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Abstract

Statistical query (SQ) learning model of Kearns is a natural restriction of the PAC learning model
in which a learning algorithm is allowed to obtain estimates of statistical properties of the examples
but cannot see the examples themselves [29]. We describe a new and simple characterization of the
query complexity of learning in the SQ learning model. Unlike the previously known bounds on SQ
learning [9, [IT], [42], B} 7] our characterization preserves the accuracy and the efficiency of learning.
The preservation of accuracy implies that our characterization gives the first characterization of SQ
learning in the agnostic learning framework of Haussler [23], and Kearns, Schapire and Sellie [31].
The preservation of efficiency is achieved using a new boosting technique and allows us to derive a
new approach to the design of evolution algorithms in Valiant’s model of evolvability [40]. We use
this approach to demonstrate the existence of a large class of monotone evolution algorithms based on
square loss performance estimation. These results differ significantly from the few known evolution
algorithms and give evidence that evolvability in Valiant’s model is a more versatile phenomenon
than there had been previous reason to suspect.

1 Introduction

We study the complexity of learning in Kearns’ well-known statistical query (SQ) learning model
[29]. Statistical query learning is a natural restriction of the PAC learning model in which a learning
algorithm is allowed to obtain estimates of statistical properties of the examples but cannot see the
examples themselves. Formally, the learning algorithm is given access to STAT(f, D) — a statistical
query oracle for the unknown target function f and distribution D over some domain X. A query to
this oracle is a function of an example ¢ : X x {—1,1} — {—1,1}. The oracle may respond to the
query with any value v satisfying |E,p[¢(z, f(x))] — v| < 7 where 7 € [0, 1] is the tolerance of the
query.

Kearns demonstrated that any learning algorithm that is based on statistical queries can be
automatically converted to a learning algorithm robust to random classification noise of arbitrary
rate smaller than the information-theoretic barrier of 1/2 [29]. Most known learning algorithms
can be converted to statistical query algorithms and hence the SQ model proved to be a powerful
technique for the design of noise-tolerant learning algorithms (e.g. [29], 13| [8, 15]). In fact, since the
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introduction of the model virtually alﬂ known noise-tolerant learning algorithms were obtained from
SQ algorithms. The basic approach was also extended to deal with noise in numerous other learning
scenarios and has also found applications in several other areas including privacy-preserving learning
and learning on multi-core systems [4, [7, 14, 28]. This makes the study of the complexity of SQ
learning crucial for the understanding of noise-tolerant learning and PAC learning in general.

Kearns has also demonstrated that there are information-theoretic impediments unique to SQ
learning: parity functions require an exponential number of SQs to be learned [29]. Further, Blum et
al. proved that the number of SQs required for weak learning (that is, one that gives a non-negligible
advantage over the random guessing) of a concept class C' is characterized by a relatively simple com-
binatorial parameter of C' called the statistical query dimension SQ-DIM(C, D) [9]. SQ-DIM(C, D)
measures the maximum number of “nearly uncorrelated” (relative to distribution D) functions in
C. Bshouty and Feldman gave an alternative way to characterize weak learning by statistical query
algorithms that is based on the number of functions required to weakly approximate each function
in C' [1I]. These bounds for weak learning were strengthened and extended to other variants of sta-
tistical queries in several works [10] [42] [T6]. Notable applications of these bounds are lower bounds
on SQ-DIM of several concept classes by Klivans and Sherstov [34] and an upper-bound on the SQ
dimension of halfspaces by Sherstov [30].

While the query complexity of weak SQ learning is fairly well-studied, few works have addressed
the query complexity of strong SQ learning. It is easy to see that there exist classes of functions for
which strong SQ complexity is exponentially higher than the weak SQ complexity. One such example
is learning of monotone functions with respect to the uniform distribution. The complexity of weak
SQ learning and hence the statistical query dimension are polynomial [30, 12]. However, strong
PAC learning of monotone functions with respect to the uniform distribution requires an exponential
number of examples and hence an exponential number of statistical queries [30} [6]. In addition, it is
important to note that the statistical query dimension and other known notions of statistical query
complexity are distribution-specific and therefore one cannot directly invoke the equivalence of weak
and strong SQ learning in the distribution-independent setting [I]. The first explicitﬂ characterization
of strong SQ learning with respect to a fixed distribution D was only recently derived by Simon [37].

1.1 Our Results

Our main result is a complete characterization of the query complexity of SQ learning in both the
PAC and the agnostic models. Informally, our characterization states that a concept class C' is SQ
learnable over a distribution D if and only if for every real-valued function v, there exists a small (i.e.
polynomial-size) set of functions G, such that for every f € C, if sign(¢) is not “close” to f then
one of the functions in G, is “noticeably” correlated with f —1). More formally, for a distribution D
over X, we define the (semi-)inner product over the space of real-valued functions on X as (¢, ¥)p =
E..p[o(x) - ¥(z)]. Then C is SQ learnable to accuracy e if and only if for every ¢ : X — [—1,1],
there exists a set of functions Gy such that (1) for every f € C, if Prp[sign(¢) # f] > € then
[{g, f —¥)p| > v for some g € Gy; (2) |Gy] is polynomial and v > 0 is inverse-polynomial in 1/¢ and
n (the size of the learning problem). We refer to this characterization as approzimation-based.

For Boolean functions Bshouty and Feldman proved that the number of functions required to
weakly approximate every function in a set of functions C is polynomially related to the (weak)

LA notable exception is the algorithm for learning parities of Blum et al. [10] which is tolerant to random noise, albeit
not in the same strong sense as the algorithms derived from SQs.

2An earlier work has also considered this question but the characterization that was obtained is in terms of query-
answering protocols that are essentially specifications of non-adaptive algorithms [3].



statistical query dimension of C' [II]. We use a generalization of this idea to real-valued func-
tions to obtain another characterization of SQ learnability. Specifically, for a set of functions
F, we say that SQ-DIM(F, D) equals d if d is the largest number for which there are d func-
tions f1, fo,..., fa € F, such that for every i # j, |(fi, fj)p| < 1/d. Our approximation-based
characterization leads to the following characterization based on SQ-DIM: SQ-SDIM(C,D,e) =
sup,, {SQ-DIM((C'\ B (sign(v),€)) — 1, D)}, where BP (sign(t)), €) is the set of functions that dif-
fer from sign(¢)) on at most € fraction of X and F — ¢ = {f — ¢ | f € F}. When the correlation
between functions is interpreted as an inner product, SQ-DIM(F, D) measures the largest number
of almost orthogonal (relative to D) functions in F'. Therefore we refer to this characterization as
orthogonality-based.

An important property of both of these characterizations is that the accuracy parameter in
the dimension corresponds to the accuracy parameter € of learning (up to the tolerance of the SQ
learning algorithm). The advantage of the approximation-based characterization is that it preserves
computational efficiency of learning. Namely, the set of approximating functions for e-accurate
learning can be computed efficiently if and only if there exists an efficient SQ learning algorithm
achieving error of at most €. The orthogonality-based characterization does not preserve efficiency
but is more easy to analyze when proving lower bounds. Neither of these properties are possessed by
the previous characterizations of strong SQ learning [3] 37, [38].

The preservation of accuracy implies that both of our characterizations can be naturally extended
to agnostic learning by replacing the concept class C' with the set of all functions that are A-close to
at least one concept in C' (see Th. . Learning in this model is notoriously hard and this is readily
confirmed by the SQ dimension we introduce. For example, in Theorem [£.6] we prove that the SQ
dimension of agnostic learning of monotone conjunctions with respect to the uniform distribution
is super-polynomial. This provides new evidence that agnostic learning of conjunctions is a hard
problem even when restricted to the monotone case over the uniform distribution. The preservation
of accuracy is critical for the generalization to agnostic learning since, unlike in the PAC model,
achieving, for example, twice the error (i.e. 2-A) might be a substantially easier task than learning
to accuracy A + e (for example when A > 1/4).

We note that the characterization of (strong) SQ learning by Simon [37] has some similarity to
ours. It also examines weak statistical query dimension of F' — ¢ for F' C C' and some function .
However, the maximization is over all sets of functions F' satisfying several properties and ¢ is fixed to
be the average of functions in F. Simon’s SQ dimension and the characterization were substantially
simplified in a very recent and independent work of Szorényi [38]. His elegant characterization result
is based on measuring the maximum number of functions in C' whose pairwise correlations are nearly
identical. It was shown by Szo6rényi that his dimension can be directly related to SQ-SDIM. His proof
of the upper bound on the SQ learning complexity uses an inefficient algorithm and therefore his
characterization does not preserve efficiency of computation. The proof of the lower bound doubles
the accuracy (that is, the dimension with accuracy e lower bounds the SQ learning complexity with
accuracy 2¢). Therefore the lower bound does not preserve the accuracy of learning. The techniques
in his proofs are not directly comparable to ours.

1.2 Overview of the Proof

To prove the first direction of our characterization we simulate the SQ learning algorithm for C' while
replying to its statistical queries using v in place of the unknown target function f. If ¢ is not close
to f then one of the queries in this execution has to distinguish between f and v, giving a function
that weakly approximates f — . Hence the polynomial number of queries in this execution implies
the existence of the set G, with the desired property.



For the second direction we use the fact that (g, f —1)p > « means that g “points” in the direction
of f from %), that is, 1) + 7 - g is closer to f than ¢ by at least 42 in the norm corresponding to our
inner product. Therefore one can “learn” the target function f by taking steps in the direction of f
until the hypothesis converges to f. This argument requires the hypothesis at each step to have range
in [—1, 1] and therefore we apply a projection step after each update. This process is closely related
to projected gradient descent — a well-known technique in a number of areas. The closest analogues
of this technique in learning are some boosting algorithms (e.g. [5]). In particular, our algorithm is
closely related to the hard-core set construction of Impagliazzo [24] adapted to boosting by Klivans
and Servedio [33]. The proof of our result can also be seen as a new type of boosting algorithm that
instead of using a weak learning algorithm on different distributions uses a weak learning algorithm
on different target functions (namely f — ). This connection is explored in [I9].

1.3 Applications to Evolvability

The characterization and its efficiency-preserving proofs imply that if C is SQ learnable then for every
hypothesis function 1, there exists a small and efficiently computable set of functions N (1)) such that
if ¢ is not “close” to f € C then one of the functions in N(v) is “closer” to f than ¢ (Th. [5.4).
This property implies that every SQ learnable C' is learnable by a canonical learning algorithm which
learns C' via a sequential process in which at every step the best hypothesis is chosen from a small
and fixed pool of hypotheses “adjacent” to the current hypothesis. This type of learning has been
recently proposed by Valiant as one that can explain the acquisition of complex functionality by
living organisms through the process of evolution guided by natural selection [40]. One particular
important issue raised by the model is the ability of an evolution algorithm to converge to a high
accuracy hypothesis without relying on decreases in the performance in the process of evolving. We
refer to this property as being monotone. Monotonicity allows an evolution algorithm to adjust to a
change of the target function without sacrificing the performance of the current hypothesis. Existence
of evolution algorithms that are robust to such changes could explain the ability of some organisms
to adapt to changes in environmental conditions without the need for a “restart”. Monotonicity is
not required in the basic Valiant’s model and the power of evolvability without this requirement was
resolved in our recent work [I6] [I8]. There we showed that, depending on how the performance of
hypotheses is measured, evolvability is equivalent to either the SQ learnability or the learnability by
restricted SQs referred to as correlational SQs (see Sec. for the definition). Prior to this work
monotone evolvability was only known for several very restricted classes of functions and distributions,
namely, conjunctions over the uniform distribution [4()]E[, decision lists over the uniform distribution
[35], and the singletons (functions that are positive on a single point) over all distributions [I8].
Interestingly, there are no known non-monotone evolution algorithms which were designed for specific
concept classes (rather than obtained through general transformation from SQ learning algorithms).
Valiant’s original model and the results in [40] and [16] use Boolean hypotheses and the correlation
(or, equivalently, the probability of agreement) is used to measure the performance of hypotheses.
In Michael’s work measuring performance using the quadratic loss over all real-valued hypotheses
was introduced and used to prove evolvability of decision lists [35]. The power of using different loss
functions over real-valued hypotheses was studied in [I8] where we showed that evolvability with the
Boolean loss implies evolvability with the quadratic loss (and all other loss functions) but not vice
versa.

Our canonical learning algorithms can be fairly easily translated into evolution algorithms demon-
strating that every concept class C' SQ-learnable with respect to a distribution D, is evolvable mono-

3Monotonicity was demonstrated explicitly by Kanade et al. 27].



tonically over D (Th. when the performance is measured using the quadratic loss. While we
do not know how to extend this general method to the more robust distribution-independent evolv-
ability, we show that the underlying ideas can be useful for this purpose as well. Namely, we prove
distribution-independent and monotone evolvability of Boolean disjunctions (or conjunctions) using
a simple and natural mutation algorithm (Th. . The mutation algorithm is based on slight ad-
justments of the contribution of each of the Boolean variables while bounding the total value of
contributions (which corresponds to the projection step).

The stronger properties of the quadratic loss function on real-valued hypotheses were first ex-
ploited in Michael’s algorithm for evolving decision lists [35]. The model in that work is slightly
different from ours as it uses representations of unbounded range (versus the [—1,1] range in our
work) and a scaled quadratic loss function (with the scale determined by the desired accuracy of the
evolution algorithm). Hence the result in [35] will not hold in the model we consider here (which
was defined in [I§]). The analysis in his work relies heavily on the particular properties the Fourier
transform of decision lists when learned over the uniform distribution and is not directly related to
the broad setting we consider here. Formal definitions of the model and the results are given in
Section [l

1.4 Relation to the Earlier Version

Since the appearance of the earlier version of this work [I7] we have found ways to strengthen some
of the parameters of the characterizations. As a result the dimensions used here differ from the ones
introduced in [I7]. Also, unlike the dimension we use here, the SQD. dimension in [I7] preserves
the output hypothesis space and hence is suitable for characterizing proper learning. To emphasize
the difference we use different notation for the dimensions defined in the two versions of the work.
In addition, the characterization of learning in the agnostic model is now simplified using recent
distribution-specific agnostic boosting algorithms [19] 25].

2 Preliminaries

For a positive integer ¢, let [¢(] denote the set {1,2,...,¢}. We denote the domain of our learning
problems by X and let F7° denote the set of all functions from X to [—1, 1] (that is all the functions
with Lo, norm bounded by 1). It will be convenient to view a distribution D over X as defining
the product (¢,v)p = Eplé(z) - ¢(z)] over the space of real-valued functions on X. It is easy to
see that this is simply a non-negatively weighted version of the standard dot product over R¥ and
hence is a positive semi-inner product over RX. The corresponding norm is defined as [|¢||p =
VEp[¢?(z)] = \/{¢,$)p. We define an e-ball around a Boolean function h as B (h,e) = {g: X —
{—~1,1} | Prp|f # g] < €}. For two real-valued functions ¢ and ¢ we let LY (¢, ) = Ep[|¢(z)—(x)]].
For a set of real-valued functions F' and a real-valued function ¢ we denote by F'—¢ = {f—v¢ | f € F'}.
For a real value a, we denote its projection to [—1,1] by Pj(a). That is, Pi(a) = a if |a] < 1 and
Py (a) = sign(a), otherwise.

2.1 PAC Learning

For a domain X, a concept class over X is a set of {—1,1}-valued functions over X referred to as
concepts. A concept class together with a specific way to represent all the functions in the concept
class is referred to as a representation class. For brevity, we often refer to a representation class as
just a concept class with some implicit representation scheme.



There is often a complexity parameter n associated with the domain X and the concept class C'
such as the number of Boolean variables describing an element in X or the number of real dimensions.
In such a case it is understood that X = J,,~; X, and C = |J,,~; Cpn. We drop the subscript n when it
is clear from the context. In some cases it useful to consider another complexity parameter associated
with C: the minimum description length of f under the representation scheme of C. Here, for brevity,
we assume that n (or a fixed polynomial in n) bounds the description length of all functions in C,,.

The models we consider are based on the well-known PAC learning model introduced by Valiant
[39]. Let C be a representation class over X. In the basic PAC model a learning algorithm is
given examples of an unknown function f from C on points randomly chosen from some unknown
distribution D over X and should produce a hypothesis i that approximates f. Formally, an ezample
oracle EX(f, D) is an oracle that upon being invoked returns an example (z, f(x)), where z is chosen
randomly with respect to D, independently of any previous examples.

An algorithm is said to PAC learn C in time t if for every ¢ > 0, f € C, and distribution D over
X, the algorithm given € and access to EX(f, D) outputs, in time ¢ and with probability at least 2/3,
a hypothesis h that is evaluatable in time ¢ and satisfies Prp[f(x) # h(z)] < e. For convenience we
also allow real-valued hypotheses in F7°. Such a hypothesis needs to satisfy (f(z), h(z))p > 1 — 2e.
A real-valued hypothesis ¢(x) can be also thought of as a randomized Boolean hypothesis ®(z), such
that ¢(z) equals the expected value of ®(z). Hence (f(z),¢(x))p > 1 — 2¢ is equivalent to saying
that the expected error of ®(x) is at most e. We say that an algorithm efficiently learns C' when ¢ is
upper bounded by a polynomial in n, 1/e.

The basic PAC model is also referred to as distribution-independent learning to distinguish it
from distribution-specific PAC learning in which the learning algorithm is required to learn only with
respect to a single distribution D known in advance.

A weak learning algorithm [32] is a learning algorithm that produces a hypothesis whose dis-
agreement with the target concept is noticeably less than 1/2 (and not necessarily less than any
e > 0). More precisely, a weak learning algorithm produces a hypothesis h € Fi° such that
(f(z),h(z))p > 1/p(n) for some fixed polynomial p.

2.2 Agnostic Learning

The agnostic learning model was introduced by Haussler [23] and Kearns et al. [31] in order to model
situations in which the assumption that examples are labeled by some f € C does not hold. In the
most general version of the model the examples are generated from some unknown distribution A
over X x {—1,1}. The goal of an agnostic learning algorithm for a concept class C is to produce
a hypothesis whose error on examples generated from A is close to the best possible by a concept
from C. Any distribution A over X x {—1,1} can be described uniquely by its marginal distribution
D over X and the expectation of the label b given z. That is, we refer to a distribution A over
X x {—=1,1} by a pair (D4, ¢4) where D4(z) = Pry y~alr = 2] and

ba(z) =B pyoalb | 2 =]
Formally, for a function h € F7° and a distribution A = (D, ¢) over X x {—1,1}, we define
A(A,h) = LY (¢, h)/2 .
Note that for a Boolean function h, A(A, h) is exactly the error of h in predicting an example drawn

randomly from A or Pr, p)~a[h(z) # b]. For a concept class C, let A(A,C) = infr,ec{A(A,h)} .
Kearns et al. [3T] define agnostic learning as follows.



Definition 2.1 An algorithm A agnostically learns a representation class C if for every ¢ > 0,

distribution A over X x {—1,1}, A given access to examples drawn randomly from A, outputs, with
probability at least 2/3, a hypothesis h € F7° such that A(A,h) < A(A,C) +e.

As in the PAC learning, the learning algorithm is efficient if it runs in time polynomial 1/€ and n.

More generally, for 0 < a < < 1/2 an («, 8)-agnostic learning algorithm is the algorithm that
produces a hypothesis h such that A(A,h) < 8 whenever A(4,C) < a. In the distribution-specific
version of this model, learning is only required for every A = (D, ¢), where D equals to some fixed
distribution known in advance.

2.3 The Statistical Query Learning Model

In the statistical query model of Kearns [29] the learning algorithm is given access to STAT(f, D) —
a statistical query oracle for target concept f with respect to distribution D instead of EX(f, D). A
query to this oracle is a pair (1, 7) where ¢ : X x {—1,1} — {—1,1} and 7 > 0. The oracle may
respond to the query with any value v satisfying |Ep[i(x, f(x))] — v| < 7 where 7 is referred to as
the tolerance of the query. For convenience, we allow the query functions to be real-valued in the
range [—1,1]. As it has been observed by Aslam and Decatur [2], this extension is equivalent to the
original SQ model.

An algorithm A is said to learn C in time ¢ from statistical queries of tolerance 7 if A PAC
learns C using STAT(f, D) in place of the example oracle. In addition, each query ¢ made by A
has tolerance 7 and can be evaluated in time t. The statistical query learning complezity of C over
D is the minimum number of queries of tolerance 7 sufficient to learn C' over D to accuracy € and is
denoted by SLC(C, D, €, 7).

The algorithm is said to (efficiently) SQ learn C' if ¢ is polynomial in n and 1/e¢, and 7 is lower-
bounded by the inverse of a polynomial in n and 1/e.

The SQ learning model extends to the agnostic setting analogously. That is, random examples
from A are replaced by queries to the SQ oracle STAT(A). For a query ¢ as above, STAT(A) returns
a value v satisfying |E, py~a[t)(2,0)] —v] < 7. We denote the agnostic statistical query learning
complezity of C over D by ASLC(C, D, €, ).

A correlational statistical query is a statistical query for a correlation of a function over X with
the target [11]. Namely the query function ¢ (z,£) = ¢(z) - £ for a function ¢ € F°. We say that a
query is target-independent if ¢)(x, £) = ¢(x) for a function ¢ € F°, that is, if ¢ is a function of the
point z alone. We will need the following simple fact by Bshouty and Feldman [I1] to relate learning
by statistical queries to learning by CSQs.

Lemma 2.2 ([I1]) For any function ¢ : X x {—1,1} — [-1,1], ¥(x,l) = ¢1(x) - £+ pa(x), for some
1,02 € F7°. In particular a statistical query (v, T) with respect to any distribution D can be answered
using a correlational statistical query (¢1(x) - £,71) and a target-independent query (¢2(x),T2), for
any T1,Te such that 7 =11 + 7.

2.4 (Weak) SQ Dimension

Blum et al. showed that concept classes weakly SQ learnable using only a polynomial number of
statistical queries of inverse polynomial tolerance are exactly the concept classes that have polynomial
statistical query dimension or SQ-DIM [9]. The dimension is based on the largest number of almost
orthogonal (using the (-, -)p inner product) functions in the set.

Definition 2.3 ([9), 42]) For a concept class C we say that SQ-DIM(C, D) = d if d is the largest
value for which there exist d functions fi, fa, ..., fa € C such that for every i # j, |(fi, f;)p| < 1/d.



Bshouty and Feldman gave an alternative way to characterize weak learning by statistical query
algorithms that is based on the number of functions required to weakly approximate each function
in the set [11].

Definition 2.4 For a concept class C' and v > 0 we say that SQD(C, D,~) = d if there exists a set
of d functions G C Fi° such that for every f € C, |{f,9)p| > v for some g € G. In addition, no
value smaller than d has this property.

Bshouty and Feldman show that a concept class C is weakly SQ learnable over D using a poly-
nomial number of queries if and only if SQD(C, D,1/t(n)) = d(n) for some polynomials d(-) and
t(-) [1I]. It is also possible to relate SQD and SQ-DIM more directly. It is well-known that the
maximal set of almost orthogonal functions in C'is also the approximating set for C'. In other words,
SQD(C, D,1/d) < d, where d = SQ-DIM(C, D). The connection in the other direction is implicit in
the work of Blum et al. [9]. Here we will use a stronger version given by Yang [42] (see [38] for a
recent simpler proof).

Lemma 2.5 ([42]) Let C be a concept class and D be a distribution over X. Then SQD(C, D,d~/?) >
d'/3/2, where d = SQ-DIM(C, D).

3 Strong SQ Dimension

In this section we give a generalization of the weak statistical query dimension to strong learning. We
first extend the approximation-based characterization of Bshouty and Feldman [I1] and then obtain
an orthogonality-based characterization from it.

3.1 Approximation-Based Characterization

In order to define our strong statistical query dimension we first need to generalize the approximation-
based characterization of Bshouty and Feldman [IT] to sets of real-valued functions rather than just
concept classes. To achieve this we simply note that the definition of SQD(C, D, ) does not use the
fact that functions in C' are Boolean and hence we can define SQD(F, D, y) for any set of real-valued
functions F' in exactly the same way. We now define the strong statistical query dimension of a class
of functions C.

Definition 3.1 For a concept class C, distribution D and €,y > 0 we define

SQSD(C, D, e,7) = fe?oo {SQD(C\ BP (sign(),€) — ¢, D,7)},

In other words, we say that SQSD(C, D, e,~) = d if for every ¢ € F°, there exists a set of d functions
Gy C F7° such that for every f € C, either

1. Prp[f(x) # sign(¢(z))] <€ or
2. there exists g € Gy such that |{f —¥,9)p| > .

In addition, no value smaller than d has this property.

We now give a simple proof that SQSD(C, D, €, v) characterizes (within a polynomial) the number
of statistical queries required to learn C' over D with accuracy € and query tolerance 7.

Theorem 3.2 For every concept class C, distribution D over X and e, 7 > 0,

SLC(C,D,e, ) > SQSD(C,D,e+7,7) — 2 .



Proof: Let A be a SQ algorithm that learns C over D using ¢ = SLC(C, D, €, T) queries of tolerance
7. According to Lemma [2.2] we can decompose every SQ of A into a correlational and a target-
independent queries. The distribution D is fixed and therefore any target-independent query of A
for function ¢(x) can always be answered with the exact value Ep[¢(z)], in other words with tolerance
0. Therefore it is sufficient to answer the ¢ correlational SQs of A with tolerance 7.

Now let ¢ € F7° be any function. The set G, is constructed as follows. Simulate algorithm 4
and for every correlational query (¢; - £,7) add ¢; to Gy and respond to the query with the value
(¥, ¢i)p = Epl¢i(x) - (z)]. Continue the simulation until A outputs a hypothesis hy. Add sign(y)
and hy to Gy.

First, by the definition of Gy, ¢ > |Gy| — 2. Now, let f be any function in C. If there does
not exist g € Gy, such that [(f — 1, g)p| > 7 then for every correlational query function ¢; € Gy,
(¥, 0:)p — (f,¢:)p| < 7 . This means that in our simulation, (¢, ¢;)p is within 7 of (f,¢;)p.
Therefore the answers provided by our simulator are valid for the execution of A when the target
function is f. That is they could have been returned by STAT(f, D) with tolerance 7. Therefore, by
the definition of A, the hypothesis hy satisfies (f, hy)p > 1 — 2e. Both sign(y) and hy are in Gy
and therefore we also know that |(f — ¢, sign(¥))p| < 7 and [(f — ¥, hy)p| < 7. These conditions
imply that (f,sign(¥))p > (¢,sign(y))p — 7 and (¥, hy)p > (f,hy)p — 7. In addition for all
Y, hy € F7°, (¥, sign(y))p > (¥, hy) p. By combining these inequalities, we conclude that

<f7Sign(¢)>D Z <¢a Sign(w»D - T 2 <w7hw>D - T Z <f7 hw>D - 27 Z 1—2e—27 )

which is equivalent to Prp[f(z) # sign(¢(z))] < €+ 7. In other words, if there does not exist
g € Gy such that |(f —,g)p| > 7 then f € BP(sign(v), e+ 7), giving us the claimed inequality.
O

Remark 3.3 If A is randomized then it can be converted to a non-uniform deterministic algorithm
(in the sense of having access to a fized polynomial size advice string) via a standard confidence boost-
ing transformation (e.g. [11l]). This transformation increases the number of queries by a polynomial
factor but leaves the accuracy of learning and the tolerance of queries unchanged. Therefore, up to a
polynomial factor, Theorem[3.9 also applies to SQ learning by randomized algorithms.

We now establish the other direction of our characterization.
Theorem 3.4 For every concept class C, distribution D over X and e, 7 > 0,
SLC(C,D,e,7) < SQSD(C, D, ¢,4-71)/(37%) .

Proof: Let d = SQSD(C, D,€,4 - 7). Our learning algorithm for C' builds an approximation to the
target function f in steps. In each step we have a current hypothesis i, € F{°. If sign(¢);) is not
e-close to f then we find a function g € G, such that |(f — s, 9)p| > 7. Such g can be viewed as a
vector “pointing” in the direction of f from ;. We therefore set ¥;,, =1 + (f —vi,9)p - 9. As we
will show 1} | ; is closer (in distance measured by ||-||p) to f than 1);. However ¢;_; is not necessarily
in F7°. We define ¢;;1 to be the projection of ¢, onto F°. As we will show this projection step
only decreases the distance to the target function. We will now provide the details of the proof.

Let 9 = 0. Given v; we define ;1 as follows. Let Gy, be the set of size at most d that
correlates with every function in C'\ BP(sign(1;),€) — 9; (as given by Definition . For every
g € Gy, we make a query for (f, g)p to STAT(f, D) with tolerance 7 and denote the answer by v(g).
If there exists g € Gy, such that |v(g) — (s, g) p| > 37 then we set g; = g, v = v(9:) — (¥, ¢:) D, and

iv1 = Vi +7i-gi- Otherwise the algorithm outputs sign(¢;). Note that if sign(1);) is not e-close to
f then there exists g € Gy, such that [(f — 1;,9)p| > 47 and, in particular, |v(g) — (¢, 9)p| > 37.



We set ;11 to be the projection of },; onto F5° or ;41(z) £ Pi(¢),(x)) and then continue
to the next iteration using ;4.

As we can see sign(v;) is only output when sign(v;) is e-close to f. Therefore in order to prove
the desired bound on the number of queries it is sufficient to show that the algorithm will output
sign(v;) after an appropriate number of iterations. This is established via the following claim.

Claim 3.5 For every i, ||f — |3 <1-3-i-72.
Proof: First, | f — ol = || f||% = 1. Next,

If =i D = 1(f =) =% - gillb = IIf = ¢illp + i - 9illD — 2(f — ¥i,%i - 9i) -
Therefore,

If = ¥illD = IIf = ¥ia D = 2%i(f — ¥i, 900D — Villgills = 2% - (f — ¥i, 9i)p — 7
=02yl [(f =i gi)p) =2 > 2 [ul(lvil = 7) =72 >42/3 >3- 72

To obtain (%) we note that |v;| > 37 and |(f — ¥i,9:)p — | = [{f, 9:)p — v(gi)| < 7. Therefore the
sign of 7; is the same as the sign of (f —;,¢;)p and [{f — ¥;,9:)p| > |vi| — 7 > 2v:/3.

We now claim that || f — ¥ |5 > ||f — %i+1]|3. This follows easily from the definition of ;1.
If for a point z, ¥;y1(x) = ¥j,(x) then clearly f(x) — i  (z) = f(z) — ¢iyr1(x). Otherwise, if
[¥i 1 (z)] > 1 then 911 (x) = sign(vj,,(x)) and for any value f(z) € {—1,1}, |f(z) — i (x)| >
|f(2) = tiy1(2)]. This implies that Ep[(f —i,1)%] > Ep[(f — ¥i+1)?].

We therefore obtain that for every 4, || f — ¥;||% — || f — ¢it1]|% > 372 giving us the claim. O
(.

Claim implies that the algorithm makes at most 1/(372) iterations. In each iteration at most
d queries are made and therefore the algorithm uses at most d/(372) queries of tolerance 7. O
(Th.

An important property of the proofs of Theorems and [3.4] that they give a simple and efficient
way to convert a learning algorithm for C' into an algorithm that given access to target-independent
statistical queries with respect to D builds an approximating set G for every 1 and vice versa.
As it was noted in [I6], the access to target-independent statistical queries with respect to D can
be replaced by a circuit that provides random samples from D if D is efficiently samplable or a
fixed polynomial-size random (unlabeled) sample from D. In this case the resulting algorithm is
non-uniform because it requires the random sample to be given to it as advice (see [I6] for more
details on converting a SQ algorithm to a CSQ algorithm). For convenience we refer to either of
these options as access to D.

Theorem 3.6 Let C be a concept class and D be a distribution over X. C' is efficiently SQ learnable
over D if and only if there exists an algorithm B that for every e > 0 and ¢ € F7°, given €, access
to D and a circuit for 1 € F7° can produce a set of functions G such that

1. Gy satisfies the conditions of Definition for some polynomial d and inverse-polynomial ~y
(inn, 1/e);
2. circuit size of every function in Gy is polynomial in n and 1/¢;

3. the running time of B is polynomial in n, 1/€ and the circuit size of 1.

Proof: The proof of Theorem @ gives a way to construct the set Gy by simulating A while using 1
in place of the target function f. This construction of Gy, would be efficient provided the exact values
of Ep[¢i(x) - ¥(z)] and the exact values of target-independent SQs in the simulation of algorithm A
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were available. However it is easy to see that the exact values are not necessary and can be replaced
by estimates within 7/2. Such estimates can be easily obtained given access to D.

Similarly, in the proof of Theorem [3.4] the iterative procedure would yield an efficient SQ learning
algorithm for C provided the exact values of (15, g)p were available. In place of the exact values
estimates within 7/2 can be used if the accuracy of statistical queries is also increased to 7/2. This
implies that if there exists an efficient algorithm that given a polynomial size circuit for ¢ € F7° and
access to D generates G, then C is efficiently SQ learnable over D. O

3.2 Orthogonality-Based Characterization

In order to simplify the application of our characterization we show that, with only a polynomial
loss in the bounds one can obtain an orthogonality-based version of SQSD. Specifically, we convert
the bound on the number of functions required to weakly approximate every function in some set of
functions F' to a bound on the maximum number of almost uncorrelated functions in F.

First we extend the definition of SQ-DIM (Def. to sets of arbitrary real-valued functions.

Definition 3.7 For a set of real-valued functions F we say that SQ-DIM(F, D) = d if d is the largest
value for which there exist d functions f1, fa, ..., fa € F such that for every i # j, |{fi, fj)p| < 1/d.

Now we generalize Yang’s conversion (Lemma [2.5]) to sets of arbitrary real-valued functions.

Lemma 3.8 Let D be a distribution and F' be set of functions such that every ¢ € F, m < ||¢||p < M
for some M >1>m. Then SQD(F, D, M(dm?)~%/3) > (dm?)'/3/2, where d = SQ-DIM(F, D).

Proof: Yang shows that our claim is correct if for every ¢ € F, ||¢||p = 1 [42, Cor. 1]. While his
claim (Lemma is only for Boolean functions the only property of Boolean functions used in his
proof is their ||-|| p-norm being equal to 1 (the same is also true and easier to verify in the simple proof
by Szorényi [38]) We reduce our general case to this special case by defining F/ = {f/||fllp | f € F}.
We claim that SQ-DIM(E”, D) > d - m?. It is easy to see this since if for fi, fo € F, (f1, f2)p < 1/d

then
(B By o1
I fillp” fellp/ p — dm?

This means that the existence of a set of d functions in F' with correlations of at most 1/d would
imply the existence of d > d - m? functions in F” with mutual correlations of at most 1/(dm?).

We apply Yang’s result to F’ and obtain SQD(F’, D, (dm?)~'/3) > (dm?)'/3 /2. This implies that
SQD(F, D, M (dm?)~/3) > (dm?)'/3 /2. To see this assume for the sake of contradiction that there
exists a set G of size less than (dm?)'/3/2 such that for every f € F, |(f,g)p| > M(dm?)~/3 for
some g € G. Then for every f' = f/|/fllp € F', |(f,)p| = (£ 9)pl/If b > M(dm?) =3/ fp >
(dm?)~1/3. This would violate the bound on SQD(F”, D, (dm?)~1/3) that we have obtained. O

We define SQ-SDIM(C, D, €) to be the generalization of SQ-DIM to e-accurate learning as follows.

Definition 3.9 SQ-SDIM(C, D, €) = supy¢ r= SQ-DIM(C'\ BP(sign(1)),€) — ), D).
We now ready to relate SQSD and SQ-SDIM.

Theorem 3.10 Let C be a concept class D be a distribution over X, € > 0 and d = SQ-SDIM(C, D, ¢).
Then SQSD(C, D,¢,1/(2d)) < d and SQSD(C, D, ¢,2(ed)~'/3) > (ed)'/3 2.

Proof: Let 1) € F° be any function, let Fy, = C\ B (sign(¢)), €) —t and let d’ = SQ-DIM(Fy, D) <
SQ-SDIM(C, D, €) = d.
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For the first part of the claim we use a minor modification of the standard relation between SQD
and SQ-SDIM(see Section. Let Fy = {f1, f2,..., far} C Fy be a largest-size set of functions such
that for every ¢ # 7, |(fi, fj)p| < 1/d’. The maximality of d’ implies that for every f € F, there
exists f; € Iy such that |(f;, f)p| > 1/d’. Thus F; is an approximating set for F,. The only minor
problem is that we need an approximating set of functions in F7°. The domain of each function in
Fy is [-2,2] and therefore to obtain an approximating set in F7° we simply scale F; by 1/2. By
taking Gy = {f/2 | f € F1} we obtain that SQD(Fy, D, 1/(2d")) < d’. This holds for every ¢ € F{°
and therefore SQSD(C, D, €,1/(2d)) < d.

For the second part of the claim we first observe that for every f € Fy, f = c— 1 for c €
C and Prplc # sign(¢)] > e. This implies that Prp[|f| > 1] > € and hence 2 > ||f||p >
Ve. We now use Lemma to obtain SQD(Fy, D,2(ed’)~'/3) > (ed’)}/3/2. This implies that
SQSD(C, D, ¢,2(ed)~"/3) > (ed)'/3 2. O

We can combine Theorem with the approximation-based characterization (Th. and
to obtain a characterization of strong SQ learnability based on SQ-SDIM.

Theorem 3.11 Let C' be a concept class, D be a distribution over X and € > 0. If there exists a
polynomial p(-,-) such that C is SQ learnable over D to accuracy € from p(n,1/¢€) queries of tolerance
1/p(n,1/e€) then SQ-SDIM(C, D,e+1/p(n,1/€)) < p'(n,1/€) for some polynomial p'(-,-). Further, if
SQ-SDIM(C, D,e) < p(n,1/e) then C is SQ learnable over D to accuracy € from p'(n,1/€) queries
of tolerance 1/p'(n,1/€) for some polynomial p'(-,-).

4 SQ Dimension for Agnostic Learning

In this section we extend the statistical query dimension characterization to agnostic learning. Our
characterization is based on the well-known observation that agnostic learning of a concept class
C requires (a weak form of) learning of the set of functions F' in which every function is weakly
approximated by some function in C' [3I]. For example agnostic learning of Boolean conjunctions
implies weak learning of DNF expressions. We formalize this by defining an LY e-ball around a
real-valued function ¢ over X as BP(¢,¢) = {¢ € F* | LP (¢, ¢) < €} and around a set of functions
C as LP(C,e) = UsccBP (¢,€). In (o, B)-agnostic learning of a function class C' over the marginal
distribution D, the learning algorithm only needs to learn when the distribution over examples
A = (D, ¢) satisfies A(A,C) < a. In other words, for any A = (D, ¢) such that there exists ¢ € C,
for which A(4,¢) = LP(¢,¢)/2 < a. Therefore (a, 3)-agnostic learning with respect to distribution D
can be seen as learning of the set of distributions D = {(D, ¢) | ¢ € BP(C,2a)} with error of at most
. This observation allows us to apply the characterizations from Section [3] after the straightforward
generalization of SQSD and SQ-SDIM to general sets of real-valued functions. Namely, for a set of
real-valued functions F', we define

SQSD(F,D,,7) = sup_ {SQD(F\ BY (sign(¢),2¢) = ,D,7)} .

The SQ-SDIM(F, D, €) is defined analogously. It is easy to see that when F' contains only {—1,1}
functions these generalized definitions are identical to Definitions and

We can now characterize the query complexity of (o, 3)-agnostic SQ learning using SQSD(BP (C, 2-
a), D, ,7) in exactly the same way as SLC is characterized using SQSD(C, D, ¢€,v). Formally, we
obtain the following theorem.

Theorem 4.1 Let C be a concept class, D be a distribution D over X and 0 < o < < 1/2. Letd
be the smallest number of SQs of tolerance T sufficient to («, 8)-agnostically learn C. Then
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1. d>SQSD(BP(C,2-a),D,B+71,7) -2,
2. d < SQSD(BP(C,2-a),D,3,4-7)/(372).

To prove Theorem [£.1] we only need to observe that the proofs of Theorems [3.2] and do not assume
that the concept class C' contains only Boolean functions and hold for any class of functions contained
in F7°. To obtain a characterization of («, 3)-agnostic SQ learning using SQ-SDIM we would also
need to extend Theorem [3.10] to general sets of functions in F7°.

Theorem 4.2 Let F' C F7° be a set of functions, D be a distribution over X, € > 0 and d =
SQ-SDIM(F, D,¢). Then SQSD(F, D,¢,1/(2d)) < d and SQSD(F, D,¢,2d='/%) > (ed)'/3 2.

Proof: We first observe that the first part of the proof of Theorem |3.10| can be used verbatim for
more general sets of functions. However the proof of the second part relies on a lower bound of
Ve on the | - ||p-norm of every function in Fy = F \ BP(sign(¢),e) — ¢. In place of this lower
bound we observe that if there exists a function f € Fy such that ||f||p < 2d~'/5 then there does
not exist g € F such that (f,g)p > 2d~'/%) and, in particular, SQD(Fw7D7e,2d’1/5) = oo. This
would imply the claim. Otherwise (when ||f||p > 2d=%/® for all f € F,), we can apply Lemma
(with m = 2d~1/%) to obtain SQD(Fy, D,2'/3d=1/%) > (ed)'/3/2. In either case we obtain that
SQSD(F, D, €,2d~'/%) > (ed)/3 2. O

While we can now use SQSD or SQ-SDIM to characterize SQ learnability in the basic agnostic
mode]ﬁ a simpler approach to characterization is suggested by recent distribution-specific agnostic
boosting algorithms [I9, 25]. Formally, a weak agnostic learning algorithm is an algorithm that
can recover at least a polynomial fraction of the advantage over the random guessing of the best
approximating function in C. Specifically, on a distribution A = (D, ¢) it produces a hypothesis h
such that (h,¢)p > p(1/n,1 — 2A(A,C)) for some polynomial p(-,-). Distribution-specific agnostic
boosting algorithms of Kalai and Kanade [25] and Feldman [19] imply the equivalence of weak and
strong distribution-specific agnostic learning.

Theorem 4.3 ([19, 25]) Let C be a concept class and D be a distribution over X. If C is efficiently
weakly agnostically learnable over D then C is agnostically learnable over D.

This result is proved only for the example-based agnostic learning but, as with other boosting al-
gorithms, it can be easily translated to the SQ model (¢f. [1]). Given Theorem we can use the
known characterizations of weak learning together with our simple observation to characterize the
(strong) agnostic SQ learning using either SQD or SQ-DIM.

Theorem 4.4 Let C be a concept class and D be a distribution over X. There exists a polynomial
p(+,+) such that ASLC(C,D,e,1/p(n,1/€)) < p(n,1/e) if and only if there exists a polynomial p'(-,")
such that for every 1 >T >0, SQD(BP(C,1-T),D,1/p'(n,1/T)) < p'(n,1/T).

Proof: The proof is essentially the same as the characterization of weak learning by Bshouty and
Feldman [11]. We review it briefly for completeness. Given I' > 0 and an agnostic learning algorithm
A for C, we simulate A with e = I'/4 as in the proof of Theorem for ¢» = 0. Let G be the set
containing the correlational queries obtained from A and the final hypothesis. By the same analysis
as in the proof of Theorem the size of G is upper-bounded by a polynomial in n and 1/e = 4/T.
Further, for every ¢ € BP(C,1 —T), there exists ¢ € G such that |[(g,¢)p| > min{r,I" — 2¢} =
min{7,I'/2}. The tolerance of the learning algorithm is lower bounded by the inverse of a polynomial
(in n and 1/T") and therefore we obtain the first direction of the claim.

If for every I' > 0, SQD(BP(C,1-T),D,1/p'(n,1/T')) < p'(n,1/T) then C can be weakly agnos-
tically SQ learned by the following algorithm. First, ask the query g- £ with tolerance 1/(3p’(n,1/T)

4This is the approach we used in the earlier version of this work.
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for each function ¢ in the approximating set G. Let v(g) denote the answer to the query for g. For

a distribution A = (D, ¢), Ealg(x) - b] = (g,¢)p and therefore |v(g) — {g,¢)p| < 1/(3p'(n,1/T).

By choosing ¢' = argmax ¢ {|v(g)|} we are guaranteed that [(¢’,¢)p| > 1/(3p'(n,1/I')). Therefore

sign(v(g’)) - ¢’ is a weak hypothesis for f. Finally, we can appeal to Theorem to convert this

weak agnostic learning algorithm to a strong agnostic learning algorithm for C' over D. O
As before, we can now obtain an SQ-DIM-based characterization from the SQD-based one.

Theorem 4.5 Let C be a concept class and D be a distribution over X. There exists a polynomial
p(+, ) such that ASLC(C, D,¢e,1/p(n,1/€)) < p(n,1/e€) if and only if there exists a polynomial p'(-,-)
such that for every 1 >T >0, SQ-DIM(BP(C,1-T),D) < p'(n,1/T).

Proof: Let d = SQ-DIM(BP(C,1 —T), D). Every function f € BP(C,1 —T) satisfies | f|p >
Ep[|f|]] > T. Therefore, Lemma implies that SQD(BP(C,1 —T), D, (T2d)~/3) > (I'2d)'/3)2.
This implies that d < p;(SQD(B{(C,1 —T), D,1/p2(n,1/T)),1/T) for some polynomials p; (-, -)
and pa(+,+). As in the case of concept classes, it follows immediately from the definition that d >

SQD(BP(C,1 —T),D,1/d). These bounds together with Theorem imply the claim. O
We now give a simple example of the use of this characterization. For X = {0,1}", let U

denote the uniform distribution over {0,1}" and let C,, ;, denote the concept class of all monotone
conjunctions of at most k£ Boolean variables.

Theorem 4.6 For every k = w(1), the concept class Cy, i is not efficiently agnostically SQ learnable
over the uniform distribution U.

Proof: Let xr denote the parity function of the variables with indices in T' C [n]. Let ¢y denote
the monotone conjunction of the same set of variables. If |T| is odd then Pry[xr(z) # cer(x)] =
1/2—2-1T1 and therefore LY (1, er) = 1—271T1+1 Similarly, for even |T|, LY (—x7, cr) = 1-271T1+1,
In particular, for P, j, = {(—1)/"*1 . xp | |T| < k}, we get P, x C BY (Cpx, 1 —27FF1). For any two
distinct parity functions xs and xr, (Xs, X7)v = 0 and therefore SQ-DIM(BY (C,, ., 1—27F1) U) >
1P| = Y ;p, (7). By choosing I' = 1/n we obtain that SQ-DIM(BY (Cyx,1 — I),U) = n*®.
Theorem [£.5] now implies the claim. O

Our proof shows that agnostic SQ learning of monotone disjunctions is hard because it requires
weak SQ learning of example distributions that represent parity functions over the uniform distribu-
tion. Parity functions over the uniform distribution are well-known to be not weakly SQ learnable
[9]. A similar approach was used by Kalai et al. to show that agnostic learning of majorities over the
uniform distribution requires learning of parities with random noise which is a notoriously hard open
problem in theoretical computer science [26]. As far as we are aware, these are the only hardness
results for agnostic learning of simple classes over the uniform distribution. A brief survey of other
hardness results for agnostic learning can be found in [21].

5 Applications to Evolvability

In this section we use the characterization of SQ learnability and the analysis in the proof of Theorem
to derive a new type of evolution algorithms in Valiant’s framework of evolvability [40].

5.1 Overview of the Model

We start by presenting a brief overview of the model. For a detailed description and intuition behind
the various choices made in model the reader is referred to [40, [I8]. The goal of the model is to
specify how organisms can acquire complex mechanisms via a resource-efficient process based on
random mutations and guided by performance-based selection. The mechanisms are described in
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terms of the multi argument functions they implement. The performance of such a mechanism is
measured by evaluating the agreement of the mechanism with some “ideal” behavior function. The
value of the “ideal” function on some input describes the most beneficial behavior for the condition
represented by the input. The evaluation of the agreement with the “ideal” function is derived by
evaluating the function on a moderate number of inputs drawn from a probability distribution over
the conditions that arise. These evaluations correspond to the experiences of one or more organisms
that embody the mechanism.

Random variation is modeled by the existence of an explicit algorithm that acts on some fixed
representation of mechanisms and for each representation of a mechanism produces representations
of mutated versions of the mechanism. The model requires that the mutation algorithm be efficiently
implementable. Selection is modeled by an explicit rule that determines the probabilities with which
each of the mutations of a mechanism will be chosen to “survive” based on the performance of all
the mutations of the mechanism and the probabilities with which each of the mutations is produced
by the mutation algorithm.

As can be seen from the above description, a performance landscape (given by a specific “ideal”
function and a distribution over the domain), a mutation algorithm, and a selection rule jointly
determine how each step of an evolutionary process is performed. A class of functions C' is considered
evolvable if there exist a representation of mechanisms R and a mutation algorithm M such that for
every “ideal” function f € C, a sequence of evolutionary steps starting from any representation in R
and performed according to the description above “converges” in a polynomial number of steps to f.
This process is essentially PAC learning of C' with the selection rule (rather than explicit examples)
providing the only target-specific feedback. We now define the model formally using the notation
from [I8].

5.2 Definition of Evolvability

The description of an evolution algorithm A consists of the definition of the representation class R of
possibly randomized hypotheses in F7° and the description of polynomial time mutation algorithm
M that for every r € R and € > 0 outputs a random mutation of r

Definition 5.1 A evolution algorithm A is defined by a pair (R, M) where

e R is a representation class of functions over X with range in [—1,1].

o M is a randomized algorithm that, given r € R and € as input, outputs a representation r1 € R
with probability Pr a(r,r1). The set of representations that can be output by M (r,€) is referred
to as the neighborhood of r for e and denoted by Neigh 4 (r,€).

A loss function L on a set of values Y is a non-negative mapping L : ¥ x Y — RT. L(y,y')
measures the “distance” between the desired value y and the predicted value 3. In the context
of learning Boolean functions using hypotheses with values in [—1,1] we only consider functions
L:{-1,1} x [-1,1] = R*. Valiant’s original model only considers Boolean hypotheses and hence
only the disagreement loss (or Boolean loss) which is equal to La(y,y’) = y-y'. It was shown in our
earlier work [I8] that such loss is equivalent to the linear loss Li(y,y') = |y’ — y| over hypotheses
with the range in [—1,1]. Here we use the quadratic loss Lo(y,y') = (y' — y)? function. For a
function ¢ € F7° its performance relative to loss function L, distribution D over the domain and
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target function f is defined] as
Lperf;(¢,D)=1—2-Ep[L(f(z),¢(x))]/L(-1,1) .

For an integer s, functions ¢, f € F{° over X, distribution D over X and loss function L, the empirical
performance LPerf s (¢, D, s) of ¢ is a random variable that equals 1 — %ﬁ Yicrs) L(f(2i), ¢(21))
for z1,29,...,2s € X chosen randomly and independently according to D.

A number of natural ways of modeling selection were discussed in prior work [40, [I8]. For
concreteness here we use the selection rule used in Valiant’s main definition in a slightly generalized
version from [I8]. In selection rule SelNB[L,t,p, s] p candidate mutations are sampled using the
mutation algorithm. Then beneficial and neutral mutations are defined on the basis of their empirical
performance LPerf in s experiments (or examples) using tolerance ¢t. If some beneficial mutations
are available one is chosen randomly according to their relative frequencies in the candidate pool. If
none is available then one of the neutral mutations is output randomly according to their relative
frequencies. If neither neutral or beneficial mutations are available, | is output to mean that no
mutation “survived”.

Definition 5.2 For a loss function L, tolerance t, candidate pool size p, sample size s, selection
rule SelNB[L,t,p, s| is an algorithm that for any function f, distribution D, evolution algorithm
A = (R,M), a representation v € R, accuracy €, outputs a random variable that takes a value
r1 determined as follows. First run M(r,e) p times and let Z be the set of representations ob-
tained. For v € Z, let Prz(r') be the relative frequency with which r' was generated among the
p observed representations. For each v’ € Z U {r}, compute an empirical value of performance
v(r') = LPerf;(r',D,s). LetBene(Z) = {r' | v(r’) > v(r)+t} and Neut(Z) = {r' | |v(r")—v(r)| < t}.
Then

(i) if Bene(Z) # 0 then output r1 € Bene with probability Prz(r1)/ 3,/ cpene(z) Pr2(1");
(i1) ifBene(Z) = () and Neut(Z) # () then output m1 € Neut(Z) with probability Prz(r1)/>.
(i1i) If Neut(Z) UBene(Z) = 0 then output L.

Pr(r).

r’€Neut(Z)

A concept class C' is said to be evolvable by an evolution algorithm 4 in a selection rule Sel over
distribution D if for every target concept f € C', mutation steps as defined by A and guided by Sel
will converge to f.

Definition 5.3 For concept class C over X, distribution D, evolution algorithm A, loss function
L and a selection rule Sel based on LPerf we say that the class C is evolvable over D by A in
Sel if there exists a polynomial g(n,1/e) such that for every n, f € C, € > 0, and every vy €
R, with probability at least 1 — €, a sequence T¢,71,T2, ..., where r; < Sel(f, D, A,r;—1) will have
LPerff(Tg(n’l/e), D) >1—e.

We say that an evolution algorithm A evolves C' over D in Sel monotonically if with probability at
least 1 — ¢, for every i < g(n,1/¢), LPerf ;(r;, D) > LPerf ;(ro, D), where g(n,1/€) and ro,71,72, . ..
are defined as above. Note that since the evolution algorithm can be started in any representation,
this is equivalent to requiring that with probability at least 1 — e, LPerf ¢(r;41, D) > LPerf ¢(r;, D)
for every 1.

As in PAC learning, we say that a concept class C' is evolvable in Sel if it is evolvable over all
distributions by a single evolution algorithm (we emphasize this by saying distribution-independently

5In general, for this definition to make sense the loss function has to satisfy several simple properties to which we refer
as being admissible [18]. Both loss functions we consider here are admissible and therefore we omit an explicit discussion
of the general assumptions.
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evolvable). A more relaxed notion of evolvability requires convergence only when the evolution starts
from a single fixed representation ry. Such evolvability is referred to as evolvability with initialization.

5.3 Monotone Distribution-Specific Evolvability from SQ Learning Algo-
rithms

In our earlier work [I8] it was shown that every SQ learnable concept class C is evolvable in
SelNB[Lq,t, p, s| (that is the basic selection rule with quadratic loss) for some polynomials p(n,1/e)
and s(n,1/e) and an inverse polynomial ¢(n,1/e). The evolution algorithms obtained in that result
do not require initialization but instead are based on a form of implicit initialization that involves
gradual reduction of performance to 0 if the process of evolution is not started in some fixed ry.
Such “deliberate” gradual reduction in performance is possible since (somewhat unnaturally) SelNB
allows a reduction in performance of up to ¢ in every step. Taking many such steps is used to reini-
tialize the evolution algorithm. Hence we consider the question of whether it is possible to evolve
from any starting representation without the need for performance decreases, in other words, which
concept classes are evolvable monotonically. In this section we show that for every fixed distribution
D and every concept class C' SQ learnable over D, there exists a quadratic-loss monotone evolution
algorithm for C' over D.

The key element of the proof of this result is essentially an observation that the SQ algorithm
that we designed in the proof Theorem can be seen as repeatedly testing a small set of candidate
hypotheses, and choosing one that reduces the || - ||% distance to the target function. Converting
such an algorithm to an evolution algorithm is a rather straightforward process. First we show that
Theorem [3.2] gives a way to compute a neighborhood of every function v that always contains a
function with performance higher than ¢ (unless the performance of v is close to the optimum).

Theorem 5.4 Let C be a concept class over X and D be a distribution. If C is efficiently SQ
learnable over D then there exists an algorithm N that for every € > 0, given €, access to D and a
circuit for 1 € F7° can produce a set of functions N (i, €) such that

1. For every f € C, there exists ¢ € N(¢,¢€) such that
If =l < max{e, [|f —¥[Ip —0(n,1/e)},

for an inverse-polynomial 6(-,-);
2. the size of N(1,€) is polynomial in n and 1/¢;

3. the circuit size of every function in N(1,€) is (additively) larger than the circuit size of ¥ by
at most a polynomial in n and 1/e;

4. the running time of N is polynomial in n, 1/¢ and the circuit size of 1.
Proof: We use Theorem [3.6]to obtain an algorithm B that given a circuit for ¢, accuracy parameter €

and access to D, efficiently constructs set Gy, of polynomial size for some inverse polynomial v(n, 1/¢).
Let Gy(e/4) be the output of B on 1, €/4 and access to distribution D. Now let

Ny, e) ={Pi+7-9) | g € Gule/DHJ P —7-9) | g € Gy(e/} U {sign(¥)} -

By the properties of Gy (e/4), for every f € C, either there exists a function g € Gy(e/4) such that
[{f —¥,9)p| = v(n,4/e), or Prp[f # sign(¢)] < €/4. In the first case, by the analysis in the
proof of Theorem 3.4 vy = P1(¢ + b~ v(n,4/€) - g) satisfies || f — 1|3, < | f — ¥||3 — 7(n,4/€)? for
b=sign({f —v,g)p). In the second case, ||sign(v)) — f||% < 4-€¢/4 = ¢. Theorem also implies
that the algorithm that we have defined satisfies the bounds in conditions (2)-(4). O
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By definition, LgoPerfs(r,D) = 1 — ||f — r||%/2. Hence an immediate corollary of Theorem
is monotone evolvability of every SQ-learnable concept class in SelNB[Lgq,t,p, s] over any fixed
distribution D.

Theorem 5.5 Let D be a distribution and C be a concept class efficiently SQ learnable over D. There
exist polynomials p(n,1/€) and s(n,1/€), an inverse polynomial t(n,1/€) and an evolution algorithm

A = (R, M) such that C is evolvable monotonically by A over D in SelNB[Lg, t(n,1/¢),p(n,1/€), s(n,1/€)].
Here if D is not efficiently samplable then A is a non-uniform algorithm.

Proof: Let R be the representation class containing all circuits over X and let r be any representation
in R. Given r and 1/e the algorithm M uses the algorithm A from Theorem with parameters
r and € to obtain N(r,€). Let 6(n,1/€) denote the inverse-polynomial improvement guaranteed by
Theorem [5.4] The algorithm A requires access to distribution D and can be simulated efficiently
if D is efficiently samplable or simulated using a fixed random sample of points from D otherwise.
In this case A might be a non-uniform algorithm (as we explained in Section [3)). The algorithm M
outputs a randomly and uniformly chosen representation in N(r,€). The efficiency of N implies that
M can be implemented efficiently.

In order for this evolution algorithm to work we need to make sure that a representation with
the highest performance in N(r, ¢) is present in the candidate pool and that the performance of
each candidate mutation is estimated sufficiently accurately. We denote a representation with the
highest performance by r*. The bound on the number of generations that we are going to prove is
g(n,1/e) = 8/0(n,1/e). To ensure that r* is with probability at least 1 — €/4 in the candidate pool
in every generation we set p(n,1/e) = |N(r,¢)| - In w. To ensure that with probability at least
1 — €/4 in every generation the performance of each mutation is estimated within 6(n, 1/¢)/8 we set
s(n,1/€) = c-0(n,1/e)=2 log w for a constant ¢ (obtained via the Hoeffding’s bound).
We set the tolerance of the selection rule to ¢(n,1/¢) = 3-0(n,1/€)/8.

By the properties of NV,

LgPerf¢(r*, D) > min{LgPerf;(r,D) + 6(n,1/€)/2,1 —¢/2}.

If LoPerfs(r,D) < 1 — € then LgPerf;(r*,D) > LgPerf;(r,D) + 0(n,1/€)/2 (without loss of
generality 6(n, 1/¢) < €). In this case if r* is in the pool of candidates Z and the empirical performance
of every mutation in Z is within 6(n, 1/€)/8 of the true performance then Benez(r) is non-empty and
for every r’ € Benez(r), LoPerfs(r’', D) > LgPerfs(r, D) +6(n,1/€)/4. In particular, the output of
SelNB[Lg, t(n,1/€),p(n,1/€), s(n,1/€)] will have performance at least LoPerf ;(r, D) 4 0(n,1/¢€)/4.
The lowest initial performance is —1 and therefore, with probability at least 1 — €/2, after at most
g(n,1/e) = 8/6(n,1/¢€) steps a representation with performance at least 1 — € will be reached.

We also need to establish that once the performance of at least 1 —e is reached it does not decrease
within g(n,1/¢) steps and also prove that the evolution algorithm is monotone. To ensure this we
modify slightly the mutation algorithm M. The algorithm M’ outputs a randomly and uniformly
chosen representation in N(r, €) with probability A =€/(2-g(n,1/¢)) and outputs r with probability
1 — A. We also increase p(n,1/e) accordingly to ensure that r* is still in the pool of candidates
with sufficiently high probability. This change does not influence the analysis when Benez(r) is non-
empty. If Benez(r) is empty then, by the definition of M’, SelNB[Lg,t(n,1/¢),p(n,1/¢), s(n,1/¢€)]
will output r with probability at least 1 — A. That is in every step, either the performance improves
or it does not change with probability at least 1 — A. In particular, with probability at least 1 —¢/2
the performance will not decrease during any of the first g(n, 1/€) generations. O
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5.4 Distribution-Independent Evolvability of Disjunctions

A substantial limitation of the general transformation given in the previous section is that the evo-
lution algorithm given there requires access to D and hence only implies evolvability for a fixed
distribution. In this section we show that for the concept class of disjunctions (and conjunctions) the
ideas of the transformation in Section [5.3| can be used to derive a simple algorithm for distribution-
independent monotone evolvability of disjunctions. An even simpler and more general algorithm
based on these ideas is also given in our subsequent work [20].

As usual in distribution-independent learning, we can assume that the disjunction is monotone
[30]. We represent a monotone disjunction by a subset T C [n] containing the indices of the variables
in the disjunction and refer to it as t7. For every i € [n], let a; refer to the function that returns the
value of the i-th coordinate of a point in {0,1}".

Given a current representation computing function ¢ € F7° we try to modify it in two ways. The
first one is to add v-x; and project using P; for some i € [n] and v > 0. The other one is to subtract
and project using P;. The purpose of the first type of modification is to increase performance on points
where the target disjunction equals to 1. It is easy to see that such steps can make the performance
on such points as close to 1 as desired. The problem with such steps is that they might also add
v - x; such that z; is not in the target disjunction and thereby decrease the performance on points
where the target equals —1. We fix this by using the second type of modification. This modification
increases the performance on points where the target equals —1 but may decrease the performance
on points where the target equals 1. The reason why this combination of modifications will converge
to a good hypothesis is that for the quadratic loss function the change in loss due to an update is
larger on points where the loss is larger. Namely, Lg(y,y' + A) = Lo(y,y') —2- A - (y —y') + A%
This means that if the first type of modification can no longer improve performance then the second
type will. We formalize this argument in the lemma below.

Lemma 5.6 For ¢ € F°, let Ny(¢) = {Pi(¢p+v-2;) | i € [n]}U{¢, Pi(¢—~)}. There exist inverse
polynomial 7(-,-) and ¥(-,-) such that for every distribution D over {0,1}", every target monotone
disjunction f, every e >0 and every ¢(x) € Fi° there exists ¢' € Ny 1/¢)(p) for which

LgPerf¢(¢’, D) > min{LgPerf (¢, D)+ 7(n,1/e),1 — €} .

Proof: Let f = tr denote the target monotone disjunction. By the definition ||f — ¢||%, = 2(1 —
LgPerf ¢(¢, D)). We denote the loss of ¢ when f restricted to 1 and —1 by Ay = Ep|[(f—¢)*-(f+1)/2]
and A_; = Ep[(f — ¢)? - (1 — f)/2] respectively. Let v = €3/2/21 and 7 = v*/(8n). We split the
analysis into several cases.

1. If LgPerf;(¢,D) > 1 — € then ¢’ = ¢ satisfies the condition.

2. LoPerfs(¢,D) <1—eand Ay > 272 In this case,
Ay <Prp[f(z) =1, ¢(x) >1-1]-7* +Prp[f(z) =1, ¢(z) <1-1]-4.

Therefore

Prp[f(z) =1, ¢(z) <1—1]> (A1 —7%)/4>7%/4.
The target function is a disjunction of at most n variables therefore there exists ¢ € T such
that Prplz; = 1, ¢(x) <1 —~] > ~%/(4n). For such i, let ¢’ = Pi(¢ + 7 - z;). Note that for
every point x, the loss of ¢’(z) is at most the loss of ¢(z) while for every point where z; = 1

and ¢(z) < 1 — + the loss of ¢/(z) is smaller than the loss of ¢(z) by at least 2. Therefore,
v

If =I5 < Ilf = 9llp = 7" Prolwi =1, ¢(@) <1 =1 < If =0l - 715 -
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This implies that
LgoPerfs(¢', D) > LgPert s(¢, D) + 7(n,1/€)

for 7 defined as above.

3. LoPerfs(¢,D) <1—eand Ay < 272, In this case A_; > 2e— Ay > 3-¢/2. Let ¢/ = Pi(¢p—7).
We now upper bound the increase in error on points where f = 1 and lower bound the decrease
in error on points where f = —1. For the upper bound we have

Ep[(f— (6 =) <2-Ep[(f - ¢)*] + 277

and therefore the increase in error when f = 1 is at most A; +2-~2 < 4-~2. For the lower
bound similarly to the previous case we get the inequality

A_i <Prplf(z) = -1, ¢(z) < —1+/€/2] - ¢/4+ Prp[f(a) = -1, ¢p(a) > —1++/¢/2] -4 .

Therefore

Prp(f(z) = -1, ¢(x) > -1+ Ve/2] > (A1 —€/4) /4 > /4. (1)
On every point « where f(x) = —1 and ¢(z) > —1 + /€/2,

[f(z) = &' (@) < |f(2) = ¢(@)]* = (27(o(2) — f(x)) =) < |f(2) = d(@)]* = 27Ve/2+ 7% .
By combining this with equation (1)) and our choice of v = €3/2/21 we get

€
If =D <If —¢llb— 7 (We=2") < If =8lb =57
Therefore in this case
LoPerf (¢, D) > LoPerf ;(¢, D) + (5-7* —4-4?)/2 > LoPerf ;(¢, D) + 7(n, 1/e) .

O

The neighborhood N, (¢) can be computed efficiently and therefore Lemma can be converted

to an evolution algorithm in exactly the same way as it was done in Theorem This implies
monotone and distribution-independent evolvability of disjunctions in SelNB[Lq,t,p, s].

Theorem 5.7 There exist polynomials p(n,1/¢) and s(n,1/¢€), an inverse polynomial t(n,1/€) and
an evolution algorithm A = (R, M) such that for every distribution D disjunctions are evolvable
monotonically by A over D in SelNB[Lq,t(n,1/€),p(n,1/¢€), s(n,1/€)].

6 Discussion and Further Work

One natural question not covered in this work is whether and how our characterization can be applied
to understanding of the SQ complexity of learning specific concept classes for which the previously
known characterizations are not sufficient. As we explained in the introduction, one such example
is learning of monotone functions. This question is addressed in a recent work [22], where the first
lower bounds for SQ learning of depth-3 monotone formulas over the uniform distribution are derived
using SQ-SDIM. The main open problem in this direction is evaluating the SQ-SDIM of monotone
DNF over the uniform distribution.

As we have mentioned, another way to see our proof of Theorem is as a boosting algorithm that
instead of using a weak learning algorithm on different distributions uses a weak learning algorithm
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on different target functions (specifically on f —; at iteration 7). This perspective turned out to be
useful for understanding of boosting in the agnostic learning framework. In particular, it has lead to
the distribution-specific boosting algorithm given in Theorem and to a new connection between
agnostic and PAC learning.

We also believe that the insights into the structure of SQ learning given in this work will be useful
in further exploration of Valiant’s model of evolvability. For example, Theorem [5.4] can also be used
to obtain distribution-specific evolvability of every SQ-learnable concept class with only very weak
assumptions on the selection rule such as (¢,7)-distinguishing defined in [I8] (we will elaborate this
point elsewhere). In a subsequent work [20] we use some of the ideas from this work to show that
the important concept class of linear threshold functions with a non-negligible margin is evolvable
monotonically and distribution-independently in a broad family of loss functions that includes the
quadratic loss. This substantially generalizes our results for disjunctions and gives a simpler analysis.
In addition we prove in [20] that conjunctions are not evolvable distribution-independently with the
Boolean loss. This suggests that other loss functions need to be considered to achieve distribution
independence for even such simple concept classes, justifying our use of the quadratic loss. Perhaps,
the most interesting question in this direction is whether results analogous to Theorem [5.5|can also be
obtained for distribution-independent evolvability and extended to other interesting loss functions.

In another related subsequent work Kanade et al. study monotonicity with the Boolean loss
[27]. They show that strict monotonicity (which is satisfied by the algorithms we give here) implies
robustness of the evolution algorithm to gradual change in the target function. They also give two
new monotone evolution algorithms for linear threshold functions (with different assumptions on
the distribution over the domain). Finally, in a very recent work P. Valiant extended the model of
evolvability to real-valued target functions [41]. Along with a general transformation of optimization
algorithms to his new model, he described a simple evolution algorithm for monotone and distribution
independent evolving of linear functions using, again, the quadratic loss function.
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