
Deterministic Black-Box Identity Testing π-Ordered Algebraic

Branching Programs

Maurice Jansen∗ Youming Qiao∗ Jayalal Sarma M.N.∗

February 8, 2010

Abstract

In this paper we study algebraic branching programs (ABPs) with restrictions on the order and the
number of reads of variables in the program. An ABP is given by a layered directed acyclic graph with
source s and sink t, whose edges are labeled by variables taken from the set {x1, x2, . . . , xn} or field
constants. It computes the sum of weights of all paths from s to t, where the weight of a path is defined
as the product of edge-labels on the path. Given a permutation π of the n variables, for a π-ordered

ABP (π-OABP), for any directed path p from s to t, a variable can appear at most once on p, and the
order in which variables appear on p must respect π. An ABP A is said to be of read r, if any variable
appears at most r times in A.

Our main result pertains to the identity testing problem, i.e. the problem of deciding whether a given
n-variate polynomial is identical to the zero polynomial or not. Over any field F and in the black-box
model, i.e. given only query access to the polynomial, we have the following result: read r π-OABP

computable polynomials can be tested in DTIME[2O(r log r·log2
n log log n)]. In case F is a finite field, the

above time bound holds provided the identity testing algorithm is allowed to make queries to extension
fields of F.

Our next set of results investigates the computational limitations of OABPs. It is shown that any
OABP computing the determinant or permanent requires size Ω(2n/n) and read Ω(2n/n2). We give a
multilinear polynomial p in 2n + 1 variables over some specifically selected field G, such that any OABP
computing p must read some variable at least 2n times. We prove a strict separation for the computational
power of read (r−1) and read r OABPs. Namely, we show that the elementary symmetric polynomial of
degree r in n variables can be computed by a size O(rn) read r OABP, but not by a read (r− 1) OABP,
for any 0 < 2r − 1 ≤ n. Finally, we give an example of a polynomial p and two variables orders π 6= π′,
such that p can be computed by a read-once π-OABP, but where any π′-OABP computing p must read
some variable at least 2n times.

1 Introduction

The polynomial identity testing problem (PIT) is the question of deciding, given an arithmetic circuit C
with input variables x1, x2 . . . xn over some field F, whether the polynomial computed by C is identical to
the zero polynomial in the ring F[x1, x2, . . . xn]. Efficient algorithms for PIT are important both in theory
and in practice. Randomized algorithms were given independently by Schwartz [1] and Zippel [2].

Finding deterministic algorithms for PIT plays a crucial role in computational complexity theory. Ka-
banets and Implagliazzo [3] showed that giving a deterministic subexponential time algorithm for PIT implies
that either NEXP 6⊆ P/poly, or that the permanent has no poly-size arithmetic circuits. Agrawal [4] showed
that giving a deterministic black-box algorithm for PIT yields an explicit multilinear polynomial that has
no subexponential size arithmetic circuits. In [4] a program was outlined explaining how making progress

∗Institute for Theoretical Computer Science, Tsinghua University, Beijing, China. maurice.julien.jansen@gmail.com,
jimmyqiao86@gmail.com, jayalal@tsinghua.edu.cn. This work was supported in part by the National Natural Science Foun-
dation of China Grant 60553001, and the National Basic Research Program of China Grant 2007CB807900,2007CB807901.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 15 (2010)

towards the latter kind of algorithm for PIT has the potential of resolving Valiant’s Hypothesis, which states
that the algebraic complexity classes VP and VNP are distinct.

For optimists certainly, the situation is tantalizing, as Agrawal and Vinay [5] showed that the black-box
derandomization of PIT for only depth-4 circuits would yield a nearly complete derandomization for general
arithmetic circuits. Recent progress on the PIT problem has been impressive. See [6] for a recent survey.

In this paper, we contribute to the above mentioned lower bounds program by considering black-box
identity testing ordered algebraic branching programs (OABPs), which where introduced in [7]. Algebraic
branching programs have computational power somewhere in between arithmetic formulas and circuits. The
OABP is the arithmetic analogue of the ordered binary decision diagram (OBDD), which was introduced by
Bryant [8]. Some polynomials can be succinctly represented in the OABP model. For example, we show
that the elementary symmetric polynomial of degree k in n variables can be elegantly described by a grid
shaped OABP of size O(kn). As our lower bounds show, a succinct OABP-representation is not available
for every polynomial. The situation is similar to what is well-known for OBDDs. In practice this may be
outweighed by the fact that PIT can be solved efficiently for OABPs. As argued by Raz and Shpilka [9],
part of the popularity of OBDDs can be explained by the fact that identity testing (and hence equivalence
testing) can be done efficiently for the model.

In [9] a polynomial-time non-black-box algorithm was given for identity testing non-commutative for-
mulas, and more generally non-commutative ABPs. Identity testing OABPs reduces to PIT for non-
commutative ABPs, and hence can be done non-black-box in polynomial time. Namely, if we take an OABP
A computing some polynomial f over commuting variables, and if we let f ′ be the evaluation of A, where we
restrict the variables to be non-commuting, then it can be observed that f ≡ 0 ⇔ f ′ ≡ 0. Giving a black-box
algorithm for testing non-commutative formulas and ABPs is currently a major open problem. Our main
result implies we have a DTIME[2O(polylog(n))] black-box algorithm for testing OABPs with polylog(n) many
reads.

We remark that any read-once formula (ROF) can be simulated by an OABP. Black-box Identity testing
sum-of-k ROFs was studied in [10], and this was subsequently generalized to the sum-of-k read-once ABPs
in [11]. These results show the difficulty of making generalizations in this area to models beyond read-once.
For example, by [11] we have an nO(log n) black-box test for sum-of-two read-once ABPs, but for testing a
single read-twice ABP, currently nothing is known beyond brute-force methods. Our result is significant, in
that the techniques apply to a model where the multiple reads take place within one monolithic ABP. This
opens up a new thread of progress in the direction of identity testing unrestricted ABPs. We refer to [12]
for a direct connection between this, and proving lower bounds for the determinantal complexity of explicit
polynomials. The latter is what the separation of VP and VNP requires.

Finally, we mention the connection to PIT for multilinear formulas raised in [13]. Our results can be
applied to black-box identity testing “ordered multilinear formulas” with few reads (say polylog(n)). The
latter can be defined for any given variable order π, by requiring that for each multiplication gate g = g1×g2

in the formula, variables in the subformula rooted at g1 should either all be smaller or all be larger w.r.t. π
than variables in the subformula rooted at g2. By applying the construction of [14], judiciously to keep the
order, a formula of this kind can be simulated by a π-OABP. This then gives another important special case
of PIT for multilinear formulas for which a black-box algorithm is known (the other case being sum-of-k
ROFs).

1.1 Techniques

Towards the identity testing algorithm, the first step is to show that, without increasing the number of
reads, any π-OABP can be made oblivious, i.e. all variables in a layer must be identical. Then we construct
a generator G(z) for π-oblivious ABPs. This is a polynomial mapping F

ℓ → F
n such that for any f ∈

F[x1, . . . , xn] computed by a π-oblivious ABP, f ≡ 0 ⇔ f(G) ≡ 0. From this, one obtains an efficient
black-box test, provided the number of z-variables ℓ and the degree of G is “small”.

For illustrative purposes, let us consider an oblivous ABP A with variable order x1, x2, . . . , x2n

of small width w, rather than small number of reads, and suppose it computes f 6≡ 0. In order
to achieve ℓ = O(w log n), we cut A in the middle layer. This gives a decomposition (say) f =

2

∑
i∈[w] gi(x1, . . . , xn)hi(xn+1, . . . , x2n). Then we want f(G) =

∑
i∈[w] gi(G1, . . . ,Gn)hi(Gn+1, . . . ,G2n) 6≡ 0.

We would like to use recursion on the gis and his, but in order to get ℓ small, this means Gu := (G1, . . . ,Gn)
and Gd := (Gn+1, . . . ,G2n) will share most of the variables. This open up the possibility of all kinds of
unwanted cancellations to start occurring, resulting in f(G) ≡ 0. However, we do have something going
for ourselves, which is that {gi(G

u)}i∈[w] must “communicate” through a small dimensional space F
w. This

allows one to take Gd identical to Gu, except for an additional component to the input that inflates the
dimension of any non-empty finite union of affine varieties1, given by the preimage of a single point in F

w.
More or less, G(z, z′) will look like Gu(z);Gd(z, z′), with Gd(z, z′) = Gu(z + T (z′)), where T is a mapping
of O(w) many variables that contains any w-dimensional coordinate subspace. Doing so, we only add O(w)
many variables per inductive step. This mirrors the pseudorandom generator construction of Impagliazzo,
Nisan and Wigderson [16] in the Boolean world. To make an analogy, z + T (z′) can be thought of as similar
to taking a vertex (we pick z) and adjacent edge (we move by T (z)) on an expander graph.

Necessarily, our final construction will be more complicated than the above sketch, since we assume a
bound on the number of reads instead of the width. This will be dealt with by taking a partial derivatives
w.r.t. a centrally local variable xk in the ABP. Taking the derivative w.r.t. xk has the net effect of cutting
down the width of the xk-layer of A.

1.2 Organization

The rest of this paper is structured as follows. Section 2 contains preliminaries. Section 3 contains a proof
of a “decomposition lemma” we require for Section 4. There we do the core of the technical work by
giving the generator for π-oblivious ABPs. Then we apply this generator in Section 5 to give the black-box
PIT algorithm for π-OABPs. Finally, we prove the results regarding computational limitations of OABPs
mentioned in the abstract in Section 6.

2 Preliminaries

For a natural number n, we denote the set {1, 2, . . . , n} by [n]. For an n-tuple a = (a1, a2, . . . , an) and
m-tuple b = (b1, b2, . . . , bm), we denote its concatenation (a1, a2, . . . , an, b1, b2, . . . , bm) by a#b. Let X =
{x1, x2, . . . , xn} be a set of variables and let F be a field. For a polynomial f ∈ R := F[X], if it is identical to
the zero polynomial of the ring R, we write f ≡ 0. If the degree of any variable of f is bounded by one, f is
said to be multilinear (even if f has a constant term). We say f depends on xi, if the formal partial derivative
∂f/∂xi 6≡ 0. V ar(f) denotes the sets of variables f depends on. For a set of polynomial f1, . . . , fm ∈ F[X],
we say that they are independent if for all a ∈ F

m with a 6= 0,
∑

i∈[m] aifi 6≡ 0.

2.1 Computational Models

We import the following definition and subsequent notations from [11]:

Definition 1. An algebraic branching program is a 4-tuple A = (G,w, s, t), where G = (V,E) is an edge-
labeled directed acyclic graph for which the vertex set V can be partitioned into levels L0, L1, . . . , Ld, where
L0 = s and Ld = t. Vertices s and t are called the source and sink of A, respectively. Edges may only go
between consecutive levels Li and Li+1.

The label function w : E → X ∪ F assigns variables or field constants to the edges of G. For a path p in
G, we extend the weight function by w(p) =

∏
e∈p w(e). Let Pi,j denote the collection of all paths p from i

to j in G. The program A computes the polynomial
∑

p∈Ps,t
w(p). The size of A is taken to be |V |, and the

read of A is the maximum of |w−1(xi)|, over all xi’s. The depth of A equals d, and the width of A is the
maximum of |Li|, over all Li’s.

1Keeping with the terminology in [15], an algebraic set is the set of common zeroes of a list of polynomials. Affine varieties
are algebraic sets, which are irreducible in the Zariski-topology (See Appendix B).

3

Algebraic branching programs where first introduced by Nisan [17]. Our definition differs in the respect
that [17] requires edge labels to be linear forms. We use the following notation: for an arc e = (v, w) in ABP
A, begin(e) = v and end(e) = w. We let source(A) and sink(A) stand for the source and sink of A. For

any nodes v, w in A, we denote the subprogram with source v and sink w by Av,w. We use Â to denote the

polynomial computed by A, and in particular, Âv,w is the polynomial computed by the subprogram Av,w.
A layer of an ABP A is the subgraph induced by two consecutive levels Li and Li+1 in A.

Definition 2. An ABP A is called a read r ABP, if its read is bounded by r. We also denote this by saying
that A is an Rr-ABP. A polynomial f ∈ F[X] is called an Rr-ABP-polynomial if there exists a Rr-ABP
computing f .

Definition 3. Let π be a permutation of [n]. An ABP A is π-ordered, if on every directed path p in A, if a
variable xi appears before xj on p, then π(i) < π(j). For an ABP A we say it is ordered if it is π-ordered
w.r.t. some permutation π.

For a π-ordered ABP (π-OABP) variables appear (with possibly omissions) on any path from source to
sink in the order xπ−1(1), xπ−1(2), . . . , xπ−1(n). We will speak of the latter sequence as the variable order of A.
Ordered algebraic branching programs where first studied in [7], but with respect to the homogeneous ABP
definition of [17]. There the ordering condition states that on any path p, for any edge e1 appearing before e2

on p, if e1 is labeled by
∑

i∈[n] aixi, and e2 is labeled by
∑

i∈[n] bixi, then all variables in {xi : ai 6= 0} appear

before all variables in {xi : bi 6= 0} in the variable order. The usual “homogenization trick” of splitting nodes
into parts computing homogeneous components can be used to convert any OABP to the model of [7] (one
also needs to collapse circuitry going over constant wires). This outlines a proof of the second part of the
following lemma (the first part being obvious):

Lemma 1. For any permutation π of [n] we have the following:

1. A homogeneous π-ordered ABP of size s with linear forms as edge labels can be converted into an
equivalent π-OABP with weight function w : E → X ∪ F of size O(ns).

2. For any π-OABP of size s computing a homogeneous polynomial of degree d, there exists an equivalent
homogeneous π-ordered ABP of size O(sd) with linear forms as edge labels.

An ABP is called oblivious, if for any layer all variables are the same. We call a layer an x-layer, if x
labels some of the edges in that layer, for x ∈ X. Layers with variables are called variable layers. Layers
without variables are called constant layers. We say an ABP is π-oblivous, if it is π-ordered and oblivious.
We have the following lemma for converting any π-OABP into a π-oblivious ABP. Note the lemma preserves
read.

Lemma 2. For any permutation π of [n], given a π-OABP A over n variables of size s and read r, there is
an equivalent π-oblivious ABP B of size O(sn), width ≤ 2s and read r.

Proof. Wlog. we assume that π is the identity permutation. In B, the source will be followed by levels with
node sets V1,W1, V2,W2, . . . , Vn,Wn, Vn+1 (in this very order). We will grant ourselves the convenience of
also having constant labeled wires that go from Vi to Vi+1 directly, thus skipping Wi. Obviously, this can
be fixed by at most doubling the width of the ABP and without any increase in the number of reads. For
any i, nodes in Vi will be in one-to-one correspondence with nodes in A. Namely, for each node v in A, we
allocate a node vi in Vi. Similarly for Wi.

Let s = source(A), t = sink(A) and s = source(B). We will arrange to following two properties to hold.
Firstly, for any i ∈ [n + 1], for any vi ∈ Vi,

B̂s,vi
= ̂(A[xi = xi+1 = . . . xn = 0])s,v. (1)

In other words, the polynomial computed by the subprogram of B with source s and sink vi equals the
sum of weights of all paths from s to v in A, going over edges that are not labeled with variables from
{xi, xi+1, . . . , xn}.

4

Secondly, for any i ∈ [n], for any wi ∈ Wi, we will arrange that B̂s,wi
will equal the sum of weights of all

paths p from s to w in A going over edges that are not labeled with variables from {xi+1, . . . , xn}, and with
xi appearing on the last edge of p.

We now explain how to connect the wires in B. First of all, for any v1 ∈ V1, ̂(A[x1 = x2 = . . . xn = 0])s,v

is a constant. So we can establish (1) for V1 by drawing edges to nodes in V1 with appropriately labeled
constants.

For any i ≥ 1, given that wires have been drawn to Vi, we draw wires to Wi as follows. For vi ∈ Vi and
wi ∈ Wi, we draw a wire (vi, wi) with label xi if and only if (v, w) is an edge in A with label xi. This clearly
establishes the desired property for the set Wi, provided (1) holds for Vi. It is also immediately clear with
this definition that the number of reads of B equals the number of reads of A.

For i > 1, given that wires have been drawn to Wi−1, we draw wires to Vi as follows. For any node v in
A, the set S of paths from s to v in A not using edges with labels {xi, xi+1, . . . , xn} can be partitioned into
S1 ∪ S2, where S1 is the set of paths from s to v that do not use xi−1-labeled edges, and S2 = S\S1. For
any path p ∈ S2, we can write it as p = p1#p2, where p1 ends with an xi−1-labeled edge, and p2 consists of

constant labeled edges only. Hence, for a node vi ∈ Vi, ̂(A[xi = xi+1 = . . . xn = 0])s,v can be computed as

the sum of ̂(A[xi−1 = xi = xi+1 = . . . xn = 0])s,v plus a linear combinations of the weight of all paths p from
s to some node w in A going over edges that are not labeled with variables from {xi, . . . , xn}, and with xi−1

appearing on the last edge of p. This can be done by simply drawing a wire from node vi−1 ∈ Vi−1 with
label one, and appropriate constant labeled wires from nodes in Wi−1.

By the above construction, we get B̂s,tn+1
= Âs,t. After removing redundant nodes, splitting wires that

skip Wi’s, it is clear we have obtained a leveled oblivious ABP with read r, size O(sn) and width ≤ 2s.

2.2 Partial Derivatives Matrix

The following notions are taken from [13]. Let Y = {y1, . . . , yn} and Z = {z1, . . . , zn}. Then for a multilinear
polynomial p(Y,Z) ∈ F[Y,Z], we can construct the partial derivatives matrix Mp w.r.t. Y and Z as follows:

rows and columns of the matrix are indexed by {0, 1}n, and Mp(e, f) is the coefficient of
∏

i∈[n] y
ei

i

∏
j∈[n] z

fj

j ,

for e, j ∈ {0, 1}n. Thus Mp is a 2n × 2n matrix. We are mostly interested in the rank of partial derivative
matrices, and some of the useful properties are summarized in the following lemma:

Lemma 3 ([18]). Given three multilinear polynomials p, q, r ∈ F[Y,Z], we have that 1) If r = p + q, then
Mr = Mp + Mq, 2) If r = p · q, and V ar(p) and V ar(q) are disjoint, then rank(Mr) = rank(Mp) · rank(Mq),
3) If r = p · q, and p ∈ F[Y] and q ∈ F[Z], then rank(Mr) = 1.

In the above, for the first two properties, see Proposition 3.1 and 3.2 in [18]. The third property follows
from the second property, by observing that Mp (resp. Mq) has only one column (resp. row) that contains
non-zero entries.

Given X = {x1, . . . , x2n}, a partition A of X is a one-to-one mapping from X to Y ∪Z. For a polynomial
p ∈ F[X], denote by pA the polynomial obtained by substituting x ∈ X with A(x) ∈ Y ∪Z. So pA ∈ F[Y,Z].
A multilinear polynomial p ∈ F[X] is said to be of full rank if for any partition A : X → Y ∪Z, MpA is of full
rank. By extending the construction in [19], we show the existence of a polynomial p, such that ∂p/∂x is a
full-rank polynomial for every variable x in p. A proof of the following theorem has been put in Appendix A.

Theorem 1. Let n ∈ N be an integer, and X = {x1, . . . , x2n+1}, W = {wi,j,k}i,j,k∈[2n+1] be two sets of
variables. Let G = F(W) be the field of rational functions over F with variables in W. Then there exists
an explicit multilinear polynomial p ∈ G[X], such that for any k ∈ [2n + 1], ∂p/∂xk is of full rank, when
working over X\{xk}.

2.3 Algebraic Geometry

Any subset X ⊆ F
n which is the set of simultaneous zeroes of a set of polynomials f1, . . . , ft ∈ F[x1, . . . , xn]

is called an algebraic set. For basic definitions we refer to [20, 15]. For convenience, all theorems we use

5

have been listed in Appendix B. If X and Y are algebraic sets in F
n, we denote by X + Y the subset

{x + y ∈ Fn : x ∈ X, y ∈ Y }. Note that X + Y may not be an algebraic set. We denote by X + Y the
closure of X + Y is the Zariski-topology (See Appendix B). We need the following two lemmas:

Lemma 4. Let X ⊂ F
n be an algebraic set of dimension 0 ≤ r < n. Then for some (n − r)-dimensional

coordinate subspace C ⊂ F
n, X + C = F

n.

Proof. For a coordinate subspace C denote the canonical projection to C by πC . Consider K = {0}r ×F
n−r

and L = F
r, which we think of as the complement of K corresponding to the first r coordinates. We have the

following two properties: 1) The set X + K equals πL(X) × F
n−r, and 2) πL(X) × F

n−r = πL(X) × F
n−r.

By this, dim X + K = n − r + dimπL(X). More generally, it can be seen (by applying isomorphisms
to F

n, where we permute the indices), that for any (n − r) -dimensional coordinate subspace C with r-
dimensional complement D, dimX + C = n − r + dim πD(X). Hence the lemma follows from the fact that
for any r-dimensional affine variety there exists a projection τ to some r-dimensional coordinate subspace
E such that τ(X) is dense in E, i.e. dimπD(X) = r. For a proof of the latter see [20], p480 (Also see
Appendix B).

Lemma 5 (Lemma 2.1 in [21]). Let f ∈ F[X] be a nonzero polynomial such that the degree of f in xi is
bounded by ri, and let Si ⊆ F be of size at least ri + 1, for all i ∈ [n]. Then there exists (s1, s2, . . . , sn) ∈
S1 × S2 × . . . × Sn with f(s1, s2, . . . , sn) 6= 0.

3 Decomposing a π-Oblivious ABP into Independent Sets of Poly-

nomials

We need the following lemma, or rather its corollary, for the construction of the generator for π-oblivious
ABPs in Section 4. For any f 6≡ 0 computed by a π-oblivious ABP, the lemma gives us a decomposition
satisfying some useful independence properties. It will be sufficient to state the lemma for π being the
identity permutation.

Lemma 6. let k ≥ 1, and let A be an oblivious ABP of width w with source s and sink t having variable
order x1, x2, .., x2n. Suppose Â 6≡ 0. Then we can write for some w′ ≤ w, f =

∑
i∈[w′] figi, where

1. {f1, f2, . . . , fw′} ⊆ F[x1, x2, . . . , xn] and {g1, g2, . . . , gw′} ⊆ F[xn+1, xn+2, . . . , x2n] are both independent
sets of polynomials.

2. ∀a ∈ F
w′

,
∑

i∈[w′] aifi can be computed by an oblivious ABP of width w with variable order x1, x2, .., xn.

3. ∀a ∈ F
w′

,
∑

i∈[w′] aigi can be computed by an oblivious ABP of width w with variable order
xn+1, xn+2, . . . , x2n.

Proof. Let V be the set of variables used in A. Pick an arbitrary level L of nodes v1, v2, . . . , vw such that
V ∩ {x1, x2, . . . , xn} appear on edges in layers before L, and V ∩ {xn, xn+1, . . . , x2n} appear on edges in

layers after L. For i ∈ [w], let fi = Âs,vi
and gi = Âvi,t. We proceed in two phases. First we arrange for a

decomposition where the fis are independent. Then we will deal with the gis.
Wlog. assume that f1, . . . , fk is a maximum size independent set of polynomials. Since f 6≡ 0, we know

that not all fi ≡ 0. So k ≥ 1. For j > 0, any fk+j can be written as a linear combination of f1, . . . , fk. Let
A′ be an equivalent ABP obtained from A as follows. First, A′ is just as A from the source up to the level
L, except that we drop vk+1, . . . vw from L. Let us use L′ to denote the modified level L. L′ is followed by
a constant layer, where f1, . . . , fw are computed (relative to s). After this we attach all the levels of A, just

as they followed L in A. We have that f =
∑

i∈[k] fig
′
i, where fi = Â′

s,vi
and g′i = Â′

vi,t. The fis satisfy the

first two conditions of the lemma. The g′is are in F[xn+1, xn+2, . . . , x2n]. This completes the first phase.

6

For the next phase, wlog. assume that g′1, . . . , g
′
l is a maximum size independent set. Say these correspond

to nodes w1, . . . , wl, respectively. That is, Â′
wi,t = g′i. Since f 6≡ 0, we know that l ≥ 1. Symmetrically to the

first phase, but now going in the direction from sink to source, we modify A′ into an equivalent ABP A′′. A′′

is the same as A′ from the sink back to the level L′, except that we drop nodes other than w1, . . . , wl from
L′. Above this is a constant level, where we compute g′1, . . . , g

′
k (relative to the sink). Above this we attach

all level from A′, just as they appear from s to L′ in A′. We now have arranged that f =
∑

i∈[l] f
′′
i g′i, where

f ′′
i = Â′′

s,wi
and g′i = A′′

wi,t, for i ∈ [l]. Observe that for each i ∈ [l], f ′′
i = f ′

i + Linear(fl+1, . . . , fk). Hence
{f ′′

1 , . . . , f ′′
l } is an independent set of polynomials. All required properties of the lemma are now clearly

satisfied.

Corollary 1. Let k ≥ 1, n ≥ 3 and let 1 < i < n. Let A be a read r oblivious ABP, with source s and sink
t having variable order x1, x2, . . . , xi−1, xi, xi+1, . . . , xn. We use y as alias for xi. Let f = ∂Â/∂y. Suppose

Â depends on y, that is f 6≡ 0. Then we can write for some r′ ≤ r, f =
∑

i∈[r′] piqi, where

1. {p1, p2, . . . , pr′} ⊆ F[x1, x2, . . . , xi−1] and {q1, q2, . . . , qr′} ⊆ F[xi+1, xi+2, . . . , xn] are both independent
sets of polynomials.

2. ∀a ∈ F
r′

,
∑

i∈[r′] aipi can be computed by a read r oblivious ABP with variable order x1, x2, .., xi−1.

3. ∀a ∈ F
r′

,
∑

i∈[r′] aiqi can be computed by a read r oblivious ABP with variable order xi+1, xi+2, . . . , xn.

Proof. We make changes to A by modifying the edges in the y-layer as follows: for a variable edge (labeled
with y), label it with 1. For a constant edge, remove it. The resulting ABP A′ computes f . Then in the
proof of Lemma 6, take the level L to be the starting level of the original y-layer. As |L| is bounded by the
number of y-variables in the y-layer of A, we are done.

4 A Generator for π-Oblivious ABPs

We assume |F| is large enough. The explicit requirement on |F| will become clear after the description of
the generator. For now, let us fix S = {α1, . . . , , αN} ⊆ F, for some N . Denote by Sm = {α1, . . . , αm},
for 1 ≤ m ≤ N . Let Z = {z1, z2, . . .}, Y = {y1, y2, . . .}, U = {u1, u2, . . .} and V = {v1, v2, . . .} be sets of
variables. For k ≥ 1, we use Zk to denote the k-tuple of variables (z1, z2, . . . , zk), similarly for Yk, Uk and
Vk. Define the function ℓ on natural numbers by ℓ(k, r) = 2rk + 1. In the following, per abuse of notation,
we write (Zℓ(k,r), Uk, Vk) to denote the tuple Zℓ(k,r)#Uk#Vk.

For every k ≥ 0, r ≥ 1 and a variable w, let Hk,r(w) = (Hk,r
1 (w),Hk,r

2 (w), . . . Hk,r
ℓ(k,r)+2k(w)), where for

each i ∈ [ℓ(k, r) + 2k], Hk,r
i is the ith Lagrange interpolation polynomial on the set Sℓ(k,r)+2k. Hk,r

i is a

univariate polynomial in w of degree ℓ(k, r) + 2k − 1, satisfying that ∀αj ∈ Sℓ(k,r)+2k, Hk,r
i (αj) = 1 if i = j

and 0 otherwise. For k ≥ 1, and two variables u and v, let Ek(u, v) = (u ·Lk
1(v), . . . , u ·Lk

2k(v)), in which Lk
i

is the ith Lagrange interpolation polynomial on the set S2k .

For k ≥ 0 and r ≥ 1, we define the polynomial mapping F k,r(Zℓ(k,r), Uk, Vk) : F
ℓ(k,r)+2k → F

2k

inductively
as follows:

1. F 0,r(z1) = z1, and

2. For clarity we use y1, y2, . . . , y2r as aliases for the variables zℓ(k,r)+1, zℓ(k,r)+2, . . . , zℓ(k,r)+2r, respec-

tively. We take F k+1,r(Zℓ(k,r), Y2r, Uk+1, Vk+1) to be equal to the following 2k+1-tuple of polynomials:

Ek+1(uk+1, vk+1) + F k,r(Zℓ(k,r), Uk, Vk)#F k,r
(
(Zℓ(k,r), Uk, Vk) + T k,r(Y2r)

)
,

where T k,r : F
2r → F

ℓ(k,r)+2k is defined by T k,r(Y2r) =
∑

i∈[r] yi · H
k,r(yr+i).

7

From the construction we can see that in order to accommodate for S, |F| should be no less than
max(ℓ(k, r) + 2k, 2k). Now let us compute F 1,r to get a sense and for later use. We obtain

F 1,r = E1(u1, v1) + F 0,r(z1)#F 0,r(z1 + (z1+1 + · · · + z1+r))

= (u1L
1
1(v1) + z1, u1L

1
2(v1) + z1 + · · · + z1+r).

Note that z2+r, . . . , z1+2r are not used in the Lagrange interpolation in the T 0,r part. By a straightforward
induction, one can prove the following bound for the individual degree of a variable in F k,r.

Proposition 1. ∀k ≥ 2 and r ≥ 1, the individual degree of any variable in any component of F k,r is at
most

∏
j∈[k−1](ℓ(j, r) + 2j)(ℓ(j, r) + 2j − 1)).

The main theorem of this section is proved next. It shows that the generator F k,r works for the class C
of polynomials computed by read r π-oblivious ABPs, where there is one single fixed order π of the variables
for the entire class C. Wlog. the order is assumed to be x1, x2, A generator for any other fixed order, is
obtained by permuting the components of the output of the generator in the appropriate way. To make the
algebraic geometry go through in the proof, we will assume that F is algebraically closed. We will remove
this requirement subsequently with Corollary 2.

Theorem 2. Let F be an algebraically closed field. Let k ≥ 0, and let A be a π-oblivious ABP of read r ≥ 1
with variable order x1, x2, . . . , x2k . Suppose A computes f , then f ≡ 0 ⇐⇒ f(F k,r) ≡ 0.

Proof. The “⇒”-direction is trivial, so it suffices to show that if f 6≡ 0, then f(F k,r) 6≡ 0. We prove this by
induction on k. For k = 0 it is obvious. For k = 1, we know there exists (a, b) such that f(a, b) 6= 0. Recall
F 1,r = (u1L

1
1(v1) + z1, u1L

1
2(v1) + z1 + · · ·+ z1+r). Then setting c to be the assignment of (Z2r+1, u1, v1) as

z1 = a, z2 = b − a and other variables to 0, would give f(F 1,r) = f(a, b) 6= 0. So f(F 1,r) 6≡ 0.
Now let k ≥ 1. For the induction step from k to k+1, we need to prove that F k+1,r works for an oblivious

read r ABP polynomial f with variables x1, . . . , x2k+1 . We use X as an alias for x2k , and Λ as an alias for
α2k . Let g = ∂f/∂X, and note that f = g ·X + f |X=0, since f is multilinear. Wlog. we can assume that f
depends on X. Namely, since f is multilinear, if f does not depend on any variable, i.e. ∀i, ∂f/∂xi ≡ 0, then
f ∈ F (even if char(F) > 0). Clearly the theorem holds in this case. Otherwise, the rest of the proof goes
through mutate mutandis by selecting X to be the median variable (w.r.t. the variable order x1, x2, . . .) of
variables that f depends on. Thus g 6≡ 0. We claim that the following holds:

Claim 1. h := g(F k+1,r) |vk+1=Λ 6≡ 0

Before proving Claim 1, let us show that this is sufficient to complete the proof of Theorem 2. Consider
f(F k+1,r) |vk+1=Λ. It is equal to the following:

h ·
(
F k+1,r

2k |vk+1=Λ

)
+

(
(f |X=0)(F

k+1,r)
)
|vk+1=Λ =

h ·
(
(Ek+1,r

2k + P (Zℓ(k,r), Uk, Vk)) |vk+1=Λ

)
+

(
(f |X=0)(F

k+1,r)
)
|vk+1=Λ =

h · (uk+1 + P (Zℓ(k,r), Uk, Vk)) +
(
(f |X=0)(F

k+1,r)
)
|vk+1=Λ,

for some polynomial P in variables (Zℓ(k,r), Uk, Vk). Observe that
(
(f |X=0)(F

k+1,r)
)
|vk+1=Λ does not

contain the variable uk+1. The same holds for P (Zℓ(k,r), Uk, Vk)). Hence h · uk+1 cannot be canceled, and

we conclude that f(F k+1,r) |vk+1=Λ 6≡ 0. This implies f(F k+1,r) 6≡ 0.
We will now prove Claim 1. Let F ′k+1,r = F k+1,r − Ek+1,r. Note that since f is multilinear, g does not

depend on X. Hence g(F k+1,r) |vk+1=Λ= g(F ′k+1,r). We will show that g(F ′k+1,r) 6≡ 0. We have that

F ′k+1,r = F k,r(Zℓ(k,r), Uk, Vk)#F k,r
(
(Zℓ(k,r), Uk, Vk) + T k,r(Y2r)

)
.

Again we will use y1, y2, . . . , y2r as alias for the variables zℓ(k,r)+1, zℓ(k,r)+2, . . . , zℓ(k,r)+2r, respectively. Corol-
lary 1 gives us that we can write g =

∑
i∈[r′] piqi, for some r′ ≤ r, where

8

1. {p1, p2, . . . , pr′} ⊆ F[x1, x2, . . . , x2k−1] and {q1, q2, . . . , qr′} ⊆ F[x2k+1, x2k+2, . . . , x2k+1] are both inde-
pendent sets of polynomials.

2. ∀a ∈ F
r′

,
∑

i∈[r′] aipi can be computed by an oblivious ABP of read r with variable order
x1, x2, .., x2k−1.

3. ∀a ∈ F
r′

,
∑

i∈[r′] aiqi can be computed by an oblivious ABP of read r with variable order
x2k+1, x2k+2, . . . , x2k+1 .

For any a ∈ F
r′

with a 6= 0,
∑

i∈[r′] aipi 6≡ 0, and this sum can be computed by an oblivious ABP of

read r with variable order x1, x2, .., x2k−1. Hence by induction hypothesis
∑

i∈[r′] aipi(F
k,r) 6≡ 0. Let

p̂i = pi(F
k,r(z1, . . . , zℓ(k,r), Uk, Vk)). The above shows that P := {p̂1, p̂2, . . . , p̂r′} is an independent set

of polynomials. Let q̂i = qi(F
k,r(z1, . . . , zℓ(k,r), Uk, Vk)). Similarly we have that Q := {q̂1, q̂2, . . . , q̂r′} is an

independent set of polynomials.
Since p̂1 + p̂2 + . . . + p̂r′ 6≡ 0, there exists input c ∈ F

ℓ(k,r)+2k so that if we let ai = p̂i(c), then

a = (a1, a2, . . . , ar′) 6= 0. Let V ⊆ F
ℓ(k,r)+2k be the algebraic set defined by the system of equations

{p̂i(z1, . . . , zℓ(k,r), Uk, Vk) = ai : ∀i ∈ [r′]}

We know this system has a solution namely c. Since F is assumed to be algebraically closed, by Exercise 1.9
p. 8 in [15] (See Appendix B), we know that each irreducible component of V has dimension at least
ℓ(k, r) + 2k − r′. Since the system is solvable there must exist at least one irreducible component, and since
r ≥ 1, ℓ(k, r) + 2k − r′ ≥ 3.

Let W ⊆ F
ℓ(k,r)+2k be the algebraic set defined by the equation

∑
i∈[r′] aiq̂i(z1, . . . , zℓ(k,r), Uk, Vk) = 0.

Since Q is an independent set of polynomials the l.h.s. of the above equation is a nonzero polynomial. In case
the l.h.s. is a non-zero constant, then we are done. Namely, letting b ∈ F

ℓ(k+1,r)+2(k+1) be the assignment
where we set (z1, . . . , zℓ(k,r), Uk, Vk) to c, y1, . . . , yr to 0, and the remaining variables arbitrarily, would give

g(F ′k+1,r)(b) =
∑

i∈[r′] aiq̂i(z1, . . . , zℓ(k,r), Uk, Vk)(b) 6= 0. Otherwise, we know by Proposition 1.13 in [15]

(See Appendix B), that W is a finite union of hypersurfaces each of dimension ℓ(k, r)+2k−1 (these correspond
to the irreducible factors of

∑
i∈[r′] aiq̂i(z1, . . . , zℓ(k,r), Uk, Vk)). We want to argue that V + Im T cannot be

contained in W . Namely, to see the consequence, suppose we have c′ = c′′ + T (d), for c′′ ∈ V and d ∈ F
2r,

with c′ 6∈ W . Then letting b ∈ F
ℓ(k+1,r)+2k be the assignment where we set (z1, . . . , zℓ(k,r), Uk, Vk) to c′′ and

Y2r := d gives that g(F ′k+1,r)(b) =
∑

i∈[r′] pi(F
k,r(c′′))qi(F

k,r(c′′ + T (d))) =
∑

i∈[r′] p̂i(c
′′)q̂i(c

′′ + T (d)) =∑
i∈[r′] aiq̂i(c

′) 6= 0.
We complete the proof by showing that the Zariski-closure of V + Im T has dimension greater than

dimW .

Claim 2. dim V + Im T = ℓ(k, r) + 2k.

Proof. Observe that for any r′′ ≤ r, Im T contains any r′′-dimensional coordinate subspace of F
ℓ(k,r)+2k.

Namely, by setting yr+i = αji
, for all i ∈ [r], where αj1 , αj2 , . . . , αjr

are distinct elements of Sℓ(k,r)+2k, we

obtain
∑

i∈[r] yi · H
k,r(yr+i) =

∑
i∈[r] yi · H

k,r(αji
) =

∑
i∈[r] yi · eji

, where e1, e2, . . . , eℓ(k,r)+2k are standard

basis vectors of F
ℓ(k,r)+2k. Hence the claim follows from Lemma 4.

The above claim implies that V + Im T 6⊂ W . By the above remarks, this gives that g(F ′k+1,r)(b) 6= 0,
for some b. This proves Claim 1, and finishes the proof of the theorem.

Corollary 2. Let F be any field. Let k ≥ 0, and let A be a π-oblivious ABP over F of read r ≥ 1 with variable
order x1, x2, .., x2k . Suppose A computes the polynomial f ∈ F[x1, x2, .., x2k]. Then in the construction of
F k,r selecting any set S of size max(ℓ(k, r) + 2k, 2k) contained in F (or an arbitrary field extension G of F,
if F is not large enough) yields that f ≡ 0 ⇐⇒ f(F k,r) ≡ 0,

9

Proof. First consider the case when char(F) = 0. In this case we take S = {0, 1, 2, . . . }. Let F be the algebraic
closure of F. Interpreting A as an ABP over F̄, we can apply Theorem 2 to conclude f ≡ 0 ⇐⇒ f(F k,r) ≡ 0.
All coefficients of F k,r are rational numbers and thus lie inside F. Hence the property f ≡ 0 ⇐⇒ f(F k,r) ≡ 0
also holds when considering we work over F.

In case char(F) > 0, if |F| is not large enough, by allowing ourselves to use elements from the extension
G, we can still get the required S. Then similarly as above, by considering the algebraic closure of G and
applying Theorem 2, the required generator property follows, considering one works over G.

5 A Black-Box PIT Algorithm for π-OABPs

Algorithm 1 PIT Algorithm for read r π-OABPs.

Input: Black-box access to f ∈ F[x1, x2, . . . , xn] computed by a π-OABP with read r.
Output: returns true iff f ≡ 0.

1: let k be such that 2k−1 < n ≤ 2k.
2: let D =

∏
j∈[k−1](ℓ(j, r) + 2j)(ℓ(j, r) + 2j − 1).

3: let SD+1 be an arbitrary subset of F (or an extension field of F if |F| < D + 1) of size D + 1.

4: let R = S
ℓ(k,r)+2k
D+1 .

5: compute A = F k,r(R).
6: permute the vectors in A according to π.
7: for all a ∈ A do

8: check whether f(a) = 0.
9: end for

10: return true if in the previous stage no nonzero was found, false otherwise.

Theorem 3. Let F be an arbitrary field. Using black-box Algorithm 1 we can check deterministically in
time 2O(r log r·log2 n log log n) whether a given polynomial f ∈ F[x1, x2, . . . , xn] computed by a read r π-OABP
is identically zero or not. If char(F) > 0, the algorithm is granted black-box access to extension fields of F.

Proof. By Lemma 2, we can assume wlog. that f is computed by a read r π-oblivious ABP. By Theorem 2,
we see that f ≡ 0 ⇔ f(F k,r) ≡ 0. By Proposition 1, the individual degree of variables of f(F k,r) can be
bounded by D =

∏
j∈[k−1](ℓ(j, r) + 2j)(ℓ(j, r) + 2j − 1). Correctness now follows from Lemma 5. Bounding

D by (2rk +2k)2k, and knowing that the number of variables of f(Gk,r) is 2rk +2k +1, the theorem follows
by straightforward arithmetic.

We remark that the hitting set A, will be constructed over an extension field of F if |F| < max(ℓ(k, r) +
2k, 2k) or |F| < D + 1. In the former case, it is because of having enough interpolation points to define
the generator. In the latter case it is in order to apply Lemma 5, as was done in the above. To work over
the extension field the algorithm by Shoup [22] can be used to obtain an irreducible polynomial of degree
d over F in time poly(d). With our demands, it suffices for the degree of this polynomial to be bounded
by O(log n log r + log n log log n). Field operations in the extension field then take time poly(log n, log r),
assuming a unit cost model for operations in F. The cost of constructing A this way, can thus easily be seen
to be subsumed by the time bound given in the theorem.

We remark that the above implies that read polylog(n) π-OABPs can be tested in DTIME[2O(polylog(n))].

6 Separation Results and Lower Bounds for OABPs

Definition 4. For a given π-OABP A with X = {x1, . . . , x2n+1}, and two variable sets Y = {y1, . . . , yn}
and Z = {z1, . . . , zn}. We call the partition B : X \ {xπ−1(n+1)} → Y ∪ Z by mapping xπ−1(i) to yi, and
xπ−1(n+1+i) to zi for i ∈ [n] the middle partition of A.

10

By making use of the partial derivative matrix, we obtain a lower bound on the number of reads for an
OABP as follows:

Lemma 7. Given a π-OABP A on variables X = {x1, . . . , x2n+1} of read r, let f = ∂Â/∂xπ−1(n+1). Let B
be the middle partition for A. Then we have that r ≥ rank(MfB).

Proof. Due to Lemma 2, we can assume that A is oblivious. Let the edges labeled with xπ−1(n+1) be e1,

. . . , er′ , for r′ ≤ r, and let gi = ̂Asource(A),begin(ei) and hi = ̂Aend(ei),sink(A), for i ∈ [r′]. Note that taking
the partial derivative w.r.t. xπ−1(n+1) is equivalent to setting xπ−1(n+1) to 1, and removing all constant
labeled edges in the xπ−1(n+1)-layer. Then we get that f =

∑
i∈[r′] gi · hi. From the definition of the

middle partition, gB
i and hB

i are on two disjoint variable sets, respectively. Thus from the third property of
Lemma 3, rank(MgB

i ·hB
i
) = 1. So we have rank(MfB) = rank(M(

P

i∈[r′] gi·hi)B) = rank(
∑

i∈[r′] MgB
i ·hB

i
) ≤∑

i∈[r′] rank(MgB
i ·hB

i
) ≤ r′ ≤ r. The claim follows.

6.1 Exponential Lower Bounds for Permanent, Determinant and Full Rank

Polynomials

Theorem 4. Any OABP computing the permanent or determinant of an n× n matrix of variables has size
Ω(2n/n) and read Ω(2n/n2).

Proof. Theorem 5 in [7] (which derives from [17]), states that in the model where edges are labeled with
linear forms, any ordered ABP A requires Ω(2n) nodes to compute the permanent or determinant. The size
lower bound then follows from Lemma 1. The lower bound on the number of reads follows from the fact
that there must be Ω(2n) edges in A, each having at least one variable. Hence some variable is read at least
Ω(2n/n2) many times in A. We get the bound of the theorem, by observing that the conversion of Lemma 1
does not increase the read: if a variable xi is read r times it will appear r times in a linear form of the new
created homogeneous ABP.

Ryser’s Formula [23] states the n × n permanent equals
∑

S⊂[n](−1)|S|
∏

i∈[n]

∑
j /∈S xij . Hence we see

that the n × n permanent can be computed by an oblivious ABP of size O(n22n) and read 2n. For the
determinant, simply computing the sum of all n! terms can be done by an oblivious ABP of both size and
read 2O(n log n).

Theorem 5. Any OABP A over variables X = {x1, . . . , x2n+1}, W = {wi,j,k}i,j,k∈[2n+1] using constants
from F computing the polynomial p constructed in the proof of Theorem 1 requires some variable to be read
at least 2n times.

Proof. Interpret A as working over the field F(W). The theorem then follows by combining Lemma 7 and
Theorem 1.

We can also interpret this to be giving a stronger lower bound (seen as a function of the number of
variables), but for a polynomial which uses O(n3) transcendental constants in its definition.

Corollary 3. For any field F, and any extension field G of F of transcendence degree at least (2n + 1)3,
there exists a polynomial p ∈ G[x1, x2, . . . , x2n+1], such that any OABP over G computing p requires some
variable to be read at least 2n times.

6.2 Separation of Rk−1-OABP and Rk-OABP

Consider the elementary symmetric polynomial of degree k in n variables given by Sk
n =

∑
S⊂[n],|S|=k

∏
i∈S xi.

Theorem 6. Sk
n is an Rk-OABP-polynomial, but not a Rk−1-OABP-polynomial, for n ≥ 2k − 1, k ≥ 2.

To prove Theorem 6, it is enough to prove the following two lemmas:

11

Lemma 8. Sk
n can not be computed by an Rk−1-OABP, for n ≥ 2k − 1, k ≥ 2.

Proof. We only need to prove the statement for n = 2k − 1. This is because for n > 2k − 1, if there is
an Rk−1-OABP A computing Sk

n(x1, . . . , xn), setting edges labeled with x2k, . . . , xn to 0 in A will give
an Rk−1-OABP computing Sk

2k−1(x1, . . . , x2k−1). So if Sk
2k−1(x1, . . . , x2k−1) can not be computed by an

Rk−1-OABP, it follows that Sk
n(x1, . . . , xn) can not be computed by an Rk−1-OABP, for any n > 2k − 1.

For n = 2k − 1, in order to get a contradiction, suppose there exists some Rk−1-OABP A comput-
ing Sk

n. Since Sk
n is a symmetric polynomial, we can assume the order of variables in A is (x1, . . . , xn).

Let B be the middle partition for A, and let wt(e) denote the Hamming weight of e. Note that
∂Sk

n/∂xk = Sk−1
n−1(x1, . . . , xk−1, xk+1, . . . , x2k−1). By Lemma 7, rank(M(Sk−1

n−1)
B) ≤ k − 1. However, we

have rank(M(Sk−1
n−1)

B) ≥ k. This is because for e, f ∈ {0, 1}k−1, M(Sk−1
n−1)

B (e, f) = 1 if and only if

wt(e) + wt(f) = k − 1. If we let E = {e0, e1, . . . , ek−1} ⊆ {0, 1}k−1 be an arbitrary set of vectors with
weight 0, 1, 2, . . . , k − 1, respectively, then the minor of M(Sk−1

n−1)
B indexed by rows E and columns E is a

permutation matrix. We have reached a contradiction.

Lemma 9. Sk
n can be computed by an Rk-OABP of size O(kn), for n ≥ k ≥ 1.

Proof. For any j ∈ [n − k + 1], let sk
j = Sk

n−j+1(xj , . . . xn). We prove the following stronger statement
by induction: for each k, there is an Rk-OABPs Ak with variable order x1, . . . , xn, such that for every
j ∈ [n − k + 1], there is a node vj with (Ak)vj ,t = sk

j , where t = sink(Ak). Per abuse of notation, this node

vj is denoted by sk
j as well. We will ensure that on any path from sk

j to t only variables from {xj , . . . , xn}
appear. Initially, we will not worry about layering the ABP.

For the base case k = 1. For any j ∈ [n], s1
j = xj + . . . + xn. So for j < n, s1

j = xj + s1
j+1. Hence the

required read-once program A1 is easily given. Next consider k > 1.
We will use the Rk−1-OABP for Ak−1 to get the Rk-OABP for Ak. Observe the following equation holds

for any 1 ≤ j < n − k + 1,
sk

j = xj · s
k−1
j+1 + sk

j+1, (2)

and that sk
n−k+1 = xn−k+1 · s

k−1
n−k+2.

The program Ak is constructed as follows. First of all, the sink node will be equal to the old sink of Ak−1.
For all j ∈ [n − k + 1], we add a new node sk

j . From sk
n−k+1 we add a path to sk−1

n−k+1 of weight xn−k+1.

Then using Equation (2), working from j = n − k down to 1, we create a path from sk
j to sk

j+1 of weight 1

and a path from sk
j to sk−1

j+1 with weight xj . The node sk
1 can be taken as the new source, as the polynomial

sk
1 equals Sk

n. For clarification we have supplied some figures (Figures 1, 2 and 3). Since we maintain the
invariant that on any path from sk

j to t only variables from {xj , . . . , xn} appear, it is immediately clear that

adding the path from sk
j with weight xj to sk−1

j+1 leaves the program ordered w.r.t. the order x1, x2, . . . , xn.
Furthermore, it is clear that the invariant is maintained. A similar comments holds regarding the path added
from sk

j to sk
j+1 with weight 1.

One can draw the ordered ABP on a grid, as has been show for example for A2 in Figure 1. By considering
the diagonals as levels on this grid, one can conclude we have given a leveled π-oblivious ABP with order
x1, x2, ..., xn of size O(kn) for Sk

n.

6.3 Exponential Gap of Reads Between π-OABP and π
′-OABP

In this section we show that under different permutations π and π′, the gap between the number of reads
for the models π-OABP and π′-OABP can be exponentially large.

Theorem 7. Given X = {x0, x1, . . . , x2n−1, x2n}, n ≥ 1, there exists a polynomial p on X, and two
permutations π and π′ on X, such that 1) There exists a read-once π-OABP computing p, and 2) Any
π′-OABP computing p requires read 2n.

12

◦s //◦
s2
1 x1

//

��

◦
x2

//

��

◦

��◦s2
2

x2
//

��

◦
x3

//

��

◦

��◦s2
3

x3
//

��

◦
x4

//

��

◦

��
...

xi
//...

xi+1
//...

��◦s2
n−2

//
xn−2

//�� ◦��

�

�

� xn−1
//

��

◦

��◦s2
n−1

�� xn−1
//◦

xn
// //◦ //◦

t

Figure 1: R2-OABP for S2
n(x1, . . . xn)

◦s

◦snew //◦
sk
1 x1

//

��

◦sk−1
2

��
�

�

�

��

�

�

�

◦sk
2

//

��

x2
//◦

�

�

� sk−1
3

◦sk
3

//

�

�

�

x3
//◦

�

�

� sk−1
4

...
...

...

◦��

�

�

�

sk
n−k+1

xn−k+1
//◦

sk−1
n−k+2

��

�

�

�

//___ ◦
t

Figure 2: Induction Step : Rk-OABP for computing
Sk

n(x1, . . . , xn)

s1
1

x1
//

��

◦

��
s2
1

x1
//

��

◦
x2

//

��

◦

��
s3
1

x1
//

��

s2
2

x2
//

��

◦
x3

//

��

◦

��
s4
1

x1
//

��

s3
2

x2
//

��

s2
3

x3
//

��

◦
x4

//

��

◦

��◦ //
s s5

1

x1
//

��

s4
2

x2
//

��

s3
3

x3
//

��

s2
4

x4
//

��

◦
x5

//

��

◦

��
s5
2

x2
//

��

s4
3

x3
//

��

s3
4

x4
//

��

s2
5

x5
//

��

◦
x6

//

��

◦

��
s5
3

x3
//

��

s4
4

x4
//

��

s3
5

x5
//

��

s2
6

x6
//

��

◦
x7

//

��

◦

��
s5
4

x4
// s4

5

x5
// s3

6

x6
// s2

7

��
x7

//◦
x8

// //◦ //◦
t

Figure 3: Example : R5-OABP for S5
8(x1, . . . x8) with redundant nodes still to be removed.

13

Proof. Define p(x0, x1, . . . , x2n) = x0

∏
i∈[n](x2i−1 + x2i + x2i−1x2i). Let p0 = x0, and pi = x2i−1 + x2i +

x2i−1x2i, for i ∈ [n]. Let π determine the variable order x0, x1, . . . , x2n. First, it is easy to construct an R1-
OABP Ai computing pi with order (x2i−1, x2i), for i ∈ [n], and there is an R1-OABP A0 computing x0. To
construct π-OABP A computing p, we compose Ai sequentially, by connecting sink(Ai−1) and source(Ai),
for i ∈ [n].

Let π′ determine the variable order x1, x3, . . . , x2n−1, x0, x2, . . . , x2n. Let A be a π′-OABP computing p,
and suppose the read of A is r. Let q = ∂p/∂x0, and let B be the middle partition for A. By Lemma 7,
r ≥ rank(MqB) = rank(MQ

i∈[n] pB
i
) =

∏
i∈[n] rank(MpB

i
) =

∏
i∈[n] 2 = 2n.

References

[1] J.T. Schwartz. Fast probabilistic algorithms for polynomial identities. J. Assn. Comp. Mach., 27:701–
717, 1980.

[2] R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the International Sym-
posium on Symbolic and Algebraic Manipulation (EUROSAM ’79), volume 72 of Lect. Notes in Comp.
Sci., pages 216–226. Springer Verlag, 1979.

[3] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity testing means proving circuit
lower bounds. Computational Complexity, 13(1–2):1–44, 2004.

[4] M. Agrawal. Proving lower bounds via pseudo-random generators. In Proc. 25th Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, pages 92–105, 2005.

[5] M. Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Proc. 49th Annual IEEE
Symposium on Foundations of Computer Science, pages 67–75, 2008.

[6] N. Saxena. Progress of polynomial identity testing. Technical Report ECCC TR09-101, Electronic
Colloquium in Computational Complexity, 2009.

[7] M. Jansen. Lower bounds for syntactically multilinear algebraic branching programs. In Proc. 33rd
International Symposium on Mathematical Foundations of Computer Science, volume 5162 of Lect.
Notes in Comp. Sci., pages 407–418, 2008.

[8] R.E. Bryant. On the complexity of vlsi implementations and graph representations of boolean functions
with application to integer multiplication. IEEE Trans. Computers, 40(2):205–213, 1991.

[9] R. Raz and A. Shpilka. Deterministic polynomial identity testing in non commutative models. Compu-
tational Complexity, 14(1):1–19, 2005.

[10] A. Shpilka and I. Volkovich. Improved polynomial identity testing of read-once formulas. In Approxi-
mation, Randomization and Combinatorial Optimization. Algorithms and Techniques, volume 5687 of
LNCS, pages 700–713, 2009.

[11] M. Jansen, Y. Qiao, and J. Sarma M.N. Deterministic identity testing of read-once algebraic branching
programs, 2009. http://arxiv.org/abs/0912.2565.

[12] M. Jansen. Weakening assumptions for deterministic subexponential time non-singular matrix com-
pletion, 2010. To Appear, 27th International Symposium on Theoretical Aspects of Computer Science
(STACS 2010).

[13] R. Raz. Multilinear formulas for permanent and determinant are of super-polynomial size. J. Assn.
Comp. Mach., 56(2):1–17, 2009.

[14] L. Valiant. Completeness classes in algebra. Technical Report CSR-40-79, Dept. of Computer Science,
University of Edinburgh, April 1979.

14

[15] R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics, Vol 52. Springer Verlag, 1977.

[16] R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for network algorithms. In Proc. 26th
Annual ACM Symposium on the Theory of Computing, pages 356–364, 1994.

[17] N. Nisan. Lower bounds for non-commutative computation: extended abstract. In Proc. 23rd Annual
ACM Symposium on the Theory of Computing, pages 410–418, 1991.

[18] R. Raz. Separation of multilinear circuit and formula size. In Proc. 45th Annual IEEE Symposium on
Foundations of Computer Science, pages 344–351, 2004.

[19] R. Raz and A. Yehudayoff. Balancing syntactically multilinear arithmetical circuits. Computational
Complexity, 17(4):515–535, 2008.

[20] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms, Second Edition. Undergraduate
Texts in Mathematics. Springer Verlag, 1996.

[21] N. Alon. Combinatorial nullstellensatz. Combinatorics, Probability and Computing, 8(1–2):7–29, 1999.

[22] V. Shoup. New algorithms for finding irreducible polynomials over finite fields. In Proc. 29th Annual
IEEE Symposium on Foundations of Computer Science, pages 283–290, 1988.

[23] H.J. Ryser. Combinatorial Mathematics, volume 14 of Carus Mathematical Monograph. Mathematical
Association of America, 1963.

A Proof of Theorem 1

Let X = {x1, . . . , x2n+1}, Y = {y1, . . . , yn}, Z = {z1, . . . , zn}, and W = {wi,j,k}i,j,k∈[2n+1]. For a field F, let
F(W) be the field of rational functions of F in variables W .

In this section we define a polynomial p(X) ∈ F(W)[X], such that ∂p/∂xi is full rank for every i ∈ [2n+1],
when working over X\{xi}. The construction extends the construction in Section 4.1 of [19]. We denote by
[i, j] the interval {k ∈ N | i ≤ k ≤ j}. Let |[i, j]| be the length of the interval, with |[i, j]| = 0 if j < i, and
|[i, j]| = j − i+1 if i ≤ j. Let Xi,j be the set of variables xm, with m ∈ [i, j]. Let Wi,j be the set of variables
wi,l,j , with l ∈ [i, j]. We are going to define a family of functions fi,j , that is indexed by intervals [i, j].

We first define fi,j for [i, j]’s with even length. For [i, j] with length 0, fi,j := 1. If |[i, j]| > 0, define fi,j

as
fi,j = (1 + xixj)fi+1,j−1 +

∑

l

wi,l,jfi,lfl+1,j ,

where l ∈ [i + 1, j − 2], with the constraint that |[i, l]| is even.
For a partition A on X, and an interval [i, j] with length 2m, it is proved in [19] that if A is balanced

on [i, j], namely that the restriction of A on [i, j] assigns half of the variables to Y and the other half to Z,
then rank(MfA

i,j
) attains the maximum of 2m.

Now we define fi,j for [i, j]’s with odd length. For [i, j] with length 1, fi,i := xi. If |[i, j]| > 0, define fi,j

as
fi,j = (1 + xixj)fi+1,j−1 +

∑

l∈[i,j−1]

wi,l,jfi,lfl+1,j .

It is noted that the variables in fi,j are contained in Xi,j ∪ Wi,j .

Claim 3. Given interval [i, j] of odd length 2ℓ−1, for any k ∈ [i, j] and a partition A of X which is balanced
on [i, j] \ {k}, M(∂fi,j/∂xk)A has rank 2ℓ−1. In particular, f := f1,2n+1 satisfies that ∂f/∂xk is a full rank
polynomial for any k ∈ [2n + 1], when working over X\{xk}.

15

Proof. We prove by induction on ℓ, where 2ℓ − 1 is the length of the interval [i, j]. For [i, j] of length 1 (i.e.
ℓ = 1), note that fi,i = xi so it clearly satisfies the requirement. Next we do the induction step from ℓ to
ℓ + 1, so suppose |[i, j]| = 2ℓ + 1. We distinguish between k ∈ {i, j} and k ∈ [i + 1, j − 1]. We write f ′ to
indicate the derivative of f w.r.t. xk.

If k ∈ {i, j}, suppose k = i. Consider the term wi,i,jfi,ifi+1,j = wi,i,jxifi+1,j . After taking the derivative
w.r.t. xk it becomes wi,i,jfi+1,j . Since fi+1,j is a full rank polynomial, and wi,i,j does not appear in any
other term of f ′

i,j , we get that when A is balanced on [i, j]\{k}, 2ℓ ≥ rank(M(f ′

i,j)
A) ≥ rank(M(fi+1,j)A) ≥ 2ℓ.

The case when k = j is dealt with by considering the term wi,j−1,jfi,j−1fj,j .
Fix k ∈ [i + 1, j − 1], we have that

f ′
i,j = (1 + xixj)f

′
i+1,j−1 +

∑

j−1≥l≥k

wi,l,jf
′
i,lfl+1,j +

∑

i≤l<k

wi,l,jfi,lf
′
l+1,j ,

since xk does not appear in fl+1,j , for l ≥ k, nor fi,l, for l < k. To prove f ′
i,j is full rank when A is balanced

on [i, j] \ {k}, like in [19], we distinguish between two cases.
Case one: for every l ∈ [i+1, j−1], such that [i, l]\{k} is of even length, A is not balanced on [i, l]\{k}.

Wlog. assume xi is partitioned in Y , then as A is not balanced on [i, l] \ {k} for every l ∈ [i + 1, j − 1],
but balanced on [i, j] \ {k}, xj must be partitioned in Z. Thus A is balanced on [i + 1, j − 1] \ {k}. So by
induction hypothesis we get that rank(M(f ′

i+1,j−1)
A) = 2ℓ−1, and note that rank(M((1+xixj)A)) = 2. Thus

2ℓ ≥ rank(M(f ′

i,j)
A) ≥ rank(M(f ′

i+1,j−1)
A)rank(M(1+xixj)A) = 2ℓ, which yields rank(M(f ′

i,j)
A) = 2ℓ.

Case two: there exists l′ ∈ [i + 1, j − 1], such that [i, l′] \ {k} is of even length, and A is balanced
on [i, l′] \ {k}. Suppose l′ < k, and consider the term wi,l′,jfi,l′f

′
l′+1,j . Note that wi,l′,j does not appear

in other terms. Thus 2ℓ ≥ rank(M(f ′

i,j)
A) ≥ rank(M(fi,l′f

′

l′+1,j
)A) = rank(M(fi,l′)

A)rank(M(f ′

l′+1,j
)A) =

2|[i,l
′]|/22|[l

′+1,j]\{k}|/2 = 2ℓ, which gives us rank(M(f ′

i,j)
A) = 2ℓ. If l′ ≥ k, by considering the term

wi,l′,jf
′
i,l′fl′+1,j , we can get the same result.

B More Algebraic Geometry

We collect the theorems used in this article, omitting their proofs. Let F be an algebraically closed field.
For a set of polynomials S ⊂ F[x1, . . . , xn] we denote by Z(S) the algebraic set of common zeroes of S. For
a subset V ⊂ F

n we denote by I(V) the ideal of V . I(V) is the subset of polynomials in F[x1, . . . , xn] that
vanish on V . Taking complements of algebraic sets in F

n to be open sets, gives rise to a topology on F
n, the

so-called Zariski topology. For any set S ⊆ F
n, S denotes the closure of S in the Zariski topology. S equals

the intersection of all algebraic sets containing S. If S = F
n, then S is said to be dense in F

n. A non-empty
set V of F

n is called irreducible, if it cannot be written as a union V1 ∪ V2 of proper closed subsets of V . A
variety is any algebraic sets which is irreducible. We remark that [20] calls any algebraic set a variety. We
will keep to the terminology of [15].

Proposition 2 (Corollary 4, p. 479 in [20]). Let V ⊆ F
n be an algebraic set. Then the dimension of V is

equal to the largest integer r for which there exist r variables xi1 , . . . , xir
, such that I(V) ∩ F[xi1 , . . . , xir

] =
{0}.

A corollary of Proposition 2, which is not explicitly stated but given as a remark in [20], is the following:

Corollary 4 (Variation of Proposition 5, p. 480 in [20]). Let V ⊆ F
n be an algebraic set. Then the dimension

of V is the largest dimension of a coordinate subspace H ⊆ F
n for which a projection of V onto H is Zariski

dense. That is, the closure of the projection of V onto H is H itself.

Proposition 3 (Exercise 1.9, p. 8 in [15]). Let I ⊆ F[x1, . . . , xn] be an ideal that can be generated by r
elements. Then every irreducible component of Z(I) has dimension ≥ n − r.

Proposition 4 (Proposition 1.13, p. 7 in [15]). A variety Y in F
n has dimension n − 1 if and only if it is

the zero set Z(f) of a single non constant irreducible polynomial in F[x1, . . . , xn].

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

