
Read-Once Polynomial Identity Testing ∗

Amir Shpilka† Ilya Volkovich†

Abstract

An arithmetic read-once formula (ROF for short) is a formula (a circuit whose underlying
graph is a tree) in which the operations are {+,×} and such that every input variable labels
at most one leaf. A preprocessed ROF (PROF for short) is a ROF in which we are allowed
to replace each variable xi with a univariate polynomial Ti(xi). In this paper we study the
problems of giving deterministic identity testing for models related to preprocessed ROFs. Our
main result gives PIT algorithms for the sum of k preprocessed ROFs, of individual degrees at
most d (i.e. each Ti(xi) is of degree at most d), that run in time (nd)O(k) in the non black-box
model and in time (nd)O(k+log n) in the black-box model. We also obtain better algorithms
where the formulas have a small depth that lead to an improvement on the best PIT algorithm
for multilinear ΣΠΣ(k) circuits.

Our main technique is to prove a hardness of representation result. Namely, a theorem
showing a relatively mild lower bound on the sum of k PROFs. We then use this lower bound
in order to design our PIT algorithm.

∗Extended abstract appeared in the Proceedings of the 40th Annual STOC 2008, pages 507-516 and in the
Proceedings APPROX-RANDOM, 2009, pages 700-713
†Faculty of Computer Science, Technion, Haifa 32000, Israel. Email: {shpilka,ilyav}@cs.technion.ac.il.

Research supported by the Israel Science Foundation (grant number 439/06).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 11 (2010)

1 Introduction

In this paper we study the polynomial identity testing problem for several models based on read-
once formulas. In the polynomial identity testing problem (PIT for short) we are given (either
explicitly or via black-box access) an arithmetic circuit (or formula) and we have to decide whether
the circuit computes the zero polynomial. This problem has a well known randomized algorithm
due to Schwartz, Zippel and DeMillo and Lipton [Zip79, Sch80, DL78]. In this work however, we
are interested in the question of giving a deterministic algorithm to the problem.

In general, the PIT problem is believed to be very difficult and several results connecting
deterministic algorithms for PIT and lower bounds for arithmetic circuits are known [HS80, KI04,
Agr05, DSY09, AV08]. However, for several special cases in which the underlying circuit comes
from a restricted class of arithmetic circuits, efficient deterministic PIT algorithms were found.
For example, efficient deterministic identity testing algorithms are known for depth-2 arithmetic
circuits [BOT88, KS01, LV03] (and references within), for depth-3 arithmetic circuits with bounded
top fan-in (also known as ΣΠΣ(k) circuits) [DS06, KS07, AM07, KS08, KS09b, SS09] and for
non-commutative arithmetic formulas [RS05]. Interestingly, [AV08] showed that polynomial time
deterministic black-box PIT algorithms for depth-4 arithmetic circuits imply exponential lower
bounds on the size of general arithmetic circuits and a quasi-polynomial time algorithm for the
general PIT problem. Indeed, efficient deterministic PIT algorithms are known only for restricted
classes of depth-4 circuits [AM07, Sax08, KMSV10].

In view of the difficulty in providing efficient deterministic PIT algorithms and the tight connec-
tion to lower bounds it is natural to study the PIT problem for models for which lower bounds are
known. In particular, the recent results of [Raz04, Raz05, RSY08, RY08], giving lower bounds for
multilinear circuits and formulas, suggest that efficient deterministic PIT algorithms for multilinear
formulas may be at reach. Unfortunately, except for the models of multilinear depth-2 circuits and
multilinear ΣΠΣ(k) and ΣΠΣΠ(k) circuits no such algorithm is known. This difficulty motivates
the study of restricted models of multilinear formulas in hope of gaining insight on the general case.

In this work we consider a restricted model of multilinear formulas - sums of read-once formulas
(and the more general case of sums of preprocessed read-once formulas). An arithmetic read-once
formula (ROF for short) is a formula (a circuit in which the fan-out of every gate is at most 1) in
which the operations are {+,×} and such that every input variable labels at most one leaf. Read-
once formulas can be thought of as the simplest form of multilinear formulas. Although ROFs form
a very restricted model of computation they received a lot of attention both in the boolean world
[KLN+93, AHK93, BHH95b] and in the algebraic world [HH91, BHH95a, BB98, BC98]. However,
no deterministic sub-exponential time black-box PIT algorithm for arithmetic ROF was known
prior to this work. We give the first sub-exponential (in fact, quasi-polynomial) time deterministic
PIT algorithms for (sums of) read-once arithmetic formulas in the black-box and non black-box
settings. Besides being a relaxation of the general model of multilinear formulas, another motivation
for our work is to better understand recent results on depth-3 circuits. It is not difficult to see that
a multilinear depth-3 ΣΠΣ(k) circuit is a sum of k read-once formulas of a very restricted form (i.e.
each multiplication gate is a ROF). Thus, our work can be seen as a (significant) generalization
and extension of previous results for multilinear ΣΠΣ(k) circuit [DS06, KS07, KS08, SS09].

1.1 Our results and techniques

Our black-box PIT algorithms use the notion of generators. A generator for a circuit class C is a
mapping G : Ft → Fn, such that for any nonzero polynomial P computed by a circuit from C it
holds that P ◦ G 6≡ 0. By considering the image of G on W t, where W ⊆ F is of polynomial size,

1

we obtain a hitting set for C (more details given in Section 3). We now state our results.

Theorem 1. Given black-box access to a preprocessed read-once formula Φ in n variables, with
individual degrees at most d, there is a deterministic algorithm that checks whether Φ ≡ 0. The
running time of the algorithm is (nd)O(logn).

The intuition for the proof is that if a PROF is not zero then it can be written as combination of
two smaller PROFs, such that one of them depends on at most n/2 variables. Using this observation
we design a generator G : FO(logn) → Fn such that Φ ◦ G 6≡ 0. Our next result is an efficient non
black-box PIT algorithm for the sum of a small number of PROFs.

Theorem 2. Given k preprocessed read-once formulas in n variables, with individual degrees at
most d, there is a deterministic algorithm that checks whether they sum to zero or not. The running
time of the algorithm is (nd)O(k).

Combining Theorems 1,2 we obtain our main result: a black-box algorithm for the sum of k
PROFs. The extension from a PIT algorithm for a single (preprocessed) ROF to an algorithm
for the sum of k (preprocessed) ROFs is via hardness of representation approach. This approach
enables us to transform a mild lower bound for a very structured polynomial into a PIT for sum of
(preprocessed) ROFs.

Theorem 3 (Main). Given black-box access to Φ = Φ1 + · · ·+ Φk, where the Φi-s are preprocessed-
read-once formulas in n variables, with individual degrees at most d, there is a deterministic algo-
rithm that checks whether Φ ≡ 0. The running time of the algorithm is (nd)O(logn+k).

In fact, we design a generator G : FO(logn+k) → Fn, for sum of k PROFs. Using the same
techniques we design a different generator for the sum of PROFs of a small depth (see Definition
6.4), which yields a better running time PIT algorithm.

Theorem 4. There is an (nd)O(D+k) time deterministic algorithm for checking whether a black-
box holding the sum of k preprocessed depth-D read-once formulas on n-variables, with individual
degrees bounded by d, computes the zero polynomial.

As a corollary we obtain an nO(k) time PIT algorithm for multilinear ΣΠΣ(k) circuits (a mul-
tilinear ΣΠΣ(k) circuit can be considered as a sum of k ROFs of depth-2), which gives the best
known running-time algorithm for this circuit class. Moreover, our algorithm also holds for the
more general case of preprocessed multilinear ΣΠΣ(k) circuits (see Section 8 for the definition).

Theorem 5. Let C be a preprocessed multilinear ΣΠΣ(k) circuit with individual degrees bounded
by d. Then there is a deterministic black-box PIT algorithm for C that runs in time (nd)O(k).

We note that, unlike previous works on ΣΠΣ(k) circuits [DS06, KS08, SS09, KS09b], this result
does not rely on bounds on the rank of zero ΣΠΣ(k) circuits (see Section 8). In addition to the
multilinear case, we obtain a new PIT algorithm (by constructing a appropriate generator) for
general ΣΠΣ(k) circuits that has (roughly) the same running time as the algorithm obtained from
the results of [KS08, SS09].

Theorem 6. Let C be a ΣΠΣ(k, d) circuit over F. There is a deterministic black-box PIT algorithm
for C that runs in time (nd)O(k3 log d) when F is finite and in time (nd)k

O(k)
when F = R or Q.

Finally, we show that it is possible to generalize the previous theorems to the case where we
have a sum of ROFs that is read-k. That is, every variable appears in at most k of the formulas
(see Definition 7.8).

2

Theorem 7. Let Φ =
r∑

m=1
Φm be a read-k sum of PROFs. Then there is an (nd)O(logn) time

deterministic black-box PIT algorithm for Φ. If in addition we are guaranteed that the Φm’s are
depth-D PROFs then there is an (nd)O(D+k) time deterministic black-box PIT algorithm for Φ. In
the non black-box setting there is an (nd)O(k) deterministic PIT algorithm for Φ.

1.2 Comparison to Previous Works

Read-once arithmetic formulas received a lot of attention in the context of learning theory and
exact learning algorithms were given to them. We shall now discuss the different models in which
it was studied and highlight the differences from our work.

In [HH91] learning algorithms for read-once arithmetic formulas that use membership and equiv-
alence queries were given. A membership query to a ROF Φ(x̄) is simply a query that asks for
the value of Φ(x̄) on a specific input. An equivalence query on the other hand, gives the oracle
a certain hypothesis, Ψ(x̄), and the oracle answers “equal” if Φ ≡ Ψ or returns an input ᾱ such
that Φ(ᾱ) 6= Ψ(ᾱ). Following [HH91] other works gave learning algorithms for various extensions of
read-once formulas [BHH95a, BB98, BC98]. All those works (including the original work [HH91])
give randomized learning algorithms. While our work only considers PIT algorithms it also led to
new deterministic learning algorithms for read-once formulas (see [SV08, SV09]).

Our results are also related to the model of depth-3 ΣΠΣ(k) circuits. This model was extensively
studied in recent years [DS06, KS07, AM07, KS08, Shp09, SS09, KS09a, KS09b] as it stands between
the simpler depth-2 case and the depth-4 case that, when studying lower bounds and polynomial
identity testing, is (almost) as hard as the general case [AV08]. Prior to this work the best known
black-box PIT algorithm for degree d ΣΠΣ(k) circuits had running time nO(k3 log d) for the general

case [KS08, SS09] and n2O(k2)
for the multilinear case [KS08]. Both results were obtained via the

rank-bound (see Section 8). We improve the algorithm for the multilinear case and obtain an nO(k)

algorithm that also works in the preprocessed case. Our PIT algorithm uses a different technique
than previous approaches. In addition, applying a recent result of [SS09] we obtain a new PIT
algorithm for the general case with (roughly) the same running time (nd)O(k3 log d).

Note that Theorem 5 actually gives a PIT for a restricted class of depth-4 circuits. At the time
of our work this was the first PIT algorithms for a class of depth-4 circuits. Other known PIT algo-
rithms for depth-4 circuits were non black-box and cover only other very restricted cases. Arvind
and Mukhopadhyay [AM07] gave a polynomial time PIT algorithm for the case that k = O(1) and
the additional requirement that each linear function depends on a constant number of variables.
Saxena [Sax08] gave a polynomial time PIT algorithm for the case where each linear product con-
sists of a constant number of linear functions (but the top fan-in k may be unbounded). Very
recently, [KMSV10] gave the first quasi-polynomial time black-box PIT algorithm for multilinear
ΣΠΣΠ(k) circuits. This work uses several ideas that appeared in the conference versions of this
paper [SV08, SV09].

1.3 Organization

The paper is organized as follows. In Section 2 we give the basic definitions and notations. Then,
in Sections 3 and 4 we introduce the tools that we use in the proofs. Specifically, in Section 3 we
define the notion of a generator for a class of arithmetic circuits and in Section 4 we show how to
acquire a justifying assignment given a PIT algorithm. After this, we give the formal definition
of our model (Section 5) and in the following sections we prove our theorems: The new black-box
PIT algorithm for PROFs (Theorem 1) is given in Section 6. This section also contains a PIT

3

algorithm for bounded depth PROFs (Theorem 4 for the case k = 1). In Section 7 we consider
sums of PROFs and prove Theorems 2, 3, 4 and 7. Finally, in Section 8 we give PIT algorithm for
depth-3 circuits and special cases of depth-4 circuits, proving Theorems 5 and 6.

2 Preliminaries

For a positive integer n we denote [n] = {1, . . . , n}. Let F be a field and F its algebraic closure.
For a polynomial P (x1, . . . , xn), a variable xi and a field element α we denote with P |xi=α the
polynomial resulting after substituting α to xi. The following definitions are for a polynomial
P ∈ F[x1, . . . , xn] and an assignment ā ∈ Fn. We say that P depends on xi if there exist ā ∈ Fn and
b ∈ F such that P (a1, a2, . . . , ai−1, ai, ai+1, . . . , an) 6= P (a1, a2, . . . , ai−1, b, ai+1, . . . , an). We denote
var(P) ∆= {xi | P depends on xi }. Sometimes, we will abuse notations and consider the set var(P)
as a set of indices (i.e. {i | P depends on xi }) rather than variables.

Intuitively, P depends on xi if xi “appears” when P is listed as a sum of monomials. Given a
subset I ⊆ [n] and an assignment ā ∈ Fn we define P |xI=āI to be the polynomial resulting from
substituting ai to the variable xi for every i ∈ I. In particular var(P |xI=āI) ⊆ {xi | i ∈ [n] \ I }.

Example 2.1. Let P (x1, x2, x3) = 2x2x3 + 1, I = {2} and ā = (0, 0, 0). Then P |xI=āI (x̄) =
P (x1, 0, x3) = 1. Note that var(P) = {x2, x3} but var(P |xI=āI (x̄)) = ∅.

We can conclude that by substituting a value to a variable of P we, obviously, eliminate the
dependence of P on this variable, however we may also eliminate the dependence of P on other
variables and thus lose more information than intended. For the purposes of identity testing we
cannot allow losing any information as it would affect our final answer. We now define a lossless
type of an assignment. Similar definitions were given in [HH91] and [BHH95a], but we repeat the
definitions here to ease the reading of the paper (we also slightly change some of the definitions).

Definition 2.2 (Justifying assignment). We say that ā ∈ Fn is a justifying assignment of P if for
each subset (of indices) I ⊆ var(P) we have that var(P |xI=āI) = var(P) \ I. We say that ā is a
weakly-justifying assignment of P if var(P |xI=āI) = var(P) \ I when |I| = 1. We shall also think
of justification as a property of the polynomial. We say that P is ā-justified if ā is a justifying
assignment of P . Similarly we define the term weakly-ā-justified.

Clearly, justification implies weak-justification, but not vice versa. The following proposition
provides a simple condition that ensures that an assignment is justifying for P .

Proposition 2.3. An assignment ā ∈ Fn is a justifying assignment of P if and only if
var(P |xI=āI) = var(P) \ I for every subset I of size |var(P)| − 1.

Note that by shifting we can make any polynomial 0̄-justified .

Proposition 2.4. Let ā ∈ Fn and P (x̄) be a (weakly) ā-justified polynomial. Then Pā(x̄) ∆=
P (x1 +a1, . . . , xn+an) is a (weakly) 0̄-justified polynomial. Moreover, Pā ≡ 0 if and only if P ≡ 0.

2.1 Partial Derivatives

The concept of a partial derivative of a multivariate polynomials and its properties (for example:
P depends on xi if and only if ∂P

∂xi
6≡ 0) are well-known and well-studied for continuous domains

(such as: R,C etc.). Here we extend of the concept for polynomials over arbitrary fields, by defining
the Discrete partial derivatives. Discrete partial derivatives will play a major role in the analysis
of our algorithms.

4

Definition 2.5. Let P be an n variate polynomial over a field F. We define the discrete partial
derivative of P with respect to xi as ∂P

∂xi
= P |xi=1 − P |xi=0.

Notice that if P is a multilinear polynomial then this definition coincides with the “analytical” one
when F = R or C. The following lemma is easy to verify and we will use it implicitly from now on.

Lemma 2.6. The following properties hold for every multilinear polynomial P ; P depends on xi if
and only if ∂P

∂xi
6≡ 0; ∂P

∂xi
does not depend on xi (in particular ∂2P

∂x2
i
≡ 0); ∂2P

∂xi∂xj
= ∂

∂xi
(∂P∂xj) = ∂2P

∂xj∂xi
;

∀i 6= j ∂P
∂xi
|xj=a = ∂

∂xi
(P |xj=a); ā ∈ Fn is a justifying assignment of P if and only if ∀i ∈ var(P) it

holds that ∂P
∂xi

(ā) 6≡ 0.

The following lemma shows that when dealing with multilinear polynomials the usual rules of
partial derivatives hold for discrete partial derivatives.

Lemma 2.7. Let P,G,Q be multilinear polynomials. Then the following derivation rules hold (with
the appropriate implicit restrictions)

1. Sum Rule. If Q = P +G then trivially ∂Q
∂xi

= ∂P
∂xi

+ ∂G
∂xi

.

2. Product Rule. If Q = P ·G then either ∂P
∂xi
≡ 0 or ∂G

∂xi
≡ 0 holds. Hence, ∂Q

∂xi
= ∂P

∂xi
·G+P · ∂G∂xi .

3. Chain Rule. Let Q(y, z̄) be a polynomial such that P (x̄, z̄) ≡ Q(G(x̄), z̄). Then ∂P
∂xi

=
∂Q
∂y ·

∂G
∂xi

. Notice that since Q is a multilinear polynomial, ∂Q
∂y does not depend on y.

Note that these properties do not hold for general polynomials. For example, when P (x) = x2−x
we get that ∂P

∂x ≡ 0. Thus, in order to handle general polynomial we need the following extension.

Definition 2.8. Let P ∈ F[x1, . . . , xn] be a polynomial. The directed partial derivative of P w.r.t.
xi and direction α ∈ F is defined as ∂P

∂αxi

∆= P |xi=α − P |xi=0.

We can now define the notion of a witness.

Definition 2.9. We say that 0 6= α ∈ F is a witness for xi in P if ∂P
∂αxi

6≡ 0 or xi 6∈ var(P). The
vector ᾱ ∈ Fn is a witness of P if each αi is a witness for xi in P .

The following proposition is immediate.

Proposition 2.10. Let ᾱ ∈ Fn be a witness for P . Then (for each i) P depends on xi if and only
if ∂P

∂αi xi
6≡ 0. Furthermore, ā ∈ Fn is a justifying assignment for P iff for every xi ∈ var(P) it holds

that ∂P
∂αi xi

(ā) 6= 0. I.e., ā is a nonzero of ∂P
∂αi xi

.

The next lemma shows that a sufficiently large field contains many witnesses.

Lemma 2.11. Let P (x̄) be a polynomial with individual degrees bounded by d and let W ⊆ F be a
subset of size d+ 1 (we assume that |F| > d). Then Wn contains a witness for P .

Proof. Note that for each variable we can find the witness separately as they are uncorrelated.
Consider i ∈ [n] and define ϕi(x̄, w) ∆= ∂P

∂wxi
(recall Definition 2.8). In this way we obtain a set of

polynomials in the variables x̄ and w with individual degrees bounded by d. Thus, α is a witness
for xi in P if and only if ϕi(x̄, α) 6≡ 0 or xi 6∈ var(P). If xi 6∈ var(P) then any α ∈ W is a witness.
Otherwise, ϕi(x̄, w) is a nonzero polynomial of degree d in w and therefore W contains a nonzero
assignment for it (see e.g. Lemma 2.13). I.e. a witness for xi. We can repeat the same reasoning
for every i ∈ [n].

5

Definition 2.12. For a non-empty subset I ⊆ [n], I =
{
i1, . . . , i|I|

}
, we define the iterated partial

derivative with respect to I as ∂IP
∆= ∂|I|P

∂xi1∂xi2∂xi3
···∂xi|I|

.

Let C, C′ be circuit class. We say that C contains the polynomial P , and denote it by P ∈ C, if
P can be computed by some circuit from C. Similarly, we denote C ⊆ C′ whenever each polynomial
in C also belongs to C′. In such a case we say that C′ contains C. The class of (discrete) Directed
Partial Derivatives of C is denoted by ∂C ∆=

{
∂P
∂αxi

| P ∈ C, i ∈ [n], α ∈ F
}

. We say that C is closed
under partial derivatives if ∂C ⊆ C.

2.2 Some useful facts about polynomials

We conclude this section with two well-known facts concerning polynomials.

Lemma 2.13. Let P ∈ F[x1, . . . , xn] be a polynomial. Suppose that for every i ∈ [n] the individual
degree of xi is bounded by di, and let Si ⊆ F be such that |Si| > di. We denote S = S1×S2×· · ·×Sn
then P ≡ 0 iff P |S ≡ 0.

A proof can be found in [Alo99].

Lemma 2.14 (Gauss). Let P ∈ F[x1, x2, . . . , xn, y] be a nonzero polynomial and g ∈ F[x1, . . . , xn]
such that P |y=g(x̄) ≡ 0 then y − g(x̄) is an irreducible factor of P in the ring F[x1, x2, . . . , xn, y].

3 Generators and Hitting sets for arithmetic circuits

In this section, we formally define the notion of generators for polynomials, describe a few of its
useful properties and give the connection to hitting sets. Intuitively, a generator G for a circuit
class C, is a function that stretches t independent variables into n >> t dependent variables that
can be plugged into any polynomial P ∈ C without vanishing it. Recall that a hitting set H ⊆ Fn
for a circuit class C is a set such that for every nonzero polynomial P ∈ C, there exists ā ∈ H,
such that P (ā) 6= 0. In identity testing, generators and hitting sets play the same role. Given a
generator one can easily construct a hitting set by evaluation the generator on a large enough set of
points. Conversely, given a hitting set H it is easy to construct a generator by taking a low degree
curve through H.

Definition 3.1. A mapping G = (G1, . . . ,Gn) : Ft → Fn is a generator for the circuit class C if for
every nonzero n-variate polynomial P computed by C it holds that P (G) 6≡ 0.

A generator can also be viewed as a mapping containing a hitting set for C in its image. That
is, for every nonzero P ∈ C there exists ā ∈ Im (G) such that P (ā) 6= 0 (where Im (G) ∆= G(Ft)). All
our black-box PIT algorithms are, in fact, generators for some (relatively) small t. The following
is an immediate and important property of a generator.

Observation 3.2. Let P = P1 ·P2, ·... ·Pk be a product of nonzero polynomials Pi ∈ C and let G be
a generator for C. Then P (G) 6≡ 0.

We now describes an efficient way for constructing a generator to a circuit class C from a
hitting set H for C. The construction is performed by passing a low degree curve through H using
polynomial interpolation: Choose an arbitrary subset V ⊆ F of size n and set t ∆= dlog n |H|e.
Clearly, |H| ≤ nt < n |H|. Denote H =

{
ā1, ā2, . . . , ā|H|

}
where āj = (aj1, a

j
2, . . . , a

j
n). Let ϕ :

6

V t → {1, 2, . . . , |H|} ⊆ N be some surjection. We define the functions hi(ȳ) : Ft → F to be the
interpolation polynomial of the i-th coordinates of the vectors in H. That is, hi(ȳ) is a t-variate
polynomial, of degree at most n − 1 in each variable, such that for every b̄ ∈ V t we have that
hi(b̄) = a

ϕ(b̄)
i . Finally, let h(ȳ) : Ft → Fn be defined as h(ȳ) ∆= (h1(ȳ), h2(ȳ), . . . , hn(ȳ)). From the

construction it is clear that H ⊆ Im (h). We thus get that h is a generator for C.
Lemma 3.3. The procedure described above constructs a map h(ȳ) : Ft → Fn with individual
degrees bounded by n− 1, in time poly(n, |H|), that is a generator for the circuit class C.

Proof. Let P ∈ C be a nonzero polynomial. From the definition of H there exists ā ∈ H such that
P (ā) 6= 0. As H ⊆ Im (h) it follows that ā ∈ Im (h) and consequently P (h(ȳ)) 6≡ 0. The claim
regarding the degree follows form the construction of hi-s. In addition, note that the hi-s can be
computed in time polynomial in |H| using simple interpolation.

Next we describe the obvious way of obtaining a hitting set from a generator.

Lemma 3.4. Let G = (G1, . . . ,Gn) : Ft → Fn be a generator for a circuit class C such that the
individual degrees of the Gi-s are bounded by ∆. Let W ⊆ F be of size nd∆. Then, H ∆= G(W t) is
a hitting set, of size |H| ≤ (nd∆)t, for polynomials P ∈ C of individual degrees at most d.

Proof. Let P ∈ C be a nonzero polynomial with individual degrees at most d. By definition, P (G)
is a nonzero t-variate polynomial with individual degrees bounded by nd∆. Lemma 2.13 implies
that P (G)|W t 6≡ 0. Equivalently, P |H 6≡ 0. Finally, note that |H| ≤ |W |t ≤ (nd∆)t.

3.1 The Mapping Gk

In this section we define a mapping that will be one of the main ingredients in our PIT algorithms.
We start with some notations. The Hamming weight of a vector ā ∈ Fn is defined as: wH(ā) ∆=
|{i | ai 6= 0}|. That is, the number of nonzero coordinates. For a set 0 ∈ W ⊆ F and k ≤ t we
define Atk(W) to be the set of all vectors in W t with Hamming weight at most k, i.e. the set of

vectors that have at most k nonzero coordinates. Formally: Atk(W) ∆=
{
ā ∈W t | wH(ā) ≤ k

}
. It

is easy to see that
∣∣Atk(W)

∣∣ =
k∑
j=0

(
t

j

)
· (|W | − 1)j = (t · (|W | − 1))O(k). From now on we assume

that |F| > n as we are allowed to use elements from an appropriate extension field. Throughout
the entire paper we fix a set A = {α1, α2, . . . , αn} ⊆ F of n distinct elements.

Definition 3.5. For every i ∈ [n] let ui(w) : F→ F be the i-th Lagrange Interpolation polynomial
for the set A. Namely, ui(w) is a degree n − 1 polynomial satisfying: ui(αj) = 1 when j = i and
ui(αj) = 0 when j 6= i. For every i ∈ [n] and k ≥ 1 we define Gik(y1, . . . , yk, z1, . . . , zk) : F2k → F

as Gik(y1, . . . , yk, z1, . . . , zk)
∆=

k∑
j=1

ui(yj) · zj. Finally, let Gk(y1, . . . , yk, z1, . . . , zk) : F2k → Fn be

defined as

Gk(y1, . . . , yk, z1, . . . , zk)
∆=
(
G1
k, G

2
k, . . . , G

n
k

)
=

 k∑
j=1

u1(yj) · zj ,
k∑
j=1

u2(yj) · zj , . . . ,
k∑
j=1

un(yj) · zj

 .

The following simple observation plays an important role in our algorithms.

Observation 3.6. Denote with ēi ∈ {0, 1}n the vector that has 1 in the i-th coordinate and 0

elsewhere. Then, Gk+1 = Gk +
n∑
i=1

ui(yk+1) · zk+1 · ēi. Hence, for every k ≥ 1 and αm ∈ A we have

that Gk+1|yk+1= αm = Gk + zk+1 · ēm. Hence, for every W ⊆ F it holds that Ank(W) ⊆ Im (Gk).

7

4 From PIT to Justifying Assignments

We now show how to obtain a justifying assignment from a PIT algorithm. We shall consider a
circuit class C (e.g. depth-3 circuit, sum of ROFs, etc.) for which there exists another circuit class
C′ such that ∂C ⊆ C′ and C′ has an efficient PIT algorithm.1 Algorithm 1 returns a justifying
assignment for P (if it fails to do so, it returns “ERROR”). The algorithm will invoke (as a
subroutine) the PIT algorithm for C′. Before giving the algorithm we explain the intuition behind
it. Let P ∈ F[x1, . . . , xn] be a polynomial with individual degrees bounded by d. What we are
after is a vector (a1, . . . , an) ∈ Fn such that if P depends on xi then the polynomial P |xj=aj (for
any j 6= i) also depends on xi. Our approach will be to consider a witness for P , ᾱ ∈ Fn, and
look for ā ∈ Fn such that if ∂P

∂αi xi
6≡ 0 then also ∂P

∂αi xi
|xj=aj 6≡ 0 (see Proposition 2.10). Therefore,

we consider the polynomials
{
gi = ∂P

∂αi xi

}
i∈[n]

and look for a vector ā, such that for any j 6= i,

gi|xj=aj 6≡ 0. As the degree of xi in each gi is bounded by d, there are at most d ‘bad’ possible
values for aj . Namely, for most values of aj , we have that gi|xj=aj 6≡ 0. Hence, if we check enough
values then we should find some aj that is good for all gi. To verify that gi|xj=aj 6≡ 0 we use the
PIT algorithm for C′. In fact, what we just described only gives a weakly justifying assignment.
To find a justifying assignment we have to verify that after we assign aj to xj for all i 6= j, gi
remains nonzero. We manage to do it by first finding a1, then we assign a1 to x1 to get a new set
of polynomials gi’s etc. Using this approach we can actually find a justifying assignment for more
than one polynomial. That is, we find a Common Justifying Assignment for a set of polynomials
{Pm}m∈[k]. A common justifying assignment is an assignment ā that is simultaneously a justifying
assignment for each Pm. We now give the algorithm and its analysis.

Algorithm 1 Acquire Common Justifying Assignment
Input: Circuits C1, . . . , Ck from C computing P1, . . . , Pk with individual degrees bounded by d,
Access to a PIT algorithm for C′ such that ∂C ⊆ C′.
Output: A Common Justifying Assignment ā for P1, P2, . . . , Pk

1: Find {ᾱm}m∈[k] such that ᾱm is a witness for Pm {see Lemma 4.1 }
2: For i ∈ [n], m ∈ [k] set gmi = ∂Pm

∂
αm
i
xi

We describe an iteration j ∈ [n] for finding the value of aj in ā:
3: for j = 1 . . . n do
4: Find cj ∈ F such that for every m ∈ [k] and i 6= j ∈ [n]: if gmi 6≡ 0 then gmi |xj=cj 6≡ 0.
5: For every m ∈ [k] and i 6= j ∈ [n], set gmi ← gmi |xj=cj .
6: Set aj ← cj

Lemma 4.1. Let F be a field of size |F| > d. Let P be a polynomial, with individual degrees
bounded by d, that is computed by a circuit class C over F. Let C′ be a circuit class such that
∂C ⊆ C′. Then there is an algorithm that when given access to P (either explicitly or via black-box
access, depending on the PIT algorithm for C′) computes var(P) and outputs a witness ᾱ for P in
time O(nd · TC′), where TC′ is the running time of the PIT algorithm for C′.

Proof. The proof of Lemma 2.11 gives a simple algorithm for finding witnesses. Indeed, consider
ϕi(x̄, w) ∆= ∂P

∂wxi
. Clearly ϕi ∈ C′. Note that if xi ∈ var(P) then ϕi(x̄, w) 6≡ 0. Pick d + 1 different

1Note, that in most cases an identity testing algorithm for C can be slightly modified to yield an identity testing
algorithm for ∂C.

8

elements v0, . . . , vd ∈ F and for each of them check, using the PIT algorithm for C′, whether
ϕi(x̄, vi) 6= 0. Let αi be the first vj for which ϕi(x̄, vj) 6= 0 (if no such j exists then take αi = 0).
Set ᾱ = (α1, . . . , αn). Lemma 2.11 implies that ᾱ is the required witness. The claim regarding the
running time is clear.

Note that the same approach also determines, for each variable xi, whether the polynomial
depends on xi or not. Therefore, the algorithm can be used to compute var(Pm) as well.

We now give the analysis of the second step of the algorithm.

Lemma 4.2. Let F be a field with |F| > knd and V ⊆ F be of size |V | ≥ knd. Let {Pm}m∈[k] be a
set of polynomials with individual degrees bounded by d that are computed by circuits from C. Let
C′ be a circuit class such that ∂C ⊆ C′. Then, Algorithm 1 returns a common justifying assignment
ā for {Pm}m∈[k] in time O(n3k2d · TC′), where TC′ is the running time of the PIT algorithm for C′.

Proof. We show that each iteration j ∈ [n] succeeds, and that the algorithm outputs a justifying
assignment. In order to succeed in j-th phase the algorithm must find cj ∈ V that is good for
every gmi 6≡ 0. Namely, for every m and i 6= j if gmi 6≡ 0 then gmi |xj=cj 6≡ 0. Note, that gmi ’s are
polynomials with individual degrees bounded by d and hence, by Lemma 2.14, each gmi has at most
d roots of the form of xj = cj . Therefore, there are at most kd(n− 1) ‘bad’ values of cj (i.e. values
for which there exist m and i 6= j with gmi 6≡ 0 and gmi |xj=cj ≡ 0). Consequently, V contains at
least one ‘good’ cj . From the definition gmi ∈ C′, therefore we can use the supplied PIT algorithm
for C′ to find such cj . In addition, notice before that first iteration gmi 6≡ 0 iff xi ∈ var(Pm) and
for each j ∈ [n], if gmi is nonzero before the j-iteration then it remains nonzero after that iteration.
We conclude that after the n-th iteration is (successfully) completed we have that for every m ∈ [k]
and xi ∈ var(Pm) it holds that ∂Pm

∂
αm
i
xi

(ā) = gmi 6= 0. This follows from the definition of the gmi ’s and

the fact that at each iteration we substitute aj to xj in every gmi . This ensures that ā is indeed a
common justifying assignment.

Next we analyze the running time. By Lemma 4.1 finding {ᾱm}m∈[k] requires O(knd) PIT
checks. The computation of {gmi }i∈[n],m∈[k] can be done in O(nk) time. The execution of each
iteration j requires for each c ∈ V to perform k(n − 1) PIT checks, thus in every iteration we
preform at most k(n− 1) · |V | < n2k2d PIT checks. Therefore, we do at most O(n3k2d+ knd) PIT
checks during the execution. Hence the total running time of the algorithm is O(n3k2d ·TC′), where
TC′ is the cost of every PIT check for a circuit in C′.

4.1 From a Generator to a Justifying Set

Algorithm 1 shows how to find a common justifying assignment for a set of polynomials in an
adaptive manner, even if the PIT for C′ is in the black-box setting. In this section we give a non
adaptive version of the algorithm. More precisely, given a generator (a black-box PIT algorithm)
G for C′ (satisfying ∂C ⊆ C′) we construct a (k, d)-justifying set for C (assuming that |F| is large
enough). That is, a set of elements J k,dG ⊆ Fn that contains a common justifying assignment for
any set of k polynomials, with individual degrees bounded by d, that are computed by C. The
construction is performed by evaluating the generator on many points. In particular, we show that
Im (G) contains a common justifying assignment for any set of polynomials computed by C. Note
that in this case we will not find the witnesses explicitly, but rather rely on their existence.

Lemma 4.3. Let {Pm(x̄)}m∈[k] be a set of k polynomials over F, with individual degrees bounded
by d, that are computed by circuits from C. Let C′ be (another) circuit class such that ∂C ⊆ C′. Let

9

G = (G1, . . . ,Gn) : Ft → Fn be a generator for C′ such that the individual degrees in each Gi are
bounded by ∆. Let V ⊆ F be of size |V | = kn2d∆ + 1. Then J k,dG

∆= G(V t) contains a common
justifying assignment for P1, . . . , Pk (that is, J k,dG is a (k, d)-justifying set for C).

Proof. By Lemma 2.11 F contains witnesses {ᾱm}m∈[k] for {Pm(x̄)}m∈[k]. For i ∈ [n] and m ∈ [k]

define gmi
∆= ∂Pm

∂
αm
i
xi
◦ G. From the definitions of the generator and C′ we get that if ∂Pm

∂
αm
i
xi
6≡ 0

then gmi 6≡ 0. Consider the polynomial g ∆=
∏

i,m| gmi 6≡0

gmi . It follows that g is a nonzero t-variate

polynomial of degree at most nk · nd∆ in each variable. Lemma 2.13 implies that g|V t 6≡ 0.
Equivalently, there exists γ̄ ∈ V t such that for each pair i ∈ [n] and m ∈ [k] if gmi 6≡ 0 then
gmi (γ̄) 6= 0. Now, let i ∈ [n] and m ∈ [k] be such that xi ∈ var(Pm). Then ∂Pm

∂
αm
i
xi
6≡ 0 and

thus gmi = ∂Pm
∂
αm
i
xi

(G) 6≡ 0. From the choice of γ̄ we obtain that ∂Pm
∂
αm
i
xi

(G(γ̄)) = gmi (γ̄) 6= 0 and

hence ā = G(γ̄) is a justifying assignment for every Pm (recall Proposition 2.10). Finally, note that∣∣∣J k,dG ∣∣∣ ≤ (kn2d∆ + 1)t.

The following is an immediate corollary of the proof.

Corollary 4.4. Let C, C′ and G be as in Lemma 4.3 and let k ≥ 1. Then Im (G) contains a common
justifying assignment for any set of k polynomials computed by C.

5 Read-Once formulas

In this section we discuss our computational model. We first consider the basic model of read-once
formulas and cover some of its main properties. Then, we introduce the model of preprocessed-
read-once formulas and give its corresponding properties.

5.1 Read-Once Formulas and Read-Once Polynomials

Most of the definitions that we give in this section are from [HH91], or their small variants. We
start by formally defining the notions of a read-once formula, a skeleton of a read-once formula and
a read-once polynomial.

Definition 5.1. An arithmetic read-once formula (ROF for short) Φ over a field F in the variables
x̄ = (x1, . . . , xn) is a binary tree whose leafs are labelled with the input variables and whose internal
nodes are labelled with the arithmetic operations {+,×} and with a pair of field elements2 (α, β) ∈
F2. Each input variable can label at most one leaf. The computation is performed in the following
way. A leaf labelled with the variable xi and with (α, β) computes the polynomial α · xi + β. If a
node v is labelled with the operation op and with (α, β), and its children compute the polynomials
Φv1 and Φv2 then the polynomial computed at v is Φv = α · (Φv1 op Φv2) + β. We say that a ROF
Φ is non-degenerate if it depends on all the variables appearing in it.

A polynomial P (x̄) is a read-once polynomial (ROP for short) if it can be computed by a
read-once formula. Clearly, ROPs are a subclass of multilinear polynomials.

A ROF is called a multiplicative ROF if it has no addition gates. A polynomial computed by
a multiplicative ROF is called a multiplicative ROP. Note that because we allow gates to apply

2This is a slightly more general model than the usual definition of read-once formulas.

10

linear functions on the results of their operations, the output of a multiplicative ROF can be more
than just a monomial.

Example 5.2. The polynomial (5x1 · x2 + 1) · ((−x3 + 2) · (2x4− 1) + 5) has a multiplicative ROF.

The following lemma follows easily from the definition.

Lemma 5.3 (ROP Structural Lemma). Every ROP P (x̄) such that |var(P)| ≥ 2 can be presented
in exactly one of the following forms:

1. P (x̄) = P1(x̄) + P2(x̄)

2. P (x̄) = P1(x̄) · P2(x̄) + c

where P1 and P2 are non-constant variable disjoint ROPs and c is a constant.

Proof. Let Φ be a ROF computing P . Let v be the top gate of Φ and Φ1,Φ2 be the inputs of v.
Clearly, Φ1,Φ2 are variable-disjoint ROFs. Now, If v is an addition gate then Φ = a ·(Φ1 +Φ2)+b =
(a · Φ1) + (a · Φ2 + b). By setting P1

∆= a · Φ1 , P2
∆= a · Φ2 + b we are done. Otherwise, v is

multiplication gate. Therefore Φ = a · (Φ1 · Φ2) + b and we proceed similarly. Note, that P1 and
P2 are not necessarily unique, however it can be seen that P cannot be represented in both forms
1 and 2. Indeed, assume for contradiction that P1 +P2 = P = P ′1 ·P ′2 + c. If there exist xi, xj such
that xi ∈ var(P1) ∩ var(P ′1) and xj ∈ var(P2) ∩ var(P ′2) (or vice versa) then we immediately get a
contradiction as xi ·xj will appear in some monomial in the RHS but not in the LHS. If no such xi
and xj exist then either P ′1 or P ′2 contain no variable, in contradiction.

The following is another simple claim regarding representations of ROFs.

Lemma 5.4. Let P (x̄) be a ROP and v a node in a ROF Φ computing P . Denote by pv(x̄) the
polynomial that is computed by v. Then there exists a polynomial Q(y, x̄) such that Q(pv(x̄), x̄) ≡
P (x̄) and, in addition, pv and Q can be computed by variable-disjoint ROFs.

Proof. Consider Φ’s graph of computation. Denote with Ψ the sub-formula whose top gate is v.
Let ϕ be the rest of the graph. The output of Ψ is wired as one of the inputs of ϕ. We denote this
input by y. We define Q to be the polynomial computed by ϕ. Consequently, Q(pv(x̄) , x̄) ≡ P (x̄)
and pv, Q are variable-disjoint ROPs as they are computed by different parts of the same ROF.

Definition 5.5. Let V ⊆ var(Φ), |V | ≥ 2 be a subset of the input variables of a ROF Φ. We define
the first common gate of V , fcg(V), to be the first gate in the graph of computation of Φ common
to all the paths from the inputs of V to the root of the formula.

We note, that fcg(V) is in fact the least common ancestor of the nodes in V when looking at
the formula as a tree.

5.2 Partial Derivatives of ROPs

In this section we list some important properties the partial derivatives of ROPs. Clearly, a partial
derivative of a multilinear polynomial is a multilinear polynomial. In particular, a partial derivative
of a ROP is a multilinear polynomial as well. The following lemma gives a stronger statement.

Lemma 5.6. A partial derivative of a ROP is a ROP.

11

Proof. Let P be a ROP and i ∈ [n]. We prove the claim by induction on k = |var(P)|. For k = 0, 1
the claim is trivial. For k ≥ 2 we get by Lemma 5.3 that P can be in a one of two forms.

Case 1. P (x̄) = P1(x̄) + P2(x̄). Since P1 and P2 are variable disjoint we can assume w.l.o.g.
that ∂P

∂xi
= ∂P1

∂xi
. In addition, |var(P1)| < |var(P)| and so by the induction hypothesis we get that

∂P
∂xi

= ∂P1
∂xi

is a ROP.

Case 2. P (x̄) = P1(x̄) · P2(x̄) + c. Again we assume w.l.o.g. that ∂P
∂xi

= ∂P1
∂xi
· P2. As before, ∂P1

∂xi

is a ROP. Since P1 and P2 are variable disjoint and P2 is a ROP, we have that ∂P
∂xi

= ∂P1
∂xi
· P2 is a

ROP as well.

We now give two useful properties of the derivatives of ROPs.

Observation 5.7. Let P be a ROP and let xi, xj ∈ var(P). Let Φ be a ROF computing P and
v = fcg{xj , xi}. Then v is a multiplication gate iff ∂2P

∂xi∂xj
6≡ 0.

Lemma 5.8 (2-nd Derivative Lemma). Let P (x1, x2, . . . , xn) be a ROP such that ∂2P
∂xi∂xj

6≡ 0 and
∂2P
∂xi∂xj

|xk=α ≡ 0 for three different indices i, j, k and α ∈ F. Then, ∂P
∂xi
|xk=α ≡ 0 or ∂P

∂xj
|xk=α ≡ 0.

Proof. First, notice that xj , xi ∈ var(P). Let Φ be a ROF computing P and v = fcg{xj , xi}. Let
G(x̄) be the polynomial computed by v in Φ. From Lemma 5.4 there exists a ROP Q(y, x̄) such
that Q(G(x̄), x̄) ≡ P (x̄). Clearly, xj , xi ∈ var(G) \ var(Q). As ∂2P

∂xi∂xj
6≡ 0, it follows that v is a

multiplication gate. By the definition of fcg and Lemma 5.3 we obtain that G(x̄) can be presented
as P1 · P2 + c where xi ∈ var(P1), xj ∈ var(P2) and c ∈ F. By the chain rule (Lemma 2.7):

∂P

∂xi
=
∂Q

∂y
· ∂G
∂xi

=
∂Q

∂y
· ∂P1

∂xi
· P2 and

∂P

∂xj
=
∂Q

∂y
· ∂G
∂xj

=
∂Q

∂y
· P1 ·

∂P2

∂xj
.

Consequently, ∂2P
∂xi∂xj

= ∂Q
∂y ·

∂P1
∂xi
· ∂P2
∂xj

. This implies that:

∂P

∂xi
|xk=α ·

∂P

∂xj
|xk=α =

(
∂Q

∂y
· ∂P1

∂xi
· P2

)
|xk=α ·

(
∂Q

∂y
· P1 ·

∂P2

∂xj

)
|xk=α =

(
∂Q

∂y
· ∂P1

∂xi
· ∂P2

∂xj

)
|xk=α ·

(
∂Q

∂y
· P1 · P2

)
|xk=α =

∂2P

∂xi∂xj
|xk=α ·

(
∂Q

∂y
· P1 · P2

)
|xk=α ≡ 0 .

In particular, either ∂P
∂xi
|xk=α ≡ 0 or ∂P

∂xj
|xk=α ≡ 0.

As a corollary we obtain an example of multilinear polynomial which is not a ROP.

Example 5.9. The polynomial P (x1, x2, x3) = x1x2x3 + x1 + x2 is not a ROP. To see this apply
Lemma 5.8 on P with the parameters i = 1, j = 2, k = 3, α = 0.

5.3 Multiplicative and 0̄-Justified ROPs

Recall that multiplicative ROFs are ROFs with no addition gates. Observation 5.7 provides an
algebraic characterization of ROPs computed by such ROFs (i.e. multiplicative ROPs).

Lemma 5.10. A ROP P is a multiplicative ROP iff for any two variables xi 6= xj ∈ var(P) we
have that ∂2P

∂xi∂xj
6≡ 0.

12

From now on, whenever we discuss multiplicative ROP we shall use the property described in
the claim as an alternative definition. The following lemma is a generalization of Lemma 5.6 to
weakly-0̄-justified ROPs.

Lemma 5.11. A partial derivative of a weakly-0̄-justified ROP is a weakly-0̄-justified ROP.

Proof. Let P to be a weakly-0̄-justified ROP. From Lemma 5.6 it is enough to show that the partial
derivatives of P are weakly-0̄-justified . Assume for a contradiction that for some i ∈ [n], we have
that ∂P

∂xi
is not weakly-0̄-justified . That is, there exist some j, k ∈ [n] such that ∂P

∂xi
depends on xj

however ∂P
∂xi
|xk=0 does not. In other words, we have that: ∂2P

∂xi∂xj
6≡ 0 and ∂2P

∂xi∂xj
|xk=0 ≡ 0. Note

that {xi, xj} ⊆ var(P). Lemma 5.8 implies that either ∂P
∂xi
|xk=0 ≡ 0 or ∂P

∂xj
|xk=0 ≡ 0 holds. On the

other hand, {xi, xj} ⊆ var(P |xk=0) since P is a weakly-0̄-justified ROP and hence ∂P
∂xi
|xk=0 6≡ 0 and

∂P
∂xj
|xk=0 6≡ 0, in contradiction.

It is also possible to extend this proof for 0̄-justified ROPs. In a similar (and simpler) way, we
observe the following.

Lemma 5.12. Every factor of a weakly-0̄-justified ROP is a weakly-0̄-justified ROP.

Proof. Let P = h1 · h2 be a ROP, where h1 and h2 are two polynomials. As P is multilinear,
h1 and h2 must be variable-disjoint. Therefore, we can write P (x̄, ȳ) = h1(x̄) · h2(ȳ). As P is
weakly-0̄-justified so are h1 and h2. Furthermore, it holds that h1(0̄), h2(0̄) 6= 0. Consequently,
h1(x̄) = P (x̄, 0̄)/h2(0̄) is a weakly-0̄-justified ROP and so is h2(ȳ).

We note that almost the same proof shows that a factor of any ROP is also a ROP. We conclude
this section with a very useful property of multiplicative ROPs that encapsulates the previously
discussed properties.

Lemma 5.13. Let P be a multiplicative ROP with |var(P)| ≥ 2. Then, for every xi ∈ var(P)
there exists xj ∈ var(P) such that ∂P

∂xj
= (xi − α)hj(x̄) for some α ∈ F and ROP hj(x̄), when

var(hj) = var(P) \ {xi, xj} (in particular, ∂P
∂xj
|xi=α ≡ 0). If, in addition, P is weakly-0̄-justified

then so is hj(x̄). Moreover, α 6= 0 and there exists at most one element β 6= α ∈ F such that
P |xi=β is not weakly-0̄-justified .

Proof. Let Φ be a multiplicative ROF computing P . As |var(Φ)| = |var(P)| ≥ 2, Φ has at least
one gate. Let v be the unique entering gate3 of xi. We denote by pv(x̄) the ROP that is computed
by v. Assume w.l.o.g that var(pv) = {x1, x2, . . . xi−1, xi}. By Lemma 5.4 there exists some ROP
Q(y, xi+1, . . . , xn) such that Q(pv(x1, x2, . . . , xi), xi+1, . . . , xn) ≡ P (x1, x2, . . . , xn). Since v is a
multiplication gate (recall that Φ is a multiplicative ROF) and the entering gate of xi we get, in a
similar manner to Lemma 5.3, that pv can be written as pv(x̄) = (xi − α)H(x̄) + c for some ROP
H(x̄) such that var(H) 6= ∅ and xi /∈ var(H). By the chain rule, for every xj ∈ var(H) it holds
that:

∂P

∂xj
=
∂Q

∂y
· ∂pv
∂xj

=
∂Q

∂y
· (xi − α) · ∂H

∂xj
= (xi − α) · hj(x̄), (1)

where hj(x̄) ∆= ∂Q
∂y ·

∂H
∂xj

. As ∂P
∂xj

is a ROP then so is hj . Now, if P is weakly-0̄-justified then

by Lemma 5.11 we get that ∂P
∂xj

is a weakly-0̄-justified ROP as well. By Lemma 5.12 hj(x̄) is a
weakly-0̄-justified ROP and α 6= 0. Assume that for some β 6= α ∈ F the polynomial P |xi=β is not

3The entering gate of xi is the neighbor of the leaf labelled by xi.

13

weakly-0̄-justified . We will show that the value of β is uniquely defined. Applying a reasoning
similar to the one in Lemma 5.8 we obtain that there exist x`, xk 6= xi ∈ var(P) such that
∂P
∂x`
|xi=β 6≡ 0 however ∂P

∂x`
|xi=β,xk=0 ≡ 0. In particular, ∂P

∂x`
6≡ 0 which implies ∂P

∂x`
|xk=0 6≡ 0 since P

is weakly-0̄-justified . In other words, the substitution xi = β affects the dependence of P |xk=0 on
x`. We consider two cases.
Case x` ∈ var(H) (i.e. 1 ≤ ` ≤ i−1): By Equation (1) it holds that ∂P

∂x`
|xk=0,xi=β = (β−α)·h`|xk=0

while ∂P
∂x`
|xk=0 = (xi − α) · h`|xk=0. As β − α 6= 0 we conclude that this case is impossible.

Case x` ∈ var(Q) (i.e. i+ 1 ≤ ` ≤ n): Here we have that ∂P
∂x`

= ∂Q
∂x`
|y=pv(x̄). Define pv,0

∆= pv|xk=0

and pv,0,β
∆= pv,0|xi=β = pv|xk=0,xi=β. We get that

∂Q

∂x`
|xk=0,y=pv,0 =

∂P

∂x`
|xk=0 6≡ 0.

In particular, it implies that ∂Q
∂x`
|xk=0 6≡ 0. On the other hand,(

∂Q

∂x`
|xk=0

)
|y=pv,0,β =

∂Q

∂x`
|xk=0,y=pv,0,β =

∂P

∂x`
|xk=0,xi=β ≡ 0.

Therefore, from Lemma 2.14 we conclude that y − pv,0,β is a factor of ∂Q
∂x`
|xk=0. Since var(pv,0,β) ∩

var(Q) = ∅ and Q is a multilinear polynomial it follows that there exists (exactly one) γ ∈ F such
that pv,0,β ≡ γ (otherwise pv,0,β introduces variables that do not appear in Q) and y− γ is a factor
of ∂Q

∂x`
|xk=0. Recall that pv(x̄) = (xi − α)H(x̄) + c. Thus, H|xk=0 = γ−c

β−α (recall that β − α 6= 0).
As H is a non-constant polynomial, it must the case that xk ∈ var(H). Finally, notice that since P
is a weakly-0̄-justified polynomial then it must be the case that var(H) = {xk} (otherwise, if there
is xm 6= xk ∈ var(H) then ∂P

∂xm
|xk=0 ≡ 0 in contradiction). We conclude that H is a univariate

polynomial in xk and that the value of β is uniquely defined by α, γ, c and H, which, in turn, are
uniquely defined by P .

5.4 Preprocessed Read-Once Polynomials

In this subsection we extend the model of ROFs by allowing a preprocessing step of the input
variables. While the basic model is read-once in its variables, the extended model can be considered
as read-once in univariate polynomials.

Definition 5.14. A preprocessing is a transformation T (x̄) : Fn → Fn of the form T (x̄) ∆=
(T1(x1), T2(x2), . . . , Tn(xn)) such that each Ti is a non-constant univariate polynomial. We say
that a preprocessing is standard if in addition to the above each Ti is monic and satisfies Ti(0) = 0.

Notice that preprocessings do not affect the PIT problem in the non-black setting as for every
n-variate polynomial P (ȳ) it holds that P (ȳ) ≡ 0 if and only if P (T (x̄)) ≡ 0. We now give a formal
definition and list some immediate properties.

Definition 5.15. A preprocessed arithmetic read-once formula (PROF for short) over a field
F in the variables x̄ = (x1, . . . , xn) is a binary tree whose leafs are labelled with non-constant
univariate polynomials T1(x1), T2(x2), . . . , Tn(xn) (all together forming a preprocessing) and whose
internal nodes are labelled with the arithmetic operations {+,×} and with a pair of field elements
(α, β) ∈ F2. Each Ti can label at most one leaf. The computation is performed in the following way.
A leaf labelled with the polynomial Ti(xi) and with (α, β) computes the polynomial α ·Ti(xi) + β. If
a node v is labelled with the operation op and with (α, β), and its children compute the polynomials
Φv1 and Φv2 then the polynomial computed at v is Φv = α · (Φv1 op Φv2) + β.

14

A polynomial P (x̄) is a Preprocessed Read-Once Polynomial (PROP for short) if it can be
computed by a preprocessed read-once formula. A Decomposition of a polynomial P is a couple
Q(z̄), T (x̄) such that P (x̄) = Q(T (x̄)) when Q is a ROP and T is a preprocessing. A Standard
Decomposition is as above with the additional requirement that T is a standard preprocessing. An
immediate consequence from the definition is that each PROP admits a decomposition. To provide
additional intuition we start with a simple, yet important lemma.

Lemma 5.16. Every PROP P admits a standard decomposition.

Proof. Let (Q,T) be a decomposition of P and ci 6= 0 denote the leading coefficient of xi in the
polynomial Ti(xi) for i ∈ [n] (ci is well-defined since Ti is non-constant). Consider the shifted
polynomials:

Q′(z̄) ∆= Q (c1 · z1 + T1(0), c2 · z2 + T2(0), . . . , cn · zn + Tn(0))

T ′i (xi)
∆=
Ti(xi)− Ti(0)

ci
, T (x̄) ∆=

(
T ′1(x1), T ′2(x2), . . . , T ′n(xn)

)
.

It is easy to verify that (Q′, T ′) is a standard decomposition of P .

Lemma 5.17. Let P be a PROP, and let (Q(z̄), T (x̄)) be a standard decomposition for P . Then
P is (weakly) 0̄-justified if and only if Q is (weakly) 0̄-justified . More generally: P is ā-justified iff
Q is T (ā)-justified.

Since the above properties trivially hold, we will use them implicitly. The following two lemmas
are the PROPs analogs of Lemmas 5.3 and 5.6.

Lemma 5.18 (PROP Structural Lemma). Every PROP P (x̄) such that |var(P)| ≥ 2 can be
presented in exactly one of the following forms: P (x̄) = P1(x̄)+P2(x̄), or P (x̄) = P1(x̄) ·P2(x̄)+ c,
where P1 and P2 are non-constant, variable-disjoint PROPs and c is a constant.

Lemma 5.19. A partial derivative of a PROP is a PROP.

The following lemma exhibits yet another important property of PROFs. Note that for zero-
characteristic fields the claim holds for every polynomial, however, this in not the case for fields of
finite characteristic.

Lemma 5.20. Let P be a PROP and G = (G1, . . . ,Gn) : Ft → Fn be such that P (G) is a non-
constant polynomial. Then there exists xm ∈ var(P) such that P

(
G1, . . . ,Gm−1, xm ,Gm+1, . . . ,Gn

)
(the polynomial resulting from substituting Gi for xi for every i 6= m) depends on xm.

Proof. We prove the claim by induction on k = |var(P)|. Clearly, k ≥ 1. We also note that for
k = 1 the claim is trivial. For k ≥ 2 we get by Lemma 5.18 that P can be in a one of two forms.

Case 1. P (x̄) = P1(x̄) + P2(x̄). Since (P1 + P2)(G) is a non-constant polynomial we
get that w.l.o.g. P1(G) is a non-constant polynomial. In addition, |var(P1)| < |var(P)|
and so by the induction hypothesis we get that there exists xm ∈ var(P1) such that
P1

(
G1, . . . ,Gm−1, xm ,Gm+1, . . . ,Gn

)
depends on xm. As P1 and P2 are variable disjoint

we obtain that P
(
G1, . . . ,Gm−1, xm ,Gm+1, . . . ,Gn

)
depends on xm as well.

Case 2. P (x̄) = P1(x̄) · P2(x̄) + c. Again we assume w.l.o.g. that P1(G) is a non-
constant polynomial and P2(G) 6≡ 0. As before, there exists xm ∈ var(P1) such that
P1

(
G1, . . . ,Gm−1, xm ,Gm+1, . . . ,Gn

)
depends on xm, and from variable disjointedness and the fact

that P2(G) 6≡ 0 we obtain that P
(
G1, . . . ,Gm−1, xm ,Gm+1, . . . ,Gn

)
depends on xm as well.

15

The following example demonstrates that this is not the case for general polynomials over finite
characteristic fields.

Example 5.21. Let F be a field of characteristic p. Consider Q(x1, . . . , xp+1) =
p+1∑
i=1

∏
j 6=i

xj. Note

that Q(y, y, . . . , y) = (p+ 1) · yp = yp is a non-constant polynomial, while for every m we get that
Q(y, . . . , y, xm, y, . . . , y) = p · xm · yp−1 + yp = yp which does not depend on xm.

6 Black-Box PIT for Preprocessed Read-Once Polynomials

In this section we give black-box PIT algorithm for PROPs, thus proving Theorem 1. The main
idea is to convert a PROP P , that has many variables, each with a low degree, into a polynomial
P ′ with a smaller number of variables while maintaining a reasonable degree, such that P ′ ≡ 0 if
and only if P ≡ 0. In fact, we construct a low-degree generator for PROPs.

Lemma 6.1. Let P ∈ F[x1, . . . , xn] be a nonzero PROP with |var(P)| ≤ 2t, for some t ≥ 0. Then
P (Gt+1) 6≡ 0. Moreover, if P is non-constant then so is P (Gt+1) (recall Definition 3.5).

Proof. We prove the claim by induction on |var(P)|. For |var(P)| = 0, 1 the claim is trivial. Assume
that |var(P)| ≥ 2 (i.e. t ≥ 1). By Lemma 5.18 we get that P can be in a one of two forms.

Case 1. P (x̄) = P1(x̄) + P2(x̄). Since P1 and P2 are variable disjoint we can assume w.l.o.g.
that |var(P1)| ≤ |var(P)|/2 (in particular |var(P1)| < |var(P)|). By the induction hypothesis we
see that P1(Gt) 6≡ 0 is a non-constant polynomial. Lemma 5.20 implies that there exists a vari-
able xm ∈ var(P1) such that even after substituting all the other Git-s, P1 still depends on xm. As
xm 6∈ var(P2) we obtain that P

(
G1
t , . . . , G

m−1
t , xm , Gm+1

t , . . . , Gnt
)

depends on xm as well. By Ob-
servation 3.6, P (Gt+1)|yt+1= αm = P

(
G1
t , . . . , G

m−1
t , Gmt + zt+1 , G

m+1
t , . . . , Gnt

)
. Since zt+1 only

appears in the m-th coordinate it follows that P (Gt+1)|yt+1= αm depends on zt+1. Hence, P (Gt+1)
is a non-constant polynomial and in particular P (Gt+1) 6≡ 0.

Case 2. P (x̄) = P1(x̄) · P2(x̄) + c. As P1, P2 are non-constant and variable disjoint we have that
1 ≤ |var(P1)| , |var(P2)| < |var(P)| ≤ 2t. Hence, we can apply the induction hypothesis on both P1

and P2. As P (Gt+1) = P1(Gt+1) · P2(Gt+1) + c, we see that P (Gt+1) is a non-constant polynomial
(since P1(Gt+1), P2(Gt+1) are non-constant as well).

Theorem 6.2. Let P ∈ F[x1, . . . , xn] be a nonzero PROP with individual degrees bounded by d that
depends on at most t variables4. Then, there exists an explicit set H of size |H| = (nd)O(log t) such
that P |H 6≡ 0.

Proof. Denote ` = dlog2 te+ 1. By Lemma 6.1 we get that P (G`) 6≡ 0. The proof follows from
Lemma 3.4. Note that |H| ≤ (n2d)2` = (nd)O(log t).

In particular, since every PROP depends on at most n variables, we obtain a quasi-polynomial
(nd)O(logn) black-box PIT algorithm for PROPs, thus proving Theorem 1.

Remark 6.3. Lemma 6.1 shows that G` (for the appropriate value of `) is a generator for ROPs
regardless of the degree of P . It can also be proved that G` is a generator for the more general model
of arithmetic read-once formulas with the operations {+,×, /} (addition, multiplication, division),
however we will not do it here.

4Clearly t ≤ n but we choose this more general statement.

16

6.1 Small Depth Preprocessed Alternating Read-Once Formulas

In this section we use a similar idea to construct a generator for PROPs computed by formulas of
a small depth. When considering small depth (preprocessed) read-once formulas we allow the tree
to have unbounded fan-in (and not just fan-in 2 as in the usual definition). Moreover, we allow
small depth PROFs to use generalized multiplication gates. A generalized multiplication gate on
the inputs (x1, . . . , xk) is allowed to compute any multiplicative ROP in its input variables.

Definition 6.4. An alternating read-once formula (AROF) over a field F in the variables x̄ =
(x1, . . . , xn) is a tree, of unbounded fan-in, whose leafs are labelled with the input variables and
whose internal nodes are labelled with either + or MULT. Each input variable can label at most one
leaf. Every leaf and every + gate are labelled with two field elements (α, β) ∈ F2. In addition, any
children of a MULT (+) gate is either a leaf or a + (MULT) gate The computation is performed
in the following way. A leaf labelled with the variable xi and with (α, β) computes the polynomial
αxi + β. If a node v, of fan-in k, is labelled with + and (α, β) and its children compute the
polynomials Φv1 , . . . ,Φvk then the polynomial computed at v is Φv = α ·

(∑k
i=1 Φv1

)
+ β. If v is

labelled with MULT then it computes a multiplicative ROP in its input variables. That is, if v is
labelled with the multiplicative ROP Ψ, and its children compute the polynomials Φv1 , . . . ,Φvk , then
the output of v will be the polynomial Φv = Ψ(Φv1 , . . . ,Φvk). The depth of an AROF is defined as
the depth of its tree. In other words, the length of the longest path from a leaf to the root.

A preprocessed alternating read-once formula (P-AROF for short) is an AROF Φ whose leafs
are labelled with non-constant univariate polynomials T1(x1), T2(x2), . . . , Tn(xn) (namely, a prepro-
cessing) and the computation is performed as before (in a similar manner to Definition 5.15).

Example 6.5. The polynomial computed in Example 5.2 has an AROF of depth-1 that contains a
single MULT gate.

Definition 6.6. For a PROP P ∈ F[x1, . . . , xn] we define depth(P) to be the depth of the shallowest
P-AROF computing it.

In fact, it can be shown that all the non-degenerate P-AROFs computing the same PROP have
the same depth. We now give the analog of Lemmas 5.18, 5.19 and for the case of P-AROFs.

Lemma 6.7. Every PROP P (x) with |var(P)| ≥ 2 of depth D can be presented in exactly one of the
following forms: P (x̄) = P1(x̄) + P2(x̄) + . . .+ Pk(x̄) or P (x̄) = f (P1(x̄), P2(x̄), . . . , Pk(x̄)), where
the polynomials {Pj(x̄)}j∈[k] are non-constant variable-disjoint PROPs of depth at most D−1, and
f is a multiplicative ROP.

The proof is similar to the proof of Lemma 5.3 so we omit it.

Lemma 6.8. A partial derivative of a PROP P (x̄) of depth D is a PROP of depth at most D.

Proof. Let P be a PROP of depth D, xi ∈ var(P) and α ∈ F. We prove the lemma by induction
on m = |var(P)|. For m = 0, 1 the claim is trivial. For m ≥ 2 we get by Lemma 6.7 that P can be
in a one of two forms.

Case 1. P (x̄) = P1(x̄) + P2(x̄) + . . .+ Pk(x̄). In this case we get that since the Pj ’s are variable-
disjoint PROPs we can assume w.l.o.g that ∂P

∂αxi
= ∂P1

∂αxi
. In addition, |var(P1)| < |var(P)|. By the

induction hypothesis we get that ∂P
∂αxi

= ∂P1
∂αxi

is a PROP of depth at most D − 1.

17

Case 2. P (x̄) = f (P1(x̄), P2(x̄), . . . , Pk(x̄)), where f is a multiplicative ROP in {y1, y2, . . . yk}.
Assume w.l.o.g that xi ∈ var(P1). By the chain rule we get that ∂P

∂αxi
= ∂f

∂y1
(P1, . . . , Pk) · ∂P1

∂αxi
. As

f is a multiplicative ROP, we get that ∂f
∂y1

is a multiplicative ROP in the variables y2, . . . , yk. In
addition, our induction hypothesis implies that ∂P1

∂αxi
is a PROP of depth at most D−1 (as the depth

of P1 is at most D−1). As the Pj ’s are variable disjoint it follows that ∂P
∂αxi

= ∂f
∂y1

(P1, . . . , Pk) · ∂P1
∂αxi

is a PROP of depth at most D.

We now give a generator for small depth P-AROFs. The idea is to ‘reduce’ the depth of the
formula level by level. In a P-AROF each pair of adjacent levels consists of + and MULT gates.
To reduce a + gate, we use Lemma 5.20. To reduce a MULT gate, we use the following lemma.
Note that in the proof of Lemma 6.1 we made an explicit usage of Lemma 6.9 for the case k = 2.

Lemma 6.9. Let Q(x1, . . . , xk) : Fk → F be a non-constant multiplicative ROP and h1(ȳ), . . . , hk(ȳ)
be non-constant polynomials. Then Q(h1, . . . , hk) is a non-constant polynomial.

Proof. The proof follows immediately by a simple induction on the structure of the multiplicative
ROF for Q. We just notice that the top gate is × and by induction the children are non-constant
and so their product is non-constant. The base case of the induction is trivial.

Finally, we can state the depth-version of Lemma 6.1.

Lemma 6.10. Let P ∈ F[x1, . . . , xn] be a non-constant PROP of depth ≤ D. Then P (GD+1) is a
non-constant polynomial (in particular P (GD+1) 6≡ 0).

Proof. We prove the claim by induction on depth(P). For depth(P) = 0 we get that |var(P)| ≤ 1
and the proof is trivial. Now assume that depth(P) ≥ 1. This implies |var(P)| ≥ 2. By Lemma
6.7, P can be written in exactly one of the following two forms.

Case 1. P (x̄) = P1(x̄) + P2(x̄) + . . . + Pk(x̄), where the polynomials Pj(x̄) are non-constant
variable-disjoint PROPs of depth at most D− 1: By the induction hypothesis we see that P1(GD)
is a non-constant polynomial. By Lemma 5.20 there is a variable xm ∈ var(P1) such that even after
substituting all the other GiD-s, P1 still depends on xm. As xm 6∈ var(Pj) for 2 ≤ j ≤ k it follows
that P

(
G1
D, . . . , G

m−1
D , xm , Gm+1

D , . . . , GnD
)

depends on xm as well. By Observation 3.6 we get
that P (GD+1)|yD+1= αm = P

(
G1
D, . . . , G

m−1
D , GmD + zD+1 , G

m+1
D , . . . , GnD

)
. As zD+1 only appears

in the m-th coordinate it follows that P (GD)|yD+1= αm depends on zD+1. Therefore, P (GD+1) is a
non-constant polynomial and in particular P (GD+1) 6≡ 0.

Case 2. P (x̄) = f (P1(x̄), P2(x̄), . . . , Pk(x̄)), where the polynomials Pj(x̄) are non-constant
variable-disjoint PROPs of depth at most D − 1, and f is a multiplicative ROP: By applying
the induction hypothesis on each Pj we get that Pj(GD+1) is a non-constant polynomial, for every
j ∈ [k]. As P (GD+1) = f (P1(GD+1), P2(GD+1), . . . , Pk(GD+1)) it follows from Lemma 6.9 that
P (GD+1) is a non-constant polynomial.

We now give an analog of Theorem 6.2 that clearly implies Theorem 4, for the case k = 1. The
proof is exactly the same and so we omit it.

Theorem 6.11. Let P ∈ F[x1, . . . , xn] be a nonzero PROP with individual degrees bounded by d
and depth at most D. Then, there exists an explicit set H of size |H| = (nd)O(D) such that P |H 6≡ 0.

18

7 PIT for Sum of Preprocessed Read-Once Formulas

In this section we prove Theorems 2, 3, 4 and 7. Specifically, we are given k PROPs {Fm}m∈[k]

and we have to find whether they sum to zero or not. In other words, let F = F1 + . . .+ Fk. The
problem is to decide whether F ≡ 0. Our algorithm for the problem has two steps. First we find a
common justifying assignment to F1, . . . , Fk using Algorithm 1. Once we have a common justifying
assignment we can assume w.l.o.g. that all the input formulas are 0̄-justified (see Proposition 2.4).
In the second step we simply verify that F vanishes on a relatively small set of vectors, each of
weight at most 3k. Theorem 7.4 then guarantees that F ≡ 0. In the black-box version of the
algorithm we construct a generator that simulates this process.

7.1 Hardness of Representation

The main tool in our proof is Theorem 7.1 that shows that we cannot represent Pn
∆=
∏n
i=1 xi

as a sum of less than 1
3n 0̄-justified ROPs. We call this approach a hardness of representation

approach as the proof is based on the fact that a simple polynomial cannot be represented by
a sum of a ‘small’ number of 0̄-justified ROPs. Then, using this preliminary result, we prove a
stronger hardness of representation theorem (Theorem 7.2) for PROPs. Namely, we show that every
nonzero polynomial that has Pn as a factor, cannot be written as a sum of at most n

3 0̄-justified
PROPs. For completeness we give a simple representation of Pn as a sum of n 0̄-justified ROPs,
showing the near optimality of our bound.

Theorem 7.1. Pn(x̄) cannot be represented as sum of k ≤ n
3 weakly-0̄-justified ROPs.

Proof. Let {Fm(x̄)}m∈[k] be k weakly-0̄-justified ROPs over F[x1, . . . , xn]. We prove the claim by
induction on k. For k = 0, 1 the claim follows from the definition of weak-0̄-justification. We now

assume that k ≥ 2 and that n ≥ 3k. We shall assume for a contradiction that
k∑

m=1
Fm = Pn.

The idea of the proof is to eliminate a ‘large’ number of ROPs at the cost of a ‘small’ number of
variables. Specifically, we find a small set of (indices of) input variables J ⊆ [n− 1] and a constant
α 6= 0 ∈ F such that after we take a partial derivative with respect to all of the variables in J
and substitute xn = α (that is we consider the ROPs {∂JFm|xn=α}m∈[k]) we eliminate ‘many’ Fm-s
in a way that the rest of the ROPs remain weakly-0̄-justified . We thus get a representation of
∂JPn|xn=α = α · Pn̂ (for a relatively large n̂) as a sum of a ‘small’ number of weakly-0̄-justified
ROPs. Then we use the induction hypothesis to reach a contradiction. We now proceed with the
proof. There are two cases to consider.

Case 1: There exist i 6= j ∈ [n] and m ∈ [k] such that ∂2Fm
∂xi∂xj

≡ 0 (namely, Fm does not contain
xi · xj in any of its monomials). Assume w.l.o.g. that i = n− 1, j = n and m = k. By considering

the partial derivatives with respect to {xn, xn−1} we see that
k−1∑
m=1

∂2Fm
∂xn∂xn−1

= Pn−2. It may be the

case that more than one Fm vanishes when we take a partial derivative w.r.t. {xn, xn−1}, however
they cannot all vanish simultaneously (as Pn contains xn · xn−1). By Lemma 5.11 we get that the
polynomials

{
∂2Fm

∂xn∂xn−1

}
are weakly-0̄-justified ROPs. Hence, we obtain a representation of Pn−2

as a sum of 0 < k̂ ≤ k − 1 weakly-0̄-justified ROPs such that 0 < 3k̂ ≤ 3(k − 1) = 3k − 3 < n− 2
which contradicts the induction hypothesis.

19

Case 2: For every i 6= j ∈ [n] and m ∈ [k] we have that ∂2Fm
∂xi∂xj

6≡ 0. Thus, by Lemma 5.10
we get that the polynomials {Fm}m∈[k] are multiplicative ROPs. In addition, for every m ∈ [k]
we have that var(Fm) = [n]. In particular, |var(Fm)| ≥ 6. Lemma 5.13 implies that ∀m ∈ [k]
there exist jm ∈ [n], αm 6= 0 ∈ F and a ROP hm(x̄) such that ∂Fm

∂xjm
= (xn − αm)hm(x̄). Let

A = {αm | m ∈ [k]}. Clearly 0 /∈ A. For every α ∈ A denote

Eα
∆= {m ∈ [k] | αm = α}

and
Bα

∆= {m ∈ [k] | αm 6= α and Fm|xn=α is not weakly-0̄-justified } .

Intuitively, Eα is set of the ROPs that can be eliminated by substituting xn = α and Bα is set
of (‘bad’) ROPs that will become non weakly-0̄-justified upon the substitution and thus require
a special treatment. From the definition of A we have that |Eα| ≥ 1 and

∑
α∈A
|Eα| = k. More

specifically, the Eα’s form a partition of [k]. Similarly, Lemma 5.13 implies that for each α 6=
α′ ∈ A the sets Bα and Bα′ are disjoint (since for every ROP there exists at most one bad value
β of xn) and therefore

∑
α∈A
|Bα| ≤ k. Hence, there exists α0 ∈ A such that |Bα0 | ≤ |Eα0 |. Let

I = Eα0 ∪ Bα0 and J = {jm | m ∈ I }. From the definition, I ⊆ [k] and J ⊆ [n]. In addition,
1 ≤ |J | ≤ |I| ≤ |Eα0 |+ |Bα0 | ≤ 2 |Eα0 | and n /∈ J . Consider the following ROPs for every m ∈ [k]:
F ′m

∆= ∂JFm. Then the ROPs F ′m’s have the following properties.

1. By Lemma 5.11 we get that every F ′m is a weakly-0̄-justified ROP.

2. For every m ∈ I we have that F ′m = (xn−αm)h′m(x̄) for some ROP h′m(x̄). Indeed, as jm ∈ J
we have that

F ′m = ∂JFm = ∂J\{jm}(
∂Fm
∂xjm

) = ∂J\{jm} ((xn − αm)hm(x̄)) = (xn − αm) · ∂J\{jm}hm(x̄).

3. For every m ∈ I we have that h′m(x̄) is a weakly-0̄-justified ROP (this follows from Lemma
5.12 and the previous two properties).

For m ∈ [k] consider the following ROPs: F ′′m
∆= ∂JFm|xn=α0 = F ′m|xn=α0 . Based on the above we

can conclude that:

• For every m ∈ Eα0 it holds that F ′′m = (α0 − αm)h′m(x̄) ≡ 0 (by definition of Eα0 we have
that αm = α0).

• For every m ∈ Bα0 we have that F ′′m = (α0 − αm)h′m(x̄) is a nonzero weakly-0̄-justified ROP.
Notice that in contrary to Fm, the structure of F ′m guarantees that it remains weakly-0̄-
justified when substituting xn = α0.

• For m ∈ [k]\ I the definitions of Eα0 and Bα0 guarantee that Fm|xn=α0 is a weakly-0̄-justified
ROP. Lemma 5.11 implies that the same holds for F ′′m = ∂J(Fm|xn=α0) as well. Note that in
this case it is also possible that F ′′m ≡ 0.

Thus, F ′′m ≡ 0 for m ∈ Eα0 and F ′′m is a weakly-0̄-justified ROP for m ∈ [k] \ Eα0 . W.l.o.g. let us

assume that J = {n̂+ 1, n̂+ 2, . . . , n− 2, n− 1} for some n̂. We get that
k∑

m=1
F ′′m = ∂JPn|xn=α0 =

α0 · Pn̂. That is, we found a representation of α0 · Pn̂ as a sum of weakly-0̄-justified ROPs, where at

20

least |Eα0 | of the ROPs are zeros. Notice that 2 |Eα0 | ≥ |J | = (n− 1)− n̂ and |Eα| ≥ 1. Therefore,
we have found a representation of α0 · Pn̂ as a sum of 0 ≤ k̂ < k weakly-0̄-justified ROPs such that

0 ≤ 3k̂ ≤ 3(k − |Eα|) = 3k − 3 |Eα| ≤ n− 3 |Eα| = n− 1− 2 |Eα|+ 1− |Eα| ≤ n̂+ 1− |Eα| ≤ n̂.

By our induction hypothesis we get that α0 = 0, which is a contradiction (recall that α0 ∈ A and
0 /∈ A). Hence, Pn cannot be represented as a sum of less than n

3 weakly-0̄-justified ROPs. This
completes the proof of Theorem 7.1.

We now generalize the hardness of representation theorem to the case of PROPs.

Theorem 7.2. For every g(x̄) 6≡ 0 the polynomial g(x̄) · Pn(x̄) cannot be represented as sum of k
weakly-0̄-justified PROPs for k ≤ n

3 .

Proof. Let {Fm(x̄)}m∈[k] be k weakly-0̄-justified PROPs with individual degrees bounded by d
over F and {(Qm(z̄), Tm(x̄))}m∈[k] be standard decompositions for them. Recall (Lemma 5.17)

that {Qm(z̄)}m∈[k] are weakly-0̄-justified ROPs. Denote Tmi (xi) =
d∑
j=0

αj,i,m · xji . Assume that

F =
k∑

m=1
Fm = g(x) · Pn(x̄). Let

n∏
i=1

xeii be some monomial appearing in g(x). It follows that the

monomial A =
n∏
i=1

xei+1
i appears in F . Since the Fm-s are ROFs we have that A =

k∑
m=1

F̃m, where

(Qm(z̄), αei+1,i,m ·
n∏
i=1

xeii) is a standard decomposition for F̃m. Indeed, the polynomial computed

by this sum has no constant term (as one can see by setting all the variables to zero and comparing
to F . Additionally, each of its monomials must also appear in F and as the degree of xi in it is

exactly xei+1
i , it must equal A. It now follows that

k∑
m=1

Qm = αPn(x̄) where α is the coefficient of
n∏
i=1

xeii in g. By Theorem 7.1 it follows that n > 3k.

To complete the picture we show that over a large field (|F| > n) the polynomial Pn(x̄) can be
represented as a sum of n 0̄-justified ROPs.

Lemma 7.3. Let F be a field with more than n elements. Then the polynomial Pn(x̄) can be
represented as a sum of n 0̄-justified ROPs.

Proof. Let A = {α1, α2, . . . , αn} ⊆ F \ {0} be a subset of n distinct nonzero elements. For every
i ∈ [n] let ui(w) be the i-th Lagrange Interpolation polynomial over A (see Definition 3.5).Let
ϕ(x̄, t) = (x1 + t)(x2 + t) · · · (xn + t)− tn. Since the degree of t in ϕ(x̄, t) is n− 1 we get ϕ(x̄, t) =
n∑

m=1
um(t) · ϕ(x̄, αm) (i.e., interpolate ϕ(x̄, t) as a degree n − 1 polynomial in t). Consequently,

Pn(x̄) = ϕ(x̄, 0) =
n∑

m=1
um(0) · ϕ(x̄, αm) =

n∑
m=1

Fm(x̄) + c where Fm(x̄) ∆= um(0) · ϕ(x̄, αm) are

0̄-justified ROPs and c = −
n∑

m=1
um(0) · αnm. Clearly, we can add c to Fn, and so the proof is

completed.

Next, we show that if
k∑

m=1
Fm, a sum of 0̄-justified PROPs, vanishes on a certain small set then

the sum is zero.

21

Theorem 7.4. Let {Fm(x̄)}m∈[k] be 0̄-justified PROPs over F with individual degrees bounded by

d. Let W ⊆ F be a subset of size d+ 1 5 such that 0 ∈ W . Let F (x̄) =
k∑

m=1
Fm(x̄). Then F ≡ 0 if

and only if F |An3k(W) ≡ 0 (recall the definition in Section 3.1).

Proof. If F ≡ 0 then the claim is clear. For the other direction we apply induction on n. Our base
case is when n ≤ 3k. In this case F is a polynomial in n ≤ 3k variables of degree at most d in each
variable and therefore by Lemma 2.13 we get that F |An3k(W) ≡ 0 implies that F ≡ 0. We now assume
that n > 3k ≥ 3. Let ` ∈ [n]. Consider the restriction of the Fm’s and F to the subspace x` = 0.
We now show that the required conditions hold for F ′ ∆= F |x`=0 and

{
F ′m

∆= Fm|x`=0

}
m∈[k]

as well.

Indeed, the {F ′m}m∈[k] are 0̄-justified PROPs with individual degrees bounded by d. Moreover,
F ′|An−1

3k (W) = F ′|An3k(W) ≡ 0. From the induction hypothesis we conclude that F |x`=0 = F ′ ≡ 0
and therefore x` is a factor of F (see Lemma 2.14). As this holds for every ` ∈ [n] we get that
Pn(x̄) divides F (x̄) or equivalently F (x̄) = g(x̄) · Pn(x̄) for some g(x̄) ∈ F[x1, . . . , xn]. It follows
that g(x̄) · Pn(x̄) is a sum of k 0̄-justified PROPs. As n > 3k we get by Theorem 7.2 that we must
have that g(x̄) ≡ 0. Hence F = g · Pn ≡ 0. This completes the proof of the theorem.

The following is an immediate corollary from Theorem 7.4 and Observation 3.6.

Corollary 7.5. In the settings of Theorem 7.4 let ā be a common justifying assignment for the
PROPs F1, F2, . . . , Fk. Then F ≡ 0 iff Fā|An3k(W) ≡ 0 and hence F ≡ 0 iff Fā(G3k) ≡ 0.

7.2 Non Black-Box Identity Testing Algorithm for Sum of PROPs

In this section we prove Theorem 2. For the algorithm we assume that |F| > d, where d is the
bound on the individual degrees of the PROFs.

Algorithm 2 PIT algorithm for sum of preprocessed read-once formulas
Input: PROFs F1, . . . , Fk with individual degrees bounded by d
Output: “true” iff F

∆= F1 + · · ·+ Fk ≡ 0

1: Choose W ⊆ F a subset of size d+ 1, such that 0 ∈W
2: Acquire a common justifying assignment ā for F1, F2, . . . , Fk {using Algorithm 1}.
3: Check that Fā|An3k(W) ≡ 0.

Lemma 7.6. Algorithm 2 runs in time (nd)O(k) and correctly determines whether F ≡ 0 .

Proof. We start by showing the correctness of the algorithm. If the algorithm did not return “true”
then Fā evaluates to a nonzero value which implies that Fā 6≡ 0 and hence F 6≡ 0. If, on the other
hand, the algorithm outputs “true”, then Fā|An3k(W) ≡ 0, where ā is common justifying assignment
for the PROPs F1, . . . , Fk. Corollary 7.5 now implies that F ≡ 0.

To analyze the running time we first note that given a PROF (explicitly) we can determine
whether it computes the zero polynomial in time O(n) by a simple traversal over the formula.
Therefore, acquiring a common justifying assignment ā for the formulas requires time O(n4k2d)
(set TC′ = O(n) in Lemma 4.2). Verifying that Fā|An3k(W) ≡ 0 requires at most |An3k(W)| · k time.
Hence, the running time is at most k · (nd)O(k) = (nd)O(k) (see Section 3.1).

Theorem 2 is an immediate corollary of Lemma 7.6.
5We implicitly assume that |F| > d.

22

7.3 Black-Box Identity Testing Algorithm for Sum of PROPs

In this section we prove Theorems 3, 4 and 7. The idea is to give a generator that, in some
sense, simulates Algorithm 2. Specifically, a generator whose image contains a common justifying
assignment and the set An3k(W) (for an appropriate subset W). For that purpose we use Corollary
4.4 of Lemma 4.3 that shows how to obtain a justifying set from a black-box PIT algorithm. Thus,
we actually show how to construct a generator for sum of k PROFs from a generator for a single
PROF.

Theorem 7.7. Let F1, . . . , Fk be PROPs, with individual degrees bounded by d, that are computed

by a circuit class C such that F =
k∑

m=1
Fm 6≡ 0. Let C′ be a circuit class such that ∂C ⊆ C′ 6. Let

G = (G1, . . . ,Gn) : Ft → Fn be a generator for C′. Then F (G + G3k) 6≡ 0. That is, the mapping
G +G3k : Ft+6k → Fn, obtained by component-wise addition, is a generator for sum of k PROPs.

Proof. By Corollary 4.4 there exists γ̄ ∈ Ft such that ā = G(γ̄) is a common justifying assignment
for F1, . . . , Fk. Now, by Corollary 7.5 we get: F (G(γ̄) +G3k) = Fā(G3k) 6≡ 0. In particular,
F (G +G3k) 6≡ 0.

Using Theorem 7.7 and Lemma 3.4 we prove Theorems 3 and 7.

Proof of Theorem 3. From Lemma 6.1 we get that for ` = dlog2 ne+ 1 the mapping G` : F2` → Fn
is a generator for PROFs. Lemma 5.19 implies that PROFs are closed under partial derivatives.
Hence, by Theorem 7.7 we get that the mapping G`+3k is a generator for sum of k PROFs. The
hitting set produced by Lemma 3.4 is of size |H| = (n2d)O(6k+2`) = (nd)O(k+logn).

The next case is when all the Fm’s are bounded depth PROFs.

Proof of Theorem 4. Lemma 6.10 implies that the mapping G` : F2` → Fn, for ` = D + 1, is a
generator for depth-D PROFs. By Lemma 6.8, this circuit class is closed under partial derivatives.
Therefore, it follows from Theorem 7.7 that G`+3k is a generator for sum of k PROFs of depth at
most D. Lemma 3.4 now gives a hitting set of size |H| = (n2d)O(6k+2`) = (nd)O(D+k).

The last result in this vein is a black-box PIT algorithm for the case where the black box holds
a sum of PROFs that is a read-k (i.e., every variable appears in at most k PROFs).

Definition 7.8. Let {Fm}m∈[r] be PROFs. We say that F =
r∑

m=1
Fm is a read-k sum if for each

i ∈ [n] there are at most k functions Fm that depend on xi. In other words, each variable is read
at most k times in F .

We can easily extend a PIT algorithm for sum of k PROFs to a PIT algorithm for read-k sum
with the following observation:

Observation 7.9. Let F be a read-k sum. Then ∂F
∂αxi

is a sum of (at most) k PROFs, for every
i ∈ [n] and each α ∈ F.

Proof of Theorem 7. Given a read-k sum F we can, by Lemma 4.1, find var(F). Observation 7.9
implies that we can use Theorems 2, 3 and 4 as the corresponding PIT algorithm.

6Note that we can let C be the class of PROFs, however we give the more general statement in order to apply it
for models for which we have a more efficient generator than the one for PROFs.

23

8 Depth-3 Arithmetic Circuits

In this section we give a new black-box PIT algorithm for depth-3 circuits based on the hardness
of representation approach. We also derive a new PIT algorithm for multilinear depth-3 circuits
and a special case of depth-4 circuits based on Theorem 4. We first define the relevant models and
discuss the known results.

Definition 8.1. A linear function over F is a polynomial of the form L(x̄) =
n∑
i=1

bixi + b0, where

∀i bi ∈ F. A polynomial P (x̄) ∈ F[x1, . . . , xn] is a linear product if it can be represented as a product
of linear functions: P (x̄) =

∏
j
Lj(x̄) where each Lj(x̄) is a linear function.

Definition 8.2. A depth-3 ΣΠΣ(k) circuit C computes a polynomial of the form C(x̄) =
k∑

m=1
Fm(x̄) =

k∑
m=1

dm∏
j=1

Lm,j(x̄), where each Lm,j(x̄) is a linear function. The Fm-s are the mul-

tiplication gates of the circuit. Note that the Fm-s are, in fact, linear products. We denote by
ΣΠΣ(k, d) a ΣΠΣ(k) circuit such that each multiplication gate has degree at most d. I.e. dm ≤ d
for every m. A multilinear ΣΠΣ(k) circuit is a ΣΠΣ(k) circuit such that each Fm is a multilinear
polynomial. Note, that in this case the degree is bounded from above by n. Moreover, note that in
the multilinear case each Fm is a ROP.

As before, we shall also consider preprocessed ΣΠΣ(k) circuits, that form a special subclass of
depth-4 circuits. The definition is similar to the way PROFs are generated from ROFs.

Definition 8.3. A preprocessed linear function is a polynomial of the form L(x̄) =
n∑
i=1

Ti(xi),

where each Ti(xi) is a univariate polynomials. A polynomial F (x̄) is a preprocessed linear product
if it can be represented as a product of preprocessed linear functions. A Preprocessed ΣΠΣ(k) (or

PΣΠΣ(k) - for short) computes a polynomial of the form: C(x̄) =
k∑

m=1
Fm(x̄), where the Fm-s are

preprocessed linear products.

As a corollary of Theorem 4 we obtain a PIT algorithm for preprocessed multilinear depth-3
circuits (Theorem 5). Indeed, in a multilinear ΣΠΣ(k) circuit each multiplication gate is a depth-2
ROP. Therefore, a preprocessed multilinear ΣΠΣ(k) circuit is actually a sum of k depth-2 PROPs.
Having this in mind we can apply the results of Section 7 (i.e. Theorems 7.2 and 7.4) 7. Thus,
Theorem 5 is in fact an immediate corollary.

Proof of Theorem 5. By the above discussion, a preprocessed multilinear ΣΠΣ(k) circuit is a sum
of k depth-2 PROPs with the same individual degrees. The result follows from Theorem 4.

We now describe a new algorithm for PIT of general ΣΠΣ(k) circuits. Before presenting our
algorithm we give several notations (originally defined in [DS06]) and discuss related results.

Definition 8.4. Let C(x̄) =
k∑

m=1
Fm(x̄) be a ΣΠΣ(k) circuit. We say that C is minimal if no

subset of the multiplication gates sums to zero. We define gcd(C) as the linear product of all the
non-constant linear functions that belong to all the Fm’s. I.e. gcd(C) = gcd(F1, . . . , Fk). We say

7Theorem 7.2 is tight for multilinear depth-3 circuits since Lemma 7.3 gives a representation of Pn as a sum of
n 0̄-justified linear products and a constant, and by a slightly more sophisticated argument one can get rid of the
constant.

24

that C is simple if gcd(C) = 1. The simplification of C, denoted by sim(C), is defined as C/ gcd(C).
Note that if C is a ΣΠΣ(k, d) then so is sim(C). Let rank(C) be defined as the dimension of the
span of the linear functions in C, viewed as (n+ 1)-dimensional vectors over Fn+1.

In [DS06] it was proved that the rank of a ΣΠΣ(k) circuit computing the identically zero
polynomial cannot be too large. Specifically, if the circuit is simple and minimal, then the dimension
of the linear space spanned by all the linear functions in the circuit is relatively small. This bound
on the rank was recently improved by [SS09] for finite fields and by [KS09b] over R and Q.

Theorem 8.5 ([SS09, KS09b]). Let C ≡ 0 be a simple and minimal ΣΠΣ(k, d) circuit over a field
F. Then rank(C) < R(k, d), where, when F is finite, R(k, d) = O(k3 log d) and when F = R or Q,
R(k, d) = kO(k).

In [KS08] a black-box PIT algorithm for ΣΠΣ(k, d) circuits was given. The running time is
poly(n) · dR(k,d). Hence, [SS09, KS09b] get the following corollary.

Theorem 8.6 ([SS09, KS09b]). There is a deterministic black-box PIT algorithm for ΣΠΣ(k, d)
circuits over F that runs in time poly(n) · dR(k,d) = poly(n) · dO(k3 log d) when F is finite and in time
poly(n) · dkO(k)

when F = R or Q, R(k, d) = kO(k).

On the other hand, in the non black-box model there is a poly(n, dk) time PIT algorithm.

Theorem 8.7 ([KS07]). There is a deterministic non black-box PIT algorithm for ΣΠΣ(k, d) cir-
cuits that runs in poly(n, dk) time.

8.1 New Black-Box PIT algorithm for depth-3 ΣΠΣ(k, d) circuits

In this section we give a different black-box PIT algorithm for ΣΠΣ(k, d) circuits based on the
recent result of [SS09, KS09b] using our hardness of representation approach. For this we will use
a result of [SS09, KS09b] that generalizes Theorem 8.5, giving an upper bound on the rank of the
linear factors of a polynomial that is computed by a simple, minimal and nonzero ΣΠΣ(k, d) circuit
8.

Definition 8.8. Let P (x̄) = h1(x̄) · h2(x̄) · . . . · ht(x̄) be a nonzero polynomial and its irreducible
factors, respectively. We denote by Lin(P) the set of (non-constant) linear factors of P . Formally,
Lin(P) ∆= {hi | hi is a linear factor of P }.

Lemma 8.9 ([SS09, KS09b]). Let P (x1, . . . , xn) be a polynomial computed by a simple, minimal
and nonzero ΣΠΣ(k, d) circuit then rank(Lin(P)) ≤ R(k, d).

This lemma allows us to establish a hardness of representation theorem for ΣΠΣ(k, d) circuits.
To ease the notations in the proof, it is more convenient to consider9 nonzero-0̄-justified linear
functions and linear products.

Definition 8.10. Given an assignment ā ∈ Fn and a polynomial P we say that ā is a nonzero-
justifying assignment of P if ā is a justifying assignment of P and in addition P (ā) 6= 0. We say
that P is nonzero-ā-justified if ā is a nonzero-justifying assignment of P .

8This result appears only in [SS09]. However, the proof of [KS09b] can be easily extended to this case as well.
9It is possible to get similar algorithms using the usual 0̄-justified polynomials, instead of the nonzero ones, however

this requires additional technical work that does not contribute to the understanding of the model.

25

Observation 8.11. Let F (x̄) =
∏
j
Lj(x̄) be a (preprocessed) linear product. Then F is nonzero-0̄-

justified iff F (0̄) 6= 0. In addition, F is nonzero-0̄-justified iff Lj(0̄) 6= 0 for each j.

We now give an efficient PIT algorithm using techniques from Section 7.

Lemma 8.12. The function G1(y1, z1) (recall Definitions 3.1, 3.5) is a generator for preprocessed
linear products.

Proof. From Observation 3.2 it is sufficient to show that the claim holds for a single non-constant

preprocessed linear function L(x̄) =
n∑
i=1

Ti(xi). From the definition, there exists j such that Tj(xj)

is a non-constant polynomial. As L(G1(αj , z1)) =
∑
i 6=j

Ti(0) + Tj(z1) (see Observation 3.6) we get

that L(G1(y1, z1)) is a non-constant polynomial.

The following corollary is obtained in a similar fashion to Corollary 4.4 (by slightly changing
the proof of Lemma 4.3).

Corollary 8.13. The image of G1, Im (G1), contains a common nonzero-justifying assignment for
any set of preprocessed linear products.

Next, we prove a hardness of representation result for depth-3 circuits and give an analog of
Theorem 7.4.

Theorem 8.14. For every g(x̄) 6≡ 0 the polynomial g(x̄) · Pn(x̄) cannot be represented as sum of k
nonzero-0̄-justified linear products of (a total) degree d when n > R(k, d).

Proof. Let C =
k∑

m=1
Fm compute g(x) · Pn. Assume, w.l.o.g., that C is minimal. As all the

linear functions in C are nonzero-0̄-justified we have that xi 6∈ gcd(C), for any i ∈ [n]. Therefore,
gcd(C,Pn) = 1. Consequently, if we consider the simplification of C we get C ′ ∆= sim(C) =
g′(x) · Pn(x̄), where g′ = g/ gcd(C) 6≡ 0. That is, g′ · Pn is computed by a simple, minimal, nonzero
circuit C ′ (C ′ remains minimal after the simplification). Hence, xi is a linear factor of C ′, for every
i ∈ [n]. Lemma 8.9 implies that n ≤ rank(Lin(g′ · Pn)) ≤ R(k, d), as required.

Theorem 8.15. Let C(x̄) =
k∑

m=1
Fm(x̄), where each Fm(x̄) is a nonzero-0̄-justified linear product

over F, of total degree at most d. Let W ⊆ F be of size d+ 1, such that 0 ∈W . Then C ≡ 0 if and
only if C|An

R(k,d)
(W) ≡ 0.

Finally, in a similar fashion to the proof of Theorem 7.7, (using Corollary 8.13 instead of
Corollary 4.4) we obtain the following theorem that implies Theorem 6. (Recall Theorem 8.5).

Theorem 8.16. Let C be a ΣΠΣ(k, d) circuit over F then C(GR(k,d)+1) 6≡ 0. In addition, Lemma
3.4 gives a hitting set for such circuits of size |H| = (nd)O(R(k,d)) = (nd)O(k3 log d) when F is finite
and of size |H| = (nd)O(R(k,d)) = (nd)k

O(k)
when F = R or Q.

26

References

[Agr05] M. Agrawal. Proving lower bounds via pseudo-random generators. In Proceedings of the 25th
FSTTCS, volume 3821 of LNCS, pages 92–105, 2005.

[AHK93] D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-once formulas with queries. J.
ACM, 40(1):185–210, 1993.

[Alo99] N. Alon. Combinatorial nullstellensatz. Combinatorics, Probability and Computing, 8:7–29, 1999.

[AM07] V. Arvind and P. Mukhopadhyay. The monomial ideal membership problem and polynomial
identity testing. In Proceedings of the 18th ISAAC, pages 800–811, 2007.

[AV08] M. Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Proceedings of the
49th Annual FOCS, pages 67–75, 2008.

[BB98] D. Bshouty and N. H. Bshouty. On interpolating arithmetic read-once formulas with exponenti-
ation. J. of Computer and System Sciences, 56(1):112–124, 1998.

[BC98] N. H. Bshouty and R. Cleve. Interpolating arithmetic read-once formulas in parallel. SIAM J.
on Computing, 27(2):401–413, 1998.

[BHH95a] N. H. Bshouty, T. R. Hancock, and L. Hellerstein. Learning arithmetic read-once formulas. SIAM
J. on Computing, 24(4):706–735, 1995.

[BHH95b] N. H. Bshouty, T. R. Hancock, and L. Hellerstein. Learning boolean read-once formulas with
arbitrary symmetric and constant fan-in gates. JCSS, 50:521–542, 1995.

[BOT88] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynominal inter-
polation. In Proceedings of the 20th Annual STOC, pages 301–309, 1988.

[DL78] R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program testing. Inf.
Process. Lett., 7(4):193–195, 1978.

[DS06] Z. Dvir and A. Shpilka. Locally decodable codes with 2 queries and polynomial identity testing
for depth 3 circuits. SIAM J. on Computing, 36(5):1404–1434, 2006.

[DSY09] Z. Dvir, A. Shpilka, and A. Yehudayoff. Hardness-randomness tradeoffs for bounded depth
arithmetic circuits. SIAM J. on Computing, 39(4):1279–1293, 2009.

[HH91] T. R. Hancock and L. Hellerstein. Learning read-once formulas over fields and extended bases.
In Proceedings of the 4th Annual COLT, pages 326–336, 1991.

[HS80] J. Heintz and C. P. Schnorr. Testing polynomials which are easy to compute (extended abstract).
In Proceedings of the 12th annual STOC, pages 262–272, 1980.

[KI04] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving circuit
lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

[KLN+93] M. Karchmer, N. Linial, I. Newman, M. E. Saks, and A. Wigderson. Combinatorial characteri-
zation of read-once formulae. Discrete Mathematics, 114(1-3):275–282, 1993.

[KMSV10] Z. S. Karnin, P. Mukhopadhyay, A. Shpilka, and I. Volkovich. Deterministic identity testing of
depth 4 multilinear circuits with bounded top fan-in. Submitted, 2010.

[KS01] A. Klivans and D. Spielman. Randomness efficient identity testing of multivariate polynomials.
In Proceedings of the 33rd Annual STOC, pages 216–223, 2001.

[KS07] N. Kayal and N. Saxena. Polynomial identity testing for depth 3 circuits. Computational Com-
plexity, 16(2):115–138, 2007.

[KS08] Z. S. Karnin and A. Shpilka. Deterministic black box polynomial identity testing of depth-3
arithmetic circuits with bounded top fan-in. In Proceedings of the 23rd Annual CCC, pages
280–291, 2008.

27

[KS09a] Z. S. Karnin and A. Shpilka. Reconstruction of generalized depth-3 arithmetic circuits with
bounded top fan-in. In Proceedings of the 24th Annual CCC, pages 274–285, 2009.

[KS09b] N. Kayal and S. Saraf. Blackbox polynomial identity testing for depth 3 circuits. Electronic
Colloquium on Computational Complexity (ECCC), (32), 2009.

[LV03] R. J. Lipton and N. K. Vishnoi. Deterministic identity testing for multivariate polynomials. In
Proceedings of the 14th annual SODA, pages 756–760, 2003.

[Raz04] R. Raz. Multilinear NC1 6= Multilinear NC2. In Proceedings of the 45th Annual FOCS, pages
344–351, 2004.

[Raz05] R. Raz. Extractors with weak random seeds. In Proceedings of the 37th Annual STOC, pages
11–20, 2005.

[RS05] R. Raz and A. Shpilka. Deterministic polynomial identity testing in non commutative models.
Computational Complexity, 14(1):1–19, 2005.

[RSY08] R. Raz, A. Shpilka, and A. Yehudayoff. A lower bound for the size of syntactically multilinear
arithmetic circuits. SIAM J. on Computing, 38(4):1624–1647, 2008.

[RY08] R. Raz and A. Yehudayoff. Lower bounds and separations for constant depth multilinear circuits.
In IEEE Conference on Computational Complexity, pages 128–139, 2008.

[Sax08] N. Saxena. Diagonal circuit identity testing and lower bounds. In ICALP (1), pages 60–71, 2008.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. JACM,
27(4):701–717, 1980.

[Shp09] A. Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication gates. SIAM J.
on Computing, 38(6):2130–2161, 2009.

[SS09] N. Saxena and C. Seshadhri. An almost optimal rank bound for depth-3 identities. In Proceedings
of the 24th annual CCC, 2009.

[SV08] A. Shpilka and I. Volkovich. Read-once polynomial identity testing. In Proceedings of the 40th
Annual STOC, pages 507–516, 2008.

[SV09] A. Shpilka and I. Volkovich. Improved polynomial identity testing for read-once formulas. In
APPROX-RANDOM, pages 700–713, 2009.

[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and algebraic computa-
tion, pages 216–226. 1979.

28

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

