewL - class of languages that are decided by reach-few machines.

- ReachLFew - class of languages L for which there exists a reach-few machine M and a
logspace computable predicate R such that x ∈ L if and only if R(x, accM (x)) is true.

- FewL - class of languages that are decided by few-machines.

- LFew - class of languages L for which there exists a few machine M and a logspace
computable predicate R such that x ∈ L if and only if R(x, accM (x)) is true.

As mentioned in the introduction, ReachFewL is the same class as Nspace−Ambiguity(log n, nO(1))
defined in [BHS93]. In [BJLR91], the authors observe that ReachFewL ⊆ LogDCFL. This is
because a depth first search of a reach-few machine can be implemented in LogDCFL.

The following containments follow from the definitions: ReachFewL ⊆ FewL ⊆ LFew. It is
also clear that all the above-defined classes are contained in LFew and it is shown in [ARZ99]
that LFew ⊆ NL. Thus all these classes are contained in NL. Finally, we also consider the
class SPL - the ‘gap’ version of UL. A language L is in SPL if there exists an NL-machine
M so that for all inputs x, gapM (x) ∈ {0, 1} and x ∈ L if and only if gapM (x) = 1. SPL is
contained in ⊕L (in fact all ‘mod’ classes) and it is big enough to contain LFew[ARZ99]. A
nonuniform version of SPL contains the matching problem [ARZ99].

We will use metric reductions for functional reducibility. A function f is logspace metric
reducible to function g, if there are logsapce computable functions h1 and h2 so that f(x) =
h1(x, g(h2(x))).

3 ReachFewL ⊆ UL ∩ coUL

We will use the technique of Reinhardt and Allender to show the upper bound. We will state
their theorem in a suitable form. But first we repeat the definition of min-uniqueness.

Definition 5. Let G = (V,E) be a directed graph. For a pair of vertices s and t we say
G is st-min-unique if there is a path from s to t in G, then the minimum length path from
s to t is unique. G is called min-unique with respect to vertex s, if for all vertices v, G is
sv-min-unique. G is called min-unique if it is min-unique with respect to all the nodes.

The following theorem from [RA00] states that the reachability problem can be solved
unambiguously for classes of graphs that are min-unique with respect to the start vertex.
Moreover, we can also check whether a graph is min-unique unambiguously.

6

Theorem 1 ([RA00]). There is an unambiguous nondeterministic logspace machine M that
on input a directed graph G and two vertices s and t such that

1. If G is not min-unique with respect to s, then M outputs ‘not min-unique’ on a unique
path.

2. If G is min-unique with respect to s, then M accepts on a unique path if there is a
directed path from s to t, and rejects on a unique path if there are no paths from s to t.

We can also define the notion of min-uniqueness for weighted graphs. But this is equivalent
to the above definition for our purposes if the weights are positive and polynomially bounded
as we can replace an edge with weight k with a path of length k. In fact we will some times
use this definition for weighted graphs without explicitly mentioning it. Thus for showing
that NL = UL it is sufficient to come up with a positive and polynomially bounded weight
function that is UL-computable and makes a directed graph min-unique with respect to the
start vertex.

Theorem 2. ReachFewL ⊆ UL ∩ coUL

Proof. Let L be in ReachFewL decided by the machine M . Let G(M,x) be the configuration
graph of M on input x and s be the start configuration. Let t be the polynomial that bounds
the number of paths from s to any configuration. Consider the edges in the lexicographical
order. For the ith edge give a weight 2i. This is a very good weight function that assigns
every path with unique weight. The problem is that this is not polynomially bounded. From
this weight function we will give a polynomial number of weight functions that are logspace
computable and polynomially bounded so that for one of them G(M,x) will be min-unique
with respect to s. Since by Theorem 1 it is possible to check whether a given weight function
makes the graph min-unique using a UL∩ coUL computation, we can go through each weight
function sequentially.

We will use the well known hashing technique introduced in [FKS84] for making the graph
min-unique. Let N be the total number of configurations of M(x). With respect to the above
mentioned weight function, the weight of any path is bounded by 2N+1. Let p1, p2, . . . , pl be
the first l distinct prime numbers so that

∏l
i=1 pi > 2N+1t2(N). Then l ≤ N5 and pl ≤ N6.

Hence each pi has a logarithmic bit representation.
Let P be the set of all paths from s and wi be the weight of the ith path in P. Consider

the product
∏
i,j(wi − wj). This product is bounded by 2N+1t2(N) and is nonzero since

for any pair i, j such that i 6= j, wi 6= wj . Thus
∏
i,j(wi − wj) 6= 0(mod

∏
pi). Hence

there should be one (first) pk with respect to which the product is non-zero and modulo this
pk, wi 6= wj for all i, j. That is the weight function w mod pk is a weight function which
is UL-computable for which the configuration graph is min-unique with respect to the start
configuration (UL-computable because, by Theorem 1, we can go through each prime and
reject those which are not ‘good’ using a UL computation, until we reach pk).

Buntrock, Hemachandra, and Siefkes [BHS93] defined, for a space bound s and an un-
ambiguity parameter a, the class Nspace-Ambiguity(s(n), a(n)) as the class of languages ac-
cepted by s(n) space bounded nondeterministic machines for which the number of paths
from the start configuration to any configuration is at most a(n). As one of their main
theorems, the authors showed that Nspace-Ambiguity(s(n), a(n)) ⊆ Uspace(s(n) log a(n))

7

(hence Nspace-Ambiguity(log n,O(1)) ⊆ UL). Our method can be used to show that Nspace-
Ambiguity(s(n), a(n)) ⊆ Uspace(s(n) + log a(n)), thus substantially improving their upper
bound.

Theorem 3. For a space bound s(n) ≥ log n and ambiguity parameter a(n) computable in
space s(n) so that a(n) = 2O(s(n)), Nspace-Ambiguity(s(n), a(n)) ⊆ Uspace(s(n) + log a(n)).

Theorem 4. Let L ∈ ReachFewL accepted by a reach-few machine M . Then the #L function
accM (x) is computable in FLUL∩coUL.

Proof. The idea is to compute the number of paths from s to t of a ReachFewL-computation
with queries to UL∩ coUL language using a logspace machine. If we make sure that all paths
from s to t are of different weights then we can count them by making queries of the form
“is there a path of length i from s to t” for all i ≤ N and by counting the number of positive
answers.

We will use primes as before. But among polynomially many primes we have to reject
those primes that does not give distinct weights to paths from s to t. Notice that Theorem 1
can only be used to rejects primes that do not make the graphs min-unique. It is possible
that some prime makes the graph min-unique with respect to s but the graph may still have
two paths from s to t of the same weight. For checking this more strict condition, we use the
above result that ReachFewL is in UL ∩ coUL.

Let L be a language in ReachLFew witnessed by a machine M and a polynomial q so that
for every x, the number of paths from the start configuration of M(x) to any configuration c
is bounded q(|x|). Let G(M,x) denote the standard layered configuration graph of M(x). Then
this graph also satisfy the property that the number of paths from the start configuration in
the first layer to any configuration c is bounded by q(|x|). Then the following language is in
UL ∩ coUL: L = {(x, c, i) | there is a path of length i from s to c in G(M,x)}.

In order to check whether p is a ‘bad’ prime, we need to check whether there are two paths
from s to t of the same weight.
“p is bad ⇔ ∃w∃e = (c, c′)∃a∃ a path of length a from s to c∧∃ a path of weight w−w(e)−a
from c′ to t ∧∃ a path of length w from s to t in G− e”

This can be decided with polynomially many queries to L. Once we get a good prime p,
we can use L as oracle to count the number of distinct paths from s to t using a deterministic
logspace machine. This gives ReachLFew ⊆ UL ∩ coUL.

Corollary 5. ReachLFew ⊆ UL ∩ coUL

4 Complexity of Min-uniqueness

Theorem 1 states that min-uniqueness is sufficient for showing NL = UL. Next we prove that
if NL = UL then there is a UL-computable weight function that makes any directed acyclic
graph min-unique with respect to the start vertex. Thus min-uniqueness is necessary and
sufficient for showing NL = UL.

Theorem 6. NL = UL if and only if there is a polynomially-bounded UL-computable weight
function f so that for any directed acyclic graphs G, f(G) is min-unique with respect to s.

8

Proof. The reverse direction follows from the above theorem due to Reinhardt and Allender.
For the other direction the idea is to compute a spanning tree of G rooted at s using reach-
ability queries. Since NL is closed under complement, under the assumption that NL = UL,
reachability is in UL ∩ coUL. Thus the following language A = {(G, s, v, k) | there is a path
from s to v of length ≤ k} is in UL ∩ coUL.

The tree can be described as follows. We say that a vertex v is in level k if the minimum
length path from s to v is of length k. A directed edge (u, v) is in the tree if for some k (1) v
is in level k (2) u is the lexicographically first vertex in level k − 1 so that (u, v) is an edge.

It is clear that this is indeed a well defined tree and deciding whether an edge e = (u, v)
is in this tree is in LA ⊆ UL ∩ coUL.

Now for each edge in the tree give a weight 1. For the rest of the edges give a weight n2.
It is clear that shortest path from a vertex with respect to this weight function is min-unique
with respect to s and it is computable using a UL-transducer.

Àlvarez and Jenner [AJ93] defines OptL as the logspace analog of Krental’s OptP. They
show that OptL captures the complexity of some natural optimization problems in the logspace
setting (eg. computing lexicographically maximum path of length ≤ n from s to t in a directed
graph). They also consider OptL[log n] where the function values are bounded by a polynomial
(hence has O(log n) bits representations). Here we revisit the class OptL [AJ93] and study
them in relation to the notion of min-uniqueness. We define OptL as a minimization class and
show that computing the minimum length path from s to t in a directed graph is complete
(under metric reductions) for OptL[log n].

Definition 6. An NL-transducer is a nondeterministic logspace bounded Turing machine
with a one-way output tape in addition to its read-only input tape and read/write work
tapes. We will assume that an NL-transducer will not repeat any configuration during its
computation. Hence its configuration graph contains no cycles and all computation paths
will halt with accepting or rejecting state after polynomially many steps. Let M be such a
NL-transducer. An output on a computation path of M is valid if it halts in an accepting
state. For any input x, optM (x) is the minimum value over all valid outputs of M on x. If all
the paths reject, then optM (x) =∞. Further, M is called min-unique if for all x either M(x)
rejects on all paths or M(x) outputs the minimum value on a unique path.

Definition 7. A function f is in OptL if there exists a NL-transducer M so that for any
x, f(x) = optM (x). A function f is in UOptL if there is a min-unique nondeterministic
transducer M so that for any x, f(x) = optM (x). Define OptL[log n] and UOptL[log n] as the
restriction of OptL and UOptL where the output of the transducers are bounded by O(log n)
bits.

If the output is unrestricted, then the computation path of an NL-transducer can be
encoded in the output and hence all the output can be made distinct. Hence the classes OptL
and UOptL are equivalent. But if we restrict the output to be of O(log n) bits the classes
OptL and UOptL coincide if and only if NL = UL as we show next.

We will need the following proposition shown in [AJ93]. FLNL[log n] denotes the subclass
of FLNL where the output length is bounded by O(log n).

Proposition 7 ([AJ93]). OptL[log n] = FLNL[log n].

9

Theorem 8. OptL[log n] = UOptL[log n] if and only if NL = UL.

Proof. NL = UL ⇒ OptL[log n] = UOptL[log n]: Since NL is closed under complement, if
NL = UL then NL = UL ∩ coUL. Hence OptL[log n] = FLNL = FLUL∩coUL. For a function
f ∈ OptL, let M be FL machine that makes query to a language L ∈ UL∩ coUL and computes
f . Let N be the unambiguous machine that decided L. The min-unique transducer M ′ will
simulate M and whenever a query y is made to L, it will simulate N on y and continue only
on the unique path where it has an answer. In the end M ′ will output the value computed
by M on a unique path.

OptL[log n] = UOptL[log n] ⇒ NL = UL: Let L ∈ NL. Since NL is closed under com-
plement, there is a nondeterministic machine M that on input x accepts on some path and
outputs ‘?’ on all other paths if x ∈ L, and rejects on some paths and outputs ‘?’ on all
other paths if x 6∈ L. We will show that under the assumption L ∈ coUL. Consider the
NL-transducer which on input x simulates M(x) and outputs 1 if M accepts and outputs 0
if M rejects and outputs a large value on paths with ‘?’. Let N be min-unique machine that
computes this OptL function. Thus if x 6∈ L then N(x) has a unique path on which it outputs
0 (and there may be paths on which it outputs 1). If x ∈ L then there is no path it outputs
0. Now consider the machine N ′ that simulates N and if N outputs 0 then it accepts. For
all other values N ′ rejects. Clearly this is an unambiguous machine that decides L.

Next we will exhibit a natural problem that is complete for OptL[log n]. Consider the
computational problem ShortestPathLength

- ShortestPathLength: Given (G, s, t) where G = (V,E) is a directed graph and s
and t are two vertices in V . Compute the length of the shortest path from s to t. If no
path exists then output ∞.

Theorem 9. ShortestPathLength is complete for OptL[log n] (under metric reductions)

Proof. For the containment in OptL[log n], consider the NL-transducer, which guesses a path
of length ≤ n from s to t. It the guess succeeds then outputs the length of the path. Else
it rejects. If G has a path from s to t, then the best path will be of length ≤ n hence the
minimum among the outputs will be the length of the best path.

For the completeness, let f be a function in OptL[log n] computed by an NL-transducer M .
Since the output of M is of length c log n for some constant c, we will assume that M stores
the intermediate value of the output on a separate work-tape (called the output work-tape)
until the end of the computation, and before halting, M copies the contents of this work tape
to the output tape deterministically and halts. Thus the configuration of this machine will
also include the contend of this output work-tape. We will denote a typical configuration by
the tuple (c, o) where o is the content of the output work tape. We will assume that at the
start configuration the contents of this work-tape is 0.

Consider the following layered weighted graph G(M,x). G(M,x) has p(|x|) + 1 layers were
p is the polynomial bounding the running time of M . For 1 ≤ i ≤ p(|x|), the ith layer has
vertices (i, c, o) where (c, o) is a configuration. The last layer which has just one vertex t.
There is an edge from (i, c, o) to (i + 1, c′, o′) if there is a valid move from the configuration
(c, o) to (c′, o′). The weight of this edge is (o′ − o) + nk where k is a large constant so that
nk > p(n) × nc. We will also add edges from (i, c, o) to (i + 1, c, o) if (c, o) is an accepting

10

configuration. The weight of this edge is nk. Finally we will add an edge with weight nk from
(p(n), c, o) to t if (c, o) is an accepting configuration. For correctness, any computation path
of M with an output o corresponds to a path in G(M,x) from the start configuration to t of
weight o+ p(n)nk. Since the weights on the edges are positive and bounded by a polynomial,
it is easy to replace to each edge with weight l with a path of length l.

It can be verified that the standard reductions from directed graph reachability to other
NL-complete problems also shows that a version of their optimization problems are OptL[log n]
complete. For example DFAShortestWordLength (Given a DFA M . Find the length of
the shortest word that M accepts if L(M) is nonempty) and WordGenLength (Given a
set X with an associative binary operation, a subset S ⊆ X, and a word w over X. Find the
length of the shortest generation sequence of w) are complete for OptL[log n].

As UOptL[log n] ⊆ OptL[log n], UOptL[log n] is in FLNL[log n]. Here we show that UOptL[log n]
can be computed using a SPL oracle. Thus if NL reduces to UOptL[log n], then NL ⊆ SPL.

Theorem 10. UOptL[log n] ⊆ FLSPL[log n]

Proof. Let f ∈ UOptL[log n] and let M be the min-unique NL-transducer that witnesses that
f ∈ UOptL[log n] and let p be the polynomial bounding the value of f . Consider the following
language L:

L = {(x, i) | f(x) = i and i ≤ p(|x|)}.
We will show that L ∈ SPL. Then in order to compute f a logspace machine will ask

polynomially many queries (x, i) for 1 ≤ i ≤ p(n).
Consider the following machine N which behaves as follows: N on input x and i ≤ p(n),

simulates M on input x and accepts if and only if M halts with an output ≤ i. Let g(x, i)
counts the number of accepting paths ofN on input (x, i). Notice that for i < f(x), g(x, i) = 0,
for i = f(x) then g(x, i) = 1, and for i > f(x), g(x, i) ≥ 1.

Now consider the GapL function h(x, j) = g(x, j)Πj−1
i=1 (1−g(x, i)). It follows that h(x, j) =

1 exactly when f(x) = i. For the rest of i, h(x, j) = 0. Thus L ∈ SPL. r

Corollary 11. If NL ⊆ LUOptL[logn] then NL ⊆ SPL.

An interesting question is whether FewL reduces to UOptL. We are not able to show this,
but we show that the class LogFew reduces to UOptL.

Theorem 12. LogFew ≤ UOptL[log n] (under metric reductions)

Proof. Let L be a language in LogFew. Let M be a weakly unambiguous machine that decided
L. Consider the NL-transducer N that on input x, computes the number of accepting paths of
M(x): N(x) guess a l so that 1 ≤ l ≤ p(n) (where p is the polynomial bounding the number
of accepting configurations) and then guess l distinct accepting paths in lexicographically
increasing accepting configurations and accepts and outputs l if all of them accepts. Clearly
N outputs accM (x) on exactly one computation path and all other paths that accepts will
have output < accM (x).

11

5 Three pages are sufficient for NL

We show that the reachability problem for directed graphs embedded on 3 pages is complete
for NL. It can be shown that the reachability problem for graphs on 2 pages is equivalent
to reachability in grid graphs and hence is in UL by the result of [BTV09]. Thus in order
to show that NL = UL it is sufficient to extend the techniques of [BTV09] to graphs on 3
pages. It is also interesting to note that graphs embedded on 1 page are outer-planar and
hence reachability for directed graphs on 1 page is complete for L [ABC+06].

Definition 8. 3Page is the class of all graphs G, that can be embedded on 3 pages as
follows: all vertices of G lie along the spine and the edges lie on exactly one of the two pages
without intersection. Moreover all edges are directed from top to bottom. 3PageReach is
the language consisting of tuples (G, s, t), such that G ∈ 3Page, s and t are two vertices in G
and there exists a path from s to t in G.

Theorem 13. 3PageReach is complete for NL.

Proof. Assume that we are given a topologically sorted DAG G, with (u1, u2, . . . , un) being
the topological ordering of the vertices of G. We want to decide if there is a path in G from
u1 to un. We define an ordering on the edges of G, say E(G). Given two edges e1 and e2, (i)
if head of e1 precedes head of e2, then e1 precedes e2 in the ordering, (ii) if head of e1 is the
same as the head of e2, then e1 precedes e2 in the ordering if tail of e1 precedes tail of e2. It
is easy to see that E(G) can be constructed in logspace given G and in any path from s to t,
if edge e1 precedes e2, then e1 precedes e2 in E(G) as well. Let m be the number edges in G.

We create 2m copies of each vertex in G and let vji denote the jth copy of the vertex ui,
for i ∈ [n] and j ∈ [2m]. We order the vertices along the spine of H from top to bottom as
follows:
(v1

1, v
1
2, . . . , v

1
n, v

2
n, v

2
n−1, . . . , v

2
1, v

3
1, v

3
2, . . . , v

3
n, . . . , v

2m
n , . . . , v2m

1).
Next we need to connect all the 2m vertices corresponding to each ui from the top to

bottom. We use the first 2 pages to do that. Put the edge (vji , v
j+1
i) in H, for each i ∈ [n]

and each j ∈ [2m − 1], using page 1 when j is odd and page 2 when j is even. For the kth
edge in E(G), say ek = (uk1 , uk2), put the edge (v2k−1

k1
, v2k
k2

) in H, using page 3. It is clear
that this can be done without any two edges crossing each other. We give an example of this
reduction in Figure 3. The claim is, there exists a path from u1 to un in G if and only if there
exists a path from v1

1 to v2m
n in H.

u1

u2 u3

u4

(a) (b)

Figure 3: (a) Graph G. (b) The corresponding graph H. The dashed edges of H are on page
3.

Suppose there exists a path p from u1 to un in G. Let p = (ei1 , . . . eil). For each j ∈ [l],
corresponding to eij there exists an edge in page 3 of H by construction, say fj . Also by

12

construction and the ordering E(G), the tail of fj lies above the head of fj+1 along the spine
of H. Further, since the head of eij+1 is the same as the tail of eij for j ∈ [l− 1], there exists
a path from the tail of fj to the head of fj+1 (using edges from pages 1 and 2). Thus we get
a path from v1

1 to v2m
n in H.

To see the other direction, let ρ be a path from v1
1 to v2m

n in H. Let ρ3 = (α1, α2, . . . , αr)
be the sequence of edges of ρ that lie on page 3. Note that each of the edges in ρ3 has a
unique pre-image in G by the property of the reduction. This defines a sequence of edges p′

in G by taking the respective pre-images of the edges in ρ3. Now the sub-path of ρ from the
v1
1 to the head of α1 uses only edges from page 1 and 2 and thus by construction the head of
α1 is a vertex vl11 (for some l1 ∈ [2m]). Similar argument establishes that the tail of αr is a
vertex vl2n (for some l2 ∈ [2m]) and also that the tail of αi and the head of αi+1 are the copies
of the same vertex in G, for i ∈ [r − 1]. Therefore p′ is a path from u1 to un in G.

6 Acknowledgments

We thank Eric Allender for an interesting email discussion and providing valuable suggestions
that improved the presentation of the paper. We thank V. Arvind for interesting email
exchanges on the topic of this paper. The last author deeply thanks Meena Mahajan and
Thanh Minh Hoang for discussions on a related topic during a recent Dagstuhl workshop.
We thank Samir Datta and Raghav Kulkarni for discussions which lead to a weaker version
of Theorem 13 (namely, reachability for 4-page graphs is complete for NL).

References

[ABC+06] Eric Allender, David A. Mix Barrington, Tanmoy Chakraborty, Samir Datta, and
Sambuddha Roy. Grid graph reachability problems. In Annual IEEE Conference
on Computational Complexity, pages 299–313, 2006.

[AJ93] Carme Àlvarez and Birgit Jenner. A very hard log-space counting class. Theo-
retical Computer Science, 107:3–30, 1993.

[All86] Eric Allender. The complexity of sparse sets in P. In A. Selman, editor, Proc.
Conference on Structure in Complexity Theory, pages 1–11. Springer-Verlag, 1986.

[All06] Eric Allender. NL-printable sets and nondeterministic kolmogorov complexity.
Theor. Comput. Sci., 355(2):127–138, 2006.

[ARZ99] Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching, and count-
ing: Uniform and nonuniform upper bounds. Journal of Computer and System
Sciences, 59:164–181, 1999.

[BDHM92] Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf, and Christoph Meinel.
Structure and importance of logspace-mod class. Mathematical Systems Theory,
25(3):223–237, 1992.

[BHS93] Gerhard Buntrock, Lane A. Hemachandra, and Dirk Siefkes. Using inductive
counting to simulate nondeterministic computation. Information and Computa-
tion, 102(1):102–117, 1993.

13

[BJLR91] Gerhard Buntrock, Birgit Jenner, Klaus-Jörn Lange, and Peter Rossmanith. Un-
ambiguity and fewness for logarithmic space. In Proceedings of the 8th Interna-
tional Conference on Fundamentals of Computation Theory (FCT’91), Volume
529 Lecture Notes in Computer Science, pages 168–179. Springer-Verlag, 1991.

[BTV09] Chris Bourke, Raghunath Tewari, and N. V. Vinodchandran. Directed planar
reachability is in unambiguous log-space. ACM Trans. Comput. Theory, 1(1):1–
17, 2009.

[CH90] Jin-Yi Cai and Lane Hemachandra. On the power of parity polynomial time.
Mathematical Systems Theory, 1990.

[FKS84] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table
with 0(1) worst case access time. J. ACM, 31(3):538–544, 1984.

[Kre88] Mark Krentel. The complexity of optimization problems. J. of Computer and
System Sciences, 36:490–509, 1988.

[KV09] Jan Kynčl and Tomáš Vyskočil. Logspace reduction of directed reachability for
bounded genus graphs to the planar case. Electronic Colloquium on Computa-
tional Complexity, (50), 2009.

[RA00] Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. SIAM
Journal of Computing, 29:1118–1131, 2000. An earlier version appeared in FOCS
1997, pp. 244–253.

[Rei08] Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), 2008.

[TW09] Thomas Thierauf and Fabin Wagner. Reachability in K3,3-free graphs and K5-
free graphs is in unambiguous log-space. In 17th International Conference on
Foundations of Computation Theory (FCT), Lecture Notes in Computer Science
5699, pages 323–334. Springer-Verlag, 2009.

[Val76] Leslie Valiant. The relative complexity of checking and evaluating. Information
Processing Letters, 5:20–23, 1976.

[Wig94] Avi Wigderson. NL/poly ⊆ ⊕L/poly. In Proceedings of the 9th Structures in
Complexity conference, pages 59–62, 1994.

14

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

