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Abstract

In this paper we study a dynamic version of capacity maximization in the physical
model of wireless communication. In our model, requests for connections between pairs
of points in Euclidean space of constant dimension d arrive iteratively over time. When
a new request arrives, an online algorithm needs to decide whether or not to accept
the request and to assign one out of k channels and a transmission power to the channel.
Accepted requests must satisfy constraints on the signal-to-interference-plus-noise (SINR)
ratio. The objective is to maximize the number of accepted requests.

Using competitive analysis we study algorithms using distance-based power assign-
ments, for which the power of a request relies only on the distance between the points.
Such assignments are inherently local and particularly useful in distributed settings. We
first focus on the case of a single channel. For request sets with spatial lengths in [1, ∆]
and duration in [1, Γ] we derive a lower bound of Ω(Γ ·∆d/2) on the competitive ratio of
any deterministic online algorithm using a distance-based power assignment. Our main
result is a near-optimal deterministic algorithm that is O

(
Γ ·∆(d/2)+ε

)
-competitive, for

any constant ε > 0.
Our algorithm for a single channel can be generalized to k channels. It can be adjusted

to yield a competitive ratio of O
(

k · Γ1/k′ ·∆(d/2k′′)+ε
)

for any factorization (k′, k′′) such

that k′ · k′′ = k. This illustrates the effectiveness of multiple channels when dealing with
unknown request sequences. In particular, for Θ(log Γ · log ∆) channels this yields an
O(log Γ · log ∆)-competitive algorithm. Additionally, we show how this approach can be
turned into a randomized algorithm, which is O(log Γ · log ∆)-competitive even for a single
channel. Finally, we show the robustness of our results by extending all upper bounds
from Euclidean to doubling metrics.
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1 Introduction

Determining the capacity of wireless networks is a major challenge in networking. Most
studies in this area rely on the physical model taking into that the strength of a signal fades
with the distance from the sender. A node can successfully receive a signal if the signal to
interference plus noise ratio (SINR) is above some threshold, that is, if the signal’s strength
is sufficiently large in comparison to the sum of other signals received simultaenously plus
ambient noise.

Only very recently, we have seen significant progress in understanding the algorithmic
aspects of the scheduling problems arising in the physical model [3–5,10,11,14,16]. Previous
work focusses on offline optimization problems of the following kind. Suppose one is given
a set of n requests for connections between pairs of points in Euclidean space of constant
dimension d. One has to specify a subset of requests and a power assignment to each pair
such that the requests can be scheduled simultaneously, that is, the chosen requests with the
power assignments satisfy the SINR constraint. The objective is to maximize the number of
chosen requests. This variant is sometimes referred to the throughput version of the capacity
maximization problem. A related problem is to minimize the number of batches such that the
requests in each batch satisfy the SINR constraint. In this case batches can be mapped to
orthogonal channels or time slots.

Most of the previous work focusses on power assignments that are distance-based, i. e., the
power assignment is a function of the distance between the two nodes of a request. Prominent
examples are the linear power assignment in which the power is chosen proportional to the loss
in power between the nodes of a request (and, hence, depends polynomially on the distance)
and the uniform power assignment in which all requests get assigned the same power. Such
assignments are inherently local and, hence, particularly useful in distributed settings. The
linear power assignment has the additional advantage of being energy-minimal.

The best known offline results for the uniform power assignment are achieved in [10]
and [13]. In [10] an algorithm is presented that achieves an O(1) approximation guarantee
with respect to the number of requests that can be scheduled simultaneously when restricting
to the uniform power assignment. In [13], it is shown how to extend this approach obtaining
an O(1) approximation ratio on the number of batches for the uniform power assignment.
Similarly, in [9] an algorithm is presented that achieves an O(log n) approximation on the
number of batches when restricting to linear power assignments.

Let us remark that offline approximation ratios restricted to uniform and linear power
assignments can be translated into approximation ratios with respect to general power as-
signments by spending an additional factor of order log ∆, where ∆ is the ratio between
the largest and the smallest distance among all request pairs. In particular, the algorithms
from [10] and [13] using uniform power assignments achieve O(log ∆) approximation ratios in
comparison to general power assignments. The same approximation ratio has been achieved
independently in [1]. It follows from the analyses presented in [8,15] that this approximation
ratio is best possible for algorithms using uniform or linear power assignments.

A drawback of the previous work is that it neglects the dynamic nature of request schedul-
ing in wireless network. The focus of our paper lies exactly on this aspect. We study request
scheduling in wireless networks as an online problem, that is, requests arrive one by one.
When a new request arrives, an online algorithm needs to decide whether or not to accept
the request and to assign a power rate. In the multi-channel version, accepted requests must
also be assigned to one out of k available channels. Decisions about acceptance as well as
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power and channel assignments cannot be revoked later.

1.1 Online Request Scheduling

In our online model we receive an unknown number of n communication requests sequentially
over time. Each request 1 ≤ i ≤ n consists of a point pair. For a directed request there
is a sender si and a receiver ri that strive to establish an uninterrupted connection. For
undirected requests, both points are receiver and sender at the same time. In this paper
we consider sets of directed and undirected requests, as well as mixed sets of requests. We
assume that points come from a metric space with a distance function d(x, y). We use short
notation for dii = d(si, ri), the distance between sender si and receiver ri. More generally, for
two different directed requests we use dij = d(si, rj). We denote by ∆ = (maxi dii)/(mini dii)
the so called aspect ratio. Further, each request pair i comes with a parameter ti, which
denotes the duration of the request. We denote by Γ = (maxi ti)/(mini ti), where w.l.o.g.
we let mini ti = 1 and maxi ti = Γ. For most of this paper, we assume requests lie in R

d of
constant dimension d, and the distance function is an lp-norm or the lmax-norm. Finally, we
show how to extend most of our results to doubling metrics [2,6].

Requests arrive sequentially over time and are assumed to be characterized by the physical
model [12]. The goal is to accept the maximum number of requests that can successfully
communicate simultaneously. For each request an online algorithm must make a decision
whether to accept the request or not. For an accepted request i it needs to set a power level
pi and a channel ki ∈ {1 . . . , k} for the sender si to emit a signal. For undirected requests
we assume that both points emit signals with the same power and on the same channel. The
algorithm iteratively expands the sets S1, . . . , Sk of accepted requests on the corresponding
channels. Decisions on acceptance, power levels, and channels of a request cannot be revoked
later on. If a request is accepted, the algorithm must ensure that it remains successful
throughout the time. The criterion of “successful” for an accepted directed request i is the
following SINR constraint :

pi

dα
ii

≥ β




∑

j∈Ski
,j 6=i

pj

dα
ji

+ Nki



 . (1)

This constraint is the central condition for successful communication in the physical model.
It characterizes the strength at ri of the signal emitted by si compared to ambient noise
Nki

and the interference from signals of all other senders on the same channel ki. In this
expression α is the path loss exponent that characterizes the decay of a signal over a distance.
In this paper we consider a Euclidean fading metric [14], i. e., we require that α > d, where
we treat both α and d as constants. The constant β is called the gain.

For a successful undirected request the SINR constraint has to be satisfied at both points
of the pair. Similarly, when considering another receiver i, both points of j are senders and
create interference. For notational simplicity, however, we will treat them as two directed
requests in the right-hand side of (1). An online algorithm has to ensure that (1) is satisfied
for all i ∈ S = S1 ∪ . . . ∪ Sk throughout.

For simplicity we assume that noise is absent, N1 = . . . = Nk = 0. Our algorithms will
satisfy the SINR constraint with strict inequality. This allows to scale powers up sufficiently
to satisfy the constraints also when there is noise. Clearly, such a scaling might be wasteful
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or infeasible in practice, but this aspect is beyond our analysis. When there is no noise, we
can scale all distances such that mini dii = 1 and maxi dii = ∆.

In this paper we are particularly interested in distance-based power assignments because
of their simplicity and locality, which is a striking conceptual advantage in distributed wireless
systems. A distance-based power assignment p is given by pi = φ(dii) with a function φ :
[1,∆] → (0,∞). For uniqueness we assume φ is always scaled such that φ(1) = 1. Examples
are uniform φ(dii) = 1 or linear φ(dii) = dα

ii assignments. Recently, a square-root assignment

φ(dii) = d
α/2
ii has attracted some interest [8,14] as it yields better approximation ratios for the

offline version of request scheduling than uniform and linear power assignments. We generalize
these three classes to polynomial assignments of the form φ(dii) = drα

ii with parameter r ∈ R.
For the analysis of our online algorithms we make use of the following definitions. Let

A(ω) denote the number of request pairs an online algorithm A accepts, and let OPT(ω)
denote the number of requests in an optimal offline solution on an input sequence ω. An
online algorithm is c-competitive (or “yields competitive ratio c”) if there exists a constant a,
such that for every input ω

A(ω) ≥ (OPT(ω)/c) + a .

We call algorithm A strictly c-competitive if it is c-competitive with a = 0. Note that all
algorithms presented in this paper are strictly competitive. For the lower bounds we do not
need to rely on strictness.

1.2 Our Results

Our first contribution are lower bounds for deterministic online algorithms choosing re-
quests for a single channel. We show that any deterministic online algorithm using a poly-
nomial power assignment with parameter r cannot yield a competitive ratio better than
Ω
(
Γ ·∆d·max{r,1−r}). For uniform and linear power assignments, this results in a lower bound

of Ω
(
Γ ·∆d

)
; for the square root power assignment, it yields a lower bound of Ω

(
Γ ·∆d/2

)
. In

fact, we can show that the Ω
(
Γ ·∆d/2

)
lower bound on the competitive ratio is not restricted

to polynomial power assignments: In the case of directed requests, this bound holds for any
distance-based power assignment and, in the case of undirected requests, the same bound
holds even for general power assignments.

Our lower bounds reveal an exponential gap between the approximation guarantees achiev-
able by deterministic online and offline algorithms. The main difficulty of the online scenario
turns out to be that requests cannot be ordered by length. This has been a crucial ingredient
to all existing deterministic offline algorithms with polylogarithmic approximation guaran-
tee [1, 10,14].

Our second contribution is a deterministic online algorithm for a single channel that almost
matches the lower bounds. All following results hold for directed and undirected requests.
Algorithm Safe-Distance works for polynomial power assignments with r ∈ [0, 1]. For
uniform and linear power assignments, it achieves a competitive ratio of O

(
Γ ·∆d

)
. For the

square-root power assignment, we extend the basic idea and obtain algorithm Multi-Class

Safe-Distance, which achieves a competitive ratio of O
(
Γ ·∆d/2+ǫ

)
, for any constant ǫ > 0.

Let us explicitly point out that these competitive ratios compare the performance of online
algorithms with polynomial power assignments to optimal offline algorithms with general
power assignments. Combining the upper bound for the square root power assignment with
the lower bounds above shows that this power assignment achieves nearly the best possible
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competitive ratio among all (distance-based) power assignments (in case of directed requests)
and is superior to any other polynomial power assignment.

Our third contribution is an illustration of the power of multiple channels for deter-
ministic online algorithms. We generalize algorithm Multi-Class Safe-Distance and its
analysis from 1 to k channels and achieve an exponential reduction in the competitive ratio.
We prove that algorithm Multi-Class Safe-Distance using k = k′ · k′′ channels is only

O
(

k · Γ1/k′ ·∆(d/2k′′)+ε
)

-competitive. In particular, with just a logarithmic number of chan-

nels we obtain a deterministic algorithm with logarithmic competitive ratio. This algorithm
is only constant-competitive against an optimum solution that uses only one channel. By
randomly choosing a channel, we thus obtain a randomized algorithm for a single channel
that is O(log Γ · log ∆)-competitive with respect to the expected number of accepted requests.

Finally, we show the robustness of our results by extending all upper bounds from Eu-
clidean to doubling metrics. This allows to introduce features such as obstacles in our model,
which locally disturb Euclidean distances but do not affect the global structure of the metric.

Outline. For technical reasons, we present our results in a different order than listed above.
In Section 2 we first analyze algorithm Safe-Distance before stating the general lower
bound in Theorem 2.5. In Section 3 we give the near-optimal algorithm Multi-Class Safe-

Distance (Section 3.1), the generalization to k channels (Section 3.2) and the randomized
algorithm (Section 3.3). In Section 4 we reach the full level of generality by describing the
adjustments to requests with duration (Section 4.1) and to doubling metrics (Section 4.2).

2 A Simple Algorithm and a Lower Bound

In the following we first analyze the spatial aspect of the problem and assume that requests
last forever, i. e., for all requests i, ti =∞. We begin by analyzing a simple online algorithm
for the case of a single channel and any polynomial power assignment. Subsequently, we show
a general lower bound. Our analysis of the online algorithm introduces a number of critical
observations that we use in later sections.

The main idea of the algorithm is to accept a new request only if it keeps a safe distance
σ from every other previously accepted request. In particular, we accept incoming request
i only if min{dij , dji} ≥ σ for every other previously accepted request j ∈ S. We call this
algorithm Safe-Distance. For the choice of σ there is a conflict between correctness and
competitive ratio. A larger σ blocks out a larger portion of the space, in which an optimal
algorithm knowing the request sequence might be able to accept requests. If σ is too small,
then at some point the interference at an accepted request can get too large and the SINR
constraint becomes violated.

We strive to choose σ as small as possible to ensure correctness of Safe-Distance. To
bound the interference at accepted requests we construct a worst-case scenario. We consider
a receiver ri from a single accepted request and bound the maximum number of senders that
can be at a certain distance from ri. In the following we show that for r ∈ [0, 1] the choice of

σ = max
{

2∆,∆ · 18d · α
√

2β/(α − d)
}

is sufficient to yield the following result.
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Theorem 2.1. Safe-Distance is O(∆d)-competitive for any polynomial power assignment
with r ∈ [0, 1] and a single channel.

Proof. We first show that Safe-Distance is correct, i. e., for an accepted request i the SINR
constraint of i never becomes violated. In particular, we will underestimate the distances of
accepted senders of other requests to overestimate the interference at receiver ri. However,
even under such pessimistic conditions the SINR constraint at ri will remain valid.

Consider a receiver ri of an accepted request i. To estimate the interference at ri we have
to count how many senders may be placed at which distance. Using σ ≥ 2∆ and the choice
rule of the algorithm it is straightforward to verify that senders of any two different accepted
requests are at least a distance of σ−∆ ≥ σ/2 apart. We segment all of R

d into d-dimensional
hypercubes with length σ/3d, which we call sectors. The greatest distance within a sector
is σd/3d = σ/3 < σ/2. Each sector can contain senders from at most one request, so there
are at most 2 senders in every sector. Without loss of generality, we assume that sectors are
created such that ri lies in a corner point of 2d sectors. We devide the set of sectors into
layers. The first layer are the 2d sectors incident to ri. The second layer are all sectors that
are not in the first layer but share at least a point with a sector from the first layer, and so
on. In this construction there are exactly (2ℓ)d sectors from layers 1 through ℓ, and their
union is a hypercube of side length 2ℓσ/3d with ri in the center. Therefore, there are exactly
2d(ℓd − (ℓ− 1)d) sectors in layer ℓ.

Due to the algorithm there can be no sender at a distance smaller than σ from ri. The
sector of smallest layer that is at a distance at least σ from ri can be reached along the volume
diagonal of the layer hypercubes. There can be no sender in all sectors from layers 1 through
ℓ′, where ℓ′ is bounded by σ ≤ ℓ′(σ/3), which yields ℓ′ ≥ 3. For bounding the interference
assume that in all sectors of layer ℓ ≥ 3 there are 2 senders. Note that all senders in sectors
from a layer ℓ have a distance at least (ℓ − 1)σ/3d to ri. To bound the interference that is
created at ri, we use the following technical lemma, which is proved in the Appendix.

Lemma 2.2. For α > d ≥ 1 it holds that

2d ·
∞∑

l=3

ℓd − (ℓ− 1)d

(ℓ− 1)α
<

6d

α− d
.

This yields

I =
∑

j∈S,j 6=i

drα
ii

dα
ji

≤ 2∆rα
∞∑

ℓ=3

2d(ℓd − (ℓ− 1)d) · 1

((ℓ− 1)σ/3d)α
< 2∆rα

(
3d

σ

)α

· 6d

α− d
.

Note that the SINR constraint is satisfied if pi/d
α
ii ≥ ∆rα/∆α ≥ βI, or

2β∆rα ·
(

3d

σ

)α

· 6d

α− d
≤ ∆(r−1)α .

This yields a lower bound for the distance of

σ ≥ ∆ · 3d · α

√

2β6d

α− d
, (2)

which can be verified to hold for our choice of σ.

5



To bound the competitive ratio we need the following Density Lemma, which is an ex-
tension of Lemma 3 in [1] to both senders and receivers, and to metric spaces of arbitrary
dimension d. The proof requires some adjustments from [1] and is given in the Appendix.

Lemma 2.3 (Density Lemma). Consider a sector A with side-length x ≥ 1 and any feasible
solution with arbitrary power assignment. There can be only (d + 1)αxd/β requests with a
receiver in A and only (d + 1)αxd/β requests with a sender in A.

The density lemma allows a simple way to bound the number of connections the optimum
solution can accept in the blocked area. First consider a sender si of a request accepted by
Safe-Distance. The sender blocks a hypersphere of radius σ for receivers of other requests.
We overestimate its size by a sector of side-length 2σ centered at si. By the density lemma,
the optimum solution can accept at most (d + 1)α(2σ)d/β requests, which is O(∆d) for fixed
α, β, and d. For the receiver ri there is a similar estimation. This time we bound the number
of senders in a hypersphere around ri, which is O(∆d) for fixed α, β, and d. Finally, note that
σ is chosen to maximize conceptual simplicity and does not optimize the involved constants
in the competitive ratio.

We can use similar arguments to show a result for any other polynomial power assignment.
As safe distance we pick σ+ = ∆r · σ if r > 1, and σ− = ∆1−r · σ if r < 0. For a proof of the
following corollary see the Appendix.

Corollary 2.4. Safe-Distance is O
(
∆d·max{r,1−r})-competitive for a polynomial power as-

signment with r 6∈ (0, 1) and a single channel.

As it turns out, the competitive ratio of Safe-Distance is asymptotically best possible
for polynomial power assignments with r 6∈ (0, 1). This includes both the uniform and linear
power assignment. Next, we bound the competitive ratio for any deterministic online algo-
rithm using polynomial power assignments. This can be generalized to a lower bound for any
distance-based power assignment.

Theorem 2.5. Every deterministic online algorithm using polynomial power assignments has
a competitive ratio of Ω

(
∆d·max{r,1−r}). Every deterministic online algorithm is Ω

(
∆d/2

)
-

competitive (1) using arbitrary power assignments in the case of undirected requests and (2)
using distance-based power assignments in the case of only directed requests.

Proof. The main observation in the proof is that every deterministic online algorithm has
to accept the first request that arrives, otherwise it risks having an unbounded competitive
ratio. While this is true only for strictly competitive algorithms, we can repeat the following
instance sufficiently often and keep a sufficiently large distance between the instances. In this
way we can neglect the constant a from the competitive ratio.

We first consider the case that all requests are directed and polynomial power assignment.
Let the first request have length ∆. From the SINR constraint we bound the minimum
distance every other successful request has to keep to sender s1 or receiver r1. This yields a
blocked area in which the online algorithm is not able to accept any request. We then count
the maximum number of requests that can be placed into this area, and which the optimum
solution can accept simultaneously. The next Proposition yields a bound on the minimum
distance between two requests with a polynomial power assignment.

Proposition 2.6. Consider two directed successful requests i and j with polynomial power
assignment. The distance between si and rj must be at least dij ≥ α

√
β · dr

ii · d1−r
jj .
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The proof follows directly from rearranging the SINR constraint for rj and can be found in
the Appendix. Now suppose the online algorithm has accepted the first request of length ∆.
The adversary subsequently presents requests of length 1. If the sender of one such request is
closer than α

√
β ·∆1−r to r1, the online algorithm cannot accept the request. The same holds

if the receiver is closer than α
√

β ·∆r to s1. Thus, there are two hyperspherical areas blocked
around sender and receiver of request 1. Let us consider the case r ≤ 0.5 and the hypersphere
around the receiver. All subsequent arguments follow similarly for r > 0.5 and the sender.

The adversary can place requests, all of equal length dii = 1, into the hypersphere of
radius α

√
β · ∆r around r1. Similar to the proof of Theorem 2.1 we divide the space into

sectors of length 2σ1, where

σ1 = 2max
{

2, 18d · α
√

2β/(α − d)
}

.

We again assume that r1 is located on the boundary of d sectors. How many sectors are
complelety enclosed by the blocked hypersphere around r1? The side-length of the maximum

hypercube that is contained is 2∆ α
√

β/d. There are at least 2∆ α
√

β
dσ1

− 1 sectors along each
dimension within the hypercube, a number in Θ(∆r). This obviously yields a total number
of Ω(∆rd) sectors, in which the online algorithm must not accept any request. However, we
observe that σ1 is chosen using the formula for σ with ratio 1. It is possible to locate one
request of length 1 in each sector such that receivers and senders of two different requests are
at least a distance of σ1 apart. By Theorem 2.1 it is possible to accept all these Ω(∆rd) small
requests simultaneously, which proves the theorem for case r ≤ 0.5. For r > 0.5 we can place
requests in the hypersphere around s1 to derive a similar result.

To extend the previous arguments to arbitrary distance-based power assignments, we
observe that the previous lower bound uses only requests of length 1 and ∆. Let φ be the
function of the distance-based power assignment, then φ(∆) is the power of the first request.
The lower bound for this power assignment behaves exactly as for a polynomial assignment
with r = (log φ(∆))/(α log ∆).

Note that when a power assignment is not distance-based, it might assign different powers
to small requests based on whether they are near the sender or the receiver of the first request.
This, however, does not help if the requests are undirected. In this case we create the same
instance using only undirected requests. Then we get a blocked area of at least Ω

(
∆d/2

)

for any polynomial power assignment around both points of the first request. Using the
normalization of powers as before we observe that there is a blocked area of size Ω

(
∆d/2

)
for

any small request, no matter which power we assign to it. This proves the theorem.

3 Competitive Ratios below ∆d

3.1 A Near-Optimal Algorithm for the Square-Root Assignment

In this section we extend algorithm Safe-Distance to achieve a competitive ratio, which
is close to the best-possible ratio for any distance-based power assignment. The algorithm
uses the square-root power assignment, and the main idea of the algorithm is to block areas
based on the distances of the involved requests. In particular, we classify requests into m
length classes, where class Cx contains requests i with dii ∈ [∆ax ,∆ax−1 ] with ax = 1/2x, for
x = 1, . . . ,m − 1 and [1,∆am−1 ] for class Cm. With each class we associate a safe distance

7



Algorithm 1 Multi-Class Safe-Distance

1: Initialize accepted requests S = ∅.
2: while a new request i arrives do

3: Set pi =
√

dα
ii and temporarily accept S′ ← S ∪ i

4: for all j ∈ S do

5: Let Cx and Cy be the length classes of requests i and j, respectively
6: if min{dij , dji} ≤ min{σ(Cx), σ(Cy)} then

7: decline request: S′ ← S.
8: end if

9: end for

10: Update: S ← S′.
11: end while

σ(Cx) chosen as

σ(Cx) = max

{

2∆ax−1 ,∆0.5+ax · 18d · α

√

2βm ·
(

2 +
1

α− d

)}

.

This yields the following result.

Theorem 3.1. For any constant ε > 0, Multi-Class Safe-Distance is O
(
∆d/2+ε

)
-

competitive for a single channel.

Proof. We first show that the algorithm is correct. We again treat a single accepted request
and bound the interference from other accepted requests. This time, however, we have to
consider the class the request is contained in. Suppose a request i is from class Cx. To show
that it is successful we have to estimate the distances dji for other requests. We will bound
the interference from requests of each class separately and apply the construction outlined
in Theorem 2.1. For requests of class Cy we assume a worst-case placement and divide the
space into sectors of side-length σ(Cy)/3d. This again shows that no sector can contain more
than two senders. The consideration of layers allows to bound the joint interference from all
senders. For a class y ≥ x, the minimum distance from ri to each sender is at least σ(Cy).
Thus, there is no sender in layers 1 and 2, and we can apply previous arguments to bound
the interference. For classes with y < x we note that the minimum distance between ri and
any sender from this class is only σ(Cx) < σ(Cy). Senders can be closer to ri creating more
interference. In particular, we lose the property that there are no senders in sectors of layers
1 and 2. Instead, for these senders we explicitly bound the distance using σ(Cx).

I ≤
m∑

y=1

∑

j∈Cy ,j 6=i

d
α/2
jj

dα
ji

≤
∑

y≥x

∑

j∈Cy,j 6=i

∆α/2y

dα
ji

+
∑

y<x

∑

j∈Cy

∆α/2y

dα
ji

<
∑

y≥x

2∆α/2y ·
(

3d

σ(Cy)

)α

· 6d

α− d
+
∑

y<x

∆α/2y
∑

j∈Cy

1

dα
ji

︸ ︷︷ ︸

I<x

.
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With Lemma 2.2 we observe

I<x ≤ 2
∑

y<x

∆α/2y ·
(

2d

σ(Cx)α
+

(
3d

σ(Cy)

)α

·
(

4d + 2d
∞∑

ℓ=3

ℓd − (ℓ− 1)d

(ℓ− 1)α

))

<
∑

y<x

2∆α/2y ·
(

2d

σ(Cx)α
+

(
3d

σ(Cy)

)α

·
(

4d +
6d

α− d

))

≤
∑

y<x

2∆α/2y ·
(

3d

σ(Cx)

)α

· 6d ·
(

2 +
1

α− d

)

.

Using the definition of σ(Cx) and y ≥ 1 we see that

I<x <
∑

y<x

∆α/2y

βm ·∆0.5+1/2x ≤
x− 1

βm ·∆α/2x .

For the total interference we use x ≥ 1 and bound as follows

I <
∑

y≥x

2∆α/2y ·
(

3d

σ(Cy)

)α

· 6d

α− d
+

x− 1

βm ·∆α/2x

≤ m− x + 1

βm ·∆α/2
+

x− 1

βm ·∆α/2x

≤ 1

β ·∆α/2x .

As request i is in class Cx, the minimum signal strength is pi/d
α
ii ≥ 1/∆α/2x

> βI, which
proves correctness of the algorithm.

For bounding the competitive ratio we again consider the number of requests from the op-
timum solution that are blocked per accepted request. We consider blocked requests from each
class separately. Obviously, the largest blocked areas are generated by a request from class
1. It blocks a hypershpere of radius σ(Cx) for requests from class Cx, which we overestimate
by the corresponding sector of side-length 2σ(Cx). We must take into account that requests
from class Cx are bounded from below in distance. The proof of the density lemma can be
adjusted to show that there can be only (d + 1)α/β many receivers and senders in a sector of
side-length h when each request has distance at least dii ≥ h. There are only (d+1)α(x/h)d/β
many requests of minimum length h in a sector of side-length x. In the blocked area of Cx
we can schedule at most (d + 1)α(2σ(Cx)/∆1/2x

)d/β many requests. Assuming that d, α,
and β are constants, this number is in O(m∆d/2) for each x = 1, . . . ,m − 1. For class Cm
it is in O(m∆d/2+d/2m

). Hence, the total number of requests blocked per accepted request
is O(m2∆d/2+d/2m

). In order to obtain a bound for a constant ε, we apply Multi-Class

Safe-Distance using m = log d/ε length classes. This proves the theorem.

3.2 Multiple Channels

In this section we show how to generalize the algorithms above to k channels and decrease
their competitive ratio. We propose a k-channel adjustment, in which we separate the prob-
lem by using certain channels only for specific request lengths. All requests with length in
[∆(i−1)/k,∆i/k] are assigned to channel i, for i = 1, . . . , k, where we assign requests of length
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∆i/k arbitrarily to channel i or i + 1. For each channel i we apply an algorithm outlined
above, which makes decisions about acceptance and power of requests assigned to channel i.
Using this separation, we effectively reduce the aspect ratio to ∆1/k on each channel. If the
optimum solution has to adhere to the same length separation on the channels, this would
yield a denominator k in the exponents of ∆ of the competitive ratios. Obviously, the opti-
mum solution is not tied to our separation, but the possible improvement due to this degree
of freedom can easily be bounded by a factor k. This yields the following corollary.

Corollary 3.2. Multi-Class Safe-Distance with k-channel adjustment is O
(
k∆(d/2k)+ε

)
-

competitive for the square-root power assignment. Safe-Distance with k-channel adjust-
ment is O

(
k∆d/k

)
-competitive for any polynomial power assignment with r ∈ [0, 1], and

O
(
k∆max{r,1−r}·d/k

)
-competitive for r 6∈ [0, 1].

3.3 A Randomized Algorithm

In the previous section for k = Θ(log ∆), the length differences on each channel reduce to a
constant factor, e.g., for suitable k the requests on channel j are of length [2j−1, 2j ]. This
implies that we approximate the requests on each channel by a constant factor. Thus, we
obtain an O(log ∆)-competitive algorithm against an optimum that can use k = Θ(log ∆)
channels. Similarly, if the optimum was restricted to use only one channel, we would obtain a
constant factor approximation algorithm. This is the main insight for designing our random-
ized algorithm Random Safe-Distance. We virtually set up Θ(log ∆) channels, pick one
channel uniformly at random, and then run our algorithm restricted to this channel. This
yields a O(log ∆)-competitive randomized algorithm, even for the case of a single channel.
Using an additional k-channel adjustment in this case shows a similar result for k channels.
We have the following corollary.

Corollary 3.3. Random Safe-Distance with k-channel adjustment is O(log ∆)-competi-
tive for any polynomial power assignment and any number k of channels.

Note that for polynomial assignments with r 6∈ (0, 1) and one channel the logarithmic
ratio is asymptotically optimal. This follows with a simple example from [8]. There are
n = Θ(log ∆) nested request pairs on the line with exponentially increasing distance. The
optimum power assignment can successfully schedule Ω(log ∆) requests. Using any polyno-
mial assignment with r 6∈ (0, 1) there can be only O(1) successful requests. Thus, using
such a power assignment even an optimal offline algorithm knowing all requests is Ω(log ∆)-
competitive. A similar observation holds with results of [8] in the case of directed request
sets and any distance-based power assignment. In this case, however, the lower bound is only
Ω(log log ∆). Closing this gap remains as an open problem.

4 Extensions

4.1 Requests with Duration

In the previous sections we assumed that requests last forever, analyzing only the spatial
aspect of the problem. We now show how our results extend when each request i has a
duration ti. After time ti an accepted request stops sending and leaves (thus, no longer
causing interference). For simplicity requests are assumed to arrive in ordered starting time.
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The extension to arbitrary starting and ending times is straightforward and changes the
results by at most a constant factor.

We first show the modification for the algorithm Safe-Distance for r ∈ [0, 1]. Whenever
a request arrives, Safe-Distance accepts this request iff the safe distance σ to all previous
accepted and still sending requests holds. Observe that the optimal solution accepts at most
O(∆d) requests, when Safe-Distance accepts a request i with ti = 1. Request i blocks
only requests that start while i sends, and each blocked request has length at least ti. This
reduces the analysis to spatial aspects. Furthermore, a request i with ti = Γ can be split
into Γ requests of length 1, thus blocking at most O(Γ ·∆d) requests. The argumentation is
similar for other polynomial power assignments and results in an additional factor of Γ in all
previously shown bounds (cf. Section 1.2).

In the case of multiple channels, for k = k′ ·k′′, clustering of requests w.r.t. similar length
and duration values can be used to improve the ratio for Multi-Class Safe-Distance

to O
(

k · Γ1/k′
∆(d/2k′′)+ε

)

. Choosing k = log Γ · log ∆, Random Safe-Distance becomes

O (log Γ · log ∆)-competitive.

4.2 Doubling Metrics

All of our algorithms can be adjusted to work in more generalized metric spaces. In particular,
we consider doubling metrics [7]. Let (V, d) be a metric space and B(x, r) = {y ∈ V | d(x, y) ≤
r} a ball of radius r around a point x. Consider an ǫ-covering of such a ball, i. e., a set of
balls of radius ǫr such that their union contains B(x, r). The doubling dimension of a metric
space is the minimum number d such that for any ball B(x, 2r) with x ∈ V and r > 0 there
is a covering with 2d balls of radius r. A metric with constant d is called a doubling metric.
We again assume that α and d are constants, and that we have a fading metric with α > d.
A slight adjustment of the constants involved in the definition of the safe distance then yields
similar bounds on the performance of Safe-Distance, Multi-Class Safe-Distance, and
Random Safe-Distance in this more general scenario.

Theorem 4.1. All bounds on the competitive ratios of Safe-Distance, Multi-Class Safe-

Distance, and Random Safe-Distance continue to hold for doubling fading metrics. In
particular, for k = k′ · k′′, algorithm Multi-Class Safe-Distance with k-channel adjust-

ment is O
(

k · Γ1/k′ ·∆(d/2k′′)+ε
)

-competitive for the square-root power assignment. Random

Safe-Distance with k-channel adjustment is O(log Γ · log ∆)-competitive for any polynomial
power assignment and any number k of channels.
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A Proofs

A.1 Bounding the Interference

Proof. (of Lemma 2.2) We observe

2d ·
∞∑

ℓ=3

ℓd − (ℓ− 1)d

(ℓ− 1)α

≤ 2d ·
∞∑

ℓ=3

2dℓd−1

(ℓ− 1)α

= 22d ·
∞∑

ℓ=3

ℓd−1

(ℓ− 1)α
.

We now bound ld−1/(l − 1)α, where we assume that ǫ = α− d > 0. This yields

22d ·
∞∑

ℓ=3

ℓd−1

(ℓ− 1)α

= 22d ·
∞∑

ℓ=3

ℓd−1

(ℓ− 1)d−1
· 1

(ℓ− 1)1+ǫ

= 22d ·
∞∑

ℓ=3

(

1 +
1

ℓ− 1

)d−1

· 1

(ℓ− 1)1+ǫ

< 6d ·
∞∑

ℓ=3

1

(ℓ− 1)1+ǫ

= 6d ·
∞∑

ℓ=2

ℓ−1−ǫ .

The assumption ǫ > 0 yields a constant value for the expression, which is 6d · (ζ(1 + ǫ)− 1).
We estimate this value by

∑∞
ℓ=2 ℓ−1−ǫ <

∫∞
ℓ=1 ℓ−1−ǫ = 1/ǫ, which proves the lemma.

A.2 Density Lemma

Proof. (of Lemma 2.3) We first assume x = 1 and consider the number of receivers and
senders in A separately.

Receivers: We first prove the lemma for the receivers. Let us assume that the transmission
powers in the solution are such that there is a constant p such that the signal strength
received by a receiver pi/d

α
ii = p for any request with ri ∈ A. Consider another request

with rj ∈ A. The interference of j at ri is pj/d
α
ji ≥ pj/(d(ri, rj) + djj)

α). Due to the
size of the sector we have that d(ri, rj) ≤ d. Also djj ≥ 1, which implies

pj

(d(ri, rj) + djj)α
≥ 1

(d + 1)α
· pj

dα
jj

≥ p

(d + 1)α
.

Thus, if more than (d+1)α/β such connections are present, the SINR constraint for all
of them is violated.
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Now consider a solution with arbitrary powers. Here we artificially reduce powers such
that all connections experience a minimal signal strength p and then increase powers to
their original value. The increase deteriorates SINR ratios for the requests that continue
to have a signal strength of p. Hence, if more than (d + 1)α/β receivers are present in
A, at least one SINR constraint is violated.

Senders: For bounding the number of senders in A we use a similar approach. This time,
however, we first assume that all senders have the same power. For two requests i and
j this yields pj/d

α
ji ≥ pj/(d(si, sj) + dii)

α. We have that d(si, sj) ≤ d. Also djj ≥ 1, so

pj/(d(sj , si)+dii)
α ≥ 1

(d+1)α · pj

dα
ii

as before. Thus, for the SINR constraint it is necessary

that
pi

dα
ii

≥ β

(d + 1)α
·
∑

j 6=i

pj

dα
ii

.

Using pi = pj for all requests i and j, there can be at most (d + 1)α/β senders in A,
otherwise the SINR constraint for all requests is violated. A similar observation as
before generalizes the argument to arbitrary powers.

This proves the lemma for x = 1. If x > 1 we can divide A into sectors of length 1, apply
the above arguments, and the bound follows.

A.3 Arbitrary Polynomial Assignments

Proof. (of Corollary 2.4) In the case r > 1 we note for correctness of the algorithm that the
interference at an accepted receiver ri is again bounded by

I =
∑

j∈S,j 6=i

drα
jj /dα

ji ≤ ∆rα
∑

j∈S,j 6=i

1/dα
ji < 2∆rα ·

(
3d

σ+

)α

· 6d

α− d
.

The SINR constraint now requires that pi/d
α
ii = d

(r−1)α
ii ≥ 1 ≥ βI. This yields a lower bound

of

σ+ ≥ ∆r · 3d · α

√

2β6d

α− d
. (3)

Bounding the competitive ratio can be done as before and proves the result for the case r > 1.
If r < 0, then the interference is maximized with requests of length 1 in each sector. The

interference is thus bounded by

I =
∑

j∈S,j 6=i

drα
jj /dα

ji ≤
∑

j∈S,j 6=i

1/dα
ji < 2 ·

(
3d

σ−

)α

· 6d

α− d
.

The SINR constraint now requires that pi/d
α
ii = d

(r−1)α
ii ≥ ∆(r−1)α ≥ βI. This yields a lower

bound

σ− ≥ ∆1−r · 3d · α

√

2β6d

α− d
. (4)

The corollary follows.
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A.4 Minimum Distance

Proof. (of Proposition 2.6) Consider the SINR constraint for request j when only requests i
and j are accepted. It reads

d
α(r−1)
jj ≥ β(drα

ii /dα
ij) ,

and rearranging yields the result.

A.5 Doubling Metrics

Proof. (of Theorem 4.1)

Algorithm Safe-Distance: Let us first consider an adjusted algorithm Safe-Distance

that uses the uniform power assignment and keeps a distance of at least

τ = max

{

2∆,∆ · 20 · α

√

2β

2α − 2d

}

.

Then no two senders can be closer than τ/2. Thus, in a ball of radius τ/5 there can be
at most two senders. We first require correctness of the algorithm and derive a lower
bound on τ . We structure the space into balls of radius 2ℓ · τ/5, for ℓ = 1, 2, . . .. A
ball of size ℓ can be covered by at most 2d many balls of layer ℓ − 1. Applying this
argument recursively, the ball can be covered by 2ℓd of radius τ/10. Note that there
can be at most 2ℓd+1 many different senders in such a ball, because the number of balls
of radius r required for covering is at most the number of points with mutual distance
2r that can be placed in an area. We now overestimate the number of senders and
at a distance by using concentric balls around a receiver ri. We consider an annulus
B(ri, 2

ℓ · τ/5)−B(ri, 2
ℓ−1 · τ/5), and assume that 2ℓd+1 senders are located in this area,

which all have a distance of 2ℓ−1 · τ/5 to ri. As there is a minimum distance of τ of any
sender to ri, we start to count at ℓ = 2. This yields an upper bound for the interference
of

I <

∞∑

ℓ=2

2(l+1)d+1

(2ℓ · τ/5)α
= 2d+1 ·

(
5

τ

)α

·
∞∑

ℓ=2

(2d−α)ℓ

< 2d+1 ·
(

5

τ

)α

·
(

2α

2α − 2d

)

. (5)

For the last inequality we have used that α > d. This yields 2d−α < 1, and the sum
amounts to less than 1/(1− 2d−α). This allows to derive a lower bound of τ on our safe
distance, which is satisfied by our choice, and proves correctness.

For bounding the competitive ratio we adjust the Density Lemma in a straightforward
way and note that in a ball of radius 1 there can be only 3α/β many senders and
receivers. To cover a ball of radius τ , we need at most 2⌈log2

τ⌉d many balls of radius 1.
Thus, for α, β and d being constants, there are at most O

(
∆d
)

many requests that are
blocked in the optimum by any accepted request of the online algorithm.

Note that the previous proof can be generalized easily to any polynomial power assign-
ment, resulting in similar bounds as shown in Corollary 2.4.
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Algorithm Multi-Class Safe-Distance: For algorithm Multi-Class Safe-Distance

we use the same distribution of request lengths into classes Cx for x = 1, . . . ,m as
before. The safe distances τ(Cx) used by the algorithm can be estimated similarly. In
particular, we use

τ(Cx) = max

{

2∆ax−1 ,∆0.5+ax · 20 · α

√

2βm ·
(

2 +
1

2α − 2d

)}

.

The construction to show correctness is the same extension that we used to extend
Safe-Distance to Multi-Class Safe-Distance as before. Here, however, we use
the bounds of Eq. (5), which yields

I <
∑

y≥x

2∆α/2y ·
(

20

τ(Cy)

)α

· 1

2α − 2d
+
∑

y<x

∆α/2y
∑

j∈Cy

1

dα
ji

︸ ︷︷ ︸

I<x

.

Using a minimum distance of τ(Cx) for the requests from the smallest balls, we derive
similarly as before

I<x ≤ 2
∑

y<x

∆α/2y ·
(

2d

τ(Cx)α
+

(
5

τ(Cy)

)α

·
(

4d +
∞∑

ℓ=2

2(ℓ+1)d

2ℓα

))

<
∑

y<x

2∆α/2y ·
(

2d

τ(Cx)α
+

(
5

τ(Cy)

)α

·
(

4d +
2α+d

2α − 2d

))

≤
∑

y<x

2∆α/2y ·
(

20

τ(Cx)

)α

·
(

2 +
1

2α − 2d

)

.

Thus, by using the definition of τ(Cx) and noting y ≥ 1 we see that I<x < x−1
βm·∆α/2x .

For the total interference we use x ≥ 1 and bound as follows

I <
∑

y≥x

2∆α/2y ·
(

20

τ(Cy)

)α

· 1

2α − 2d
+

x− 1

βm ·∆α/2x ≤
1

β ·∆α/2x ,

which proves correctness of the algorithm. Estimation of the competitive ratio can be
done similarly as before. We use the adjustment of the Density Lemma outlined above
for Safe-Distance to bound the maximum number of connections from OPT blocked
by Multi-Class Safe-Distance. This results in a competitive ratio of O

(
∆(d/2)+ε

)
.

Channels and Random Safe-Distance: The generalization to multiple channels and the
randomized algorithm are independent of the metric and apply directly without adjust-
ment.
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