
PCPs and the Hardness of Generating Synthetic Data∗

Jonathan Ullman† Salil Vadhan‡

School of Engineering and Applied Sciences &
Center for Research on Computation and Society

Harvard University, Cambridge, MA
{jullman,salil}@seas.harvard.edu

July 12, 2014

Abstract

Assuming the existence of one-way functions, we show that there is no polynomial-time,
differentially private algorithm A that takes a database D ∈ ({0, 1}d)n and outputs a “synthetic
database” D̂ all of whose two-way marginals are approximately equal to those of D. (A two-way
marginal is the fraction of database rows x ∈ {0, 1}d with a given pair of values in a given pair of
columns.) This answers a question of Barak et al. (PODS ‘07), who gave an algorithm running
in time poly(n, 2d).

Our proof combines a construction of hard-to-sanitize databases based on digital signatures
(by Dwork et al., STOC ‘09) with encodings based on the PCP Theorem.

We also present both negative and positive results for generating “relaxed” synthetic data,
where the fraction of rows in D satisfying a predicate c are estimated by applying c to each row
of D̂ and aggregating the results in some way.

Keywords: privacy, digital signatures, inapproximability, constraint satisfaction problems,
probabilistically checkable proofs

∗A preliminary version of this work appeared in the Theory of Cryptography Conference 2011.
†http://seas.harvard.edu/~jullman. Supported by NSF grant CNS-0831289.
‡http://seas.harvard.edu/~salil. Supported by NSF grant CNS-0831289.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 17 (2010)

http://seas.harvard.edu/~jullman
http://seas.harvard.edu/~salil

1 Introduction

There are many settings in which it is desirable to share information about a database that contains
sensitive information about individuals. For example, doctors may want to share information about
health records with medical researchers, the federal government may want to release census data
for public information, and a company like Netflix may want to provide its movie rental database
for a public competition to develop a better recommendation system. However, it is important to
do this in way that preserves the “privacy” of the individuals whose records are in the database.
This privacy problem has been studied by statisticians and the database security community for
a number of years (cf., [1, 15, 22]), and recently the theoretical computer science community has
developed an appealing new approach to the problem, known as differential privacy. (See the
surveys [17, 16].).

Differential Privacy. A randomized algorithm A is defined to be differentially private [18] if
for every two databases D = (x1, . . . , xn), D′ = (x′1, . . . , x

′
n) that differ on exactly one row, the

distributions A(D) and A(D′) are “close” to each other. Formally, we require that A(D) and
A(D′) assign the same probability mass to every event, up to a multiplicative factor of eε ≈ 1 + ε,
where ε is typically taken to be a small constant. (In addition to this multiplicative factor, the
probabilities are often allowed to differ by a negligible additive term.) This captures the idea that
no individual’s data has a significant influence on the output of A (provided that data about an
individual is confined to one or a few rows of the database). Differential privacy has several nice
properties lacking in previous notions, such as being agnostic to the adversary’s prior information
and degrading smoothly under composition.

With this model of privacy, the goal becomes to design algorithms A that simultaneously meet
the above privacy guarantee and give “useful” information about the database. For example, we
may have a true query function c in which we’re interested, and the goal is to design A that is
differentially private (with ε as small as possible) and estimates c well (e.g. the error |A(D)− c(D)|
is small with high probability). For example, if c(D) is the fraction of database rows that satisfy
some property—a counting query—then it is known that we can take A(D) to equal c(D) plus
random Laplacian noise with standard deviation O(1/(εn)), where n is the number of rows in the
database and ε is the measure of differential privacy [8]. A sequence of works [12, 20, 8, 18] has
provided a very good understanding of differential privacy in an interactive model in which real-
valued queries c are made and answered one at a time. The amount of noise that one needs when
responding to a query c should be based on the sensitivity of c, as well as the total number of
queries answered so far.

However, for many applications, it would be more attractive to do a noninteractive data release,
where we compute and release a single, differentially private “summary” of the database that enables
others to determine accurate answers to a large class of queries. What form should this summary
take? The most appealing form would be a synthetic database, which is a new database D̂ = A(D)
whose rows are “fake”, but come from the same universe as those of D and are guaranteed to
share many statistics with those of D (up to some accuracy). Some advantages of synthetic data
are that it can be easily understood by humans, and statistical software can be run directly on it
without modification. For example, these considerations led the German Institute for Employment
Research to adopt synthetic databases for the release of employment statistics [37].

1

Previous Results on Synthetic Data. The first result on producing differentially private
synthetic data came in the work of Barak et al. [5]. Given a database D consisting of n rows from
{0, 1}d, they show how to construct a differentially private synthetic database D̂, also of n rows
from {0, 1}d, in which the full “contingency table,” consisting of all conjunctive counting queries,
is approximately preserved. That is, for every conjunction c(x1, . . . , xn) = xi1 ∧ xi2 ∧ · · · ∧ xik
for i1, . . . , ik ∈ [d], the fraction of rows in D̂ that satisfy c equals the fraction of rows in D that
satisfy c up to an additive error of 2O(d)/n. The running time of their algorithm is poly(n, 2d),
which is feasible for small values of d. They pose as an open problem whether the running time of
their algorithm can be improved for the case where we only want to preserve the k-way marginals
for small k (e.g. k = 2). These are the counting queries corresponding to conjunctions of up
to k literals. Indeed, there are only O(d)k such conjunctions, and we can produce differentially
private estimates for all the corresponding counting queries in time poly(n, dk) by just adding noise
O(d)k/n to each one. Moreover, a version of the Barak et al. algorithm [5] can ensure that even
these noisy answers are consistent with a real database.1

A more general and dramatic illustration of the potential expressiveness of synthetic data came
in the work of Blum, Ligett, and Roth [9]. They show that for every class C = {c : {0, 1}d → {0, 1}}
of predicates, there is a differentially private algorithm A that produces a synthetic database D̂ =
A(D) such that all counting queries corresponding to predicates in C are preserved to within
an accuracy of Õ((d log(|C|)/n)1/3), with high probability. In particular, with n = poly(d), the
synthetic data can provide simultaneous accuracy for an exponential-sized family of queries (e.g.
|C| = 2d). Unfortunately, the running time of the BLR mechanism is also exponential in d.

Dwork et al. [19] gave evidence that the large running time of the BLR mechanism is inherent.
Specifically, assuming the existence of one-way functions, they exhibit an efficiently computable
family C of predicates (e.g. consisting of circuits of size d2) for which it is infeasible to produce
a differentially private synthetic database preserving the counting queries corresponding to C (for
databases of any n = poly(d) number of rows). For non-synthetic data, they show a close connection
between the infeasibility of producing a differentially private summarization and the existence of
efficient “traitor-tracing schemes.” However, these results leave open the possibility that for natural
families of counting queries (e.g. those corresponding to conjunctions), producing a differentially
private synthetic database (or non-synthetic summarization) can be done efficiently. Indeed, one
may have gained optimism from a comparison with the early history of computational learning
theory, where one-way functions were used to show hardness of learning arbitrary efficiently com-
putable concepts in computational learning theory but natural subclasses (like conjunctions) were
found to be learnable [42].

Our Results. We prove that it is infeasible to produce synthetic databases preserving even very
simple counting queries, such as 2-way marginals:

Theorem 1.1. Assuming the existence of one-way functions, there is a constant γ > 0 such
that for every polynomial p, there is no polynomial-time, differentially private algorithm A that
takes a database D ∈ ({0, 1}d)p(d) and produces a synthetic database D̂ ∈ ({0, 1}d)∗ such that
|c(D)− c(D̂)| ≤ γ for all 2-way marginals c.

(Recall that a 2-way marginal c(D) computes the fraction of database rows satisfying a con-
junction of two literals, i.e. the fraction of rows xi ∈ {0, 1}d such that xi(j) = b and xi(j

′) = b′

1Technically, this “real database” may assign fractional weight to some rows.

2

for some columns j, j′ ∈ [d] and values b, b′ ∈ {0, 1}.) In fact, our impossibility result extends
from conjunctions of 2 literals to any family of constant arity predicates that contains a function
depending on at least two variables, such as parities of 3 literals.

As mentioned earlier, all 2-way marginals can be easily summarized with non-synthetic data
(by just adding noise to each of the (2d)2 values). Thus, our result shows that requiring a synthetic
database may severely constrain what sorts of differentially private data releases are possible.
(Dwork et al. [19] also showed that there exists a poly(d)-sized family of counting queries that are
hard to summarize with synthetic data, thereby separating synthetic data from non-synthetic data.
Our contribution is to show that such a separation holds for a very simple and natural family of
predicates, namely 2-way marginals.)

This separation between synthetic data and non-synthetic data seems analogous to the separa-
tions between proper and improper learning in computational learning theory [36, 23], where it is
infeasible to learn certain concept classes if the output hypothesis is constrained to come from the
same representation class as the concept, but it becomes feasible if we allow the output hypoth-
esis to come from a different representation class. This analogy gives hope for designing efficient,
differentially private algorithms that take a database and produce a compact summary of it that
is not synthetic data but somehow can be used to accurately answer exponentially many questions
about the original database (e.g. all marginals). The negative results of [19] on non-synthetic data
(assuming the existence of efficient traitor-tracing schemes) do not say anything about natural
classes of counting queries, such as marginals.

To bypass the complexity barrier stated in Theorem 1.1, it may not be necessary to introduce
exotic data representations; some mild generalizations of synthetic data may suffice. For example,
several recent algorithms [9, 39, 21] produce several synthetic databases, with the guarantee that
the median answer over these databases is approximately accurate. More generally, we can consider
summarizations of a database D that that consist of a collection D̂ of rows from the same universe
as the original database, and where we estimate c(D) by applying the predicate c to each row of D̂
and then aggregating the results via some aggregation function f . With standard synthetic data, f
is simply the average, but we may instead allow f to take a median of averages, or apply an affine
shift to the average. For such relaxed synthetic data, we prove the following results:

• There is a constant k such that counting queries corresponding to k-juntas (functions de-
pending on at most k variables) cannot be accurately and privately summarized as relaxed
synthetic data with a median-of-averages aggregator, or with a symmetric and monotone
aggregator (that is independent of the predicate c being queried).

• For every constant k, counting queries corresponding to k-juntas can be accurately and pri-
vately summarized as relaxed synthetic data with an aggregator that applies an affine shift
to the average (where the shift does depend on the predicate being queried).

We remark that under stronger (but still plausible) cryptographic assumptions, we can show

that generating private synthetic data requires almost exponential time (time 2d
1−o(1)

). Subsequent
to our work, algorithms running in subexponential time (2d

1−ε
for some constant ε > 0) have been

given using non-synthetic-data approaches inspired by non-proper learning algorithms for a regime
where adding independent noise does not work (the number of queries in the family is much larger
than n2) [26, 41, 10].

3

Techniques. Our proof of Theorem 1.1 and our other negative results are obtained by combining
the hard-to-sanitize databases of Dwork et al. [19] with probabilistically checkable proofs (PCPs).
They construct a database consisting of valid message-signature pairs (mi, σi) under a digital sig-
nature scheme, and argue that any differentially private sanitizer that preserves accuracy for the
counting query associated with the signature verification predicate can be used to forge valid sig-
natures. We replace each message-signature pair (mi, σi) with a PCP encoding πi that proves that
(mi, σi) satisfies the signature verification algorithm. We then argue that if accuracy is preserved
for a large fraction of the (constant arity) constraints of the PCP verifier, then we can “decode”
the PCP either to violate privacy (by recovering one of the original message-signature pairs) or to
forge a signature (by producing a new message-signature pair).

We remark that error-correcting codes were already used in [19] for the purpose of producing
a fixed polynomial-sized set of counting queries that can be used for all verification keys. Our
observation is that by using PCP encodings, we can reduce not only the number of counting queries
in consideration, but also their computational complexity.

Our proof has some unusual features among PCP-based hardness results:

• As far as we know, this is the first time that PCPs have been used in conjunction with
cryptographic assumptions for a hardness result. (They have been used together for positive
results regarding computationally sound proof systems [31, 33, 6].) It would be interesting to
see if such a combination could be useful in, say, computational learning theory (where PCPs
have been used for hardness of “proper” learning [2, 24] and cryptographic assumptions for
hardness of representation-independent learning [42, 29]).

• While PCP-based inapproximability results are usually stated as Karp reductions, we actu-
ally need them to be Levin reductions—capturing that they are reductions between search
problems, and not just decision problems. (Previously, this property has been used in the
same results on computationally sound proofs mentioned above.)

2 Preliminaries

2.1 Sanitizers

Let a database D ∈ ({0, 1}d)n be a matrix of n rows, x1, . . . , xn, corresponding to people, each of
which contains d binary attributes. A sanitizer A : ({0, 1}d)n → R takes a database and outputs
some data structure in R. In the case where R = ({0, 1}d)n̂ (an n̂-row database) we say that A
outputs a synthetic database.

We would like such sanitizers to be both private and accurate. In particular, the notion of
privacy we are interested in is as follows

Definition 2.1 (Differential Privacy). [18] A sanitizer A : ({0, 1}d)n → R is (ε, δ)-differentially
private if for every two databases D1, D2 ∈ ({0, 1}d)n that differ on exactly one row, and every
subset S ⊆ R

Pr[A(D1) ∈ S] ≤ eε Pr[A(D2) ∈ S] + δ

In the case where δ = 0 we say that A is ε-differentially private.

Since a sanitizer that always outputs 0 satisfies Definition 2.1, we also need to define what it
means for a database to be accurate. In this paper we consider accuracy with respect to counting

4

queries. Consider a set C consisting of boolean predicates c : {0, 1}d → {0, 1}, which we call a
concept class. Then each predicate c induces a counting query that on database D = (x1, . . . , xn) ∈
({0, 1}d)n returns

c(D) =
1

n

n∑
i=1

c(xi)

If the output of A is a synthetic database D̂ ∈ ({0, 1}d)∗, then c(A(D)) is simply the fraction
of rows of D̂ that satisfy the predicate c. However, if A outputs a data structure that is not
a synthetic database, then we require that there is an evaluator function E : R × C → R that
estimates c(D) from the output of A(D) and the description of c. For example, A may output a
vector Z = (c(D) + Zc)c∈C where Zc is a random variable for each c ∈ C, and E(Z, c) is the c-th
component of Z ∈ R = R|C|. Abusing notation, we will write c(Z) and c(A(D)) as shorthand for
E(Z, c) and E(A(D), c), respectively.

We will say that A is “accurate” for the concept class C if the fractional counts c(A(D)) are
close to the fractional counts c(D). Formally

Definition 2.2 (Accuracy). An output Z of sanitizer A(D) is α-accurate for a concept class C if

∀c ∈ C, |c(Z)− c(D)| ≤ α.

A sanitizer A is (α, β)-accurate for a concept class C if for every database D,

Pr
A′s coins

[∀c ∈ C, |c(A(D))− c(D)| ≤ α] ≥ 1− β

In this paper we write f(n) = negl(n) if f(n) = o(n−c) for every c > 0 and say that f(n) is
negligible. We use |s| to denote the length of the string s, and s1‖s2 to denote the concatenation
of s1 and s2.

2.2 Hardness of Sanitizing

Differential privacy is a very strong notion of privacy, so it is common to look for hardness results
that rule out weaker notions of privacy. These hardness results show that every sanitizer must be
“blatantly non-private” in some sense. In this paper our notion of blatant non-privacy roughly
states that there exists an efficient adversary who can find a row of the original database using only
the output from any efficient sanitizer. Such definitions are also referred to as “row non-privacy.”
We define hardness-of-sanitization with respect to a particular concept class, and want to exhibit a
distribution on databases for which it would be infeasible for any efficient sanitizer to give accurate
output without revealing a row of the database. Specifically, following [19], we define the following
notions

Definition 2.3 (Database Distribution Ensemble). Let D = Dd be an ensemble of distributions on
d-column databases with n+ 1 rows D ∈ ({0, 1}d)n+1. Let (D,D′, i)←R D̃ denote the experiment
in which we choose D0 ←R D and i ∈ [n] uniformly at random, and set D to be the first n rows of
D0 and D′ to be D with the i-th row replaced by the (n+ 1)-st row of D0.

Definition 2.4 (Hard-to-sanitize Distribution). Let C be a concept class, α : N → [0, 1] and
TSan : N→ N be functions, and D = Dd be a database distribution ensemble.

The distribution D is (α, TSan, C)-hard-to-sanitize if there exists an efficient adversary T such
that for any alleged sanitizer A running in time at most TSan(d) the following two conditions hold:

5

1. Whenever A(D) is α(d)-accurate, then T (A(D)) outputs a row of D:

Pr
(D,D′,i)←RD̃

A′s and T ′s coins

[(A(D) is α(d)-accurate for C) ∧ (T (A(D)) ∩D = ∅)] ≤ negl(d).

2. For every efficient sanitizer A, T cannot extract xi from the database D′:

Pr
(D,D′,i)←RD̃

A′s and T ′s coins

[
T (A(D′)) = xi

]
≤ negl(d)

where xi is the i-th row of D.

In [19], it was shown that every distribution that is (α, TSan, C)-hard-to-sanitize in the sense of
Definition 2.4, is also hard to sanitize while achieving even weak differential privacy

Claim 2.5. [19] If a distribution ensemble D = Dd on n(d)-row databases is (α, TSan, C)-hard-
to-sanitize, then for every constant a > 0 and every β = β(d) ≤ 1 − 1/poly(d), no TSan(d)-time
sanitizer that is (α, β)-accurate with respect to C can achieve (a log(n), (1− 8β)/2n1+a)-differential
privacy.

In particular, for all constants ε, β > 0, no TSan(d)-time sanitizer can be simultaneously (α, β)-
accurate and (ε,negl(n))-differentially private.

We could use a weaker definition of hard-to-sanitize distributions, which would still suffice to
rule out differential privacy, and only require that for every efficient A, there exists an adversary
TA that almost always extracts a row of D from every α-accurate output of A(D). In our definition
we require that there exists a fixed adversary T that almost always extracts a row of D from every
α-accurate output of any efficient A. Reversing the quantifiers in this fashion only makes our
negative results stronger.

In this paper we are concerned with sanitizers that output synthetic databases, so we will relax
Definition 2.4 by restricting the quantification over sanitizers to only those sanitizers that output
synthetic data.

Definition 2.6 (Hard-to-sanitize Distribution as Synthetic Data). A database distribution ensem-
ble D is (α, TSan, C)-hard-to-sanitize as synthetic data if the conditions of Definition 2.4 hold for
every sanitizer A that outputs a synthetic database.

The definition of hard-to-sanitize databases can be specialized in a similar way to other output
representations besides synthetic data (e.g. medians of synthetic databases).

3 Relationship with Hardness of Approximation

The objective of a privacy-preserving sanitizer is to reveal some properties of the underlying
database without giving away enough information to reconstruct that database. This requirement
has different implications for sanitizers that produce synthetic databases and those with arbitrary
output.

The SuLQ framework of [8] is a well-studied and efficient technique for achieving (ε, δ)-differential
privacy, with non-synthetic output. To get accurate, private output for a family of counting queries
with predicates in C, we can release a vector of noisy counts (c(D) + Zc)c∈C where the random

6

variables (Zc)c∈C are drawn independently from a distribution suitable for preserving privacy (e.g.
a Laplace distribution with standard deviation O(|C| /εn)).

Consider the case of an n-row database D that contains satisfying assignments to a 3CNF
formula ϕ, and suppose our concept class includes all disjunctions on three literals (or, equivalently,
all conjunctions on three literals). Then the technique above releases a set of noisy counts that
describes a database in which every clause of ϕ is satisfied by most of the rows of D. However,
sanitizers with synthetic-database output are required to produce a database that consists of rows
that satisfy most of the clauses of ϕ.

Because of the noise added to the output, the requirement of a synthetic database does not
strictly force the sanitizer to find a satisfying assignment for the given 3CNF. However, it is
known to be NP-hard to find even approximate satisfying assignments to 3CNF formulae. In our
main result, Theorem 4.4, we will show that there exists a distribution over databases that is
hard-to-sanitize with respect to synthetic data for any concept class that is sufficient to express a
hard-to-approximate constraint satisfaction problem.

3.1 Hard to Approximate CSPs

We define a constraint satisfaction problem to be the following.

Definition 3.1 (Constraint Satisfaction Problem (CSP)). For a non-decreasing function q = q(d) ≤
d, a family of q(d)-CSPs, denoted Γ = (Γd)d∈N, is a sequence of sets Γd of boolean predicates defined
on up to q(d) variables. We assume for convenience that Γ1 ⊆ Γ2 ⊆ If q(d) and Γd do not
depend on d then we refer to Γ as a fixed family of q-CSPs.

For every d ≥ q(d), let C(d)
Γ be the class consisting of all predicates c : {0, 1}d → R of the form

c(u1, . . . , ud) = γ(ui1 , . . . , uiq(d)) for some γ ∈ Γd and i1, . . . , iq(d) ∈ [d]. We call CΓ = ∪∞d=0C
(d)
Γ the

class of constraints of Γ. Finally, we say a multiset ϕ ⊆ C(d)
Γ is a d-variable instance of CΓ and each

ϕi ∈ ϕ is a constraint of ϕ.
We say that an assignment π satisfies the constraint ϕi if ϕi(π) = 1. For ϕ = {ϕ1, . . . , ϕm},

define

val(ϕ, π) =
1

m

m∑
i=1

ϕi(π) and val(ϕ) = max
π∈{0,1}d

val(ϕ, π).

Our hardness results will apply to concept classes C(d)
Γ for CSP families Γ with certain additional

properties. Specifically we define,

Definition 3.2 (Nice CSP). A family Γ = (Γd)d∈N of q(d)-CSPs nice if

1. q(d) = d1−Ω(1), and

2. for every d ∈ N, there exists a non-constant predicate ϕ∗ : {0, 1}q(d) → {0, 1}, and two
assignments u∗0, u

∗
1 ∈ {0, 1}q(d) such that ϕ∗(u0) = 0 and ϕ∗(u1) = 1 can be found in time

poly(d).

We note that any fixed family of q-CSP that contains a non-constant predicate is a nice CSP.
Indeed, these CSPs (e.g. conjunctions of 2 literals) are the main application of interest for our re-
sults. However it will sometimes be useful to work with generalizations to nice CSPs with predicates
of non-constant arity.

7

For our hardness result, we will need to consider a strong notion of hard constraint satisfaction
problems, which is related to probabilistically checkable proofs. First we recall the standard notion
of hardness of approximation under Karp reductions (stated for additive, rather than multiplicative
approximation error).

Definition 3.3 (Inapproximability under Karp Reductions). Let α, γ : N→ [0, 1] be functions. A
family of CSPs Γ = (Γd)d∈N is (α, γ)-hard-to-approximate under Karp reductions if there exists a
polynomial-time computable function R such that for every circuit C with |C| gates and input size
d, if we set ϕC = R(C) ⊆ CΓ, then

1. if C is satisfiable, then val(ϕC) ≥ γ(d), and

2. if C is unsatisfiable, then val(ϕC) < γ(d)− α(d).

For our hardness result, we will need a stronger notion of inapproximability, which says that
we can efficiently transform satisfying assignments of C into solutions to ϕC of high value, and
vice-versa. In order to make the statement of our hardness result more precise, we also want to put
explicit bounds on both the input length of the instance produced by the reduction and the time
required to transform assignments to C into solutions to ϕC and vice versa.

Definition 3.4 (Inapproximability under Levin Reductions). Let α, γ : N→ [0, 1] and LPCP : N→
N be functions. A family of CSPs Γ = (Γd)d∈N is (α, γ)-hard-to-approximate under Levin reductions
with length blowup LPCP if there exist polynomial-time computable functions R,Enc,Dec such that
for every circuit C with |C| gates and input of size d

1. ϕC = R(C) ⊆ C(d)
Γ for d = LPCP(|C|),

2. for every u ∈ {0, 1}d such that C(u) = 1, val(ϕC ,Enc(u,C)) ≥ γ(d),

3. for every π ∈ {0, 1}d such that val(ϕC , π) ≥ γ(d)− α(d), C(Dec(π,C)) = 1,

4. for every u ∈ {0, 1}d, Dec(Enc(u,C)) = u, and

5. Enc and Dec are both computable in time poly(|C|, d).

When we do not wish to specify the value γ we will simply say that the family Γ is α-hard-to-
approximate under Levin reductions with length blowup LPCP to indicate that there exists such
a γ ∈ (α, 1]. When we do not specify a length blowup LPCP, then LPCP is assumed to be a
polynomial. If we drop the requirement that R is efficiently computable, then we say that Γ is
(α, γ)-hard-to-approximate under inefficient Levin reductions with length blowup LPCP. Finally, if
LPCP(s) ≤ s1+o(1) then we will write that Γ is (α, γ)-hard-to-approximate (or simply α-hard-to-
approximate) under Levin reductions with almost linear length blowup.

The notation Enc,Dec reflects the fact that we think of the set of assignments π such that
val(ϕC , π) ≥ γ as a sort of error-correcting code on the satisfying assignments to C. Any π with
value close to γ can be decoded to a valid satisfying assignment.

Levin reductions are a stronger notion of reduction than Karp reductions. To see this, let Γ be
α-hard-to-approximate under Levin reductions, and let R,Enc,Dec be the functions described in
Definition 3.4. We now argue that for every circuit C, the formula ϕC = R(C) satisfies conditions 1

8

and 2 of Definition 3.3. Specifically, if there exists an assignment u ∈ {0, 1}d that satisfies C, then
Enc(u,C) satisfies at least a γ fraction of the constraints of ϕC . Conversely if any assignment
π ∈ {0, 1}d satisfies at least a γ−α fraction of the constraints of ϕC , then Dec(π,C) is a satisfying
assignment of C.

Variants of the PCP Theorem can be used to show that essentially every class of CSP is hard-
to-approximate in this sense. Indeed, π = Enc(u,C) corresponds to a “probabilistically checkable
proof” (PCP) that C is satisfiable: if we check a random constraint of ϕC = R(C) (which requires
reading only a few bits of π) then we will accept with probability at least γ. Conversely, if the above
test passes for some string π ∈ {0, 1}d with probability at least γ − α, then C must be satisfiable
(as Dec(π,C) is a satisfying assignment to C).

We restrict to CSP’s that are closed under negation as it suffices for our application.

Theorem 3.5 (variant of PCP Theorem). For every fixed family of CSPs Γ that is closed under
negation and contains a function that depends on at least two variables, there is a constant α =
α(Γ) > 0 such that Γ is α-hard to approximate under Levin reductions.

Proof sketch. Hardness of approximation under Karp reductions follows directly from the classi-
fication theorems of Creignou [11] and Khanna et al. [30]. These theorems show that all CSPs
are either α-hard under Karp reductions for some constant α > 0 or can be solved optimally in
polynomial time. By inspection, the only CSPs that fall into the polynomial-time cases (0-valid,
1-valid, and 2-monotone) and are closed under negation are those containing only dictatorships and
constant functions.

The fact that standard PCPs actually yield Levin reductions has been explicitly discussed and
formalized by Barak and Goldreich [6] in the terminology of PCPs rather than reductions (the
function Enc is called “relatively efficient oracle-construction” and the function Dec is called “a
proof-of-knowledge property”). They verify that these properties hold for the PCP construction
of Babai et al. [4], whereas we need it for PCPs of constant query complexity. While the proper-
ties probably hold for most (if not all) existing PCP constructions, the existence of the efficient
“decoding” function g requires some verification. We observe that it follows as a black box from
the PCPs of Proximity of [7, 13]. There, a prefix of the PCP (the “implicit input oracle”) can
be taken to be the encoding of a satisfying assignment of the circuit C in an efficiently decodable
error-correcting code. If the PCP verifier accepts with higher probability than the soundness error
s, then it is guaranteed that the prefix is close to a valid codeword, which in turn can be decoded
to a satisfying assignment. By the correspondence between PCPs and CSPs [3], this yields a CSP
(with constraints of constant arity) that is α-hard to approximate under Levin reductions for some
constant α > 0 (and γ = 1). The sequence of approximation-preserving reductions from arbitrary
CSPs to MAX-CUT [35] can be verified to preserve efficiency of decoding (indeed, the correctness
of the reductions is proven by specifying how to encode and decode). Finally, the reductions of [30]
from MAX-CUT to any other CSP all involve constant-sized “gadgets” that allow encoding and
decoding to be done locally and very efficiently.

For some of our results we will need CSPs that are very hard to approximate (under possibly
inefficient reductions), which we can obtain by “sequential repetition” of constant-error PCPs.

Theorem 3.6. There is a constant C such that for every ε = ε(d) > 0, the constraint family
Γ = (Γd)d∈N of k(d)-clause 3-CNF formulas is (1 − ε(d))-hard-to-approximate under inefficient
Levin reductions, for k(d) = C log(1/ε(d)).

9

Proof sketch. As in the proof of Theorem 3.5, disjunctions of 3 literals are (1 − δ, 1)-hard-to-
approximate under Levin reductions for some constant δ > 0. By taking `(d) = logδ(ε(d)) se-
quential repetitions of this PCP, we get a PCP with completeness 1 and soundness ε(d) whose
constraints are 3-CNF formulas with `(d) = logδ(1/ε(d)) clauses. Note that the resulting CSP will
have arity at most k(d) = 3`(d).

We have to check that this resulting PCP preserves the properties of inefficient Levin reductions.
The encoder for the `-fold sequential repetition is unchanged. If the initial reduction is R(C) =
ϕC = {ϕ1, . . . , ϕm} (a set of 3-literal disjunctions), then the reductionR`(C) for the `-fold sequential
repetition will produce m`, `-clause 3-CNF formulae by taking every subcollection of ` clauses
in ϕC . Specifically, for every i1, i2, . . . , i` ∈ [m], Rk(C) will contain a `-clause 3-CNF formula
ϕi1 ∧ ϕi2 ∧ · · · ∧ ϕi` .

The decoder also remains unchanged. If the value of an assignment π is at least δ` with respect
to R`(C) then it must have value at least δ with respect to R(C) and thus Dec(π,C) will return a
satisfying assignment to C, that is C(Dec(π,C)) = 1.

Notice that when k = k(d) = ω(1), the reduction will produce mω(1) clauses and be ineffi-
cient. Thus we will have an inefficient Levin reduction if we want to obtain ε(d) = o(1) from this
construction.

It seems likely that optimized PCP/inapproximability results (like [27]) are also Levin reduc-
tions, which would yield fairly large values for α for natural CSPs (e.g. α = 1/8− ε if Γ contains all
conjunctions of 3-literals, because then CΓ contains MAX 3-SAT.) We are particularly interested
in optimizing the length of the PCP, in order to establish tighter reductions between generating
private synthetic data and forging digital signatures. Below we sketch a proof that a particular
construction of short PCPs is also a Levin reduction.

Theorem 3.7. There exists a fixed family of constant-arity CSPs Γ that is 1/2-hard-to-approximate
under Levin reductions with almost linear length blowup.

Proof sketch. At a high level our PCP for the statement C(u) = 1 will consist of an encoding w
of u under an efficient error correcting code and a “PCP of Proximity” that w is an encoding of
a satisfying assignment to C. To specify the construction concretely and verify its properties, we
will use the following two objects:

1. An error-correcting code that corrects a constant fraction of errors and can be encoded and
decoded in almost linear time. Specifically, a pair of algorithms (EncECC ,DecECC) with the

following properties: EncECC takes a message u ∈ {0, 1}d, runs in time d
1+o(1)

, and outputs
a codeword w ∈ {0, 1}dECC for dECC = O(d). DecECC that takes a string w̃ ∈ {0, 1}dECC ,
runs in time (dECC)1+o(1), and for some constant ε > 0, if w̃ is ε-close in relative Hamming

distance to an encoding of some (unique) string u ∈ {0, 1}d, then DecECC (w̃) = u. Binary
error-correcting codes achieving these parameters are known to exist. One can be obtained,
for example, by concatenating certain non-binary Reed-Solomon codes, which can be encoded
and decoded in almost linear time ([28], see also the discussion in [40]) with an asymptotically
good binary error-correcting code that allows for polynomial time encoding and decoding.

2. A PCP of Proximity (PCPP) with almost linear length, constant soundness, and constant
arity where proofs can be encoded (but not necessarily decoded) efficiently. Specifically,
the following pair of algorithms (RPCPP ,EncPCPP). RPCPP takes as input a circuit C ′ :

10

{0, 1}dECC → {0, 1} and for some dPCPP = |C ′|1+o(1), RPCPP outputs an instance ϕC′ of a
CSP with constant arity over dECC + dPCPP binary variables. ϕC′ will be such that:

(a) If C ′(w) = 1, then there exists a “proof” π ∈ {0, 1}dPCPP such that val(ϕC′ , (w, π)) = 1.
Furthermore EncPCPP takes as input C ′ and w ∈ {0, 1}dECC such that C ′(w) = 1, runs
in time poly(|C ′|, dECC), and outputs a proof π ∈ {0, 1}dPCPP such that if C ′(w) = 1
then val(ϕC′ , (w, π)) = 1. Ben-Sasson et al. [7, Theorem 3.3] showed how to construct
PCPPs achieving these parameters.2

(b) For some constant α > 0, if w̃ ∈ {0, 1}dECC has relative Hamming distance greater than
ε from every satisfying assignment to C ′, then for every π ∈ {0, 1}dPCPP , it holds that
val(ϕC′ , (w̃, π)) < 1− α.

Given these two objects, we can obtain a fixed family of constant-arity CSPs that is α-hard-to-
approximate under Levin reductions with almost linear length blowup as follows. By Theorem 3.6,
there exists a different fixed family of (larger) constant-arity CSPs that is 1/2-hard-to-approximate
under Levin reductions with almost linear length blowup.

Given a circuit C : {0, 1}d → {0, 1}, define the circuit C ′ : {0, 1}dECC → {0, 1} as follows:
C ′(w) = 1 if and only if C(DecECC (w)) = 1 and w = EncECC (DecECC (w)). C ′ checks that w is
a codeword of the error correcting code, and encodes a satisfying assignment to C. Observe that,
since EncECC and DecECC are computable in almost linear time, |C ′| = |C|1+o(1).

Now, we define the promised PCP reduction (R,Enc,Dec). Let R(C) = RPCPP (C ′), let
Enc(C, u) = (w,EncPCPP (C ′, w)) where w = EncECC (u), and let Dec(w̃, π) = DecECC (w̃).

First, observe that the length of the proof is

dECC + |C ′|1+o(1) = O(d) + |C|1+o(1),

so it satisfies the almost linear length blowup condition. Since EncECC ,DecECC , and EncPCPP

are all computationally efficient, so are Enc and Dec. Also, if C(u) = 1, then the encoding of u
satisfies every constraint of ϕC . Specifically, by (a), if C(u) = 1, and (w, π) = Enc(C, u), then
val(ϕC , (w, π)) = 1.

All that remains to be verified is that any “proof” π that satisfies sufficiently many constraints in
ϕC can be efficiently decoded to find a satisfying assignment to C. That is, if val(ϕC , (w̃, π)) ≥ 1−α,
then C(Dec(w̃, π)) = 1. If val(ϕC , (w̃, π)) ≥ 1 − α, then, by (b), there exists w′ such that w̃ and
w′ are ε-close in relative Hamming distance and C ′(w′) = 1. Because C ′(w′) = 1, w′ must be a

codeword in the error correcting code, so there exists u ∈ {0, 1}d such that w′ = EncECC (u). Also,
C(DecECC (w′)) = C(u) = 1. Since w′ = EncECC (u) and w̃ is ε-close to w′ in relative Hamming
distance, DecECC (w̃) = u. Therefore C(DecECC (w̃)) = 1, as desired.

4 Hard-to-Sanitize Distributions from Hard CSPs

In this section we prove that to efficiently produce a synthetic database that is accurate for the
constraints of a CSP that is hard-to-approximate under Levin reductions, we must pay constant
error in the worst case. Following [19], we start with a digital signature scheme, and a database
of valid message-signature pairs. There is a verifying circuit Cvk and valid message-signature pairs

2This result also does not explicitly state the existence of the efficient encoder, but the proof of the completeness
property gives an efficient algorithm to generate the correct proof π.

11

are satisfying assignments to that circuit. Now we encode each row of database using the function
Enc, described in Definition 3.4, that maps satisfying assignments to Cvk to assignments of the
CSP instance ϕCvk = R(Cvk) with value at least γ. Then, any assignment to the CSP instance that
satisfies a γ−α fraction of clauses can be decoded to a valid message-signature pair. The database
of encoded message-signature pairs is what we will use as our hard-to-sanitize distribution.

4.1 Super-Secure Digital Signature Schemes

Before proving our main result, we will formally define a super-secure digital signature scheme.
These digital signature schemes have the property that it is infeasible under chosen-message attack
to find a new message-signature pair that is different from all those obtained during the attack,
even a new signature for an old message. First we formally define digital signature schemes

Definition 4.1 (Digital signature scheme). For a functions Lvk, TVer : N → N. A (Lvk, TVer)-
digital signature scheme with verification key length Lvk and verification time TVer is a tuple of
three probabilistic polynomial time algorithms Π = (Gen,Sign,Ver) such that

1. Gen takes as input the security parameter 1κ and outputs a key pair (sk, vk) ←R Gen(1κ)
such that vk ∈ {0, 1}Lvk(κ) for a polynomial Lvk(κ).

2. Sign takes sk and a message m ∈ {0, 1}∗ as input and outputs σ ←R Signsk(m) such that
σ ∈ {0, 1}∗.

3. Ver takes vk and pair (m,σ) and deterministically outputs a bit b ∈ {0, 1}, such that for
every (sk, vk) in the range of Gen, and every message m, we have Vervk(m,Signsk(m)) = 1.
Moreover, when m ∈ {0, 1}κ, and m is signed under (sk, vk) generated by Gen(1κ), then
Vervk can be computed by a circuit of size TVer(κ) (for a polynomial TVer).

We define the security of a digital signature scheme with respect to the following game.

Definition 4.2 (Weak forgery game). For any signature scheme Π = (Gen,Sign,Ver) and prob-
abilistic polynomial time adversary F , WeakForge(F ,Π, κ,QFor) is the following probabilistic ex-
periment.

1. (sk, vk)←R Gen(1κ).

2. F is given vk and oracle access to Signsk. The adversary adaptively queries Signsk on a set
of at most QFor messages M ⊂ {0, 1}∗, receives a set of message-signature pairs A ⊂ {0, 1}∗,
and outputs (m∗, σ∗).

3. The output of the game is 1 if and only if (1) Vervk(m
∗, σ∗) = 1, and (2) (m∗, σ∗) 6∈ A.

The weak forgery game is easier for the adversary to win than the standard forgery game because
the final condition requires that the signature output by F be different from all pairs (m,σ) ∈ A,
but allows for the possibility that m∗ ∈M . In the standard definition, the final condition would be
replaced by m∗ 6∈ M . Thus the adversary has more possible outputs that would result in a “win”
under this definition than under the standard definition.

12

Definition 4.3 (Super-secure digital signature scheme). For functions TFor, QFor : N→ N. A dig-
ital signature scheme Π = (Gen,Sign,Ver), is a (TFor, QFor)-super-secure digital signature scheme
(under adaptive chosen message attack) if for every TFor-time adversary, F ,

Pr[WeakForge(F ,Π, κ,QFor(κ)) = 1] ≤ negl(κ).

Although the above definition is stronger than the usual definition of existentially unforgeable
digital signatures, in [25] it is shown how to modify known constructions [34, 38] to obtain a
super-secure digital signature scheme from any one-way function.

In our terminology, the existence of one-way functions implies the existence of a digital signature
scheme that is a (TFor, QFor)-super-secure digital signature scheme for every polynomial TFor, QFor

with verification key length poly(κ) and verification time poly(κ). Under stronger hardness as-
sumptions, super-secure digital signature schemes with even better parameters exist. In particular,
under certain hardness assumptions in ideal lattices, there exists a digital signature scheme secure
against TFor = 2κ

1−o(1)
time adversaries making any QFor = poly(κ) queries, and this signature

scheme has verification key length Lvk = κ1+o(1) and verification time TVer = κ1+o(1) [32]. It is

plausible that there exist super-secure digital signature schemes secure against TFor = 2κ
1−o(1)

time
adversaries making QFor = 2κ

1−o(1)
queries with almost linear verification key length and verification

time, but we do not know of any candidate constructions.

4.2 Hard-to-Sanitize Distributions

We are now ready to construct a general form of database distribution ensemble, which we can
instantiate with various CSPs and signature schemes to prove our hardness results.

Let Γ = (Γd)d∈N be a family of nice q(d)-CSPs (Definition 3.2) and let CΓ = ∪∞d=1C
(d)
Γ be the class

of constraints of Γ (Definition 3.1). Assume that Γ is hard-to-approximate (for some parameters)
under Levin reductions with length blowup LPCP and let Enc be the promised encoder. Let
Π = (Gen,Sign,Ver) be a digital signature scheme with verification key length Lvk and verification
time TVer and let Cvk be a circuit computing Vervk. Let n : N→ N be a function.

We define the database distribution ensemble D = Dd(n,Γ,Π,Enc) for any function n : N→ N.
A sample from Dd consists of n(d) + 1 random message-signature pairs encoded as PCP witnesses
with respect to the signature-verification algorithm. Each row will also contain an encoding of the
verification key for the signature scheme using the non-constant constraint ϕ∗ : {0, 1}q(d) → {0, 1}
in Γd and the assignments u∗0, u

∗
1 ∈ {0, 1}q(d) such that ϕ∗(u∗0) = 0 and ϕ∗(u∗1) = 1, as described in

the definition of nice CSPs (Definition 3.2).
Recall that s1‖s2 denotes the concatenation of the strings s1 and s2. Before moving on to

instantiating D and proving our hardness results, we make some observations about the construc-
tion. First, observe that the construction is well defined. That is, the length of yi before padding
is exactly LPCP(TVer(κ)), and the length of zi before padding is exactly Lvk(κ)q(d) and κ was
chosen so that these quantities are both at most d/2 and the above is well defined. Also, note that
κ(d) = dΩ(1). This statement holds because Γ is nice (Definition 3.2), so q(d) = d1−Ω(1), and be-
cause LPCP, TVer, and Lvk are all bounded by some polynomial in their input length. Finally, note
that our distribution over d-column databases contains PCPs of length L = LPCP(TVer(κ)) ≤ d/2,

thus R(Cvk) ⊆ C
(d/2)
Γ ⊆ C(d)

Γ (by Definition 3.1).

13

Database Distribution Ensemble D = Dd(n,Γ,Π,Enc):

Let n = n(d). Let ϕ∗ : {0, 1}q(d) → {0, 1} be a non-constant constraint in Γd and u∗0, u
∗
1 ∈

{0, 1}q(d) be such that ϕ∗(u∗0) = 0 and ϕ∗(u∗1) = 1.
Let κ = κ(d) be the largest integer such that LPCP(TVer(κ)) ≤ d/2 and Lvk(κ)q(d) ≤ d/2.
(sk, vk)←R Gen(1κ), let vk = vk1vk2 . . . vk`, where ` = Lvk(κ)
(m1, . . . ,mn+1)←R ({0, 1}κ)n+1

for i = 1 to n+ 1 do
Let yi := Enc(mi‖Signsk(mi), Cvk), be a PCP encoding of mi and its signature, padded
with zeros to be of length exactly d/2
Let zi := u∗vk1

‖u∗vk2
‖ . . . ‖u∗vk` , be an encoding of vk, padded with zeros to length exactly

d/2
Let xi := yi‖zi be the concatenation of these two strings

end for
return D0 := (x1, . . . , xn+1)

4.3 Main Hardness Result

We are now ready to state and prove our main hardness result.

Theorem 4.4. Let Γ = (Γd)d∈N be a family of nice (Definition 3.2) q(d)-CSPs such that Γd ∪¬Γd
is α-hard-to-approximate under (possibly inefficient) Levin reductions with length blowup LPCP, for
α = α(d) ∈ (0, 1/2), and let Enc be the promised encoder. Assume the existence of a (TFor, QFor)-
super-secure digital signature scheme Π with verification key length Lvk and verification time TVer.
κ = κ(d) be the largest integer such that LPCP(TVer(κ)) ≤ d/2 and Lvk(κ)q(d) ≤ d/2 as in the
construction of D. Let TSan, n : N→ N be any functions such that for every a > 0

n(d) · da + TSan(d) = o(TFor(κ(d)))

and for every d ∈ N
n(d) ≤ QFor(κ(d)).

Then the distribution D = Dd(n,Γ,Π,Enc) on n(d)-row databases is (α, TSan(d), C(d)
Γ)-hard-to-

sanitize as synthetic data.

Proof. Let Π = (Gen,Sign,Ver) be the assumed digital signature scheme and let Cvk be a circuit
computing Vervk. Let Γ be the assumed family of nice q(d)-CSPs that is α-hard-to-approximate
under (possibly inefficient) Levin reductions with length blowup LPCP. Let R,Enc,Dec be the
functions corresponding to the Levin reduction to Γ and γ = γ(d) ∈ (α, 1] be the parameter from
Definition 3.4.

Every valid pair (m,Signsk(m)) is a satisfying assignment of the circuit Cvk, hence every row of
D0 constructed by D will satisfy at least a γ fraction of the clauses of the formula ϕCvk = R(Cvk) ⊆
C(d)

Γ . Additionally, for every bit of the verification key, there is a block of q = q(d) bits in each
row that contains either a satisfying assignment or a non-satisfying assignment of ϕ∗, depending
on whether that bit of the key is 1 or 0. Specifically, let

ϕ∗j (x) = ϕ∗(xd/2+(j−1)q+1, xd/2+(j−1)q+2, . . . , xd/2+jq)

14

for j = 1, 2, . . . , Lvk(κ). Then, by construction, ϕ∗j (D0) = vkj , the j-th bit of the verification key.

Note that ϕ∗j ∈ C
(d)
Γ for j = 1, 2, . . . , `, by our construction of C(d)

Γ (Definition 3.1).
We now prove the following two lemmas that will establish D is hard-to-sanitize:

Lemma 4.5. There exists a polynomial-time adversary T such that for every TSan-time sanitizer
A,

Pr
(D,D′,i)←RD̃

A′s and T ′s coins

[
(A(D) is α-accurate for C(d)

Γ) ∧ (T (A(D)) ∩D = ∅)
]
≤ negl(d) (1)

Proof. Our privacy adversary tries to find a row of the original database by trying to PCP-decode
each row of the “sanitized” database and then re-encoding it. In order to do so, the adversary
needs to know the verification key used in the construction of the database, which it can discover
from the answers to the queries ϕ∗j , defined above. Formally, we define the privacy adversary by
means of a subroutine that tries to learn the verification key and then PCP-decode each row of the
input database:

Subroutine K(D̂):

Let d be the dimension of rows in D̂, let κ be defined as in the construction of D, and
` = Lvk(κ).
for j = 1 to ` do

v̂kj =
[
ϕ∗j (D̂) rounded to {0, 1}

]
end for
return v̂k1‖v̂k2‖ . . . ‖v̂k`

Subroutine T0(D̂):

Let n̂ be the number of rows in D̂, v̂k = K(D̂)
for i = 1 to n̂ do

if C
v̂k

(Dec(x̂i, Cv̂k)) = 1 then
return Dec(x̂i, Cv̂k)

end if
end for
return ⊥

Privacy Adversary T (D̂):

Let v̂k = K(D̂).
return Enc(T0(D̂), C

v̂k
)

Let A be a TSan-time sanitizer, we will show that Inequality (1) holds.

Claim 4.6. If D̂ = A(D) is α-accurate for C(d)
Γ , then T0(D̂) outputs a pair (m,σ) s.t. Cvk(m,σ) =

1.

Proof. First we argue that if D̂ is α-accurate for C(d)
Γ for α < 1/2, then K(D̂) = vk, where vk is

the verification key used in the construction of D0. By construction, ϕ∗j (D) = vkj . If vkj = 0

15

and D̂ is α-accurate for D then ϕ∗j (D̂) ≤ α < 1/2, and v̂kj = vkj . Similarly, if vkj = 1 then

ϕ∗j (D̂) ≥ 1 − α > 1/2, and v̂kj = vkj . Thus, for the rest of the proof we will be justified in

substituting vk for v̂k.
Next we show that if D̂ is α-accurate, then T0(D̂) 6= ⊥. It is sufficient to show there exists

x̂i ∈ D̂ such that val(ϕCvk , xi) ≥ γ − α, which implies Cvk(Dec(x̂i, Cvk)) = 1.
Since every (mi,Signsk(mi)) pair is a satisfying assignment to Cvk, the definition of Enc (Def-

inition 3.4) implies that each row xi of D has val(ϕCvk , xi) ≥ γ. Thus if ϕCvk = {ϕ1, . . . , ϕm},
then

1

m

m∑
j=1

ϕj(D) =
1

m

m∑
j=1

(
1

n

n∑
i=1

ϕj(xi)

)
=

1

n

n∑
i=1

val(ϕCvk , xi) ≥ γ.

Since D̂ is α-accurate for C(d)
Γ , and for every constraint ϕj , either ϕj ∈ Γ or ¬ϕj ∈ Γ, then for every

constraint ϕj ∈ ϕCvk , we have ϕj(D̂) ≥ ϕj(D)− α. Thus

1

n̂

n̂∑
i=1

val(ϕCvk , x̂i) =
1

m

m∑
j=1

ϕj(D̂) ≥ 1

m

m∑
j=1

ϕj(D)− α ≥ γ − α.

So for at least one row x̂ ∈ D̂ it must be the case that val(ϕCvk , x̂) ≥ γ − α. The definition of Dec
(Definition 3.4) implies Cvk(Dec(x̂, Cvk)) = 1.

Now notice that if T0(A(D)) outputs a valid message-signature pair but T (A(D))∩D = ∅, then
this means T0(A(D)) is forging a new signature not among those used to generate D. Formally, we
construct a signature forger as follows:

Forger F(vk) with oracle access to Signsk:

Use the oracle Signsk to generate an n-row database D just as in the definition of Dd (con-
sisting of PCP encodings of valid message-signature pairs and an encoding of vk).
Let D̂ := A(D)
return x̂∗ := T0(D̂)

First we analyze the running time of F . In order to construct D, the forger must PCP-encode
the signatures, which requires time n(d) · poly(TVer(κ)) = n(d) · poly(d). Running A requires
time TSan(d) by assumption. Finally, the time to run T0(D̂) to decode a message-signature pair is
n(d) · poly(d), since T0 has to run the PCP decoder on each row of D̂. Put together, the running
time of F is n(d) · poly(d) + TSan(d) = o(TFor(κ(d))), where the inequality is an assumption of the
theorem. Next, we note that the forger makes at most n(d) ≤ o(QFor(κ(d))) queries to Signsk, and
this inequality is also an assumption of the theorem.

Now observe that running F in the experiment WeakForge(F ,Π, κ,QFor(κ)) is equivalent to
running T in the experiment of Inequality (1), except that F does not re-encode the output of
T0(A(D)). By the super-security of the signature scheme, if the x̂∗ output by F is a valid message-

signature pair (as holds if A(D) is α-accurate for C(d)
Γ , by Claim 4.6), then it must be one of

the message-signature pairs used to construct D (except with probability negl(κ) = negl(dΩ(1)) =

16

negl(d)). This implies that T (A(D)) = Enc(x̂∗, Cvk) ∈ D (except with negligible probability).
Thus, we have

Pr
(D,D′,i)←RD̃
A′s coins

[A(D) is α-accurate for C(d)
Γ ⇒ T (A(D)) ∈ D] ≥ 1− negl(d),

which is equivalent to the statement of the lemma.

Lemma 4.7.
Pr

(D,D′,i)←RD̃
A′s and T ′s coins

[
T (A(D′)) = xi

]
≤ negl(d)

Proof. Since the messages mi used in D0 are drawn independently, D′ contains no information
about the message mi, thus no adversary can, on input A(D′) output the target row xi except with
probability 2−κ = negl(d).

These two claims suffice to establish that D is (α, CΓ)-hard-to-sanitize as synthetic data.

Theorem 1.1 in the introduction follows by combining Theorems 3.5 and 4.4.
Assuming the existence of an efficient super-secure digital signature scheme against almost-

exponential-time adversaries, yields the following variants of Theorem 1.1.

Corollary 4.8. Assume the existence of a digital signature scheme Π that is (TFor, QFor)-super-

secure for TFor = 2κ
1−o(1)

and QFor = 2κ
1−o(1)

, and has verification key length Lvk = κ1+o(1) and
verification time TVer = κ1+o(1). Then there exists a family Γ of constant-arity CSPs such that
for some n(d) = 2d

1−o(1)
, the distribution ensemble D = Dd(n,Γ,Π) on n(d)-row databases is

(1/2, TSan, C(d)
Γ)-hard-to-sanitize as synthetic data for some TSan(d) = 2d

1−o(1)
.

Proof. By Theorem 3.7, there exists a fixed family of q-CSPs that is 1/2-hard-to-approximate
under Levin reductions with almost linear length blowup. That is, LPCP(s) = s1+o(1). Now in the
construction of D, we can choose κ = d1−o(1) such that LPCP(TVer(κ)) ≤ d/2 and Lvk · q ≤ d/2.

Thus we have TFor(κ) = 2κ
1−o(1)

= 2d
1−o(1)

.

Now we can find some function TSan(d) = 2d
1−o(1)

such that

n(d) · da + TSan(d) = o(TFor(κ(d)))

for every a > 0. Additionally, we can find some function n(d) = 2d
1−o(1)

such that

n(d) ≤ QFor(κ(d)).

Thus the assumptions of Theorem 4.4 are satisfied.

In particular, Corollary 4.8 shows that if there is a signature scheme with the assumed parame-
ters then there is no algorithm that takes a database of size n = 2d

1−Ω(1)
, runs in time 2d

1−Ω(1)
and

outputs a private synthetic database that is accurate for each of the 3d marginal queries. (Recall
that a marginal query computes the fraction of rows satisfying some Boolean conjunction.) To see
that Corollary 4.8 applies to marginal queries, we note that if there is a fixed family of CSPs Γ of
arity k that is 1/2-hard-to-approximate, then the family of CSPs Γ′ consisting of only the conjunc-
tion of k literals is 1/2k+1-hard-to-approximate (under the same reduction). Thus Corollary 4.8

17

applies to the family of queries C(d)
Γ′ consisting of all conjunctions of k-literals on {0, 1}d, which is

a subset of all marginal queries.
In contrast, subsequent work [41] shows that there is a differentially private algorithm that

takes a database of size n = 2Õ(
√
d), runs in time 2Õ(

√
d), and outputs a summary that is not a

synthetic database, yet allows a data analyst to compute an accurate answer to any marginal query

in time 2Õ(
√
d). Thus, [41] shows that, under the assumption in Corollary 4.8, differentially private

algorithms that do not generate synthetic data can answer all marginal queries more efficiently than
those that do generate synthetic data. Although it is plausible that a signature scheme satisfying
the assumption in Corollary 4.8 exists, we are not aware of any candidates.

The algorithm of Blum, Ligett, and Roth [9] requires exponential time, not just super-polynomial
time (as shown necessary by Theorem 1.1), even for answering polynomial-sized families of queries.
Specifically, for some polynomial n(d), and every constant k, their algorithm takes a database
with n(d) rows and outputs a private synthetic database accurate for every k-way marginal query.
(Recall that a k-way marginal query computes the fraction of rows satisfying some Boolean con-
junction consisting of at most k literals, and there are at most O(d)k such queries on the data
universe {0, 1}d.) However, their algorithm requires time at least 2d even for this special case.
Subsequent work [10] showed how to achieve similar parameters to [9] for k-way marginal queries
in subexponential time by avoiding synthetic data. Specifically, they gave a differentially private
algorithm that, for some polynomial n(d), and every constant k, takes a database with n(d) rows,

runs in time 2d
1−Ω(1)

, and outputs accurate answers to every k-way marginal query. We show that
these parameters would be impossible for algorithms generating private synthetic data under an
assumption weaker than that in Corollary 4.8.

Corollary 4.9. Assume the existence of a digital signature scheme Π that is (TFor, QFor)-super-

secure for TFor = 2κ
1−o(1)

and every polynomial QFor = QFor(κ), and has verification key length
Lvk = κ1+o(1) and verification time TVer = κ1+o(1). Then there exists a family Γ of constant-
arity CSPs such that for every polynomial n = n(d), the distribution ensemble D = Dd(n,Γ,Π) on

n(d)-row databases is (1/2, TSan, C(d)
Γ)-hard-to-sanitize as synthetic data for some TSan(d) = 2d

1−o(1)
.

The proof of Corollary 4.9 closely follows that of Corollary 4.8. As with Corollary 4.8, Corol-
lary 4.9 can be made to apply to k-way marginal queries. As we discussed in Section 4.1, a
signature scheme as in the hypothesis of Corollary 4.9 exists under certain hardness assumptions
in ideal lattices [32].

5 Relaxed Synthetic Data

The proof of Theorem 4.4 requires that the sanitizer output a synthetic database. In this section we
present similar hardness results for sanitizers that produce other forms of output, as long as they still
produce a collection of elements from {0, 1}d, that are interpreted as the data of (possibly “fake”)
individuals. More specifically, we consider sanitizers that output a database D̂ ∈ ({0, 1}d)n̂ but are
interpreted using an evaluation function of the following form: To evaluate predicate c ∈ C on D̂,
apply c to each row x̂i of D̂ to get a string of n̂ bits, and then apply a function f : {0, 1}n̂×C → [0, 1]
to determine the answer. For example, when the sanitizer outputs a synthetic database, we have
f(b1, . . . , bn̂, c) = (1/n̂)

∑n̂
i=1 bi, which is just the fraction of rows that get labeled with a 1 by the

predicate c (independent of c).
We now give a formal definition of relaxed synthetic data

18

Definition 5.1 (Relaxed Synthetic Data). A sanitizer A : ({0, 1}d)n → ({0, 1}d)n̂ with evaluator
E outputs relaxed synthetic data for a family of predicates C if there exists f : {0, 1}n̂ × C → [0, 1]
such that

• For every c ∈ C
E(D̂, c) = f(c(x̂1), c(x̂2), . . . , c(x̂n̂), c),

and

• f is monotone3 in the first n̂ inputs.

This relaxed notion of synthetic data is of interest because many natural approaches to sanitizing
yield outputs of this type. In particular, several previous sanitization algorithms [9, 39, 21] produce
a set of synthetic databases and answer a query by taking a median over the answers given by
the individual databases. Sanitizers that use medians of synthetic databases no longer have the
advantage that they are “interchangeable” with the original data, but are still be desirable for data
releases because they retain the property that a small data structure can give accurate answers to
a large number of queries. We view such databases as a single synthetic database but require that
f have a special form. Unfortunately, the sanitizers of [39] and [21] run in time exponential in the
dimension of the data, d, and the results of the next subsection show this limitation is inherent
even for simple concept classes.

Throughout this section we will continue to use c(D̂) to refer to the answer given by D̂ when
interpreted as a synthetic database.

We now present our hardness results for relaxed synthetic data where the function f takes the
median over synthetic database (Section 5.1), where f is an arbitrary monotone, symmetric function
(Section 5.2), or when the family of concepts contains CSPs that are very hard to approximate
(Section 5.3). Our proofs use the same construction of hard-to-sanitize databases as Theorem 4.4
with a modified analysis and parameters to show that the output must still contain a PCP-decodable
row.

5.1 Hardness of Sanitizing as Medians

In this section we establish that the distribution D used in the proof of Theorem 4.4 is hard-to-
sanitize as medians of synthetic data, formally defined as:

Definition 5.2 (Medians of Synthetic Data). A sanitizer A : ({0, 1}d)n → ({0, 1}d)n̂ with evaluator
E outputs medians of synthetic data if there is a partition [n̂] = S1 ∪ S2 · · · ∪ S` such that

E(x̂1, . . . , x̂n̂, c) = median

 1

|S1|
∑
i∈S1

c(x̂i),
1

|S2|
∑
i∈S2

c(x̂i), . . . ,
1

|S`|
∑
i∈S`

c(x̂i)

 .

Note that medians of synthetic data are a special case of relaxed synthetic data. In the following,
we rule out efficient sanitizers with medians of synthetic data for CSPs that are hard to approximate
within a multiplicative factor larger than 2. By Theorem 3.6, these CSPs include k-clause 3-CNF
formulas for some constant k.

3Given two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) we say b � a iff bi ≥ ai for every i ∈ [n]. We say a
function f : {0, 1}n → [0, 1] is monotone if b � a =⇒ f(b) ≥ f(a).

19

Theorem 5.3. Let Γ = (Γd)d∈N be a family of nice (Definition 3.2) q(d)-CSPs such that Γd∪¬Γd is
((α+ γ)/2, γ)-hard-to-approximate under (possibly inefficient) Levin reductions with length blowup
LPCP, for α = α(d) ∈ (0, 1/2), and let Enc be the promised encoder. Assume the existence of a
(TFor, QFor)-digital signature scheme Π with verification key length Lvk and verification time TVer.
Let κ = κ(d) be the largest integer such that LPCP(TVer(κ)) ≤ d/2 and Lvk(κ)q(d) ≤ d/2 as in the
construction of D. Let TSan, n : N→ N be any functions such that for every a > 0

n(d) · da + TSan(d) = o(TFor(κ(d)))

and for every d ∈ N
n(d) ≤ QFor(κ(d)).

Then the distribution D = Dd(n,Γ,Π,Enc) on n(d)-row databases is (α, TSan(d), C(d)
Γ)-hard-to-

sanitize as medians of synthetic data.

Proof. Let Γ be the assumed family of nice q(d)−CSPs that is ((α+ γ)/2, γ)-hard-to-approximate
under (possibly inefficient) Levin reductions with length blowup LPCP. Let R,Enc,Dec be the

functions corresponding to the Levin reduction to Γ. Let A(D) = D̂ and let
{
D̂1, D̂2, . . . , D̂`

}
be

the partition of the rows of D̂ corresponding to S1, . . . , S`, i.e. D̂i = (x̂j)j∈Si .

Assuming that D̂ is α-accurate as medians of synthetic data, we will show that there must exist
a row x̂ ∈ D̂ such that val(ϕCvk , x̂) ≥ γ − (α+ γ)/2 = (γ −α)/2. To do so, we observe that if D̂ is

accurate as medians of synthetic databases, then for each predicate, half of D̂’s synthetic databases
must give an answer that is “close to D’s answer”. Thus one of these synthetic datsbases must be
“close” to D for half of the predicates in ϕCvk . By our construction of D, we conclude that each
of these predicates is satisfied by many rows of this synthetic database and thus some row satisfies
enough of the predicates to decode a message-signature pair.

We need to show that there exists an adversary T such that for every TSan-time sanitizer A,

Pr
(D,D′,i)←RD̃

A′s and T ′s coins

[
(A(D) is α-accurate for C(d)

Γ) ∧ (T (A(D)) ∩D = ∅)
]
≤ negl(d) (2)

To do so, we will use the same subroutine T0(D̂) we used for the proof of Lemma 4.5. That
is, we consider a subroutine that looks for rows satisfying sufficiently many clauses of ϕCvk and
returns the PCP-decoding of that row. It will suffice to establish the following claim, analogous to
Claim 4.6:

Claim 5.4. If D̂ is α-accurate for C(d)
Γ as medians of synthetic data, then T0(D̂) outputs a pair

(m,σ) s.t. Cvk(m,σ) = 1.

Proof. As in the proof of Claim 4.6, if D̂ is α-accurate for C(d)
Γ for α < 1/2, then K(D̂) = vk, the

verification key used in the construction of D0. For the rest of the proof we will be justified in
substituting vk for v̂k.

If ϕCvk = {ϕ1, . . . , ϕm}, then 1
m

∑m
j=1 ϕj(D) ≥ γ. We say that D̂k is good for ϕj if ϕj(D̂k) ≥

ϕj(D) − α. Since the median over
{
D̂1, D̂2, . . . , D̂`

}
is α-accurate for every constraint ϕj ∈ ϕCvk

we have

Pr
k←R[`]

[
D̂k is good for ϕj

]
≥ 1

2

20

Then

E
k←R[`]

 1

|Sk|
∑
i∈|Sk|

val(ϕCvk , x̂i)

 = E
k←R[`]

 1

m

m∑
j=1

ϕj(D̂k)


=

1

m

m∑
j=1

E
k←R[`]

[
ϕj(D̂k)

]
≥ 1

m

m∑
j=1

(
Pr

k←R[`]

[
D̂k is good for ϕj

]
· (ϕj(D)− α)

)

≥ 1

m

m∑
j=1

(
1

2
· (ϕj(D)− α)

)
≥ γ − α

2

So for at least one row x̂ ∈ D̂ it must be the case that val(ϕCvk , x̂) ≥ (γ − α)/2. Since the
distribution D is unchanged, Lemma 4.7 still holds in this setting. Thus we have established that

D is (α(d), TSan(d), C(d)
Γ)-hard-to-sanitize as medians of synthetic data.

5.2 Hardness of Sanitizing with Symmetric Evaluation Functions

In this section we establish the hardness of sanitization for relaxed synthetic data where the eval-
uator function is symmetric.

Definition 5.5 (Symmetric Relaxed Synthetic Data). A sanitizer A : ({0, 1}d)n → ({0, 1}d)n̂
with evaluator E outputs symmetric relaxed synthetic data if there exists a monotone function
g : [0, 1]→ [0, 1] such that

E(x̂1, . . . , x̂n̂, c) = g

(
1

n̂

n̂∑
i=1

c(x̂i)

)
.

Note that symmetric relaxed synthetic data is also a special case of relaxed synthetic data. Our
definition of symmetric relaxed synthetic data is actually symmetric in two respects, because we
require that g does not depend on the predicate c and also that g only depends on the fraction of
rows that satisfy c. Similar to medians of synthetic data,we show that it is intractable to produce
a sanitization as symmetric relaxed synthetic data that is accurate when the queries come from a
CSP that is hard to approximate.

Theorem 5.6. Let Γ = (Γd)d∈N be a family of nice (Definition 3.2) q(d)-CSPs that is closed under
complement (Γd = ¬Γd) and is α + 1/2-hard-to-approximate under (possibly inefficient) Levin
reductions with length blowup LPCP, for α = α(d) ∈ (0, 1/2), and let Enc be the promised encoder.
Assume the existence of a (TFor, QFor)-digital signature scheme Π with verification key length Lvk

and verification time TVer. Let κ = κ(d) be the largest integer such that LPCP(TVer(κ)) ≤ d/2 and
Lvk(κ)q(d) ≤ d/2 as in the construction of D. Let TSan, n : N → N be any functions such that for
every a > 0

n(d) · da + TSan(d) = o(TFor(κ(d)))

21

and for every d ∈ N
n(d) ≤ QFor(κ(d)).

Then the distribution D = Dd(n,Γ,Π,Enc) on n(d)-row databases is (α, TSan(d), C(d)
Γ)-hard-to-

sanitize as symmetric relaxed synthetic data.

By Theorem 3.6, the family of k-clause CNF formulas, for some constant k, is (1/2 + α)-hard-
to-approximate under Levin reductions for α > 0.

Proof. Let Γ be the assumed family of nice q(d) − CSPs that is (α + 1/2)-hard-to-approximate
under (possibly inefficient) Levin reductions with length blowup LPCP. Let R,Enc,Dec be the
functions corresponding to the Levin reudction to Γ and γ = γ(d) ∈ (α, 1] be the parameter from
Definition 3.4.

We will use the same approach as in the proof ofTheorem 4.4, which is to show that the
underlying synthetic database cannot contain a row that satisfies too many clauses of ϕCvk , in
order to show that g must map a small input to a large output and a large input to a small answer,
contradicting the monotonicity of g.

Let ϕCvk = {ϕ1, . . . , ϕm}, then 1
m

∑m
j=1 ϕj(D) ≥ γ. It must also be that 1

m

∑m
j=1 ϕj(D̂) ≤

γ − α− 1/2. Otherwise there would exist a row x̂ ∈ D̂ = A(D) such that val(ϕCvk) ≥ γ − α− 1/2.
But if this were the case we could PCP-decode x̂ as in the proof of Theorem 4.4. Thus

1

m

m∑
j=1

(
ϕj(D)− ϕj(D̂)

)
≥ α+ 1/2

so there must exist J ∈ [m] s.t. ϕJ(D) − ϕJ(D̂) ≥ α + 1/2. Since ϕJ(D̂) ≥ 0 we also have
ϕJ(D) ≥ α+ 1/2 > 1/2, and since ϕJ(D) ≤ 1 we also have ϕJ(D̂) ≤ 1/2− α < 1/2.

By monotonicity of g and α-accuracy of D̂ as symmetric relaxed synthetic data we have

g(1/2− α) ≥ g(ϕJ(D̂)) ≥ ϕJ(D)− α ≥ 1

2
.

Consider the negation of ϕJ . Since ¬ϕJ(D) = 1−ϕJ(D) we can conclude that ¬ϕJ(D) ≤ 1/2−α
and ¬ϕJ(D̂) ≥ 1/2 + α. Thus we have

g(1/2 + α) ≤ g(¬ϕJ(D̂)) ≤ ¬ϕJ(D) + α ≤ 1

2
.

But g(1/2− α) ≥ 1/2 ≥ g(1/2 + α) and α > 0 contradicts the monotonicity of g.

5.3 Hardness of Sanitizing Very Hard CSPs with Relaxed Synthetic Data

In this section we show that no efficient sanitizer can produce accurate relaxed synthetic data for a
sequence of CSPs that is (1− negl(d))-hard-to-approximate under inefficient Levin reductions. By
Theorem 3.6, these CSPs include 3-CNF formulas of ω(log d) clauses.

Intuitively, an efficient sanitizer must produce a synthetic database of n̂(d) = poly(d) rows,
and thus as d grows, an efficient sanitizer cannot produce a synthetic database that contains a
row satisfying a non-negligible fraction of clauses from a particular CSP instance (the signature-
verification CSP from our earlier results). Thus using evaluators of the type in Definition 5.1 there
can only be one answer to most queries, and thus we cannot get an accurate sanitizer.

22

Theorem 5.7. Let Γ = (Γd)d∈N be a family of nice (Definition 3.2) q(d)-CSPs such that Γd ∪¬Γd
is (1 − ε, 1)-hard-to-approximate under (possibly inefficient) Levin reductions with length blowup
LPCP for a negligible function ε = ε(d), and let Enc be the promised encoder. Assume the existence
of a (TFor, QFor)-digital signature scheme Π with verification key length Lvk and verification time
TVer. Let κ = κ(d) be the largest integer such that LPCP(TVer(κ)) ≤ d/2 and Lvk(κ)q(d) ≤ d/2 as
in the construction of D. Let TSan, n : N→ N be any functions such that for every a > 0

n(d) · da + TSan(d) = o(TFor(κ(d)))

and for every d ∈ N
n(d) ≤ QFor(κ(d)).

Then the distribution D = Dd(n,Γ,Π,Enc) on n(d)-row databases is (1/3, TSan(d), C(d)
Γ)-hard-to-

sanitize as relaxed synthetic data.

Proof. Let Γ be the assumed family of nice q(d) − CSPs that is (1 − ε(d), 1)-hard-to-approximate
under (possibly inefficient) Levin reductions with length blowup LPCP. Let R,Enc,Dec be the
functions corresponding to the Levin reudction to Γ. Let D ←R Dd, and A(D) = D̂.

Let ϕCvk = {ϕ1, . . . , ϕm}. By the construction of Dd we have

ϕj(D) = 1

for every j ∈ [m]. As in the proof of Theorem 5.6 it must be that

1

m

m∑
j=1

ϕj(D̂) ≤ ε(d).

Otherwise there would exist a row x̂ ∈ D̂ = A(D) such that val(ϕCvk) ≥ ε(d). But if this were the
case we could PCP-decode x̂ as in the proof of Theorem 4.4.

Since Ej←R[m][ϕj(D̂)] ≤ ε(d), there must exist a subset J ⊆ [m] of size |J | ≥ 2m/3 such that

for all j ∈ J , ϕj(D̂) ≤ 3ε(d) ≤ negl(d).

Since D̂ ∈ ({0, 1}d)n̂ for n̂ = n̂(d) = poly(d) (by the efficiency of A),

1

n̂

n̂∑
i=1

ϕj(x̂i) = ϕj(D̂) ∈ {0, 1/n̂(d), 2/n̂(d), . . . , 1}

and thus ϕj(D̂) ≤ negl(d) implies ϕj(D̂) = 0 for large n. Let E(D̂, c) = f(c(x̂1), . . . , c(x̂n̂), c). If

we assume D̂ is 1/3-accurate as relaxed synthetic data then f(0n̂, ϕj) ≥ 2/3 for every j ∈ J .
Now consider the execution of A on the database D′ = (0d)n. With probability 1 − negl(d),

Dec(0d, Cvk) is not a valid message-signature pair, thus by Definition 3.4 Part 3, we have

ϕCvk(D′) = ϕCvk(0d) ≤ ε(d).

Since the rows of D′ are idenitcal, ϕj(D
′) ∈ {0, 1} for every j ∈ [m]. So for at least a 1 − ε(d)

fraction of j ∈ [m], we have ϕj(D
′) = 0.

Let D̂′ = A(D′). By repeating the signature-forging argument, we see that with probability
1− negl(d)

1

m

m∑
j=1

ϕj(D̂
′) ≤ ε(d)

23

and thus there must exist a subset J ′ ⊆ [m] of size |J ′| ≥ 2m/3 such that j ∈ J ′ =⇒ ϕj(D̂
′) ≤

3ε(d) ≤ negl(d). So ϕj(D̂
′) = 0 for every j ∈ J ′ as well. There must also exist a set J ′′ ⊆ J ′ of size

|J ′′| = (2/3− ε(d))m, such that for every j ∈ J ′′, ϕj(D′) = ϕj(D̂
′) = 0. So if D̂′ is 1/3-accurate for

C as relaxed synthetic data it must be that f(0n̂, ϕj) ≤ 1/3 for every j ∈ J ′′.
By our choice of J and J ′′ there must exist j ∈ J ∩ J ′′ such that:

1. f(0n̂, ϕj) ≥ 2/3, and

2. f(0n̂, ϕj) ≤ 1/3,

which is a contradiction.

5.4 Positive Results for Relaxed Synthetic Data

In this section we present an efficient, accurate sanitizer for small (e.g. polynomial in d) families
of parity queries that outputs symmetric relaxed synthetic data and show that this sanitizer also
yields accurate answers for any family of constant-arity predicates when evaluated as a relaxed syn-
thetic data. Our result for parities shows that relaxed synthetic data (and even symmetric relaxed
synthetic data) allows for more efficient sanitization than standard synthetic data, since Theo-
rem 4.4 rules out an accurate, efficient sanitizer that produces a standard synthetic database, even
for the class of 3-literal parity predicates. Our result for parities also shows that our hardness result
for symmetric relaxed synthetic data (Theorem 5.6) is tight with respect to the required hardness
of approximation, since the class of 3-literal parity predicates is (1/2− ε)-hard-to-approximate [27]

A function f : {0, 1}d → {0, 1} is a k-junta if it depends on at most k variables. Let Jd,k be
the set of all k-juntas on d variables.

Theorem 5.8. There exists an ε-differentially private sanitizer that runs in time poly(n, d) and
produces relaxed synthetic data and is (α, β)-accurate for Jd,k when

n ≥
C
(
d
≤k
)

log
((

d
≤k
)
/β
)

αε

for a sufficiently large constant C, where
(
d
≤k
)

=
∑k

i=0

(
d
i

)
.

The privacy, accuracy, and efficiency guarantees of our theorem can be achieved without relaxed
synthetic data simply by releasing a vector of noisy answers to the queries [18]. Our sanitizer will,
in fact, begin with this vector of noisy answers and construct relaxed synthetic data from those
answers. Our technique is similar to that of Barak et. al. [5], which begins with a vector of noisy
answers to parity queries (defined in Section 5.4.1) and constructs a (standard) synthetic database
that gives answers to each query that are close to the initial noisy answers. They construct their
synthetic database by solving a linear program over 2d variables that correspond to the frequency of
each possible row x ∈ {0, 1}d, and thus their sanitizer runs in time exponential in d. Our sanitizer
also starts with a vector of noisy answers to parity queries and efficiently constructs symmetric
relaxed synthetic data that gives answers to each query that are close to the initial noisy answers
after applying a fixed linear scaling. We then show that the database our sanitizer constructs is
also accurate for the family of k-juntas using an affine shift that depends on the junta.

24

5.4.1 Efficient Sanitizer for Parities

To prove Theorem 5.8, we start with a sanitizer for parity predicates.

Definition 5.9 (Parity Predicate). A function χ : {0, 1}d → {−1, 1} is a parity predicate4 if there
exists a vector s ∈ {0, 1}d s.t.

χ(x) = χs(x) = (−1)〈x,s〉.

We will use wt(s) =
∑d

i=1 si to denote the number of non-zero entries in s.

Theorem 5.10. Let P be a family of parity predicates on d variables such that χ0d 6∈ P. There
exists an ε-differentially private sanitizer A(D,P) that runs in time poly(n, d) and produces sym-
metric relaxed synthetic data that is (α, β)-accurate for P when

n ≥ 2|P| log (2|P|/β)

αε
.

The analysis of our sanitizer will make use of the following standard fact about parity predicates

Fact 5.11. Two parity predicates χs, χt : {0, 1}d → {−1, 1} are either identical or orthogonal.
Specifically, for s 6= t, s 6= 0d and b ∈ {−1, 1},

E
x←R{0,1}d

[χs(x)|χt(x) = b] = E
x←R{0,1}d

[χs(x)] = 0.

Our sanitizer will start with noisy answers to the predicate queries χs(D). Each noisy answer
will be the true answer perturbed with noise from a Laplace distribution. The Laplace distribution
Lap(σ) is a continuous distribution on R with probability density function pσ(y) ∝ exp(−|y|/σ).
The following theorem of Dwork, et. al. [18] shows that these queries are differentially private for
an appropriate choice of σ.

Theorem 5.12 ([18]). Let (c1, c2, . . . , ck) be a set of predicates and let σ = k/nε and let D ∈
({0, 1}d)n be a database. Then the mechanism A(D) = (c1(D) + Z1, c2(D) + Z2, . . . , ck(D) + Zk),
where (Z1, . . . , Zk) are independent samples from Lap(σ) is ε-differentially private.

In order to argue about the accuracy of our mechanism we need to know how much error is
introduced by noise from the Laplace distribution. The following fact gives a bound on the tail of
a Laplace random variable.

Fact 5.13. The tail of the Laplace distribution decays exponentially. Specifically,

Pr[|Lap(σ)| ≥ t] = exp(−t/σ).

Now we present our sanitizer for queries that are parity functions. We will not consider the
query χ0d as χ0d(x) = 1 for every x ∈ {0, 1}d. Let P be a set of parity functions that does not
contain χ0d . We now present a poly(n, d, |P|)-time sanitizer for P.

Our sanitizer starts by getting noisy estimates of the quantities χ(D) for each predicate χ ∈ P
by adding Laplace noise. Then it builds the relaxed synthetic data D̂ in blocks of rows. Each block

4In the preliminaries we define a predicate to be a {0, 1}-valued function but our definition naturally generalizes
to {−1, 1}-valued functions. For c : {0, 1}d → {−1, 1} and database D = (x1, . . . , xn) ∈ ({0, 1}d)n, we define
c(D) = 1

n

∑n
i=1 c(xi)

25

of rows is “assigned” to contain an answer to a query χ. In that block we randomly choose rows
such that the expected value of χ on each row equals the noisy estimate of χ(D). By Fact 5.11,
the expected value of every other predicate χ′ is 0 for rows in this block. The sanitizer is accurate
so long as the total number of rows is sufficient for the value of χ(D̂) to be concentrated around
its expectation.

Sanitizer A(D,P), where P =
{
χ(1), . . . , χ(t)

}
:

Let σ := |P|/nε T := (2|P|/α2) log (4|P|/β)
for all j = 1, . . . , t do

Let aj := χ(j)(D) + Lap(σ)
for i = jT + 1 to (j + 1)T do

With probability (aj + 1)/2: Let x̂i ←R

{
x ∈ {0, 1}d | χ(j)(x) = 1

}
Otherwise: Let x̂i ←R

{
x ∈ {0, 1}d | χ(j)(x) = −1

}
end for

end for
return D̂ = (x̂1, . . . , x̂tT)

Evaluator EP(D̂, χ):

return |P| · χ(D̂)

The following claims will suffice to establish Theorem 5.10

Claim 5.14. A is ε-differentially private.

Proof. The output of A only depends on the answer to |P| predicate queries. By Theorem 5.12
the answers to |P| predicate queries perturbed by independent samples from Lap(|P|/nε) is ε-
differentially private.

Claim 5.15. A is (α, β)-accurate for P when

n ≥ 2|P| log(2|P|/β)

αε
.

Proof. We want to show that for every χ(j) ∈ P∣∣∣|P| · χ(j)(D̂)− χ(j)(D)
∣∣∣ ≤ α

except with probability β. To do so we consider separately the error introduced in going from
χ(j)(D) to aj using Laplacian noise and the error introduced in going from noisy answers aj to

χ(j)(D̂) by sampling rows at random.
First we bound the error introduced by the noisy queries to D. Specifically, we want to show

that for every χ(j) ∈ P ∣∣∣χ(j)(D)− aj
∣∣∣ ≤ α/2

26

except with probability β/2. For each χ(j) we have

Pr[|χ(j)(D)− aj | ≥ α/2] ≤ exp(−nεα/2|P|)

by Fact 5.13. So by a union bound we have

Pr[∃χ(j) |χ(j)(D)− aj | ≥ α/2] ≤ |P| exp(−α/2σ) ≤ |P| exp(−nεα/2|P|) < β/2,

so long as

n ≥ 2|P| log(2|P|/β)

αε
.

We also want to show that for every χ(j) ∈ P∣∣∣|P| · χ(j)(D̂)− aj
∣∣∣ ≤ α/2

except with probability β/2, where aj is the noisy answer for χ(j)(D) computed in A(D). To do so,

we will show that the expectation of |P|χ(j)(D̂) is indeed aj , then we will use a Chernoff-Hoeffding
bound to show that the random rows generated by A(D) are close to their expectation. Finally we
take a union bound over all χ ∈ P.

Fix χ(j) ∈ P and consider χ(j)(D̂). χ(j)(D̂) is the sum of T independent biased coin flips. In
rows jT + 1, jT + 2, . . . , (j + 1)T (the rows where we focus on χ(j)) the expectation of each coin
flip is aj , and in all other rows the expectation of each coin flip is 0 by Fact 5.11. Thus

E
[
χ(j)(D̂)

]
= E

[
1

n̂

n̂∑
i=1

χ(j)(x̂i)

]
= aj/|P|

for every χ(j) ∈ P.
By a Chernoff-Hoeffding Bound5 we conclude

Pr
[∣∣∣|P| · χ(j)(D̂)− aj

∣∣∣ ≥ α/2] < 2 exp(−Tα2/2|P|).

By taking a union bound over P we conclude

Pr
[
∃χ(j)

∣∣∣|P · |χ(j)(D̂)− aj
∣∣∣ ≥ α/2] < 2|P| exp(−Tα2/2|P|) ≤ β/2.

Combining the two bounds suffices to prove the claim.

5.4.2 Efficient Sanitizer for k-Juntas

We now show that our sanitizer for parity queries can also be used to give accurate answers for any
family of k-juntas, for constant k. We start with the observation that k-juntas only have Fourier
mass on coefficients of weight at most k. Alternatively, this says that any k-junta can be written
as a linear combination of parity functions on at most k variables. (In the language of our previous
construction, χs such that wt(s) ≤ k.) Thus we start by running our sanitizer for parity predicates
on the set Pk containing all parity predicates on at most k variables. We have to modify the

5One form of the Chernoff-Hoeffding Bound states if X1, . . . , Xn are independent random variables over [0, 1] and
X = (1/n)

∑n
i=1 then Pr[|X − E[X]| ≥ t] < 2 exp(−2nt2) [14]

27

evaluator function to take into account that not every k-junta predicate has the same bias. Indeed,
we cannot control χ0d(D̂) in our output, as χ0d(D) = 1 for any database. Thus our evaluator will
apply an affine shift to each result that depends on the junta. Because the evaluator depends on
the predicate, the resulting sanitizer no longer outputs symmetric relaxed synthetic data.

The use of a sanitizer for parity queries as a building block to construct a sanitizer for arbitrary
k-juntas is inspired by [5], which uses a noisy vector of answers to parity queries as a building block
to construct synthetic data for a particular class of k-juntas (conjunctions on k-literals). However,
while their sanitizer constructs a standard synthetic database and is inefficient, our construction of
symmetric relaxed synthetic data for parity predicates is efficient, and thus our eventual sanitizer
for k-juntas will also be efficient.

Consider a predicate c : {0, 1}d → {0, 1}. Then we can take the Fourier expansion

c(x) =
∑

s∈{0,1}d
ĉ(s)χs(x)

where
ĉ(s) = E

x←R{0,1}d
[c(x)χs(x)].

The accuracy of our sanitizer relies on the following fact about the Fourier coefficients of k-juntas

Fact 5.16. If c : {0, 1}d → {0, 1} is a k-junta, then wt(s) > k =⇒ ĉ(s) = 0

Let Pk =
{
χs | s ∈ {0, 1}d, 1 ≤ wt(s) ≤ k

}
. Our sanitizer for k-juntas is just the sanitizer for

parities applied to the set Pk. We now define the evaluator that computes the answer to conjunction
queries from the output of A(D,Pk).

Evaluator E(D̂, c) for a k-junta c:

return |Pk|c(D̂)− (|Pk| − 1) ĉ(∅)
Efficiency and privacy follow from the analysis of A. Let Jd,k be a family of all k-juntas on d

variables.

Theorem 5.17. A(D,Pk) is (α, β)-accurate for Jd,k using E when

n ≥ 2|Pk| log(2|Pk|/β)

αε
.

Proof. Let c ∈ Jd,k be a fixed predicate. Assume that D̂ is α-accurate for Pk using EP . This event
occurs with probability at least 1− β by Theorem 5.10 and our assumption on n. We now analyze
the quantity c(D̂).

28

c(D̂) =
1

n̂

n̂∑
i=1

c(x̂i)

=
1

n̂

n̂∑
i=1

∑
s∈{0,1}d

ĉ(s)χs(x̂i)

=
∑

s∈{0,1}d:|s|≤k

ĉ(s)χs(D̂) (3)

= ĉ(∅) +
∑

s∈{0,1}d:1≤|s|≤k

ĉ(s)χs(D̂) (4)

≤ ĉ(∅) +
∑

s∈{0,1}d:1≤|s|≤k

ĉ(s)

(
χs(D) + α

|Pk|

)
(5)

≤ 1

|Pk|

(|Pk| − 1) ĉ(∅) +
∑

s∈{0,1}d:|s|≤k

(ĉ(s)χs(D) + α)


=

1

|Pk|
((|Pk| − 1) ĉ(∅) + c(D)) + α

where step 3 uses Fact 5.16, step 4 uses the fact that χ0d(x) = 1 everywhere, and step 5 uses the
fact that D̂ is α-accurate for Pk when evaluated by EP . A similar argument shows that

c(D̂) ≥ 1

|Pk|
((|Pk| − 1) ĉ(∅) + c(D))− α

Thus D̂ = A(D) is α-accurate for Jd,k using E with probability at least 1− β.

Acknowledgments

We thank Boaz Barak, Irit Dinur, Cynthia Dwork, Vitaly Feldman, Oded Goldreich, Johan H̊astad,
Valentine Kabanets, Dana Moshkovitz, Anup Rao, Guy Rothblum, and Les Valiant for helpful
conversations.

References

[1] N. R. Adam and J. Wortmann. Security-control methods for statistical databases: A comparative study.
ACM Computing Surveys, 21:515–556, 1989.

[2] M. Alekhnovich, M. Braverman, V. Feldman, A. R. Klivans, and T. Pitassi. The complexity of properly
learning simple concept classes. In J. Comput. Syst. Sci., volume 74, pages 16–34, 2008.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness of
approximation problems. J. ACM, 45(3):501–555, 1998.

[4] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking computations in polylogarithmic time.
In STOC, pages 21–31, 1991.

29

[5] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. Privacy, accuracy, and
consistency too: A holistic solution to contingency table release. In Proceedings of the 26th Symposium
on Principles of Database Systems, pages 273–282, 2007.

[6] B. Barak and O. Goldreich. Universal arguments and their applications. In SIAM J. Comput., volume 38,
pages 1661–1694, 2008.

[7] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. P. Vadhan. Robust pcps of proximity, shorter
pcps, and applications to coding. In SIAM J. Comput., volume 36, pages 889–974, 2006.

[8] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: The SuLQ framework. In Pro-
ceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
June 2005.

[9] A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive database privacy. In
Proceedings of the 40th ACM SIGACT Symposium on Thoery of Computing, 2008.

[10] K. Chandrasekaran, J. Thaler, J. Ullman, and A. Wan. Faster private release of marginals on small
databases. In ITCS, pages 387–402. ACM, 12-14 January 2014.

[11] N. Creignou. A dichotomy theorem for maximum generalized satisfiability problems. In J. Comput.
Syst. Sci., volume 51, pages 511–522, 1995.

[12] I. Dinur and K. Nissim. Revealing information while preserving privacy. In Proceedings of the Twenty-
Second ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 202–
210, 2003.

[13] I. Dinur and O. Reingold. Assignment testers: Towards a combinatorial proof of the pcp theorem. In
SIAM J. Comput., volume 36, pages 975–1024, 2006.

[14] D. P. Dubhashi and S. Sen. Concentration of measure for randomized algorithms: techniques and
applications. In Handbook of Randomized Algorithms, 2001.

[15] G. Duncan. International Encyclopedia of the Social and Behavioral Sciences, chapter Confidentiality
and statistical disclosure limitation. Elsevier, 2001.

[16] C. Dwork. A firm foundation for private data analysis. Communications of the ACM (to appear).

[17] C. Dwork. Differential privacy. In Proceedings of the 33rd International Colloquium on Automata,
Languages and Programming (ICALP)(2), pages 1–12, 2006.

[18] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data
analysis. In Proceedings of the 3rd Theory of Cryptography Conference, pages 265–284, 2006.

[19] C. Dwork, M. Naor, O. Reingold, G. Rothblum, and S. Vadhan. When and how can privacy-preserving
data release be done efficiently? In Proceedings of the 2009 International ACM Symposium on Theory
of Computing (STOC), 2009.

[20] C. Dwork and K. Nissim. Privacy-preserving datamining on vertically partitioned databases. In Pro-
ceedings of CRYPTO 2004, volume 3152, pages 528–544, 2004.

[21] C. Dwork, G. Rothblum, and S. P. Vadhan. Boosting and differential privacy. In Proceedings of FOCS
2010, 2010.

[22] A. Evfimievski and T. Grandison. Encyclopedia of Database Technologies and Applications, chapter
Privacy Preserving Data Mining (a short survey). Information Science Reference, 2006.

[23] V. Feldman. Hardness of proper learning. In The Encyclopedia of Algorithms. Springer-Verlag, 2008.

[24] V. Feldman. Hardness of approximate two-level logic minimization and PAC learning with membership
queries. Journal of Computer and System Sciences, 75(1):13–26, 2009.

30

[25] O. Goldreich. Foundations of Cryptography, volume 2. Cambridge University Press, 2004.

[26] M. Hardt, G. N. Rothblum, and R. A. Servedio. Private data release via learning thresholds. In SODA,
pages 168–187. SIAM, 17-19 January 2012.

[27] J. H̊astad. Some optimal inapproximability results. In J. ACM, volume 48, pages 798–859, 2001.

[28] J. Justesen. On the complexity of decoding reed-solomon codes (corresp.). IEEE Transactions on
Information Theory, 22(2):237–238, 1976.

[29] M. J. Kearns and L. G. Valiant. Cryptographic limitations on learning boolean formulae and finite
automata. In J. ACM, volume 41, pages 67–95, 1994.

[30] S. Khanna, M. Sudan, L. Trevisan, and D. P. Williamson. The approximability of constraint satisfaction
problems. In SIAM J. Comput., volume 30, pages 1863–1920, 2000.

[31] J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In STOC,
1992.

[32] V. Lyubashevsky and D. Micciancio. Asymptotically efficient lattice-based digital signatures. In
R. Canetti, editor, TCC, volume 4948 of Lecture Notes in Computer Science, pages 37–54. Springer,
2008.

[33] S. Micali. Computationally sound proofs. In SIAM J. Comput., volume 30, pages 1253–1298, 2000.

[34] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications. In
STOC, pages 33–43, 1989.

[35] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. In J.
Comput. Syst. Sci., volume 43, pages 425–440, 1991.

[36] L. Pitt and L. G. Valiant. Computational limitations on learning from examples. In J. ACM, volume 35,
pages 965–984, 1988.

[37] J. P. Reiter and J. Drechsler. Releasing multiply-imputed synthetic data generated in two stages to
protect confidentiality. Iab discussion paper, Intitut für Arbeitsmarkt und Berufsforschung (IAB),
Nürnberg (Institute for Employment Research, Nuremberg, Germany), 2007.

[38] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In STOC, pages
387–394, 1990.

[39] A. Roth and T. Roughgarden. Interactive privacy via the median mechanism. In STOC 2010, 2010.

[40] D. A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE Transactions on
Information Theory, 42(6):1723–1731, 1996.

[41] J. Thaler, J. Ullman, and S. P. Vadhan. Faster algorithms for privately releasing marginals. In ICALP
(1), pages 810–821. Springer, 9-13 July 2012.

[42] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

31

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

