
A Deterministic Single Exponential Time Algorithm for Most

Lattice Problems based on Voronoi Cell Computations∗

Daniele Micciancio Panagiotis Voulgaris

University of California at San Diego, Department of Computer Science and Engineering,
9500 Gilman Dr., Mail Code 0404, La Jolla, CA 92093, USA. Emails:

daniele@cs.ucsd.edu, pvoulgar@ucsd.edu

Abstract

We give deterministic Õ(22n)-time Õ(2n)-space algorithms to solve all the most important computa-
tional problems on point lattices in NP, including the Shortest Vector Problem (SVP), Closest Vector
Problem (CVP), and Shortest Independent Vectors Problem (SIVP). This improves the nO(n) running
time of the best previously known algorithms for CVP (Kannan, Math. Operation Research 12(3):415-
440, 1987) and SIVP (Micciancio, SODA 2008), and gives a deterministic and asymptotically faster
alternative to the 2O(n)-time (and space) randomized algorithm for SVP of (Ajtai, Kumar and Sivaku-
mar, STOC 2001). The core of our algorithm is a new method to solve the Closest Vector Problem with
Preprocessing (CVPP) that uses the Voronoi cell of the lattice (described as intersection of half-spaces) as
the result of the preprocessing function. A direct consequence of our results is a derandomization of the
best current polynomial time approximation algorithms for SVP and CVP achieving 2O(n log logn/ logn)

approximation factor.

Terms: Algorithms, Performance, Theory
Keywords: Lattice algorithms, SVP, CVP, SIVP, Voronoi Cell

1 Introduction

A d-dimensional lattice Λ is a discrete subgroup of the Euclidean space Rd, and is customarily represented
as the set of all integer linear combinations of n ≤ d basis vectors B = [b1, . . . ,bn] ∈ Rd×n. There are many
famous algorithmic problems on point lattices, the most important of which are

• The shortest vector problem (SVP): given a basis B, find a shortest nonzero vector in the lattice
generated by B.

• The closest vector problem (CVP): given a basis B and a target vector t ∈ Rd, find a lattice vector
generated by B that is closest to t.

• The shortest independent vectors problem (SIVP): given a basis B, find n linearly independent lattice
vectors in the lattice generated by B that are as short as possible.1

Beside being classic mathematical problems in the study of the geometry of numbers [Cas71], these problems
play an important role in many computer science and communication theory applications. SVP and CVP

∗A preliminary version of this work appears in the proceedings of STOC 2010 [MV10a]. This is the full version of the paper.
Invitated submission to STOC 2010 special issue of SIAM J. on Computing.

1More technically, the smallest real r such that there exist n linearly independent lattice vectors of length bounded by r is
denoted λn. SIVP asks to find n linearly independent lattice vectors of length at most λn.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 14 (2010)

have been used to solve many landmark algorithmic problems in theoretical computer science, like integer
programming [Len83, Kan87], factoring polynomials over the rationals [LLL82], checking the solvability
by radicals [LM85], solving low density subset-sum problems [CJL+92] and breaking the Merkle-Hellman
cryptosystem [Odl89] (among many other cryptanalysis problems, e.g. see [JS98, NS01]). SIVP is the main
problem underlying the construction of lattice based cryptographic functions with worst-case/average-case
connection [Ajt04, MR07, Reg09]. SVP and CVP also have many applications in communication theory,
e.g., lattice coding for the Gaussian channel and vector quantization [CS98].

The complexity of lattice problems has been investigated intensively. All three problems mentioned above
have been shown to be NP-hard (possibly under randomized reductions) both to solve exactly [vEB81, Ajt98,
BS99], or even approximately within small (constant or sub-polynomial in n) approximation factors [BS99,
ABSS97, DKRS03, CN99, Mic01b, Kho05, HR07]. Much effort has gone into the development and analysis
of algorithms both to solve these problems exactly [Kan87, Hel85, HS07, Blö00, AKS01, AKS02, BN09] and
to efficiently find approximate solutions [LLL82, Sch88, Sch87, SE94, Sch06, GHGKN06, GN08].

In this paper we focus on the complexity of finding exact solutions to these problems. Of course, as the
problems are NP-hard, no polynomial-time solution is expected to exist. Still, the complexity of solving lattice
problems exactly is interesting both because many applications (e.g., in mathematics and communication
theory [CS98]) involve lattices in relatively small dimension, and because approximation algorithms for
high dimensional lattices [Sch87, SE94, GHGKN06, GN08] (for which exact solution is not feasible) typically
involve the exact solution of low dimensional subproblems. Prior to our work, the best deterministic algorithm
to solve any of these lattice problems exactly was still essentially the one discovered by Kannan [Kan87] in
1983, running in time nO(n), where n is the dimension of the lattice. Subsequent work [Hel85, HS07] led to
improvements in the constant in the exponent, mostly through a better analysis, reducing the upper bound
on the running time down to n0.184n for SVP and n0.5n for CVP and SIVP. The only problem that had seen
asymptotically significant improvements in the exponent is SVP, for which Ajtai, Kumar and Sivakumar
[AKS01] gave a randomized algorithm running in 2O(n) time (and space), typically referred to as the AKS
sieve. Following [AKS01] much work has been devoted to better understand and improve the sieve algorithm
[AKS02, BN09, AJ08, NV08, MV10b, PS09, HPS11, WLTB11]. Still the main questions raised by [AKS01]
didn’t see much progress. Is the use of randomization (and exponential space) necessary to lower the time
complexity of SVP from nO(n) to 2O(n)? Can algorithms with similar running time be devised for other
lattice problems, like SIVP and CVP?

In [NV08, MV10b, PS09] improved analyses and variants of the AKS sieve are studied, but still using the
same approach leading to randomized algorithms. Extensions of the AKS sieve algorithm to other lattice
problems like CVP and SIVP have been investigated in [AKS02, BN09, AJ08, EHN11], but only led to
approximation algorithms which are not guaranteed (even probabilistically) to find the best solution, except
for certain very special classes of lattices [BN09]. A possible explanation for the difficulty of extending the
result of [AKS01] to the exact solution of SIVP and CVP was offered by Micciancio in [Mic08], where it
is shown (among other things) that CVP, SIVP and all other lattice problems considered in [BN09], with
the exception of SVP, are equivalent in their exact version under deterministic polynomial-time dimension-
preserving reductions. So, either all of them are solvable in single exponential time 2O(n), or none of them
admits such an algorithm.

In this paper we resolve this question in the affirmative, giving a deterministic single exponential time
algorithm for CVP, and therefore by the reductions in [GMSS99, Mic08], also to SVP, SIVP and several other
lattice problems in NP considered in the literature. This improves the time complexity of the best previously
known algorithm for CVP, SIVP, etc. [Kan87, BN09] from nO(n) to Õ(22n). In the case of SVP, we achieve
single exponential time as in [AKS01, NV08, MV10b, PS09, WLTB11], but without using randomization
and with a better theoretical constant in the exponent. In the process, we also provide deterministic single
exponential time algorithms for various other classic computational problems on lattices, like computing the
kissing number, and computing the list of all Voronoi relevant vectors.

We remark that all our algorithms, just like [AKS01], use exponential space. So, the question whether
exponential space is required to solve lattice problems in single exponential time remains open.

2

0

v1

v2

v3v4

v5

v6

0

v

Figure 1: The Voronoi cell of a lattice is the set of all points that are closer to the origin than to any other
lattice point. (Left) A lattice and its Voronoi cell (shaded area). The Voronoi cell is the intersection of
the half-spaces defined by all nonzero lattice vectors, where the half-space of v is the set of points that are
closer to the origin than to v. Not all half-spaces/lattice vectors are relevant when taking this intersection.
The figure shows the relevant vectors v1,v2,v3,v4,v5,v6 and the (1-dimensional) hyperplanes (dashed lines)
defining the corresponding half-spaces. (Right) The Voronoi cell is a fundamental region of the lattice: copies
of the Voronoi cell (centered around all lattice points) tile the whole space. The Voronoi cell of a lattice
vector v is the set of points that are closer to v than to any other lattice vector.

1.1 Our techniques.

At the core of all our results is a new technique for the solution of the closest vector problem with prepro-
cessing (CVPP). We recall that CVPP is a variant of CVP where some side information about the lattice is
given as a hint together with the input. The hint may depend on the lattice, but not on the target vector.
Typically, in the context of polynomial time algorithms, the hint is restricted to have polynomial size, but
since here we study exponential time algorithms, one can reasonably consider hints that have size 2O(n). The
hint used by our algorithm is a description of the Voronoi cell of the lattice. We recall that the (open) Voronoi
cell of a lattice Λ is the set V of all points (in Euclidean space) that are closer to the origin than to any
other lattice point. The Voronoi cell V is a convex body, symmetric about the origin, and can be described
as the intersection of half-spaces Hv, where for any nonzero lattice vector v, Hv = {x : ‖x‖ < ‖x − v‖} is
the set of all points that are closer to the origin than to v. It is not necessary to consider all v ∈ Λ \ {0}
when taking this intersection. One can restrict the intersection to the so-called Voronoi relevant vectors,
which are the lattice vectors v such that v/2 is the center of a facet of V. (See Figure 1.) Since the Voronoi
cell of a lattice can be shown to have at most 2(2n − 1) facets, V can be expressed as a finite intersection of
at most 2(2n − 1) half-spaces. Throughout this paper, we assume that the Voronoi cell of a lattice is always
described by such a list of half-spaces or relevant vectors.2

The relation between the Voronoi cell and CVPP is well known, and easy to explain. (See Figure 3 and
Observation 3.1.) In CVPP, we want to find the lattice point v closest to a given target vector t. It is
easy to see that this is equivalent to finding a lattice vector v such that t′ = t − v belongs to the (closed)
Voronoi cell of the lattice. In other words, CVP can be equivalently formulated as the problem of finding
a point in the set (t − Λ) ∩ V̄ = (Λ + t) ∩ V̄ where V̄ is the topological closure of V. The idea of using

2Since the Voronoi cell is symmetric about the origin, the half-spaces come in pairs Hv, H−v, and it is enough to store one
vector v to represents both half-spaces from each pair. For simplicity, in the rest of the paper, we omit this simple optimization,
and consider the full list of Voronoi relevant vectors that stores both v and −v explicitly.

3

the Voronoi cell to solve CVP is not new. For example, a simple greedy algorithm for CVPP based on the
knowledge of the Voronoi cell of the lattice is given in [SFS09]. The idea behind this algorithm (called the
iterative slicer) is to make t shorter and shorter by subtracting Voronoi relevant vectors from it. Notice
that if t /∈ H̄v = {x : ‖x‖ ≤ ‖x − v‖}, then the length of t can be reduced by subtracting v from t. So, as
long as t is outside V̄ =

⋂
v H̄v, we can make progress and find a shorter vector. Unfortunately, this simple

strategy to solve CVPP using the Voronoi cell is not known to perform any better than previous algorithms.
The work [SFS09] only proves that the algorithm terminates after a finite number of iterations, and a close
inspection of the proof reveals that the best upper bound that can be derived using the methods of [SFS09]
is of the form nO(n): the running time of the iterative slicer is bounded by a volume argument, counting the
number of lattice points within a sphere of radius ‖t‖, and this can be well above 2O(n) or even nO(n).

In the next two paragraphs we first sketch (a simplified version of) our new algorithm to solve CVPP
using the Voronoi cell V in time 2O(n), and then we show how to use the CVPP algorithm to recursively
implement the preprocessing function and compute the Voronoi cell V. Since both the preprocessing and
CVPP computation take time 2O(n), combining the two pieces gives an algorithm to solve CVP (and a host
of other lattice problems, like SVP, SIVP, etc.) without preprocessing and within a similar running time.
The algorithm outlined here roughly corresponds to the basic algorithm presented in Section 4 and the
conference version of this paper [MV10a], with running time Õ(23.5n). In Section 5 we use some additional
ideas to improve the running time to Õ(22n).

The CVPP algorithm As already noted, the goal of CVPP with target vector t can be restated as
the problem of finding a point t′ ∈ (Λ + t) ∩ V̄, or, equivalently, a shortest vector in the coset Λ + t.
(See Observation 3.1). We follow an approach similar to the iterative slicer of [SFS09]. Given the list of
relevant vectors, the algorithm generates a sequence of shorter and shorter vectors from Λ + t, until it finds
the shortest vector of the coset. However, in order to bound the number of iterations, we introduce two
important modifications to the greedy strategy of [SFS09]. First we reduce the general CVPP to a special
case where the target vector is guaranteed to belong to twice the Voronoi cell 2V̄. This can be done very
easily by a polynomial time Turing reduction. Next, we show that it is possible to generate a sequence of
shorter and shorter vectors in Λ + t, with the additional property that all the vectors are inside 2V̄. This
allows to bound the length of the sequence by 2O(n). For each vector of the sequence the algorithm spends
2O(n) time, which gives a total time complexity of 2O(n). We stress that our algorithm is essentially the
same as the iterative slicer of [SFS09], but with a different selection strategy. The advantage of our selection
process over the greedy method of [SFS09] is primarily theoretical: it allows to prove termination in single
exponential time. Much work still needs to be done in order to better understand the practical impact of
using different selection strategies within the algorithm of [SFS09].

Computing the Voronoi cell We have sketched how to solve CVPP, given the Voronoi cell of the lattice.
This leaves us with the problem of computing the Voronoi cell, a task typically considered even harder than
CVP. To this end, we use a method of [AEVZ02] to compute the Voronoi cell of a lattice Λ, making 2n

calls to a CVPP oracle for the same lattice Λ. We combine this with a standard rank reduction procedure
implicit in enumeration algorithms [Kan87, HS07]. This procedure allows to solve CVPP in a lattice Λ of
rank n making only 2O(n) calls to a CVPP oracle for a properly chosen sub-lattice Λ′ of rank n−1, which can
be found in polynomial time. Combining all the pieces together we obtain an algorithm that computes the
Voronoi cell of a lattice Λ by building a sequence of lattices Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λn = Λ with rank(Λi) = i, and
iteratively computing the Voronoi cell of Λi+1 using the previously computed Voronoi cell of Λi. Since each
V(Λi) can be computed from V(Λi−1) in time 2O(n) (by means of 2O(n) CVPP computations, each taking
2O(n) time), the total running time is 2O(n).

Organization The rest of the paper is organized as follows. In the next subsection we mention some
additional related work. In Section 2 we give some background about lattices. In Section 3 we present
some preliminary results on the geometry of the Voronoi cell that will play an important role in the design
and analysis of our algorithms. In Section 4 we present the basic variant of our algorithm with complexity

4

Õ(23.5n), while in Section 5 we show how to improve the time complexity to Õ(22n). Finally, Section 6
concludes with a discussion of open problems and directions for future research.

1.2 Related work

A preliminary version of this work appears in the proceedings of STOC 2010 [MV10a]. Most relevant
work has already been described in the introduction. Here we mention a few more related papers. The
closest vector problem with preprocessing has been investigated in several papers [Mic01a, FM03, Reg04,
CM06, AKKV12, KPV12], mostly with the goal of showing that CVP is NP-hard even for fixed families of
lattices, or devising polynomial time approximation algorithms (with super-polynomial time preprocessing).
In summary, CVPP is NP-hard to approximate for any constant factors [AKKV12] (and quasi NP-hard for
certain sub-polynomial factors [KPV12]), and it can be approximated in polynomial time within a factor
O(
√
n/ log n) [AR05], at least in its distance estimation variant. In this paper we use CVPP mostly as a

building block to give a modular description of our CVP algorithm. We use CVPP to recursively implement
the preprocessing function, and then solve the actual CVP instance.

The problem of computing the Voronoi cell of a lattice is of fundamental importance in many mathematics
and communication theory applications. There are several formulations of this problem. In this paper we
consider the problem of generating the list of facets ((n− 1)-dimensional faces) of the Voronoi cell, as done
also in [AEVZ02, SFS09]. Sometimes one wants to generate the list of vertices (i.e., zero dimensional faces),
or even a complete description including all faces in dimension 1 to n − 1. This is done in [VB96, SSV09],
but it is a much more complex problem, as in general the Voronoi cell can have as many as (n+ 1)! = nΩ(n)

vertices, so they cannot be computed in single exponential time.
A related problem is that of computing the covering radius of a lattice, i.e., the radius of the smallest

sphere containing the Voronoi cell. Our CVP algorithm allows to approximate the covering radius within
a factor 2 in single exponential time using a (randomized polynomial time) reduction from [GMR05]. In
principle, our Voronoi cell computation algorithm could also be used to compute the exact value of the
covering radius by enumerating all the vertices of the Voronoi cell and selecting the longest. However, this
would not lead to a single exponential time algorithm because the number of vertices of a Voronoi cell can
be as large as nΩ(n). No NP-hardness proof for the covering radius problem in the `2 norm is known (but
see [HR06] for NP-hardness results in `p norm for large p). Still, the problem seems quite hard: the covering
radius problem is not even known to be in NP, and it is conjectured to be Π2-hard [Mic04, GMR05] for small
approximation factors. Counting the number of vertices of the Voronoi cell [SSV09] or the number of lattice
points of a given length [Cha07] is also known to be #P -hard.

In this paper we only consider lattice problems with respect to the Euclidean norm `2. By linearily, all
results trivially extend to ellipsoidal norms. Recently, [DPV11] gave a simple deterministic reduction from
SVP in any `p norm to a single exponential number of CVP computations in the Euclidean norm. Together
with our CVP algorithm, this yields a deterministic single exponential time solution to SVP, generalizing
our SVP result from `2 to any `p norm.3 The methods of [DPV11] only provide exact solution to SVP, and
the problem of generalizing our CVP result from `2 (or ellipsoidal) to other norms (even using randomized
algorithms) remains open.

2 Preliminaries

In this section we give some background about lattices. For a more in-depth introduction to lattices and
algorithmic problems associated with them, see [MG02, NV09]. The d-dimensional Euclidean space is denoted
Rd. We use bold lower-case letters (e.g., x) to denote vectors, and bold upper-case letters (e.g., B) to
denote matrices. The ith coordinate of x is denoted xi. For a set S ⊆ Rd, x ∈ Rd and a ∈ R, let
S + x = {y + x : y ∈ S} and aS = {ay : y ∈ S}. The Euclidean (or `2) norm of a vector x ∈ Rd is
‖x‖ = (

∑
i x

2
i)

1/2, and the associated distance is dist(x,y) = ‖x − y‖. The linear space spanned by a set

3 In fact, [DPV11] shows how to solve SVP with respect to any norm, not just `p, but the general reduction for arbitrary
norms is randomized, and results in a probabilistic SVP algorithm.

5

b1

b2

0

c1

c2

0

Figure 2: (Left) A two dimensional lattice generated by the basis [b1,b2]. The lattice is the set of all
integer linear combinations of the basis vectors. (Right) A different basis [c1, c2] for the same lattice. Each
basis is the result of applying an integer linear transformation to the other. The bases in the figure satisfy
c1 = b1 + b2, c2 = b1 + 2b2 and b1 = 2c1 − c2, b2 = c2 − c1. So, [b1,b2] and [c1, c2] generate the same
lattice.

of vectors S is span(S) = {
∑
i xisi : xi ∈ R, si ∈ S}. The affine span of a set of vectors S is defined as

x+span(S−x) for any x ∈ S, and does not depend on the choice of x. Any vector t can be written uniquely
as the sum t = πS(t) + π⊥S (t) of two vectors such that πS(t) ∈ span(S) and π⊥S (t) is orthogonal to span(S).
The vector π⊥S (t) is called the component of t orthogonal to span(S).

Lattices A lattice Λ is the set of all integer linear combinations{ n∑
i=1

xibi : xi ∈ Z for 1 ≤ i ≤ n
}

of n linearly independent vectors b1, . . . ,bn in Rd. The set of vectors b1, . . . ,bn is called a basis for the
lattice, and the integer n is called the lattice rank or dimension. (See Figure 2 for a 2-dimensional example.)
A basis can be represented by the matrix B = [b1, . . . ,bn] ∈ Rd×n having the basis vectors as columns.
The lattice generated by B is denoted L(B). Notice that L(B) = {Bx : x ∈ Zn}, where Bx is the usual
matrix-vector multiplication. A sub-lattice of L(B) is a lattice L(S) such that L(S) ⊆ L(B). We use the
convention that when a basis matrix Bn is written with a subscript, the subscript n represents the dimension
of the lattice, i.e., the number of basis vectors Bn = [b1, . . . ,bn]. When the same matrix is used with a
different subscript k ≤ n, it represents the basis Bk = [b1, . . . ,bk] of the sublattice generated by the first
k vectors of Bn. The Gram-Schmidt orthogonalization of a basis Bn is the sequence of vectors b∗1, . . . ,b

∗
n,

where b∗i = π⊥Bi−1
(bi) is the component of bi orthogonal to span(Bi−1).

Two fundamental quantities associated to any lattice Λ are its minimum distance λ(Λ) = infx∈Λ\{0} ‖x‖
and covering radius µ(Λ) = supt∈span(Λ) infv∈Λ dist(t,x). The dual Λ† of a lattice Λ is the set of all the
vectors x in the linear span of Λ that have integer scalar product 〈x,y〉 =

∑
i xi · yi ∈ Z with all lattice

vectors y ∈ Λ. Banaszczyk’s transference theorem [Ban93] shows that the minimum distance and covering
radius of a lattice and its dual are related by the bound 1 ≤ 2λ(Λ) · µ(Λ†) ≤ n.

The following classical lattice algorithms are used in this paper. The Nearest Plane algorithm [Bab86],
on input a basis B and a target vector t, finds a lattice point v ∈ L(B) such that ‖v−t‖ ≤ (1/2)

√∑
i ‖b∗i ‖2.

6

The LLL basis reduction algorithm [LLL82], on input a lattice basis, outputs a basis for the same lattice
such that ‖b∗i+1‖2 ≥ ‖b∗i ‖2/2 for all i. (LLL reduced bases have other properties, but this is all we need
here.) Both algorithms run in polynomial time.

In Section 5 we also need block reduction algorithms [GN08, Sch87] to compute bases with stronger
reduction properties than LLL. In particular, we use the slide reduction algorithm of [GN08], which, for any
“block size” parameter k ≤ n, requires a polynomial number of SVP computations on lattices of dimension
at most k. As for LLL, the exact definition of slide reduced basis is not relevant here, and all we need to know
is that the first vector of a slide reduced basis satisfies ‖b1‖ ≤ O(k)(n−k)/(k−1) · λ(L(Bn)). This is proved in
[GN08] assuming that the lattice dimension n is an integer multiple of the block size k, but it is easy to verify
that the analysis in [GN08] works for any n, yielding the bound ‖b1‖ ≤ O(k)(kdn/ke−k)/(k−1) · λ(L(Bn)).
(Notice that this more general bound specializes to O(k)(n−k)/(k−1) when n/k is an integer.) We will use
the slide reduction algorithm of [GN08] with block size k = dn/2e, which yields a basis Bn satisfying
‖b1‖ ≤ O(n) · λ(L(Bn)). Combining this bound with Banaszczyk’s transference theorem [Ban93] we obtain
‖b1‖·µ(L(Bn)†) ≤ O(n2). Equivalently, applying the slide reduction algorithm to the dual lattice Λ†, rather
than Λ, one obtains a basis Bn for Λ = L(Bn) such that µ(L(Bn))/‖b∗n‖ ≤ O(n2). Finally, we observe
that (similarly to LLL) if a basis Bn = [b1, . . . ,bn] is slide reduced, then also the projection of B onto
the orthogonal complement of Bi = [b1, . . . ,bi] is also slide reduced (for any i and the same block size
k.) In particular, applying the reduction algorithm with k = dn/2e to the dual lattice, one obtains a basis
Bn such that µ(L(Bi))/‖b∗i ‖ ≤ O(n2) for all i. In the rest of the paper we use directly the last inequality
as summarized in the following lemma, without any further reference to the dual lattice or Banaszczyk’s
theorem. For a full description of the slide reduction algorithm and the relation between the primal and
dual lattice bases the reader is referred to [GN08].

Lemma 2.1 (Implicit in [GN08]) There is a polynomial time algorithm that on input an n-dimensional
lattice, and given oracle access to a procedure to solve SVP in lattices up to dimension dn/2e, outputs a basis
B = [b1, . . . ,bn] for the same lattice such that µ(L([b1, . . . ,bi])/‖b∗i ‖ ≤ O(n2) for all i = 1, . . . , n.

Lattice problems In this paper we are mostly concerned with the Closest Vector Problem (CVP) defined
in the introduction: given a lattice basis B and a target vector t, find a lattice vector v ∈ L(B) that minimizes
the distance ‖t− v‖. Our results give algorithms for several other lattice problems like the Shortest Vector
Problem (SVP), Shortest Independent Vectors Problem (SIVP), Subspace Avoiding Problem (SAP), the
Generalized Closest Vector Problem (GCVP), and the Successive Minima Problem (SMP) considered in the
lattice algorithms literature [BN09, Mic08]. The results for all problems other than CVP can be obtained
obtained in a black-box way by (dimension preserving) reduction to CVP [Mic08], and we refer the reader
to [GMSS99, BN09, Mic08] for details. Also, using our new algorithm to implement the SVP oracle within
the block reduction algorithms of [GN08, Sch87], yields deterministic polynomial time approximations for
SVP, SIVP, CVP, etc. within a factor 2O(n log logn/ logn). Previous polynomial time algorithms either used
randomization, or achieved a weaker approximation factor 2O(n(log logn)2/ logn).

For simplicity we assume that the input lattices B ∈ Zd×n and target vectors t ∈ Zd have integer entries
with bit-size polynomial in the lattice dimension n, and that the number of entries d in each vector is also
polynomial in n. This allows to express the complexity of lattice problems simply as a function of a single
parameter, the lattice dimension n. All the results in this paper can be easily adapted to the general case
by introducing an explicit bound log |bi,j | ≤ M on the size of the entries, and letting the time and space

complexity bounds depend polynomially on M and d. We write f = Õ(g) when f(n) is bounded by g(n) up
to polylogarithmic factors, i.e., f(n) ≤ logc g(n) · g(n) for some constant c and all sufficiently large n.

Coding conventions In order to make the description of our algorithms both precise, but also intu-
itive and easy to understand and analyze, we have used pseudocode written whenever possible in a high
level, mathematical/functional style. We use two different notations for variable assignments, x = . . . for
immutable variables that do not change their values during the execution, and x← . . . for destructive assign-
ment in stateful computations where the value of x is updated. Iteration is often expressed as tail recursion,

7

in order to facilitate inductive proofs of correctness. Some of the loops are written in the form “for x ∈ A
sorted by f(x)”, where x is a variable, A a set, and f(x) an integer or real valued function. This represents
a loop over all elements of the set A, in order of nondecreasing value of f(x). Enumerating the elements
of A in order of nondecreasing value of f(x) is either straightforward, or (when A is finite) it can be easily
achieved using any efficient sorting algorithm running in O(|A| log |A|) time. The body of loops where the
set A is (coutably) infinite is executed indefinitely, until some exit condition is satisfied, and the function
terminates by executing a “return” instruction.

3 The geometry of the Voronoi cell

The (open) Voronoi cell of a lattice Λ is the set

V(Λ) = {x ∈ Rn : ∀v ∈ Λ \ {0}.‖x‖ < ‖x− v‖}

of all points that are closer to the origin than to any other lattice point. We also use the closed cell

V̄(Λ) = {x ∈ Rn : ∀v ∈ Λ.‖x‖ ≤ ‖x− v‖}

which is the topological closure of V. We omit Λ, and simply write V or V̄ when the lattice is clear from the
context. The Voronoi cell of a lattice point v ∈ Λ is defined similarly, and equals v +V. (See Figure 1.) For
any (lattice) point v, define the half-space

Hv = {x : ‖x‖ < ‖x− v‖}.

We also use notation H̄v = {x : ‖x‖ ≤ ‖x − v‖} for the closed half-space and Ho
v = H̄v \Hv = {x : ‖x‖ =

‖x − v‖} for the associated hyperplane. Clearly, V is the intersection of Hv for all v ∈ Λ \ {0}. However,
it is not necessary to consider all such Hv. The minimal set of lattice vectors V such that V =

⋂
v∈V Hv is

called the set of (Voronoi) relevant vectors and it is denoted V (Λ). The Voronoi cell V is a polytope, and
the Voronoi relevant vectors are precisely the centers of the ((n−1)-dimensional) facets of 2V. The following
observation connects the Voronoi cell, solving CVP and finding shortest vectors in lattice cosets Λ + t. (See
Figure 3.) These formulations of CVP will be used interchangeably throughout the paper.

Observation 3.1 Let Λ be a lattice, V its Voronoi cell and t, t′ two vectors. The following statements are
equivalent:

1. t′ is a shortest vector in the coset Λ + t

2. t′ belongs to (Λ + t) ∩ V̄.

3. v = t− t′ ∈ Λ is a lattice vector closest to t.

Proof: We prove that the three statements are equivalent by demonstrating the chain of implications 1→ 2,
2→ 3 , 3→ 1. We start with the implication 1→ 2. Assume t′ belongs to Λ + t and it is a shortest vector
within this set. Notice that for all w ∈ Λ, t′ −w ∈ Λ + t. Therefore ‖t′‖ ≤ ‖t′ −w‖ for all w ∈ Λ, which is
exactly the definition of the closed Voronoi cell. So t′ ∈ V̄.

Next, we prove 2→ 3. If t′ ∈ (Λ + t) ∩ V̄, then v = t− t′ is a lattice vector and t = v + t′ ∈ V̄ + v. By
definition of the Voronoi cell, v is a lattice vector closest to t.

Finally, we show that 3 → 1. If v is a lattice vector closest to t, then ‖t− v‖ ≤ ‖t−w‖ for all w ∈ Λ.
Notice that {t−w : w ∈ Λ} = Λ + t, so t′ = t− v is a shortest vector in the coset Λ + t.

Our algorithms for computing the Voronoi cell of a lattice are based on the following classical theorem
of Voronoi.

Theorem 3.2 (Voronoi, see [CS98]) Let Λ be a lattice and v ∈ Λ any lattice vector. Then v is Voronoi
relevant if and only if ±v are the only two shortest vectors in the coset 2Λ + v.

8

v

t′

t

0 0 t′

t

Figure 3: (Left) Finding a lattice point v closest to a target t is equivalent to finding a point t′ ∈ t+ Λ that
belongs to the Voronoi cell of the lattice (shaded). If t′ is in the Voronoi cell, then v = t− t′ is the lattice
point closest to t. (Right) Coset formulation of the Closest Vector Problem: given a lattice Λ and a target
t, find a shortest vector t′ in the lattice coset t + Λ. The vector t′ is shortest in the coset t + Λ = t′ + Λ if
and only if it belongs to the Voronoi cell of the lattice.

In order to analyze the faster algorithm in Section 5 we also need the following theorem of Horváth about
the lattice points on the boundary of 2V̄.

Theorem 3.3 ([Hor96, Thm. 4]) For any lattice Λ, any lattice point u ∈ Λ on the boundary of 2V̄(Λ)
can be written as a sum of mutually orthogonal relevant vectors.

In the rest of this section we prove several geometric and combinatorial properties of lattices and their
Voronoi cells that will be used in the design and analysis of our algorithms. We start from two simple
symmetries of the Voronoi cell.

Lemma 3.4 Let V̄ be the closed Voronoi cell of a lattice Λ and t ∈ V̄ a point of the closed Voronoi cell
that lies on the hyperplane Ho

v = {t : ‖t‖ = ‖t − v‖} defined by v ∈ Λ. Then t − v ∈ V̄ also belongs to the
Voronoi cell.

Proof: By Observation 3.1 (with t′ = t) we get that t ∈ V̄ is a shortest vector in the coset Λ + t. Notice
that the cosets Λ + t − v and Λ + t are identical because v ∈ Λ. Also, by assumption, ‖t − v‖ = ‖t‖. We
conclude that t− v too is a shortest vector in the coset Λ + (t− v) and by Observation 3.1 it belongs to V̄.

Lemma 3.5 Let x,y, z,u ∈ V̄ be four points in the Voronoi cell of a lattice V̄ = V̄(Λ) such that z belongs
to the segment joining x and y (i.e., z = δ · x + (1 − δ)y for some 0 < δ < 1) and z − u ∈ Λ. Then,
u + y − z ∈ V̄.

Proof: Let v = z−u ∈ Λ. By convexity, since x,y ∈ V̄ ⊂ H̄v, we also have z ∈ V̄ ⊂ H̄v, i.e., ‖z‖ ≤ ‖z−v‖.
Since z−v = u ∈ V̄ ⊂ H̄−v, we also have ‖z−v‖ ≤ ‖(z−v)− (−v)‖ = ‖z‖. So, ‖z‖ = ‖z−v‖. Notice that
if y ∈ Hv belonged to the interior of the halfspace, then also z would be in Hv = H̄v \Ho

v. Since z is on the
hyperplane Ho

v = {z : ‖z‖ = ‖z−v‖}, it must be y ∈ Ho
v too, and by Lemma 3.4 the point y−v = y+u−z

belongs to V̄.

9

The main step to reduce the norm of the vectors in our CVPP algorithm is based on the follow-
ing lemma. The lemma admits a natural geometric interpretation. (See Figure 4 (Left).) The quantity
α = maxv∈V (Λ) 2〈t,v〉/‖v‖2 is the smallest positive real such that t ∈ αV̄. So, the vector t belongs to the
boundary of αV̄. The relevant vector v ∈ Λ achieving the maximum α = 2〈t,v〉/‖v‖2 is the one correspond-
ing to the facet of αV̄ that t belongs to. For example, in Figure 4 (Left), the relevant vector that maximizes
α for the point t = t0 is v2, while the relevant vector that maximizes α for t1 is v4. The next lemma states
that if we subtract v2 from t (or v4 from t1), we get a strictly shorter vector that still belongs to αV̄.

Lemma 3.6 For all t /∈ V̄(Λ), if v ∈ V (Λ) is a relevant vector that maximizes the quantity α = 2〈t,v〉/‖v‖2,
then ‖t− v‖ < ‖t‖, and t− v ∈ αV̄(Λ).

Proof: Let v ∈ V (Λ) be such that α = 2〈t,v〉/‖v‖2 is maximized. Then, for all u ∈ V (Λ) we have
2〈t,u〉/‖u‖2 ≤ α, or equivalently ‖t‖ ≤ ‖t− αu‖, i.e., t ∈ V̄(αΛ). Since t /∈ V̄(Λ), it must be α > 1. From
α = 2〈t,v〉/‖v‖2 we also get that ‖t‖ = ‖t−αv‖, i.e., t is on the hyperplane Ho

αv. Therefore, by Lemma 3.4
(applied to lattice αΛ) t− αv belongs to V̄(αΛ). Given that both t and t− αv are in V̄(αΛ) and α > 1, by
convexity of the Voronoi cell we have that t− v is also in V̄(αΛ). Finally, using 2〈t,v〉 = α‖v‖2, we get

‖t− v‖2 = ‖t‖2 + ‖v‖2 − 2〈t,v〉 = ‖t‖2 − (α− 1)‖v‖2 < ‖t‖2,

where we have used the fact that α > 1 and v 6= 0.

The next lemma shows that the vectors of a lattice coset t + Λn inside a scaled Voronoi cell kV̄(Λn)
belong to at most kn distinct spherical shells Sα = {x : ‖x‖ = α}.

Lemma 3.7 For any lattice Λn, vector t, integer k ≥ 1 and U ⊆ (t + Λn) ∩ kV̄(Λn), we have |{‖u‖ | u ∈
U}| ≤ kn.

Proof: By Observation 3.1 (applied to the scaled lattice kΛn and its Voronoi cell V(kΛn) = k · V(Λn),)
for any vector v, all the points in (kΛn + v) ∩ (kV̄) have the same euclidean norm. Since Λn + t can be
partitioned in precisely kn cosets of the form kΛn + v with v ∈ Λn + t, and all vectors from V̄(kΛn) in each
coset belong to the same shell, the total number of shells is at most kn.

In particular, when k = 1, all points in U = (Λ + t)∩ V̄(Λ) are all on the same shell, as we already knew
from Observation 3.1. The last lemma give some additional properties of the vectors in U .

Lemma 3.8 For any lattice Λ, target vector t and any two vectors u,u′ in the set U = (Λ + t) ∩ V̄(Λ),

there is a set of (mutually orthogonal) relevant vectors v1, . . . ,vk ∈ V (Λ) such that u′ = u +
∑k
i=1 vi and

u +
∑
i∈S vi ∈ U for all S ⊆ {1, . . . , n}.

Proof: The proof proceeds in two steps. First we show that for any such u,u′, there is a set of k ≤ n
mutually orthogonal relevant vectors {v1, . . . ,vk} ⊆ V (Λ) such that u′ = u +

∑k
i=1 vi. Next, we show that

whenever there is such a set of mutually orthogonal relevant vectors, u+
∑
i∈S vi ∈ U for all S ⊆ {1, . . . , n}.

By Observation 3.1, u,u′ are both shortest vectors of Λ + t. In particular, they have the same length
‖u‖ = ‖u′‖. Their difference u− u′ belongs to Λ because u,u′ ∈ Λ + t are in the same lattice coset. Also,
u − u′ ∈ V̄ − V̄ = 2V̄. Therefore, u − u′ ∈ Λ ∩ 2V̄, and we may also assume that u − u′ 6= 0 because
otherwise the statement is trivial. Since the only lattice point in the open cell 2V is the origin, u − u′

belongs to the boundary 2V̄ \ 2V and by Theorem 3.3 there exists a subset {v1, . . . ,vk} ⊆ V (Λ) of mutually

orthogonal relevant vectors such that u′ = u +
∑k
i=1 vi. Since (nonzero) mutually orthogonal vectors are

linearly independent, it must be k ≤ n. This concludes the first part of the proof.
For the second part, we prove, by induction on k, that if there are k mutually orthogonal relevant vectors

such that u′ = u +
∑k
i=1 vi, then uS = u +

∑
i∈S vi ∈ U for all S ⊆ {1, . . . , n}. If S = ∅, then uS = u ∈ U ,

and the statement is true. So, assume S 6= ∅, let i ∈ S and define S′ = S \ {i}. Below we prove that
u′′ = u + vi ∈ U . Since u′ = u′′ +

∑
j 6=i vj , it follows by induction that u +

∑
j∈S vj = u′′ +

∑
j∈S′ vj ∈ U

10

We need to show that u + vi belongs to U . Using the orthogonality of the relevant vectors v1, . . . ,vk,
we get

k∑
i=1

‖u + vi‖2 = k · ‖u‖2 + 2〈u,
k∑
i=1

vi〉+

∥∥∥∥∥
k∑
i=1

vi

∥∥∥∥∥
2

= (k − 1) · ‖u‖2 +

∥∥∥∥∥u +

k∑
i=1

vi

∥∥∥∥∥
2

= (k − 1) · ‖u‖2 + ‖u′‖2 = k · ‖u‖2.

Notice that the vectors u+vi are in Λ+t, and by the minimality of ‖u‖, their norm is at least ‖u+vi‖ ≥ ‖u‖.
We conclude that ‖u + vi‖ = ‖u‖ for all i. So the vectors u + vi are also shortest vectors of Λ + t, and by
Observation 3.1 they belong to U .

4 The basic algorithm

In this section we describe and analyze a Õ(23.5n)-time algorithm for computing the Voronoi cell of a
lattice and solving several related lattice problems. The pseudocode is given by a collection of functions
in Algorithms 1, 2 and 3. The running time is improved to Õ(22n) in Section 5. We describe the slower
algorithm first as it allows for a more modular description, it better illustrates the connections with previous
work, and the faster algorithm uses it to preprocess the lattice. The algorithm presented in this section has
three components:

1. A Õ(22n)-time algorithm to solve the closest vector problem with preprocessing (CVPP), where the
output of the preprocessing function is the Voronoi cell of the input lattice, described as the list of
relevant vectors.

2. A preprocessing function and rank reduction procedure such that for any lattice basis Bn produced by
the preprocessing function, and for any k ≤ n, the rank reduction procedure solves CVP in Λk = L(Bk)
making at most 2k/2 calls to a CVP oracle for the lower-dimensional sublattice Λk−1 = L(Bk−1).

3. A reduction from the problem of computing the Voronoi cell of a lattice Λn to 2n CVP computations,
all on the same input lattice Λn.

These three components are described and analyzed in Subsections 4.1, 4.2, 4.3. In Subsection 4.3 we also
show how these components are combined together into an algorithm for Voronoi cell computation with
running time Õ(23.5n).

Notice that the rank reduction procedure immediately gives a recursive algorithm to solve CVP (and,
by reduction, also compute the Voronoi cell) for arbitrary lattices. However, the obvious way to turn the

rank reduction procedure into a recursive program results in an algorithm with 2O(n2) running time. This
is because each time the rank of the input lattice is reduced by 1, the number of recursive invocations gets
multiplied by 2O(n). We use the CVPP algorithm to give a more efficient transformation. The idea is to
compute the Voronoi cells of all sub-lattices Λk = L(Bk) sequentially for k = 1, . . . , n, where Bn is the lattice
basis produced by the preprocessing function. Each Voronoi cell V(Λk) is computed by (rank) reduction to
2O(k) CVP computations in the lower-dimensional lattice Λk−1. In turn, these CVP computations are
performed using the CVPP algorithm with the help of the previously computed Voronoi cell V(Λk−1). This
allows to compute all the Voronoi cells V(Λk) (for k = 1, . . . , n) in time

∑n
k=1 2O(k) = 2O(n).

4.1 CVP with preprocessing

We give a Õ(2n · |Vn|)-time algorithm to solve the closest vector problem with preprocessing, given as input
the list Vn of Voronoi relevant vectors of a lattice Λn. Throughout this section, we use the coset formulation

11

Algorithm 1 Single exponential time algorithm for CVPP

function CVPP(t, Vn)
α = 2 maxv∈Vn 〈t,v〉/‖v‖2
if α > 1 then

t′ = CVPP2(t, dα/2eVn)
return CVPP(t′, Vn)

else return t

function CVPP2(t, Vn)
v = argmaxv∈Vn2〈t,v〉/‖v‖2
if 2〈t,v〉/‖v‖2 ≤ 1 then return t
else return CVPP2(t− v, Vn)

0

v2

v4

t = t0

t1

t2

t = t0

t1

t2t3

0

Figure 4: (Left) An execution of the CVPP2 algorithm. The gray points are the vectors of a lattice Λ.
The shaded area is the Voronoi cell of the lattice. The lattice vectors v2 = b1 and v4 = −b2 are Voronoi
relevant vectors. On input a vector t that belongs to twice the Voronoi cell of the lattice, the algorithm
computes a sequence of points in the coset t + Λ (black points), repeatedly subtracting properly chosen
relevant vectors: t1 = t0 − v2, t2 = t1 − v4. (Right) The CVPP problem for arbitrary targets t is solved by
consindering integer multiples of the lattice cΛ so that t belongs to twice the Voronoi cell of cΛ, and using
CVPP2 repeatedly to bring t inside smaller and smaller integer multiples of the Voronoi cell: t0 ∈ 2V(4Λ),
t1 ∈ 2V(2Λ), t2 ∈ 2V(Λ) and t3 ∈ V(Λ). The lattice point closest to the target t is t− t3 = 3b1 + 2b2.

of CVP, where the goal is to find the shortest vector in a lattice coset t + Λn, or, equivalently, a vector
t′ ∈ (t + Λn) ∩ V̄(Λn). (See Observation 3.1.) A lattice point v ∈ Λn closest to the target t, if desired,
can be easily computed from t′ as v = t− t′. The pseudocode is given in Algorithm 1, and consists of two
functions:

• a basic function CVPP2 which solves the problem for the special case when t ∈ 2V̄(Λn); and

• a main function CVPP which solves the general problem with polynomially many calls to CVPP2.

Both functions are illustrated in Figure 4. We first analyze CVPP2.

Lemma 4.1 Given the list Vn = V (Λn) of relevant vectors of an n-dimensional lattice Λn, and a target
point t ∈ 2V̄(Λn), the CVPP2 function from Algorithm 1 finds a vector in (t + Λn) ∩ V̄(Λn) in time
Õ(|Vn| · 2n) ≤ Õ(22n).

Proof: Function CVPP2(t, Vn) first finds the relevant vector v ∈ Vn that maximizes the quantity α =
2〈t,v〉/‖v‖2. If α ≤ 1, then all vectors w ∈ Vn satisfy 2〈t,w〉 ≤ ‖w‖2, or, equivalently, ‖t‖ ≤ ‖t−w‖. So,
the input vector t belongs to the Voronoi cell of the lattice, and the function correctly returns t. If α > 1,

12

then the function recursively invokes CVPP2(t′, Vn) on target vector t′ = t−v ∈ t+ Λn. Notice that α ≤ 2
because t ∈ 2V̄(Λn). Moreover, by Lemma 3.6 the new target satisfies t′ ∈ αV̄(Λn) ⊆ 2V̄(Λn). So, t′ is a
valid input to CVPP2, and the correctness of the function immediately follows by computational induction,
provided the recursion terminates.

It remains to bound the running time. Each recursive invocation of CVPP2 takes time Õ(|Vn|) to scan
the list Vn and select the vector v. Moreover, from Lemma 3.6 we know that ‖t′‖ < ‖t‖. So, the input
vectors t passed to successive invocations of CVPP2 have strictly decreasing euclidean norm. Since they all
belong to (t+Λn)∩2V̄(Λn), it follows from Lemma 3.7 (with k = 2) that the number of recursive invocations
of CVPP2 is bounded by 2n. This gives a total running time of Õ(2n · |Vn|).

The next theorem shows how to solve CVPP for any target vector.

Theorem 4.2 On input the list Vn = V (Λn) of relevant vectors of an n-dimensional lattice Λn and a target
point t, the CVPP function from Algorithm 1 finds a vector in (t+Λn)∩V̄(Λn) in time Õ(|Vn|·2n) ≤ Õ(22n).

Proof: Let Vn = V (Λn) be the relevant vectors of the input lattice. Function CVPP(t, Vn) starts by
computing the smallest value α such that t ∈ αV̄(Λn). If α ≤ 1, then the vector t belongs to the Voronoi
cell V̄(Λn), and the function correctly returns t. If α > 1, then the function invokes CVPP2(t, dα/2eVn).
Consider the scaled sublattice Λ′n = α′Λn ⊆ Λn for α′ = dα/2e. Notice that t ∈ αV̄(Λn) ⊆ 2α′V̄(Λn) =
2V̄(Λ′n). So, (t, α′Vn) is a valid input to function CVPP2 which (by Lemma 4.1) correctly returns a vector
t′ ∈ t + Λ′n ⊆ t + Λn such that t′ ∈ V̄(Λ′n). It follows by computational induction that the recursive call
CVPP(t′, Vn) returns the correct result.

Each recursive invocation of CVPP takes time Õ(|Vn|) to scan the list Vn and determine α, plus the
time to evaluate CVPP2, which, by Lemma 4.1, is Õ(2n · |Vn|). So, the cost incurred for each recursive
invocation of CVPP is Õ(2n · |Vn|). In order to bound the depth of the recursion, we observe that the vector
t′ returned by CVPP2 (and passed as input to the next invocation of CVPP) satisfies t′ ∈ α′V̄(Λn). Now,
if α ≤ 2k, then α′ = dα/2e ≤ 2k−1. So, after at most dlog2 αe recursive calls, CVPP is invoked on a vector
t such that α ≤ 1, terminating the recursion. Since α is polynomial in the euclidean length of the input
vectors, the number of recursive calls is polynomial in n (in fact, linear in log ‖t‖) and the total running
time of CVPP is Õ(2n · |Vn|).

We conclude this subsection with some remarks about the efficiency and implementation of our CVPP
algorithm.

Remark 4.3 The algorithms CVPP and CVPP2 are space efficient, in the sense that they use very little
memory, beside that required to store the input list Vn of relevant vectors. The exponential space complexity
of the main algorithm comes exclusively from the need to store the description of the Voronoi cells Vk as
intermediate results of the computation, for use with CVPP.

Remark 4.4 We assumed that the list Vn given as input to CVPP and CVPP2 contains precisely the
Voronoi relevant vectors only for simplicity. The algorithms still work even if they are given as input a
larger list (such that V (Λn) ⊆ Vn ⊆ Λn \ {0}) that may contain other nonzero lattice vectors. This can be
useful to avoid the use of the VFilter function in Section 4.3.

Remark 4.5 The target vector t is only used to compute scalar products 〈t,v〉 with lattice vectors v ∈ Vn ⊂
Λn, and these products are not affected by any component of the target t orthogonal to the linear span of the
lattice. So, while for simplicity one may project the target onto span(Vn) = span(Λn) before invoking our
CVPP/CVPP2 functions, this is not necessary, and Algorithm 1 works as described even when the target
t is not in span(Vn) = span(Λn).

13

4.2 Rank reduction

We describe a procedure that, given a basis Bn for an n-dimensional lattice Λn, reduces any CVP instance
on lattice Λn = L(Bn), to a bounded number of CVP instances on the lower-dimensional sublattice Λn−1 =
L(Bn−1). The number of CVP subproblems is bounded by the quantity 1 + 2µ(Λn)/‖b∗n‖ where µ(Λn) is
the covering radius of Λn, so the efficiency of the reduction depends on the quality of the input basis. To
make good use of the rank reduction procedure, we first preprocess the lattice basis, so that all the ratios
µ(Λk)/‖b∗k‖ are relatively small. The next lemma shows that the bound 2k/2 can be achieved simply by
running the LLL basis reduction algorithm [LLL82].

Lemma 4.6 Any LLL reduced basis Bn satisfies µ(Λk)/‖b∗k‖ < 2(k−2)/2 for all k ≤ n, where Λk = L(Bk),
and b∗k is the component of bk orthogonal to span(Λk−1).

Proof: Notice that the covering radius µ(Λk) is at most ρk = 1
2

√∑k
i=1 ‖b∗i ‖2 because the set {

∑
xib
∗
i :

− 1
2 ≤ xi <

1
2} is a fundamental region of Λk and it is contained in a ball of radius ρk. If Bn is LLL reduced

then 2‖b∗i+1‖2 ≥ ‖b∗i ‖2 for all i and, by induction, 2k−i‖b∗k‖2 ≥ ‖b∗i ‖2. Thus,

ρk =
1

2

√√√√ k∑
i=1

‖b∗i ‖2 ≤
1

2

√√√√ k∑
i=1

2k−i‖b∗k‖2 =
1

2

√
2k − 1‖b∗k‖ < 2(k−2)/2‖b∗k‖.

From the above inequalities we conclude that if Bn is an LLL reduced basis for Λn then µ(Λk)/‖b∗k‖ <
2(k−2)/2 for all k ≤ n.

The rank reduction procedure is described and analyzed in the following lemma. As in Section 4.1, we
use the coset formulation of CVP.

Lemma 4.7 On input a basis Bn, a target vector t, and a function cvp that on input a vector t returns
a shortest vector in t + L(Bn−1), the function RankReduce from Algorithm 2 finds a shortest vector in
t + L(Bn) making at most h = 1 + b2µ(Λn)/‖b∗n‖c calls to cvp.

Proof: Let Λn = L(Bn) be the input lattice and Λn−1 = L(Bn−1) the lower dimensional sublattice generated
by the first n− 1 basis vectors. We want to find a shortest vector in the coset t + Λn. This is accomplished
by partitioning t+Λn into lower dimensional layers (t+ ibn)+Λn−1 indexed by i ∈ Z, and finding a shortest
vector in each one of them using cvp. Details follow. Let τ be the distance of t to the linear span of the lattice
span(Bn) and α the coefficient of t with respect to b∗n, as computed by RankReduce. (For simplicity, the
reader may think of t as being in the linear span of the lattice, in which case τ = 0.) The algorithm starts by
setting r← t to an arbitrary vector in the coset t+ Λn, and updates r whenever a shorter vector r′ ∈ t+ Λn
is found. The main loop of the algorithm goes over (a subset of) all possible layers (t + ibn) + Λn−1,
and for each layer it computes a shortest vector in the lower dimensional coset r′ ∈ (t + ibn) + Λn−1

using the cvp function. But before doing so, for each i, the algorithm first computes the squared norm
`2i = (i+α)2 · ‖b∗n‖2 +τ2 of the shortest vector in the affine span of the layer (t+ ibn+span(Λn−1)). Clearly,
`2i is a lower bound on the squared norm of any point in (t+ ibn) + Λn−1. Notice that `2i is a monotonically
increasing function of |i + α|. So, as layers are considered in order of nondecreasing values of |i + α|, the
quantity `2i computed by the algorithm at iteration i is also a lower bound on the squared norm of any point
in all the layers (t + jbn) + Λn−1 yet to be considered in subsequent iterations. Therefore, if at any time
`2i is at least as large as the best solution ‖r‖2 found so far, r is an optimal solution the algorithm may
immediately terminate with output r. This proves the correctness of the algorithm.

We still need to bound the running time as a function of h′ = µ(Λn)/‖b∗n‖. We will show that the number
of iterations performed by the algorithm is at most h = 1 + b2h′c. Let r be a shortest vector in t + Λn, and
let i be the index of the layer (t+ ibn) + Λn−1 containing r. By definition of `2i , we have ‖r‖2 ≥ `2i . But the
squared norm of the shortest vector in t + Λn (or, equivalently, the squared distance of t to Λn) is at most
the sum of the squared distance τ2 of t to the linear span of the lattice Λn, and the squared covering radius

14

Algorithm 2 Finding relevant vectors by rank reduction

function RankReduce(t,Bn,cvp(·))
τ = ‖π⊥Bn(t)‖
α = 〈t,b∗n〉/〈b∗n,b∗n〉
r← t
for i ∈ Z sorted by |i+ α| do

`2i = ((i+ α) · ‖b∗n‖)2 + τ2

if `2i < ‖r‖2 then
r′ = cvp(t + ibn)
if ‖r′‖ < ‖r‖ then r← r′

else return r

function Preprocess(B)
return LLL(B)

function VRevelant(Bn, Vn−1)
for c ∈ {0, 1}n do

tc = RankReduce(Bnc,Bn,CVPP(·, 2Vn−1))

return {tc | c ∈ {0, 1}n}

of the lattice µ(Λn)2. It follows that µ(Λn)2 + τ2 ≥ ‖r‖2 ≥ `2i , and µ(Λn)2 ≥ `2i − τ2 = (i + α)2‖b∗n‖2. So,
|i+ α| ≤ µ(Λn)/‖b∗n‖ = h′. Since there are at most h = 1 + b2h′c integers within distance h′ from any real
α, we conclude that r (or some other point in t + Λn achieving the same norm) is found within the first h
iterations of the loop. Conversely, after h iterations, the index j of the layer considered in the body of the
loop must satisfy |j+α| > h′. So, `j = (j+α)2‖b∗n‖2 + τ2 > (h′)2‖b∗n‖2 + τ2 = µ(Λn)2 + τ2 ≥ ‖r‖2 and the
loop terminates. This proves that the number of iterations (and calls to the cvp function) is at most h.

4.3 Computing the Voronoi cell

In this section we show how to compute the Voronoi cell of an n-dimensional lattice L(Bn), which immediately
gives solutions to several other lattice problems. As discussed in the introduction, this is accomplished by
computing the Voronoi cells of all sublattices L(Bk) sequentially for k = 1, . . . , n. Following [AEVZ02], the
Voronoi cell of each sublattice L(Bk) is computed resorting to the characterization of the Voronoi relevant
vectors given in Theorem 3.2. This leads to the formulation of the following problem: given a lattice Λ, find
a shortest vector in t+ 2Λ, for each t ∈ Λ. The next lemma gives a straightforward solution to this problem,
based on the CVPP algorithm and rank reduction procedure from Subsections 4.1 and 4.2.

Lemma 4.8 Given a lattice Λn = L(Bn) and the list of relevant vectors Vn−1 = V (Λn−1) of Λn−1 =
L(Bn−1), the function VRevelant of Algorithm 2 runs in time Õ(h · 22n|Vn−1|) = Õ(h · 23n) where h =
O(µ(Λn−1)/‖b∗n‖), and outputs a list of 2n lattice vectors containing a shortest vector from each coset t+2Λn
with t ∈ Λn.

Proof: There are precisely 2n cosets of the form t + 2Λn with t ∈ Λn, and for any basis Bn, a set of coset
representatives is given by {Bnc | c ∈ {0, 1}n}. The function VRevelant finds a shortest vector from each
coset using RankReduce with the cvp function implemented using the CVPP algorithm. The correctness
of VRevelant immediately follows from Lemma 4.7 and Theorem 4.2. By the Lemma 4.7 each invocation of
RankReduce makes at most h calls to CVPP, and by Theorem 4.2 each call takes time Õ(2n · |Vn−1|). So,
RankReduce runs in Õ(h · 2n|Vn−1|) time. Since VRevelant consists of 2n RankReduce computations,
the total time complexity is Õ(h · 22n|Vn−1|).

It immediately follows from Theorem 3.2 that if U is the set of lattice vectors returned by VRevelant
on input (Bn, Vn−1), then ±U contains all the Voronoi relevant vectors of L(Bn), among other nonrelevant
lattice vectors. This is enough for most of the applications considered in this paper, but sometimes one may
want a list containing precisely the relevant vectors of a lattice. For completeness, we give an algorithm that
filters out the nonrelevant vectors from ±U , and returns a list Vn containing precisely the relevant vectors
of the input lattice. The pseudocode is given as function VFilter in Algorithm 3, and it is analyzed in
the following lemma. The two algorithms VRevelant and VFilter together allow to compute the list
of Voronoi relevant vectors of a lattice, making 2n calls to a CVP oracle for the same lattice. We remark
that ours is just a simple variant of the algorithm already given in [AEVZ02], which directly computes a

15

list containing only the relevant vectors. The difference is that the algorithm of [AEVZ02] computes, for
each target t ∈ Λ, all shortest vectors in the coset t + 2Λ, and immediately discards them if more than
two solutions are found. Our algorithm only finds one shortest vector in each t + 2Λ, and then discards
the nonrelevant vectors at the end. We chose to present a variant of the algorithm of [AEVZ02] because
our CVPP function (which will be used to instantiate the cvp(·) oracle) returns only one vector, and
also because the problem solved by our VRevelant (and the VFilter function) will be needed again in
Section 5 to design faster algorithms.

Lemma 4.9 Given a superset U of the relevant vectors of a lattice (V (Λn) ⊆ U ⊆ Λn), function VFilter
from Algorithm 3 outputs Vn = V (Λn) in time Õ(|Vn| · |U |) ≤ Õ(2n · |U |).

Proof: The function VFilter processes the nonzero input vectors U \ {0} in order of nondecreasing norm.
We need to prove that each vector u ∈ U is included in V if and only if u is relevant. The proof is based on
the following two observations:

• If u is a relevant vector, then every v ∈ Λn \ {0,u}, satisfies ‖2v − u‖ > ‖u‖. To see this, notice
that if u is a relevant vector, then by Theorem 3.2 ±u are the only shortest vectors of 2Λn + u. Since
the vector 2v − u is in 2Λn + u, it must be ‖2v − u‖ > ‖u‖ unless (2v − u) = ±u, or equivalently,
v ∈ {0,u}.

• If u is not relevant, then there exists a relevant vector v such that ‖v‖ < ‖u‖ and ‖2v−u‖ ≤ ‖u‖. We
prove the statement by contradiction. Assume that u is not relevant and that for all relevant vectors
v either ‖v‖ ≥ ‖u‖ or ‖2v−u‖ > ‖u‖. Notice that if ‖v‖ ≥ ‖u‖, then ‖2v−u‖ ≥ 2‖v‖− ‖u‖ ≥ ‖u‖,
with equality ‖2v− u‖ = ‖u‖ if and only if v = u. But the latter is not possible because v is relevant
and u is not. So, for all relevant vectors v we have ‖2v−u‖ > ‖u‖, or, equivalently, ‖u/2‖ < ‖u/2−v‖.
This proves that u/2 is strictly closer to the origin 0 than to any relevant vector v, i.e., u/2 is in the
interior of the Voronoi cell V(Λn). It follows from Observation 3.1 that 0 is the unique closest lattice
vector to u/2 . This is a contradiction because 0 and u have the same distance from u/2.

Now, 0 is never included in V because u ∈ U \ {0}. So, by the first observation, relevant vectors u ∈ U
not already in V always pass the test and are included in the output set V . It follows that when a vector
u ∈ U is processed, all revelant vectors of norm strictly less than ‖u‖ are already in V . So, by the second
observation, if u is not relevant, then it fails the test for some v ∈ V and it is discarded. This proves the
correctness of the algorithm.

For the running time, the algorithm first sorts the input vectors U in time O(|U | log |U |) = Õ(|U |), and
then iterates over U . Each iteration takes time at most Õ(|V |) where |V | ≤ |V (Λn)|. So, the total running
time is Õ(|U | · |V (Λn)|).

Our basic algorithm to compute the Voronoi cell of a lattice easily follows from Lemmas 4.6, 4.8 and 4.9.
The pseudocode is given in Algorithm 3 as function VoronoiCell. The correctness and performance (when
used with the other functions from Algorithm 1 and Algorithm 2) are analyzed in the next theorem.

Theorem 4.10 The function VoronoiCell computes the list of Voronoi relevant vectors of a lattice L(Bn)
in deterministic time Õ(23.5n) using Õ(2n) space.

Proof: The VoronoiCell function of Algorithm 3 first preprocesses the input basis, so that, by Lemma 4.6,
hk = 1 + bµ(Λk)/‖b∗k‖c ≤ 2k/2 for all k = 2, . . . , n. The rest of the algorithm works on the new basis
Bn, and iteratively computes the Voronoi cell Vk of all sublattices L(Bk) for k = 1, . . . , n. Computing
V1 = V (L(B1)) = {b1,−b1} is straightforward. For all other k = 2, . . . , n, Vk is computed from Vk−1

using VRevelant and VFilter. By Lemma 4.8, VRevelant(Bk, Vk−1) computes a list Uk containing a
shortest vector of t + 2L(Bk) for all t ∈ L(Bk). By Theorem 3.2, if t ∈ L(Bk) is a relevant vector, then ±t
are the only shortest vectors in t + 2L(Bk), and either t or −t is included in Uk. In either case, t ∈ ±Uk.
This proves that Uk contains all the relevant vectors. Finally, by Lemma 4.9, Vk = VFilter(±Uk) is the
list of relevant vectors of L(Bk).

16

Algorithm 3 The main algorithm

function VoronoiCell(B)
B← Preprocess(B)
V1 = {b1,−b1}
for k = 2 . . . n do

Uk = VRevelant(Bk, Vk−1)
Vk = VFilter(±Uk)

return Vn

function SVP(B)
V = VoronoiCell(B)
v = argminv∈V ‖v‖
return v

function VFilter(U)
V ← ∅
for u ∈ U \ {0} sorted by ‖u‖ do

if ∀v ∈ V.‖2v − u‖ > ‖u‖ then
V ← V ∪ {u}

return V

function CVP(B, t)
V = VoronoiCell(B)
t′ = CVPP(t, V)
return (t− t′)

We now analyize the running time. The preprocessing function runs in polynomial time, so its cost is
negligible. By Lemmas 4.8 and 4.9, the cost of each iteration is bounded by Õ(hk22k · |Vk−1|)+ Õ(2k · |Vk|) =
Õ(hk22k · |Vk−1|) = Õ(23.5k). Therefore the total time complexity of the algorithm is

∑
k=2,...,n(Õ(23.5k)) =

Õ(23.5n). The space complexity is at most Õ(2n) for the storage of the intermediate Voronoi cells Vk.

Using Theorem 4.10 and our CVPP algorithm, it is immediate to give deterministic solutions to CVP,
SVP and a host of other lattice problems with similar time and space complexity as VoronoiCell. Here we
only give a formal statement for SVP, which will be used in the next section to obtain even faster algorithms
for all these problems.

Corollary 4.11 SVP can be solved deterministically in time Õ(23.5n) and space Õ(2n).

Proof: Simply run the algorithm of Theorem 4.10 to compute the Voronoi cell of the lattice, and output a
shortest vector from the list of relevant vectors.

5 The optimized algorithm

In this section we present an improved algorithm to compute the Voronoi cell of a lattice in time Õ(22n),
and consequently solve CVP, SVP, and other hard lattice problems within the same time bound. The high
level structure of the algorithm is identical to the VoronoiCell function from Algorithm 3. The improved
time complexity comes from the use of a better preprocessing function and faster VRevelant algorithm.

Recall that in Section 4 the lattice basis was preprocessed simply by applying the LLL reduction algo-
rithm. Here we use stronger block reduction algorithms [GN08, Sch87] that produce better quality bases
by making a polynomial number of calls to an SVP oracle for lower dimensional lattices of rank at most
k < n. The quality of the output basis depends on the block size parameter k. Block reduction algorithms
are usually employed with k = O(log n), so that the SVP queries can be answered in polynomial time
2O(k) = nO(1), and the overall running time of the algorithm remains polynomial in n. Since our Voronoi
computation algorithm runs in exponential time anyway, here we can use much larger block size, resulting in
superpolynomial preprocessing, but without affecting the total time complexity of our algorithm by much.
Specifically, we preprocess the input basis using the slide reduction algorithm of [GN08] with block size
k = n/2 (as described in Lemma 2.1) and the SVP oracle instantiated using the algorithm of Corollary 4.11.
The result needed in our algorithm is summarized in the following lemma.

Lemma 5.1 The Preprocess function from Algorithm 4 runs in Õ(22n)-time and Õ(2n)-space, and com-
putes a basis for the input lattice Bn such that µ(L(b1, . . . ,bi))/‖b∗i ‖ ≤ O(n2) for all i = 1, . . . , n.

17

Proof: The preprocessing function runs the slide reduction algorithm of Lemma 2.1 with block size k =
dn/2e, and the SVP oracle (for lattices up to dimension k) instantiated with our SVP algorithm from
Section 4. By Corollary 4.11, each call to the SVP algorithm takes time Õ(23.5k) ≤ Õ(22n) and space Õ(2k) ≤
Õ(2n). By Lemma 2.1, the running time of the preprocessing function is higher only by a polynomial factor,
so it is still Õ(22n). Finally, by Lemma 2.1, the output basis has the property that µ(L(b1, . . . ,bi))/‖b∗i ‖ ≤
O(n2) for all i = 1, . . . , n.

The improved preprocessing results in a reduction of the running time by about 2
√
n, bringing the

time complexity of the Vononoi cell computation algorithm from Õ(23.5n) down to Õ(23n). In order to
reduce the running time even further, we improve the VRevelant function used in the implementation
of VoronoiCell. This is done in Subsection 5.1. Subsection 5.2 concludes with our main Voronoi cell
computation algorithm, and applications to other lattice problems.

The pseudocode of all functions used in this section is given in Algorithms 1, 3 and 4. Notice that most
of the code (Algorithms 1 and 3) is reused from Section 4, and the Voronoi cell computation method in this
section only differs by replacing Algorithm 2 with Algorithm 4.

5.1 Faster computation of relevant vectors

In this subsection we give a faster variant of the VRevelant function from Section 4. Recall that on input
a lattice basis Bn and the list of Voronoi relevant vectors of Bn−1, the goal of VRevelant is to find a
shortest vector in each coset t+2Λn, for t ∈ Λn. In Section 4, this was accomplished simply by reducing this
problem to 2n CVP computations, and then solving each CVP instance independently by rank reduction.
Here we apply the rank reduction technique directly to the problem solved by the VRevelant function.
This gives raise to an inhomogeneous version of the problem solved by VRevelant: given a lattice Λ and
a target y, find a shortest vector in each coset t + 2Λ, for t ∈ y + Λ. Function VEnum from Algorithm 4
solves a slightly more general problem: given a lattice Λ, an integer k ≥ 2 and a target y, find a shortest
vector in each coset t + kΛ, for t ∈ y + Λ. The main applications studied in this paper only need to solve
this problem for k = 2, but the algorithm works for any k, so we describe a solution to this more general
problem which may be of independent interest. (E.g., see Corollary 5.8.)

The algorithm makes use of two data structures. The first is simply an array A with kn entries, each
corresponding to a coset of k · Λ in t + Λ, and storing the shortest vector from the coset found so far. How
the array entries are indexed is not important, but for concreteness the reader can think of each v ∈ t + Λ
as being mapped to the index in {1, . . . , kn} obtained by expressing v− t = Bx ∈ Λ in terms of the basis B,
and setting the index to

∑n
i=1 k

i−1 · (xi mod k) + 1. For simplicity, in the description of the algorithms, we
omit the details of the index computation, and write A[v mod kΛ] to denote the array entry corresponding
to the coset of v modulo kΛ. The other data structure is a dynamic priority queue, storing vectors in t+ Λ,
which will be used to enumerate the output vectors in order of nondecreasing norm. The priority queue is
initially empty, and each entry of the array stores ∞ as a trivial upper bound on the length of the shortest
vector in each coset. The first step of the algorithm is to compute (using our CVPP algorithm) an arbitrary
vector u ∈ (Λ + t)∩ V̄, store it in the priority queue, and update the array accordingly. At each subsequent
step, the algorithm dequeues the top vector u in the priority queue, and inserts in the queue (and in the
array) all of its neighbors that satisfy a certain length condition.

Lemma 5.2 On input the set Vn = V (Λn) of relevant vectors of a lattice Λn, a target vector t, and an
integer k ≥ 2, the function VEnum from Algorithm 4 runs in time Õ(|Vn|kn) and space Õ(kn), and outputs
an array of size kn containing a shortest vector from each coset of kΛn in t + Λn.

Proof: Throughout this proof, when we refer to the array A as a set, we mean the set of vectors {A[i] : A[i] 6=
∞}. Notice that at all times during the execution of the algorithm we have Q ⊆ A. This is true because
whenever the array is modified by setting A[y + kΛ] ← y, the queue is updated accordingly by replacing
A[y + kΛ] with y. The only other operation performed on the queue Q is the removal of the shortest vector
u at the beginning of each iteration of the “while” loop, making Q a strict subset of A. This is also the only
operation that affects the set A \Q, by removing u from Q and thereby adding it to A \Q.

18

The time and space complexity of the algorithm is now very easy to analyze. The array A has size kn

because it has an entry for each coset of kΛ in t + Λ. It follows from Q ⊆ A that the size of the queue Q
is also bounded by |Q| ≤ |A| ≤ kn at all times during the execution of the algorithm. So, the overall space
complexity is Õ(kn). For the running time, we observe that since the size of the set A \Q increases by 1 at
each iteration of the “while” loop, and |A \Q| ≤ |A| ≤ kn, the number of iterations of the “while” loop is at
most kn. (In fact, it is precisely kn.) For each iteration of the “while” loop, the body of the nested “for” loop
is repeated |V | times. So, the running time of the algorithm is bounded by one execution of CVPP (which,
by Theorem 4.2, takes time Õ(2n · |V |),) and a total of kn · |V | basic operations on the queue Q and array A.
Assuming an efficient implementation of Q as a dynamic priority queue (e.g., a binary heap data structure)
supporting the insertion and removal of elements in logarithmic time O(log |Q|) ≤ O(log kn) = O(n log k),
the overall running time of the algorithm is Õ(|V | · 2n) + Õ(|V | · kn · n log k) = Õ(|V | · kn).

We now prove correctness. We need to show that by the end of the execution, the set A contains a
shortest vector from each coset of kΛ in t + Λ. Notice that each cell of the array A[y + kΛ] is either empty
(represented by storing the value ∞), or it stores a vector y from the coset y+ kΛ indexing the entry. Also,
array entries are overwritten A[y+kΛ]← y only to be replaced by strictly shorter vectors ‖y‖ < ‖A[y+kΛ]‖
from the same coset. It follows that if a shortest vector y from y + kΛ is ever stored in the array, then
that entry will never be overwritten, and y will be part of the final output of the algorithm. So, in order to
prove correctness it is enough to prove that a shortest vector from each coset is stored in the array at any
point during the execution of the algorithm. We also recall that, by Observation 3.1, y is a shortest vector
in y + kΛ if and only if y ∈ kV̄(Λ). So, the algorithm is correct if for any coset C (indexing a position in
the array A), at some point during the execution a vector from C ∩ kV̄(Λ) is stored in A[C].

We first prove that all vectors in the set G = V̄(Λ)∩ (t+ Λ) are eventually stored in A. By Theorem 4.2
the vector y0 computed by the CVPP call belongs to G and it is stored in A before entering the “while”
loop. Now consider any other vector y ∈ G. By Lemma 3.8, there is a set of mutually orthogonal relevant
vectors v1, . . . ,vk ∈ V (Λ) such that y = y0 +

∑k
i=1 vi, and y0 +

∑
i∈S vi ∈ G for all S ⊆ {1, . . . , k}. We

prove that y is inserted in A by induction on k. As a base case, when k = 0, the vector y = y0 is inserted
in A before entering the “while” loop. So, assume k > 0, and consider the vector y′ = y − vk. Since
y′ = y0 +

∑k−1
i=1 vi and y′ ∈ G, by induction hypothesis y′ is stored in A and inserted in the queue Q at

some point during the execution of the algorithm. Consider the iteration of the “while” loop when u = y′ is
dequeued. Then the vector y = u + vk ∈ u + V is examined by the “for” loop. Now, ‖u‖ = ‖y‖ because all
vectors in G have norm ‖y0‖. Also, y ∈ V̄(Λ) ⊂ kV̄(Λ) is the only vector in y+ mod kΛ of norm ‖y‖ because
it belongs to the interior of of the Voronoi cell V(kΛ) = kV(Λ). It follows that either A[y mod kΛ] = y or
‖A[y mod kΛ‖ > ‖y‖ and y is stored in A[y mod kΛ]. This proves that all vectors in G are stored in A.

We now prove that the array stores a shortest vector from each coset of kΛ in t+Λ. We prove that the array
stores a shortest vector from each coset C = y+ kΛ by induction on the quantity θ(C) = min{‖v‖ : v ∈ C}.
The base case is given by all cosets C such that θ(C) = min{‖v‖ : v ∈ t + Λ} = ‖y0‖. These are precisely
the cosets with a shortest vector in G, and we already proved that all these vectors are stored in A. So,
consider a coset C with a shortest vector y ∈ C ∩ (kV̄(Λ) \ V̄(Λ)). Let v ∈ V be a relevant vector that
maximizes the quantity α = 2〈y,v〉/‖v‖2. Notice that α is the smallest value such that y ∈ αV̄(Λ), so it
must be α ≤ k. By Lemma 3.6 we have y−v ∈ αV̄(Λ) ⊆ kV̄(Λ) and ‖y−v‖ < ‖y‖. Let C ′ = C −v be the
coset of y− v. Since θ(C ′) ≤ ‖y− v‖ < ‖y‖ = θ(C), we can assume by induction that the array A stores a
shortest vector u from C ′. We will prove that u + v is also a shortest vector in C. It follows that when u
is selected by the “while” loop for dequeuing, the “for” loop stores y = u + v in A[C] unless A[C] already
contains a shortest vector from C. It remains to prove that u + v is a shortest vector in C, or equivalently
u + v ∈ kV̄(Λ). If u = y − v, then u + v = y ∈ kV̄(Λ). So, assume u 6= y − v are distinct elements of C ′.
Since y−v ∈ αV̄(Λ) ⊆ kV̄ and u ∈ kV̄, the coset C ′ has multiple shortest vectors, and they must all belong
to the boundary of the Voronoi cell kV̄ \ kV. In particular, α = k and 2〈y,v〉/‖v‖2 = k, or, equivalently,
‖y‖ = ‖y−kv‖. By Lemma 3.4 (applied to lattice kΛ) the vector y−kv belongs to kV̄. Applying Lemma 3.5
to the vectors x = y − kv,y, z = y − v and u (and lattice kΛ), we get that u + v = u + y − z is in kV.

Lemma 5.3 On input a lattice Λ = L(Bn), and the relevant vectors Vn−1 = V (L(Bn−1)), function

19

Algorithm 4 Optimized Algorithms

function VEnum(V, t, k)
Λ = L(V)
for i = 1 . . . kn do A[i]←∞;

y0 = CVPP(V, t);
Q← {y0}; A[y0 mod kΛ]← y0;
while Q 6= ∅ do

u = argminu∈Q‖u‖; Q← Q \ {u};
for y ∈ (u + V) do

if ‖u‖ ≤ ‖y‖ < ‖A[y mod kΛ]‖ then
Q← Q \ {A[y mod kΛ]} ∪ {y};
A[y mod kΛ]← y;

return A

function Preprocess(B)
return SlideReduce(B,dn/2e)

function VRevelant(Bn, Vn−1)
Λ = L(Bn)
for j = 1, . . . , 2n do T [j]←∞
for i = 0, 1, . . . do

if (i · ‖b∗n‖ < maxj ‖T [j]‖) then
for t ∈VEnum(Vn−1, ibn, 2) do

if ‖T [t mod 2Λ]‖ > ‖t‖ then
T [t mod 2Λ]← t

else return T

VRevelant from from Algorithm 4 outputs a list containing a shortest vector from each coset t + 2Λ
with t ∈ Λ. The function runs in Õ(hn · |Vn−1| · 2n) time and Õ(2n) space, where hn = 2µ(Λ)/‖b∗n‖.

Proof: The function uses an array T indexed by Λ/2Λ and with all entries initialized to ∞, where it keeps,
for each C ∈ Λ/2Λ, the shortest vector from the coset C found so far. The lattice Λ is partitioned into layers
of the form ibn+Λ′ (where Λ′ = L(Bn−1),) which are processed one at a time. Since each coset t+2Λ (with
t ∈ Λ) is symmetric with respect to 0, it suffices to consider only layers with i ≥ 0. The layers are considered
in order of increasing index i. For each i, the function VEnum is used to compute a shortest vector in each
coset t + 2Λ′ with t ∈ ibn + Λ′, and T is updated accordingly. Notice that all points in ibn + Λ′ have norm
at least i · ‖b∗n‖. So, if at any point we have found a vector of norm at most i · ‖b∗n‖ in each coset, we do not
need to consider the remaining layers, and the algorithm can immediately terminate with output T . This
proves the correctness of the algorithm.

Now, we analyze the running time. The initialization of T takes time Õ(2n). Each iteration of the main
loop (including the execution of VEnum and scanning its output to update T) takes time Õ(2n|Vn−1|) and
space Õ(2n). In order to bound the running time, we prove that the algorithm terminates after at most hn
iterations of the main loop. For each index j ∈ {1, . . . , 2n}, let vj be a shortest vector in the corresponding
coset vj + 2Λ, and let ij be the index of the layer ijbn+ Λ′ containing vj . Assume without loss of generality
that ij ≥ 0. (If ij < 0, then replace vj with −vj ∈ vj + 2Λ.) Since vj is in span(Λ) = span(2Λ), it
must be ‖vj‖ ≤ µ(2Λ) = 2µ(Λ). By taking the component of vj in the direction of b∗n, we also get that
‖vj‖ ≥ ij · ‖b∗n‖. Combining the two inequalities, we get that ij · ‖b∗n‖ ≤ ‖vj‖ ≤ 2µ(Λ). This proves that vj
(or an equally short vector from the same coset) is found within the first ij ≤ 2µ(Λ)/‖b∗n‖ = hn iterations
of the main loop. So, by the time the algorithm enters iteration i = hn + 1, we have maxj ‖T [j]‖ ≤ 2µ(Λ),
and the algorithm terminates because i · ‖b∗n‖ > hn · ‖b∗n‖ = 2µ(Λ).

5.2 Main Algorithm

A faster algorithm for Voronoi cell computation is obtained simply by replacing Algorithm 2 from Section 4
with Algorithm 4.

Theorem 5.4 There is a deterministic Õ(22n)-time and Õ(2n)-space algorithm that on input an n-dimensional
lattice Λ with basis B, outputs the relevant vectors of Λ.

Proof: The main function is the same VoronoiCell from Algorithm 3 already analyzed in Theorem 4.10,
but with Preprocess and VRevelant implemented as in Algorithm 4. The analysis is almost identical
to the one in the proof of Theorem 4.10, with the following differences. The preprocessing function is no
longer polynomial time, but by Lemma 5.1 it still runs within the Õ(22n)-time and Õ(2n)-space bounds.
Also, after preprocessing, the basis Bn satisfies hk = µ(L(b1, . . . ,bi))/‖b∗i ‖ ≤ O(n2) for all i = 1, . . . , n. So,

20

by Lemma 5.3, each call to the new VRevelant function runs in Õ(hk · |Vk−1| · 2k) = Õ(22k) time. The
rest of the running time analysis is similar to Theorem 4.10, and yields a Õ(22n) bound on the total running
time. The proof of correctness and space complexity bound is identical.

From the list of Voronoi relevant vectors, we immediately get a solution to many other lattice problems,
e.g., the shortest vector problem (SVP) can be solved simply by picking the shortest vector in the list of
lattice points describing the Voronoi cell, and the kissing number of the lattice can be computed as the
number of vectors in the list achieving the same length as the shortest vector in the lattice.

Corollary 5.5 There is a deterministic Õ(22n)-time algorithm to solve SVP, and to compute the kissing
number of a lattice.

The Voronoi relevant vectors can also be used with our CVPP algorithm to solve CVP.

Corollary 5.6 There is a deterministic Õ(22n)-time, Õ(2n)-space algorithm to solve CVP.

Proof: The algorithm is given by function CVP from Algorithm 3. By Theorem 5.4 the computation of
the Voronoi cell takes Õ(22n) time and Õ(2n) space. Once the Voronoi cell has been computed, the input
CVP instance is solved using the CVPP algorithm, which, by Theorem 4.2, runs in time Õ(22n).

Algorithms for other lattice problems, like SIVP, SAP, GCVP, SMP (see [BN09, Mic08]) can be obtained
by reduction to CVP.

Corollary 5.7 There are deterministic Õ(22n)-time Õ(2n)-space algorithms to solve SIVP, SAP, GCVP
and SMP.

Proof: All these problems can be solved applying the reductions in [Mic08] from these problems to CVP, and
using our CVP algorithm to solve the CVP instances that arise during the reduction. Since the reductions
in [Mic08] run in polynomial time and preserve the dimension of the lattice, the resulting algorithm has
Õ(22n)-time and Õ(2n)-space complexity.

We conclude the section with a simple application of Lemma 5.2 with arbitrary k ≥ 2.

Corollary 5.8 There is an algorithm that on input a lattice Λn, a target vector t, and an integer k ≥ 2,
runs in Õ((4k)n) time and outputs all lattice points within distance kλ(Λn) from t.

Proof: Let λ = λ(Λn). The algorithm begins by computing the list of relevant vectors V = V (Λn) in time
Õ(22n) using Theorem 5.4. Then, it invokes the function VEnum(V, t, 2k) of Lemma 5.2, and for each vector
v ∈ t+ Λn found by VEnum, it checks if v is shorter than kλ, and if so it outputs (t− v). Since all vectors
shorter than kλ belong to 2kV(Λ), this procedure finds all lattice vectors within distance kλ from t. By
Lemma 5.2, the running time of the enumeration algorithm is at most Õ((4k)n). So, the total running time
is also Õ((4k)n).

We remark that the algorithm of Corollary 5.8 can be optimized in several ways. For example, since
VEnum enumerates the output vectors in order of nondecreasing length, one can limit the enumeration to
the vectors shorter than kλ. It is also possible to reduce the space complexity of the algorithm from Õ((2k)n)
to Õ(2n) (i.e., just for the cost of computing and storing the Voronoi relevant vectors) using standard graph
traversal techniques, though at the price of increasing the running time.

21

6 Open problems, directions for further research

We have shown that CVP, SVP, SIVP and many other lattice problems can be solved in deterministic single
exponential time. Many open problems remain. Here we list those that we think are most important or
interesting.

To start with, our algorithm uses exponential space. It would be nice to find an algorithm running in
single exponential time and polynomial space. We remark that the high space complexity of our algorithm
is due primarily to the need of storing the Voronoi cell of the lattice, in order to use it in conjunction with
our CVPP algorithm. So, the problem of improving the space complexity of our algorithm is closely related
to the problem of “compressing” the description of the Voronoi cell. More specifically, we ask if there is a
method to compress the list of Voronoi relevant vectors of a lattice into a string of polynomial length, from
which it is possible to efficiently4 recover the relevant vectors.

Another important open problem is to generalize our algorithm to arbitrary norms. We described an
algorithm for the `2 norm. Many parts of the algorithm easily adapt to other norms as well, but it is not
clear how to extend all of our results. The main technical problem is that the Voronoi cells in norms other
than `2 are not necessarily convex. So, extending the algorithm to any other norm is likely to require some
additional idea. (Convexity of the Voronoi cell is used implicitly in several parts of our proof.) An important
application of extending our algorithm to any norm is that it would yield single exponential time algorithms
for integer programming [Kan87].

We have shown that CVP can be solved in time Õ(22n). Since CVP is NP-hard, the time complexity
cannot be improved beyond 2Ω(n) under standard complexity assumptions. It may be possible though to
improve the constant in the exponent, and prove that CVP can be solved in time 2cn for some c < 2. In fact,
this could be achieved simply by a better analysis of the CVPP algorithm and faster algorithms for VEnum.
However, it is clear that our approach cannot possibly lead to constants in the exponent smaller than 1 (as
achieved for example by randomized heuristics for SVP [NV08, MV10b, WLTB11]) just because the Voronoi
cell of an n-dimensional lattice can have as many as O(2n) facets. Still, it may be possible to extend our
ideas to develop an algorithm with running time proportional to the number of Voronoi relevant vectors.
This may give interesting algorithms for special lattices whose Voronoi cells have a small description. Notice
that even for such lattices, our current Voronoi cell and CVP algorithms may take exponential time because
they require the computation of other Voronoi cells (of lower dimensional sublattices) as intermediate results.

We remark that, as it stands, and in any practical scenarios, our algorithm is unlikely to be competitive
with traditional methods based on lattice point enumeration [Kan87, Sch87, SE94, HS07, AEVZ02], despite
their higher worst-case asymptotic complexity 2Ω(n logn). In fact, even within enumeration methods, the
best asymptotic algorithm [Kan87, HS07] with running time 2O(n logn) does not fare well in practice against

heuristics or asymptotically inferior solutions with running time 2O(n2). (See [SE94, HS07, AEVZ02].)
Enumeration methods perform very well in practice because of the very small hidden constants in the
exponent of their running time, especially when the input lattice is chosen somehow at random. Developing
practical algorithms based on the ideas and techniques of this paper that are competitive with enumeration
methods is left as an open problem. A possible approach to develop practical variants of our algorithm may
be to use only a sublist of Voronoi relevant vectors, at the cost of producing only approximate solutions
to CVP. This could allow to reduce the complexity of the algorithms below the current 2n barrier. The
challenge is to bound the quality of the approximate solutions found.

Finally, in this paper we used CVPP mostly as a building block to give a modular description of our CVP
algorithm: we use CVPP to recursively implement the preprocessing function, and then solve the actual CVP
instance. It is an interesting open problem if a similar bootstrapping can be performed using polynomial
time CVPP approximation algorithms like [AR05], to yield a polynomial time solution to

√
n-approximate

CVP.

4Here efficient means in at most single exponential time, while using only polynomial space

22

Acknowledgments

We thank Damien Stehlé for very helpful discussion and for pointing out some problems in earlier drafts of
this paper. We also thank the anonymous reviewers for their comments. This work was supported in part
by NSF grants CCF-0634909, CNS-0831536 and CNS-1117936. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation.

References

[ABSS97] S. Arora, L. Babai, J. Stern, and E. Z. Sweedyk. The hardness of approximate optima in
lattices, codes, and systems of linear equations. Journal of Computer and System Sciences,
54(2):317–331, April 1997. doi:10.1006/jcss.1997.1472. Preliminary version in FOCS’93.

[AEVZ02] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Closest point search in lattices. IEEE Trans-
actions on Information Theory, 48(8):2201–2214, August 2002. doi:10.1109/TIT.2002.800499.

[AJ08] V. Arvind and P. S. Joglekar. Some sieving algorithms for lattice problems. In Proceedings of
FSTTCS, pages 25–36. 2008. doi:10.4230/LIPIcs.FSTTCS.2008.1738.

[Ajt98] M. Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions (extended
abstract). In Proceedings of STOC, pages 10–19. ACM, May 1998. doi:10.1145/276698.276705.

[Ajt04] M. Ajtai. Generating hard instances of lattice problems. Complexity of Computations and
Proofs, Quaderni di Matematica, 13:1–32, 2004. Preliminary version in STOC 1996.

[AKKV12] M. Alekhnovich, S. Khot, G. Kindler, and N. Vishnoi. Hardness of approximating the
closest vector problem with pre-processing. Computational Complexity, 2012. doi:10.1007/
s00037-011-0031-3. To appear. Preliminary version in FOCS ’05.

[AKS01] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector
problem. In Proceedings of STOC, pages 266–275. ACM, July 2001. doi:10.1145/380752.380857.

[AKS02] M. Ajtai, R. Kumar, and D. Sivakumar. Sampling short lattice vectors and the closest lattice
vector problem. In Proceedings of CCC, pages 53–57. IEEE, May 2002. doi:10.1109/CCC.2002.
1004339.

[AR05] D. Aharonov and O. Regev. Lattice problems in NP intersect coNP. Journal of the ACM,
52(5):749–765, 2005. doi:10.1145/1089023.1089025. Preliminary version in FOCS ’04.

[Bab86] L. Babai. On Lovasz’ lattice reduction and the nearest lattice point problem. Combinatorica,
6(1):1–13, 1986. doi:10.1007/BF02579403.

[Ban93] W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers.
Mathematische Annalen, 296:625–635, 1993.

[Blö00] J. Blömer. Closest vectors, successive minima and dual HKZ-bases of lattices. In Proceedings of
ICALP, volume 1853 of LNCS, pages 248–259. Springer, July 2000. doi:10.1007/3-540-45022-X
22.

[BN09] J. Blömer and S. Naewe. Sampling methods for shortest vectors, closest vectors and successive
minima. Theoretical Computer Science, 410(18):1648–1665, April 2009. doi:10.1016/j.tcs.2008.
12.045. Preliminary version in ICALP ’07.

23

[BS99] J. Blömer and J.-P. Seifert. On the complexity of computing short linearly independent vectors
and short bases in a lattice. In Proceedings of STOC, pages 711–720. ACM, May 1999. doi:
10.1145/301250.301441.

[Cas71] J. W. S. Cassels. An introduction to the geometry of numbers. Springer-Verlag, New York,
1971.

[Cha07] D. X. Charles. Counting lattice vectors. Journal of Computer and System Sciences, 73(6):962
– 972, 2007. doi:10.1016/j.jcss.2007.03.014.

[CJL+92] M. J. Coster, A. Joux, B. A. LaMacchia, A. M. Odlyzko, C.-P. Schnorr, and J. Stern. Improved
low-density subset sum algorithms. Computational Complexity, 2(2):111–128, 1992. doi:10.
1007/BF01201999. Preliminary versions in Eurocrypt ’91 and FCT ’91.

[CM06] W. Chen and J. Meng. The hardness of the closest vector problem with preprocessing over `∞
norm. IEEE Transactions on Information Theory, 52(10):4603–4606, 2006. doi:10.1109/TIT.
2006.881835.

[CN99] J.-Y. Cai and A. P. Nerurkar. Approximating the SVP to within a factor (1 + 1/dimε) is NP-
hard under randomized reductions. Journal of Computer and System Sciences, 59(2):221–239,
October 1999. doi:10.1006/jcss.1999.1649. Preliminary version in CCC ’98.

[CS98] J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups. Springer Verlag, 3rd
edition, 1998.

[DKRS03] I. Dinur, G. Kindler, R. Raz, and S. Safra. Approximating CVP to within almost-polynomial
factors is NP-hard. Combinatorica, 23(2):205–243, 2003. doi:10.1007/s00493-003-0019-y. Pre-
liminary version in FOCS ’98.

[DPV11] D. Dadush, C. Peikert, and S. Vempala. Enumerative algorithms for lattice problems in any
norm via M-ellipsoid coverings. In Proceedings of FOCS, pages 580–589. 2011. doi:10.1109/
FOCS.2011.31.

[EHN11] F. Eisenbrand, N. Hähnle, and M. Niemeier. Covering cubes and the closest vector problem. In
Proceedings of SoCG, pages 417–423. ACM, New York, NY, USA, 2011. doi:10.1145/1998196.
1998264.

[FM03] U. Feige and D. Micciancio. The inapproximability of lattice and coding problems with pre-
processing. Journal of Computer and System Sciences, 69(1):45–67, 2003. doi:10.1016/j.jcss.
2004.01.002. Preliminary version in CCC ’02.

[GHGKN06] N. Gama, N. Howgrave-Graham, H. Koy, and P. Nguyen. Rankin’s constant and blockwise
lattice reduction. In Advances in Cryptology – Proceedings of CRYPTO 2006, volume 4117
of Lecture Notes in Computer Science, pages 112–130. Springer, August 2006. doi:10.1007/
11818175 7.

[GMR05] V. Guruswami, D. Micciancio, and O. Regev. The complexity of the covering radius problem.
Computational Complexity, 14(2):90–121, jun 2005. doi:10.1007/s00037-005-0193-y. Prelimi-
nary version in CCC ’04.

[GMSS99] O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert. Approximating shortest lattice vectors is
not harder than approximating closest lattice vectors. Information Processing Letters, 71(2):55–
61, 1999. doi:10.1016/S0020-0190(99)00083-6.

[GN08] N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell’s inequality. In
Proceedings of STOC, pages 207–216. ACM, May 2008. doi:10.1145/1374376.1374408.

24

[Hel85] B. Helfrich. Algorithms to construct Minkowski reduced and Hermite reduced lattice bases.
Theoretical Computer Science, 41(2–3):125–139, December 1985. doi:10.1016/0304-3975(85)
90067-2.

[Hor96] A. G. Horváth. On the dirichlet-voronoi cell of unimodular lattices. Geometriae Dedicata,
63:183–191, 1996. doi:10.1007/BF00148218.

[HPS11] G. Hanrot, X. Pujol, and D. Stehlé. Algorithms for the shortest and closest lattice vector
problems. In Proceedings of IWCC, volume 6639 of LNCS, pages 159–190. Springer, 2011.
doi:http://dx.doi.org/10.1007/978-3-642-20901-7 10.

[HR06] I. Haviv and O. Regev. Hardness of the covering radius problem on lattices. In Proceedings of
CCC, pages 145–158. IEEE, July 2006. doi:10.1109/CCC.2006.23.

[HR07] I. Haviv and O. Regev. Tensor-based hardness of the shortest vector problem to within almost
polynomial factors. In Proceedings of STOC, pages 469–477. ACM, June 2007. doi:10.1145/
1250790.1250859.

[HS07] G. Hanrot and D. Stehlé. Improved analysis of Kannan’s shortest lattice vector algorithm.
In Proceedings of Crypto, volume 4622 of LNCS, pages 170–186. Springer, August 2007. doi:
10.1007/978-3-540-74143-5 10.

[JS98] A. Joux and J. Stern. Lattice reduction: A toolbox for the cryptanalyst. Journal of Cryptology,
11(3):161–185, 1998. doi:10.1007/s001459900042.

[Kan87] R. Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of op-
eration research, 12(3):415–440, August 1987. doi:10.1287/moor.12.3.415. Preliminary version
in STOC ’83.

[Kho05] S. Khot. Hardness of approximating the shortest vector problem in lattices. Journal of the
ACM, 52(5):789–808, September 2005. doi:10.1145/1089023.1089027. Preliminary version in
FOCS ’04.

[KPV12] S. Khot, P. Popat, and N. Vishnoi. 2log1−ε n hardness for closest vector problem with prepro-
cessing. In Proceedings of STOC. 2012. To appear.

[Len83] H. W. Lenstra. Integer programming with a fixed number of variables. Mathematics of Oper-
ations Research, 8(4):538–548, November 1983.

[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coeffi-
cients. Mathematische Annalen, 261:513–534, 1982.

[LM85] S. Landau and G. L. Miller. Solvability by radicals is in polynomial time. Journal of Computer
and System Sciences, 30(2):179–208, April 1985. doi:10.1016/0022-0000(85)90013-3. Prelimi-
nary version in STOC ’83.

[MG02] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: a cryptographic perspective,
volume 671 of The Kluwer International Series in Engineering and Computer Science. Kluwer
Academic Publishers, Boston, Massachusetts, March 2002.

[Mic01a] D. Micciancio. The hardness of the closest vector problem with preprocessing. IEEE Transac-
tions on Information Theory, 47(3):1212–1215, March 2001. doi:10.1109/18.915688.

[Mic01b] D. Micciancio. The shortest vector problem is NP-hard to approximate to within some constant.
SIAM Journal on Computing, 30(6):2008–2035, March 2001. doi:10.1137/S0097539700373039.
Preliminary version in FOCS ’98.

25

[Mic04] D. Micciancio. Almost perfect lattices, the covering radius problem, and applications to
Ajtai’s connection factor. SIAM Journal on Computing, 34(1):118–169, 2004. doi:10.1137/
S0097539703433511. Preliminary version in STOC ’02.

[Mic08] D. Micciancio. Efficient reductions among lattice problems. In Proceedings of SODA, pages
84–93. ACM/SIAM, January 2008. doi:10.1145/1347082.1347092.

[MR07] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian mea-
sure. SIAM Journal on Computing, 37(1):267–302, 2007. doi:10.1137/S0097539705447360.
Preliminary version in FOCS 2004.

[MV10a] D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm for most
lattice problems based on Voronoi cell computations. In Proceedings of STOC, pages 351–358.
2010. doi:10.1145/1806689.1806739.

[MV10b] D. Micciancio and P. Voulgaris. Faster exponential time algorithms for the shortest vector
problem. In Proceedings of SODA, pages 1468–1480. ACM/SIAM, January 2010.

[NS01] P. Nguyen and J. Stern. The two faces of lattices in cryptology. In Proceedings of CaLC ’01,
volume 2146 of LNCS, pages 146–180. Springer, March 2001. doi:10.1007/3-540-44670-2 12.

[NV08] P. Nguyen and T. Vidick. Sieve algorithms for the shortest vector problem are practical. J. of
Mathematical Cryptology, 2(2):181–207, July 2008. doi:10.1515/JMC.2008.009.

[NV09] P. Q. Nguyen and B. Vallée, editors. The LLL Algorithm: Survey and Applcations. Information
Security and Cryptography. Springer, 2009. doi:10.1007/978-3-642-02295-1.

[Odl89] A. M. Odlyzko. The rise and fall of knapsack cryptosystems. In C. Pomerance, editor, Cryptol-
ogy and computational number theory, volume 42 of Procedings of Symposia in Applied Math-
ematics, pages 75–88. AMS, Boulder, Colorado, 1989.

[PS09] X. Pujol and D. Stehlé. Solving the shortest lattice vector problem in time 22.465n. Report
2009/605, IACR ePrint archive, December 2009.

[Reg04] O. Regev. Improved inapproximability of lattice and coding problems with preprocessing. IEEE
Transactions on Information Theory, 50(9):2031–2037, 2004. doi:10.1109/TIT.2004.833350.
Preliminary version in CCC ’03.

[Reg09] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of
ACM, 56(6):34, September 2009. doi:10.1145/1568318.1568324. Preliminary version in STOC
’05.

[Sch87] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical
Computer Science, 53(2–3):201–224, August 1987. doi:10.1016/0304-3975(87)90064-8.

[Sch88] C.-P. Schnorr. A more efficient algorithm for lattice basis reduction. Journal of Algorithms,
9(1):47–62, March 1988. doi:10.1016/0196-6774(88)90004-1. Preliminary version in ICALP ’86.

[Sch06] C. P. Schnorr. Fast LLL-type lattice reduction. Information and Computation, 204(1):1–25,
January 2006. doi:10.1016/j.ic.2005.04.004.

[SE94] C.-P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and
solving subset sum problems. Mathematical programming, 66(1-3):181–199, August 1994. doi:
10.1007/BF01581144. Preliminary version in FCT ’91.

[SFS09] N. Sommer, M. Feder, and O. Shalvi. Finding the closest lattice point by iterative slicing.
SIAM J. Discrete Math., 23(2):715–731, April 2009. doi:10.1137/060676362.

26

[SSV09] M. D. Sikirić, A. Schürmann, and F. Vallentin. Complexity and algorithms for computing
Voronoi cells of lattices. Mathematics of Computation, 78(267):1713–1731, July 2009. doi:
10.1090/S0025-5718-09-02224-8.

[VB96] E. Viterbo and E. Biglieri. Computing the Voronoi cell of a lattice: the diamond-cutting
algorithm. IEEE Trans. on Information Theory, 42(1):161–171, January 1996. doi:10.1109/18.
481786.

[vEB81] P. van Emde Boas. Another NP-complete problem and the complexity of computing short vec-
tors in a lattice. Technical Report 81-04, Mathematische Instituut, University of Amsterdam,
1981. Available on-line at URL http://turing.wins.uva.nl/~peter/.

[WLTB11] X. Wang, M. Liu, C. Tian, and J. Bi. Improved Nguyen-Vidick heuristic sieve algorithm for
shortest vector problem. In Proceedings of ASIACCS, pages 1–9. ACM, 2011. doi:10.1145/
1966913.1966915.

27

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

